diff options
author | rgrimes <rgrimes@FreeBSD.org> | 1995-05-30 05:51:47 +0000 |
---|---|---|
committer | rgrimes <rgrimes@FreeBSD.org> | 1995-05-30 05:51:47 +0000 |
commit | f05428e4cd63dde97bac14b84dd146a5c00455e3 (patch) | |
tree | e1331adb5d216f2b3fa6baa6491752348d2e5f10 /lib/libm/common_source/acosh.c | |
parent | 6de57e42c294763c78d77b0a9a7c5a08008a378a (diff) | |
download | FreeBSD-src-f05428e4cd63dde97bac14b84dd146a5c00455e3.zip FreeBSD-src-f05428e4cd63dde97bac14b84dd146a5c00455e3.tar.gz |
Remove trailing whitespace.
Diffstat (limited to 'lib/libm/common_source/acosh.c')
-rw-r--r-- | lib/libm/common_source/acosh.c | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/lib/libm/common_source/acosh.c b/lib/libm/common_source/acosh.c index bc16cc7..149e5de 100644 --- a/lib/libm/common_source/acosh.c +++ b/lib/libm/common_source/acosh.c @@ -48,10 +48,10 @@ static char sccsid[] = "@(#)acosh.c 8.1 (Berkeley) 6/4/93"; * log1p(x) ...return log(1+x) * * Method : - * Based on + * Based on * acosh(x) = log [ x + sqrt(x*x-1) ] * we have - * acosh(x) := log1p(x)+ln2, if (x > 1.0E20); else + * acosh(x) := log1p(x)+ln2, if (x > 1.0E20); else * acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) . * These formulae avoid the over/underflow complication. * @@ -60,7 +60,7 @@ static char sccsid[] = "@(#)acosh.c 8.1 (Berkeley) 6/4/93"; * acosh(NaN) is NaN without signal. * * Accuracy: - * acosh(x) returns the exact inverse hyperbolic cosine of x nearly + * acosh(x) returns the exact inverse hyperbolic cosine of x nearly * rounded. In a test run with 512,000 random arguments on a VAX, the * maximum observed error was 3.30 ulps (units of the last place) at * x=1.0070493753568216 . @@ -87,7 +87,7 @@ ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76) double acosh(x) double x; -{ +{ double t,big=1.E20; /* big+1==big */ #if !defined(vax)&&!defined(tahoe) @@ -95,7 +95,7 @@ double x; #endif /* !defined(vax)&&!defined(tahoe) */ /* return log1p(x) + log(2) if x is large */ - if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);} + if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);} t=sqrt(x-1.0); return(log1p(t*(t+sqrt(x+1.0)))); |