summaryrefslogtreecommitdiffstats
path: root/lib/libm/common_source/acosh.c
diff options
context:
space:
mode:
authorrgrimes <rgrimes@FreeBSD.org>1995-05-30 05:51:47 +0000
committerrgrimes <rgrimes@FreeBSD.org>1995-05-30 05:51:47 +0000
commitf05428e4cd63dde97bac14b84dd146a5c00455e3 (patch)
treee1331adb5d216f2b3fa6baa6491752348d2e5f10 /lib/libm/common_source/acosh.c
parent6de57e42c294763c78d77b0a9a7c5a08008a378a (diff)
downloadFreeBSD-src-f05428e4cd63dde97bac14b84dd146a5c00455e3.zip
FreeBSD-src-f05428e4cd63dde97bac14b84dd146a5c00455e3.tar.gz
Remove trailing whitespace.
Diffstat (limited to 'lib/libm/common_source/acosh.c')
-rw-r--r--lib/libm/common_source/acosh.c10
1 files changed, 5 insertions, 5 deletions
diff --git a/lib/libm/common_source/acosh.c b/lib/libm/common_source/acosh.c
index bc16cc7..149e5de 100644
--- a/lib/libm/common_source/acosh.c
+++ b/lib/libm/common_source/acosh.c
@@ -48,10 +48,10 @@ static char sccsid[] = "@(#)acosh.c 8.1 (Berkeley) 6/4/93";
* log1p(x) ...return log(1+x)
*
* Method :
- * Based on
+ * Based on
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
- * acosh(x) := log1p(x)+ln2, if (x > 1.0E20); else
+ * acosh(x) := log1p(x)+ln2, if (x > 1.0E20); else
* acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
* These formulae avoid the over/underflow complication.
*
@@ -60,7 +60,7 @@ static char sccsid[] = "@(#)acosh.c 8.1 (Berkeley) 6/4/93";
* acosh(NaN) is NaN without signal.
*
* Accuracy:
- * acosh(x) returns the exact inverse hyperbolic cosine of x nearly
+ * acosh(x) returns the exact inverse hyperbolic cosine of x nearly
* rounded. In a test run with 512,000 random arguments on a VAX, the
* maximum observed error was 3.30 ulps (units of the last place) at
* x=1.0070493753568216 .
@@ -87,7 +87,7 @@ ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
double acosh(x)
double x;
-{
+{
double t,big=1.E20; /* big+1==big */
#if !defined(vax)&&!defined(tahoe)
@@ -95,7 +95,7 @@ double x;
#endif /* !defined(vax)&&!defined(tahoe) */
/* return log1p(x) + log(2) if x is large */
- if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
+ if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
t=sqrt(x-1.0);
return(log1p(t*(t+sqrt(x+1.0))));
OpenPOWER on IntegriCloud