summaryrefslogtreecommitdiffstats
path: root/lib/libz
diff options
context:
space:
mode:
authorsteve <steve@FreeBSD.org>1998-02-28 06:10:08 +0000
committersteve <steve@FreeBSD.org>1998-02-28 06:10:08 +0000
commit27b056fb853835b8539b58f5c1d2e88421828bf4 (patch)
tree168c759474ac0d51f1b9e5a02872833a0ca24bf4 /lib/libz
parent237ff31c6d598cfde1da4334ec1a86b35f19571c (diff)
downloadFreeBSD-src-27b056fb853835b8539b58f5c1d2e88421828bf4.zip
FreeBSD-src-27b056fb853835b8539b58f5c1d2e88421828bf4.tar.gz
algorithm.doc renamed to algorithm.txt in new distribution.
Diffstat (limited to 'lib/libz')
-rw-r--r--lib/libz/algorithm.doc105
1 files changed, 0 insertions, 105 deletions
diff --git a/lib/libz/algorithm.doc b/lib/libz/algorithm.doc
deleted file mode 100644
index 01902af..0000000
--- a/lib/libz/algorithm.doc
+++ /dev/null
@@ -1,105 +0,0 @@
-1. Compression algorithm (deflate)
-
-The deflation algorithm used by zlib (also zip and gzip) is a variation of
-LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
-the input data. The second occurrence of a string is replaced by a
-pointer to the previous string, in the form of a pair (distance,
-length). Distances are limited to 32K bytes, and lengths are limited
-to 258 bytes. When a string does not occur anywhere in the previous
-32K bytes, it is emitted as a sequence of literal bytes. (In this
-description, `string' must be taken as an arbitrary sequence of bytes,
-and is not restricted to printable characters.)
-
-Literals or match lengths are compressed with one Huffman tree, and
-match distances are compressed with another tree. The trees are stored
-in a compact form at the start of each block. The blocks can have any
-size (except that the compressed data for one block must fit in
-available memory). A block is terminated when deflate() determines that
-it would be useful to start another block with fresh trees. (This is
-somewhat similar to the behavior of LZW-based _compress_.)
-
-Duplicated strings are found using a hash table. All input strings of
-length 3 are inserted in the hash table. A hash index is computed for
-the next 3 bytes. If the hash chain for this index is not empty, all
-strings in the chain are compared with the current input string, and
-the longest match is selected.
-
-The hash chains are searched starting with the most recent strings, to
-favor small distances and thus take advantage of the Huffman encoding.
-The hash chains are singly linked. There are no deletions from the
-hash chains, the algorithm simply discards matches that are too old.
-
-To avoid a worst-case situation, very long hash chains are arbitrarily
-truncated at a certain length, determined by a runtime option (level
-parameter of deflateInit). So deflate() does not always find the longest
-possible match but generally finds a match which is long enough.
-
-deflate() also defers the selection of matches with a lazy evaluation
-mechanism. After a match of length N has been found, deflate() searches for a
-longer match at the next input byte. If a longer match is found, the
-previous match is truncated to a length of one (thus producing a single
-literal byte) and the longer match is emitted afterwards. Otherwise,
-the original match is kept, and the next match search is attempted only
-N steps later.
-
-The lazy match evaluation is also subject to a runtime parameter. If
-the current match is long enough, deflate() reduces the search for a longer
-match, thus speeding up the whole process. If compression ratio is more
-important than speed, deflate() attempts a complete second search even if
-the first match is already long enough.
-
-The lazy match evaluation is not performed for the fastest compression
-modes (level parameter 1 to 3). For these fast modes, new strings
-are inserted in the hash table only when no match was found, or
-when the match is not too long. This degrades the compression ratio
-but saves time since there are both fewer insertions and fewer searches.
-
-
-2. Decompression algorithm (inflate)
-
-The real question is, given a Huffman tree, how to decode fast. The most
-important realization is that shorter codes are much more common than
-longer codes, so pay attention to decoding the short codes fast, and let
-the long codes take longer to decode.
-
-inflate() sets up a first level table that covers some number of bits of
-input less than the length of longest code. It gets that many bits from the
-stream, and looks it up in the table. The table will tell if the next
-code is that many bits or less and how many, and if it is, it will tell
-the value, else it will point to the next level table for which inflate()
-grabs more bits and tries to decode a longer code.
-
-How many bits to make the first lookup is a tradeoff between the time it
-takes to decode and the time it takes to build the table. If building the
-table took no time (and if you had infinite memory), then there would only
-be a first level table to cover all the way to the longest code. However,
-building the table ends up taking a lot longer for more bits since short
-codes are replicated many times in such a table. What inflate() does is
-simply to make the number of bits in the first table a variable, and set it
-for the maximum speed.
-
-inflate() sends new trees relatively often, so it is possibly set for a
-smaller first level table than an application that has only one tree for
-all the data. For inflate, which has 286 possible codes for the
-literal/length tree, the size of the first table is nine bits. Also the
-distance trees have 30 possible values, and the size of the first table is
-six bits. Note that for each of those cases, the table ended up one bit
-longer than the ``average'' code length, i.e. the code length of an
-approximately flat code which would be a little more than eight bits for
-286 symbols and a little less than five bits for 30 symbols. It would be
-interesting to see if optimizing the first level table for other
-applications gave values within a bit or two of the flat code size.
-
-
-Jean-loup Gailly Mark Adler
-gzip@prep.ai.mit.edu madler@alumni.caltech.edu
-
-
-References:
-
-[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
-Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
-pp. 337-343.
-
-``DEFLATE Compressed Data Format Specification'' available in
-ftp://ds.internic.net/rfc/rfc1951.txt
OpenPOWER on IntegriCloud