summaryrefslogtreecommitdiffstats
path: root/lib/msun
diff options
context:
space:
mode:
authordas <das@FreeBSD.org>2011-10-15 04:16:58 +0000
committerdas <das@FreeBSD.org>2011-10-15 04:16:58 +0000
commit7c947eee2570f5cda7e1ce3562be6f001928ebb0 (patch)
tree36d6efaa318c8cce599f8866053ea431abd3c480 /lib/msun
parent4daad241b3b6198dbc15d5c7c4bb1ce0542c9677 (diff)
downloadFreeBSD-src-7c947eee2570f5cda7e1ce3562be6f001928ebb0.zip
FreeBSD-src-7c947eee2570f5cda7e1ce3562be6f001928ebb0.tar.gz
Fix a double-rounding bug in fma{,f,l}. The bug would occur in
round-to-nearest mode when the result, rounded to twice machine precision, was exactly halfway between two machine-precision values. The essence of the fix is to simulate a "sticky bit" in the pathological cases, which is how hardware implementations break the ties. MFC after: 1 month
Diffstat (limited to 'lib/msun')
-rw-r--r--lib/msun/src/s_fma.c169
-rw-r--r--lib/msun/src/s_fmaf.c38
-rw-r--r--lib/msun/src/s_fmal.c149
3 files changed, 231 insertions, 125 deletions
diff --git a/lib/msun/src/s_fma.c b/lib/msun/src/s_fma.c
index aefbd8e..9cb0ddc 100644
--- a/lib/msun/src/s_fma.c
+++ b/lib/msun/src/s_fma.c
@@ -31,6 +31,8 @@ __FBSDID("$FreeBSD$");
#include <float.h>
#include <math.h>
+#include "math_private.h"
+
/*
* A struct dd represents a floating-point number with twice the precision
* of a double. We maintain the invariant that "hi" stores the 53 high-order
@@ -59,6 +61,73 @@ dd_add(double a, double b)
}
/*
+ * Compute a+b, with a small tweak: The least significant bit of the
+ * result is adjusted into a sticky bit summarizing all the bits that
+ * were lost to rounding. This adjustment negates the effects of double
+ * rounding when the result is added to another number with a higher
+ * exponent. For an explanation of round and sticky bits, see any reference
+ * on FPU design, e.g.,
+ *
+ * J. Coonen. An Implementation Guide to a Proposed Standard for
+ * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
+ */
+static inline double
+add_adjusted(double a, double b)
+{
+ struct dd sum;
+ uint64_t hibits, lobits;
+
+ sum = dd_add(a, b);
+ if (sum.lo != 0) {
+ EXTRACT_WORD64(hibits, sum.hi);
+ if ((hibits & 1) == 0) {
+ /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
+ EXTRACT_WORD64(lobits, sum.lo);
+ hibits += 1 - ((hibits ^ lobits) >> 62);
+ INSERT_WORD64(sum.hi, hibits);
+ }
+ }
+ return (sum.hi);
+}
+
+/*
+ * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
+ * that the result will be subnormal, and care is taken to ensure that
+ * double rounding does not occur.
+ */
+static inline double
+add_and_denormalize(double a, double b, int scale)
+{
+ struct dd sum;
+ uint64_t hibits, lobits;
+ int bits_lost;
+
+ sum = dd_add(a, b);
+
+ /*
+ * If we are losing at least two bits of accuracy to denormalization,
+ * then the first lost bit becomes a round bit, and we adjust the
+ * lowest bit of sum.hi to make it a sticky bit summarizing all the
+ * bits in sum.lo. With the sticky bit adjusted, the hardware will
+ * break any ties in the correct direction.
+ *
+ * If we are losing only one bit to denormalization, however, we must
+ * break the ties manually.
+ */
+ if (sum.lo != 0) {
+ EXTRACT_WORD64(hibits, sum.hi);
+ bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
+ if (bits_lost != 1 ^ (int)(hibits & 1)) {
+ /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
+ EXTRACT_WORD64(lobits, sum.lo);
+ hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
+ INSERT_WORD64(sum.hi, hibits);
+ }
+ }
+ return (ldexp(sum.hi, scale));
+}
+
+/*
* Compute a*b exactly, returning the exact result in a struct dd. We assume
* that both a and b are normalized, so no underflow or overflow will occur.
* The current rounding mode must be round-to-nearest.
@@ -105,14 +174,11 @@ dd_mul(double a, double b)
* Hardware instructions should be used on architectures that support it,
* since this implementation will likely be several times slower.
*/
-#if LDBL_MANT_DIG != 113
double
fma(double x, double y, double z)
{
- double xs, ys, zs;
- struct dd xy, r, r2;
- double p;
- double s;
+ double xs, ys, zs, adj;
+ struct dd xy, r;
int oround;
int ex, ey, ez;
int spread;
@@ -142,41 +208,6 @@ fma(double x, double y, double z)
* will overflow, so we handle these cases specially. Rounding
* modes other than FE_TONEAREST are painful.
*/
- if (spread > DBL_MANT_DIG * 2) {
- fenv_t env;
- feraiseexcept(FE_INEXACT);
- switch(oround) {
- case FE_TONEAREST:
- return (x * y);
- case FE_TOWARDZERO:
- if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
- return (x * y);
- feholdexcept(&env);
- s = x * y;
- if (!fetestexcept(FE_INEXACT))
- s = nextafter(s, 0);
- feupdateenv(&env);
- return (s);
- case FE_DOWNWARD:
- if (z > 0.0)
- return (x * y);
- feholdexcept(&env);
- s = x * y;
- if (!fetestexcept(FE_INEXACT))
- s = nextafter(s, -INFINITY);
- feupdateenv(&env);
- return (s);
- default: /* FE_UPWARD */
- if (z < 0.0)
- return (x * y);
- feholdexcept(&env);
- s = x * y;
- if (!fetestexcept(FE_INEXACT))
- s = nextafter(s, INFINITY);
- feupdateenv(&env);
- return (s);
- }
- }
if (spread < -DBL_MANT_DIG) {
feraiseexcept(FE_INEXACT);
if (!isnormal(z))
@@ -201,42 +232,52 @@ fma(double x, double y, double z)
return (z);
}
}
+ if (spread <= DBL_MANT_DIG * 2)
+ zs = ldexp(zs, -spread);
+ else
+ zs = copysign(DBL_MIN, zs);
fesetround(FE_TONEAREST);
+ /*
+ * Basic approach for round-to-nearest:
+ *
+ * (xy.hi, xy.lo) = x * y (exact)
+ * (r.hi, r.lo) = xy.hi + z (exact)
+ * adj = xy.lo + r.lo (inexact; low bit is sticky)
+ * result = r.hi + adj (correctly rounded)
+ */
xy = dd_mul(xs, ys);
- zs = ldexp(zs, -spread);
r = dd_add(xy.hi, zs);
- r.lo += xy.lo;
- spread = ex + ey;
- if (spread + ilogb(r.hi) > -1023) {
+ if (r.hi == 0.0) {
+ /*
+ * When the addends cancel to 0, ensure that the result has
+ * the correct sign.
+ */
fesetround(oround);
- r.hi = r.hi + r.lo;
- } else {
+ volatile double vzs = zs; /* XXX gcc CSE bug workaround */
+ return (xy.hi + vzs);
+ }
+
+ spread = ex + ey;
+
+ if (oround != FE_TONEAREST) {
/*
- * The result is subnormal, so we round before scaling to
- * avoid double rounding.
+ * There is no need to worry about double rounding in directed
+ * rounding modes.
*/
- p = ldexp(copysign(0x1p-1022, r.hi), -spread);
- r2 = dd_add(r.hi, p);
- r2.lo += r.lo;
fesetround(oround);
- r.hi = (r2.hi + r2.lo) - p;
+ adj = r.lo + xy.lo;
+ return (ldexp(r.hi + adj, spread));
}
- return (ldexp(r.hi, spread));
-}
-#else /* LDBL_MANT_DIG == 113 */
-/*
- * 113 bits of precision is more than twice the precision of a double,
- * so it is enough to represent the intermediate product exactly.
- */
-double
-fma(double x, double y, double z)
-{
- return ((long double)x * y + z);
+
+ adj = add_adjusted(r.lo, xy.lo);
+ if (spread + ilogb(r.hi) > -1023)
+ return (ldexp(r.hi + adj, spread));
+ else
+ return (add_and_denormalize(r.hi, adj, spread));
}
-#endif /* LDBL_MANT_DIG != 113 */
#if (LDBL_MANT_DIG == 53)
__weak_reference(fma, fmal);
diff --git a/lib/msun/src/s_fmaf.c b/lib/msun/src/s_fmaf.c
index 7c699e5..3695823 100644
--- a/lib/msun/src/s_fmaf.c
+++ b/lib/msun/src/s_fmaf.c
@@ -1,5 +1,5 @@
/*-
- * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
+ * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -27,23 +27,43 @@
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
+#include <fenv.h>
+
#include "math.h"
+#include "math_private.h"
/*
* Fused multiply-add: Compute x * y + z with a single rounding error.
*
* A double has more than twice as much precision than a float, so
- * direct double-precision arithmetic suffices.
- *
- * XXX We are relying on the compiler to convert from double to float
- * using the current rounding mode and with the appropriate
- * side-effects. But on at least one platform (gcc 3.4.2/sparc64),
- * this appears to be too much to ask for. The precision
- * reduction should be done manually.
+ * direct double-precision arithmetic suffices, except where double
+ * rounding occurs.
*/
float
fmaf(float x, float y, float z)
{
+ double xy, result;
+ uint32_t hr, lr;
+
+ xy = (double)x * y;
+ result = xy + z;
+ EXTRACT_WORDS(hr, lr, result);
+ /* Common case: The double precision result is fine. */
+ if ((lr & 0x1fffffff) != 0x10000000 || /* not a halfway case */
+ (hr & 0x7ff00000) == 0x7ff00000 || /* NaN */
+ result - xy == z || /* exact */
+ fegetround() != FE_TONEAREST) /* not round-to-nearest */
+ return (result);
- return ((double)x * y + z);
+ /*
+ * If result is inexact, and exactly halfway between two float values,
+ * we need to adjust the low-order bit in the direction of the error.
+ */
+ fesetround(FE_TOWARDZERO);
+ volatile double vxy = xy; /* XXX work around gcc CSE bug */
+ double adjusted_result = vxy + z;
+ fesetround(FE_TONEAREST);
+ if (result == adjusted_result)
+ SET_LOW_WORD(adjusted_result, lr + 1);
+ return (adjusted_result);
}
diff --git a/lib/msun/src/s_fmal.c b/lib/msun/src/s_fmal.c
index 464dcb5..59fa6cd 100644
--- a/lib/msun/src/s_fmal.c
+++ b/lib/msun/src/s_fmal.c
@@ -31,6 +31,8 @@ __FBSDID("$FreeBSD$");
#include <float.h>
#include <math.h>
+#include "fpmath.h"
+
/*
* A struct dd represents a floating-point number with twice the precision
* of a long double. We maintain the invariant that "hi" stores the high-order
@@ -59,6 +61,65 @@ dd_add(long double a, long double b)
}
/*
+ * Compute a+b, with a small tweak: The least significant bit of the
+ * result is adjusted into a sticky bit summarizing all the bits that
+ * were lost to rounding. This adjustment negates the effects of double
+ * rounding when the result is added to another number with a higher
+ * exponent. For an explanation of round and sticky bits, see any reference
+ * on FPU design, e.g.,
+ *
+ * J. Coonen. An Implementation Guide to a Proposed Standard for
+ * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
+ */
+static inline long double
+add_adjusted(long double a, long double b)
+{
+ struct dd sum;
+ union IEEEl2bits u;
+
+ sum = dd_add(a, b);
+ if (sum.lo != 0) {
+ u.e = sum.hi;
+ if ((u.bits.manl & 1) == 0)
+ sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
+ }
+ return (sum.hi);
+}
+
+/*
+ * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
+ * that the result will be subnormal, and care is taken to ensure that
+ * double rounding does not occur.
+ */
+static inline long double
+add_and_denormalize(long double a, long double b, int scale)
+{
+ struct dd sum;
+ int bits_lost;
+ union IEEEl2bits u;
+
+ sum = dd_add(a, b);
+
+ /*
+ * If we are losing at least two bits of accuracy to denormalization,
+ * then the first lost bit becomes a round bit, and we adjust the
+ * lowest bit of sum.hi to make it a sticky bit summarizing all the
+ * bits in sum.lo. With the sticky bit adjusted, the hardware will
+ * break any ties in the correct direction.
+ *
+ * If we are losing only one bit to denormalization, however, we must
+ * break the ties manually.
+ */
+ if (sum.lo != 0) {
+ u.e = sum.hi;
+ bits_lost = -u.bits.exp - scale + 1;
+ if (bits_lost != 1 ^ (int)(u.bits.manl & 1))
+ sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
+ }
+ return (ldexp(sum.hi, scale));
+}
+
+/*
* Compute a*b exactly, returning the exact result in a struct dd. We assume
* that both a and b are normalized, so no underflow or overflow will occur.
* The current rounding mode must be round-to-nearest.
@@ -104,10 +165,8 @@ dd_mul(long double a, long double b)
long double
fmal(long double x, long double y, long double z)
{
- long double xs, ys, zs;
- struct dd xy, r, r2;
- long double p;
- long double s;
+ long double xs, ys, zs, adj;
+ struct dd xy, r;
int oround;
int ex, ey, ez;
int spread;
@@ -137,41 +196,6 @@ fmal(long double x, long double y, long double z)
* will overflow, so we handle these cases specially. Rounding
* modes other than FE_TONEAREST are painful.
*/
- if (spread > LDBL_MANT_DIG * 2) {
- fenv_t env;
- feraiseexcept(FE_INEXACT);
- switch(oround) {
- case FE_TONEAREST:
- return (x * y);
- case FE_TOWARDZERO:
- if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
- return (x * y);
- feholdexcept(&env);
- s = x * y;
- if (!fetestexcept(FE_INEXACT))
- s = nextafterl(s, 0);
- feupdateenv(&env);
- return (s);
- case FE_DOWNWARD:
- if (z > 0.0)
- return (x * y);
- feholdexcept(&env);
- s = x * y;
- if (!fetestexcept(FE_INEXACT))
- s = nextafterl(s, -INFINITY);
- feupdateenv(&env);
- return (s);
- default: /* FE_UPWARD */
- if (z < 0.0)
- return (x * y);
- feholdexcept(&env);
- s = x * y;
- if (!fetestexcept(FE_INEXACT))
- s = nextafterl(s, INFINITY);
- feupdateenv(&env);
- return (s);
- }
- }
if (spread < -LDBL_MANT_DIG) {
feraiseexcept(FE_INEXACT);
if (!isnormal(z))
@@ -196,28 +220,49 @@ fmal(long double x, long double y, long double z)
return (z);
}
}
+ if (spread <= LDBL_MANT_DIG * 2)
+ zs = ldexpl(zs, -spread);
+ else
+ zs = copysignl(LDBL_MIN, zs);
fesetround(FE_TONEAREST);
+ /*
+ * Basic approach for round-to-nearest:
+ *
+ * (xy.hi, xy.lo) = x * y (exact)
+ * (r.hi, r.lo) = xy.hi + z (exact)
+ * adj = xy.lo + r.lo (inexact; low bit is sticky)
+ * result = r.hi + adj (correctly rounded)
+ */
xy = dd_mul(xs, ys);
- zs = ldexpl(zs, -spread);
r = dd_add(xy.hi, zs);
- r.lo += xy.lo;
- spread = ex + ey;
- if (spread + ilogbl(r.hi) > -16383) {
+ if (r.hi == 0.0) {
+ /*
+ * When the addends cancel to 0, ensure that the result has
+ * the correct sign.
+ */
fesetround(oround);
- r.hi = r.hi + r.lo;
- } else {
+ volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
+ return (xy.hi + vzs);
+ }
+
+ spread = ex + ey;
+
+ if (oround != FE_TONEAREST) {
/*
- * The result is subnormal, so we round before scaling to
- * avoid double rounding.
+ * There is no need to worry about double rounding in directed
+ * rounding modes.
*/
- p = ldexpl(copysignl(0x1p-16382L, r.hi), -spread);
- r2 = dd_add(r.hi, p);
- r2.lo += r.lo;
fesetround(oround);
- r.hi = (r2.hi + r2.lo) - p;
+ adj = r.lo + xy.lo;
+ return (ldexpl(r.hi + adj, spread));
}
- return (ldexpl(r.hi, spread));
+
+ adj = add_adjusted(r.lo, xy.lo);
+ if (spread + ilogbl(r.hi) > -16383)
+ return (ldexpl(r.hi + adj, spread));
+ else
+ return (add_and_denormalize(r.hi, adj, spread));
}
OpenPOWER on IntegriCloud