diff options
author | cognet <cognet@FreeBSD.org> | 2004-05-14 12:13:06 +0000 |
---|---|---|
committer | cognet <cognet@FreeBSD.org> | 2004-05-14 12:13:06 +0000 |
commit | 85aab3336e0d6172ddd5fe3cde38389abd612728 (patch) | |
tree | ceed0cf5f6aab04b0025b06d91f2b74ab9812740 /lib/libc/softfloat/bits32/softfloat.c | |
parent | bb6bbd6342ef3a05d837b89817ec6f058d1497b3 (diff) | |
download | FreeBSD-src-85aab3336e0d6172ddd5fe3cde38389abd612728.zip FreeBSD-src-85aab3336e0d6172ddd5fe3cde38389abd612728.tar.gz |
Import the softfloat emulation library, needed for FreeBSD/arm right now.
It should become useless when gcc 3.4 will be imported, as libgcc from
gcc 3.4 contains this bits for arm.
Diffstat (limited to 'lib/libc/softfloat/bits32/softfloat.c')
-rw-r--r-- | lib/libc/softfloat/bits32/softfloat.c | 2347 |
1 files changed, 2347 insertions, 0 deletions
diff --git a/lib/libc/softfloat/bits32/softfloat.c b/lib/libc/softfloat/bits32/softfloat.c new file mode 100644 index 0000000..eaa6f6e --- /dev/null +++ b/lib/libc/softfloat/bits32/softfloat.c @@ -0,0 +1,2347 @@ +/* $NetBSD: softfloat.c,v 1.1 2002/05/21 23:51:07 bjh21 Exp $ */ + +/* + * This version hacked for use with gcc -msoft-float by bjh21. + * (Mostly a case of #ifdefing out things GCC doesn't need or provides + * itself). + */ + +/* + * Things you may want to define: + * + * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with + * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them + * properly renamed. + */ + +/* + * This differs from the standard bits32/softfloat.c in that float64 + * is defined to be a 64-bit integer rather than a structure. The + * structure is float64s, with translation between the two going via + * float64u. + */ + +/* +=============================================================================== + +This C source file is part of the SoftFloat IEC/IEEE Floating-Point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif + +#include "milieu.h" +#include "softfloat.h" + +/* + * Conversions between floats as stored in memory and floats as + * SoftFloat uses them + */ +#ifndef FLOAT64_DEMANGLE +#define FLOAT64_DEMANGLE(a) (a) +#endif +#ifndef FLOAT64_MANGLE +#define FLOAT64_MANGLE(a) (a) +#endif + +/* +------------------------------------------------------------------------------- +Floating-point rounding mode and exception flags. +------------------------------------------------------------------------------- +*/ +fp_rnd float_rounding_mode = float_round_nearest_even; +fp_except float_exception_flags = 0; + +/* +------------------------------------------------------------------------------- +Primitive arithmetic functions, including multi-word arithmetic, and +division and square root approximations. (Can be specialized to target if +desired.) +------------------------------------------------------------------------------- +*/ +#include "softfloat-macros" + +/* +------------------------------------------------------------------------------- +Functions and definitions to determine: (1) whether tininess for underflow +is detected before or after rounding by default, (2) what (if anything) +happens when exceptions are raised, (3) how signaling NaNs are distinguished +from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs +are propagated from function inputs to output. These details are target- +specific. +------------------------------------------------------------------------------- +*/ +#include "softfloat-specialize" + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat32Frac( float32 a ) +{ + + return a & 0x007FFFFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat32Exp( float32 a ) +{ + + return ( a>>23 ) & 0xFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat32Sign( float32 a ) +{ + + return a>>31; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal single-precision floating-point value represented +by the denormalized significand `aSig'. The normalized exponent and +significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( aSig ) - 8; + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +single-precision floating-point value, returning the result. After being +shifted into the proper positions, the three fields are simply added +together to form the result. This means that any integer portion of `zSig' +will be added into the exponent. Since a properly normalized significand +will have an integer portion equal to 1, the `zExp' input should be 1 less +than the desired result exponent whenever `zSig' is a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + + return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. Ordinarily, the abstract +value is simply rounded and packed into the single-precision format, with +the inexact exception raised if the abstract input cannot be represented +exactly. However, if the abstract value is too large, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal single- +precision floating-point number. + The input significand `zSig' has its binary point between bits 30 +and 29, which is 7 bits to the left of the usual location. This shifted +significand must be normalized or smaller. If `zSig' is not normalized, +`zExp' must be 0; in that case, the result returned is a subnormal number, +and it must not require rounding. In the usual case that `zSig' is +normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. +The handling of underflow and overflow follows the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 roundingMode; + flag roundNearestEven; + int8 roundIncrement, roundBits; + flag isTiny; + + roundingMode = float_rounding_mode; + roundNearestEven = roundingMode == float_round_nearest_even; + roundIncrement = 0x40; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x7F; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig & 0x7F; + if ( 0xFD <= (bits16) zExp ) { + if ( ( 0xFD < zExp ) + || ( ( zExp == 0xFD ) + && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ( zSig + roundIncrement < 0x80000000 ); + shift32RightJamming( zSig, - zExp, &zSig ); + zExp = 0; + roundBits = zSig & 0x7F; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + } + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig = ( zSig + roundIncrement )>>7; + zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); + if ( zSig == 0 ) zExp = 0; + return packFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. This routine is just like +`roundAndPackFloat32' except that `zSig' does not have to be normalized. +Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' +floating-point exponent. +------------------------------------------------------------------------------- +*/ +static float32 + normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( zSig ) - 1; + return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); + +} + +/* +------------------------------------------------------------------------------- +Returns the least-significant 32 fraction bits of the double-precision +floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat64Frac1( float64 a ) +{ + + return FLOAT64_DEMANGLE(a) & LIT64( 0x00000000FFFFFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the most-significant 20 fraction bits of the double-precision +floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat64Frac0( float64 a ) +{ + + return ( FLOAT64_DEMANGLE(a)>>32 ) & 0x000FFFFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat64Exp( float64 a ) +{ + + return ( FLOAT64_DEMANGLE(a)>>52 ) & 0x7FF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat64Sign( float64 a ) +{ + + return FLOAT64_DEMANGLE(a)>>63; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal double-precision floating-point value represented +by the denormalized significand formed by the concatenation of `aSig0' and +`aSig1'. The normalized exponent is stored at the location pointed to by +`zExpPtr'. The most significant 21 bits of the normalized significand are +stored at the location pointed to by `zSig0Ptr', and the least significant +32 bits of the normalized significand are stored at the location pointed to +by `zSig1Ptr'. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat64Subnormal( + bits32 aSig0, + bits32 aSig1, + int16 *zExpPtr, + bits32 *zSig0Ptr, + bits32 *zSig1Ptr + ) +{ + int8 shiftCount; + + if ( aSig0 == 0 ) { + shiftCount = countLeadingZeros32( aSig1 ) - 11; + if ( shiftCount < 0 ) { + *zSig0Ptr = aSig1>>( - shiftCount ); + *zSig1Ptr = aSig1<<( shiftCount & 31 ); + } + else { + *zSig0Ptr = aSig1<<shiftCount; + *zSig1Ptr = 0; + } + *zExpPtr = - shiftCount - 31; + } + else { + shiftCount = countLeadingZeros32( aSig0 ) - 11; + shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); + *zExpPtr = 1 - shiftCount; + } + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', the exponent `zExp', and the significand formed by +the concatenation of `zSig0' and `zSig1' into a double-precision floating- +point value, returning the result. After being shifted into the proper +positions, the three fields `zSign', `zExp', and `zSig0' are simply added +together to form the most significant 32 bits of the result. This means +that any integer portion of `zSig0' will be added into the exponent. Since +a properly normalized significand will have an integer portion equal to 1, +the `zExp' input should be 1 less than the desired result exponent whenever +`zSig0' and `zSig1' concatenated form a complete, normalized significand. +------------------------------------------------------------------------------- +*/ +INLINE float64 + packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 ) +{ + + return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) + + ( ( (bits64) zExp )<<52 ) + + ( ( (bits64) zSig0 )<<32 ) + zSig1 ); + + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and extended significand formed by the concatenation of `zSig0', `zSig1', +and `zSig2', and returns the proper double-precision floating-point value +corresponding to the abstract input. Ordinarily, the abstract value is +simply rounded and packed into the double-precision format, with the inexact +exception raised if the abstract input cannot be represented exactly. +However, if the abstract value is too large, the overflow and inexact +exceptions are raised and an infinity or maximal finite value is returned. +If the abstract value is too small, the input value is rounded to a +subnormal number, and the underflow and inexact exceptions are raised if the +abstract input cannot be represented exactly as a subnormal double-precision +floating-point number. + The input significand must be normalized or smaller. If the input +significand is not normalized, `zExp' must be 0; in that case, the result +returned is a subnormal number, and it must not require rounding. In the +usual case that the input significand is normalized, `zExp' must be 1 less +than the ``true'' floating-point exponent. The handling of underflow and +overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 + roundAndPackFloat64( + flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 ) +{ + int8 roundingMode; + flag roundNearestEven, increment, isTiny; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + increment = ( (sbits32) zSig2 < 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + increment = 0; + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig2; + } + else { + increment = ( roundingMode == float_round_up ) && zSig2; + } + } + } + if ( 0x7FD <= (bits16) zExp ) { + if ( ( 0x7FD < zExp ) + || ( ( zExp == 0x7FD ) + && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 ) + && increment + ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + if ( ( roundingMode == float_round_to_zero ) + || ( zSign && ( roundingMode == float_round_up ) ) + || ( ! zSign && ( roundingMode == float_round_down ) ) + ) { + return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF ); + } + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ! increment + || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF ); + shift64ExtraRightJamming( + zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); + zExp = 0; + if ( isTiny && zSig2 ) float_raise( float_flag_underflow ); + if ( roundNearestEven ) { + increment = ( (sbits32) zSig2 < 0 ); + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig2; + } + else { + increment = ( roundingMode == float_round_up ) && zSig2; + } + } + } + } + if ( zSig2 ) float_exception_flags |= float_flag_inexact; + if ( increment ) { + add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); + zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); + } + else { + if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; + } + return packFloat64( zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand formed by the concatenation of `zSig0' and `zSig1', and +returns the proper double-precision floating-point value corresponding +to the abstract input. This routine is just like `roundAndPackFloat64' +except that the input significand has fewer bits and does not have to be +normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- +point exponent. +------------------------------------------------------------------------------- +*/ +static float64 + normalizeRoundAndPackFloat64( + flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 ) +{ + int8 shiftCount; + bits32 zSig2; + + if ( zSig0 == 0 ) { + zSig0 = zSig1; + zSig1 = 0; + zExp -= 32; + } + shiftCount = countLeadingZeros32( zSig0 ) - 11; + if ( 0 <= shiftCount ) { + zSig2 = 0; + shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); + } + else { + shift64ExtraRightJamming( + zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); + } + zExp -= shiftCount; + return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the single-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 int32_to_float32( int32 a ) +{ + flag zSign; + + if ( a == 0 ) return 0; + if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); + zSign = ( a < 0 ); + return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the double-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 int32_to_float64( int32 a ) +{ + flag zSign; + bits32 absA; + int8 shiftCount; + bits32 zSig0, zSig1; + + if ( a == 0 ) return packFloat64( 0, 0, 0, 0 ); + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) - 11; + if ( 0 <= shiftCount ) { + zSig0 = absA<<shiftCount; + zSig1 = 0; + } + else { + shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 ); + } + return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig, aSigExtra; + int32 z; + int8 roundingMode; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x96; + if ( 0 <= shiftCount ) { + if ( 0x9E <= aExp ) { + if ( a != 0xCF000000 ) { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { + return 0x7FFFFFFF; + } + } + return (sbits32) 0x80000000; + } + z = ( aSig | 0x00800000 )<<shiftCount; + if ( aSign ) z = - z; + } + else { + if ( aExp < 0x7E ) { + aSigExtra = aExp | aSig; + z = 0; + } + else { + aSig |= 0x00800000; + aSigExtra = aSig<<( shiftCount & 31 ); + z = aSig>>( - shiftCount ); + } + if ( aSigExtra ) float_exception_flags |= float_flag_inexact; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + if ( (sbits32) aSigExtra < 0 ) { + ++z; + if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1; + } + if ( aSign ) z = - z; + } + else { + aSigExtra = ( aSigExtra != 0 ); + if ( aSign ) { + z += ( roundingMode == float_round_down ) & aSigExtra; + z = - z; + } + else { + z += ( roundingMode == float_round_up ) & aSigExtra; + } + } + } + return z; + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. +If `a' is a NaN, the largest positive integer is returned. Otherwise, if +the conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32_round_to_zero( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + int32 z; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x9E; + if ( 0 <= shiftCount ) { + if ( a != 0xCF000000 ) { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; + } + return (sbits32) 0x80000000; + } + else if ( aExp <= 0x7E ) { + if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + aSig = ( aSig | 0x00800000 )<<8; + z = aSig>>( - shiftCount ); + if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { + float_exception_flags |= float_flag_inexact; + } + if ( aSign ) z = - z; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the double-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float32_to_float64( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig, zSig0, zSig1; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); + return packFloat64( aSign, 0x7FF, 0, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + --aExp; + } + shift64Right( aSig, 0, 3, &zSig0, &zSig1 ); + return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Rounds the single-precision floating-point value `a' to an integer, +and returns the result as a single-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_round_to_int( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 lastBitMask, roundBitsMask; + int8 roundingMode; + float32 z; + + aExp = extractFloat32Exp( a ); + if ( 0x96 <= aExp ) { + if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { + return propagateFloat32NaN( a, a ); + } + return a; + } + if ( aExp <= 0x7E ) { + if ( (bits32) ( a<<1 ) == 0 ) return a; + float_exception_flags |= float_flag_inexact; + aSign = extractFloat32Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { + return packFloat32( aSign, 0x7F, 0 ); + } + break; + case float_round_to_zero: + break; + case float_round_down: + return aSign ? 0xBF800000 : 0; + case float_round_up: + return aSign ? 0x80000000 : 0x3F800000; + } + return packFloat32( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x96 - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z += lastBitMask>>1; + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z += roundBitsMask; + } + } + z &= ~ roundBitsMask; + if ( z != a ) float_exception_flags |= float_flag_inexact; + return z; + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the single-precision +floating-point values `a' and `b'. If `zSign' is 1, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 6; + bSig <<= 6; + if ( 0 < expDiff ) { + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x20000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x20000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + zExp = bExp; + } + else { + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); + zSig = 0x40000000 + aSig + bSig; + zExp = aExp; + goto roundAndPack; + } + aSig |= 0x20000000; + zSig = ( aSig + bSig )<<1; + --zExp; + if ( (sbits32) zSig < 0 ) { + zSig = aSig + bSig; + ++zExp; + } + roundAndPack: + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the single- +precision floating-point values `a' and `b'. If `zSign' is 1, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 7; + bSig <<= 7; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign ^ 1, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x40000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + bSig |= 0x40000000; + bBigger: + zSig = bSig - aSig; + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x40000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + aSig |= 0x40000000; + aBigger: + zSig = aSig - bSig; + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the single-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_add( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return addFloat32Sigs( a, b, aSign ); + } + else { + return subFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sub( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return subFloat32Sigs( a, b, aSign ); + } + else { + return addFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_mul( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig0, zSig1; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x7F; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + mul32To64( aSig, bSig, &zSig0, &zSig1 ); + zSig0 |= ( zSig1 != 0 ); + if ( 0 <= (sbits32) ( zSig0<<1 ) ) { + zSig0 <<= 1; + --zExp; + } + return roundAndPackFloat32( zSign, zExp, zSig0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the single-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_div( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig, rem0, rem1, term0, term1; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat32( zSign, 0xFF, 0 ); + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x7D; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + if ( bSig <= ( aSig + aSig ) ) { + aSig >>= 1; + ++zExp; + } + zSig = estimateDiv64To32( aSig, 0, bSig ); + if ( ( zSig & 0x3F ) <= 2 ) { + mul32To64( bSig, zSig, &term0, &term1 ); + sub64( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits32) rem0 < 0 ) { + --zSig; + add64( rem0, rem1, 0, bSig, &rem0, &rem1 ); + } + zSig |= ( rem1 != 0 ); + } + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the remainder of the single-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_rem( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits32 aSig, bSig, q, allZero, alternateASig; + sbits32 sigMean; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return a; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + expDiff = aExp - bExp; + aSig = ( aSig | 0x00800000 )<<8; + bSig = ( bSig | 0x00800000 )<<8; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + aSig >>= 1; + } + q = ( bSig <= aSig ); + if ( q ) aSig -= bSig; + expDiff -= 32; + while ( 0 < expDiff ) { + q = estimateDiv64To32( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + aSig = - ( ( bSig>>2 ) * q ); + expDiff -= 30; + } + expDiff += 32; + if ( 0 < expDiff ) { + q = estimateDiv64To32( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + q >>= 32 - expDiff; + bSig >>= 2; + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; + } + else { + aSig >>= 2; + bSig >>= 2; + } + do { + alternateASig = aSig; + ++q; + aSig -= bSig; + } while ( 0 <= (sbits32) aSig ); + sigMean = aSig + alternateASig; + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { + aSig = alternateASig; + } + zSign = ( (sbits32) aSig < 0 ); + if ( zSign ) aSig = - aSig; + return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); + +} +#endif + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the square root of the single-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sqrt( float32 a ) +{ + flag aSign; + int16 aExp, zExp; + bits32 aSig, zSig, rem0, rem1, term0, term1; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, 0 ); + if ( ! aSign ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aSign ) { + if ( ( aExp | aSig ) == 0 ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return 0; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; + aSig = ( aSig | 0x00800000 )<<8; + zSig = estimateSqrt32( aExp, aSig ) + 2; + if ( ( zSig & 0x7F ) <= 5 ) { + if ( zSig < 2 ) { + zSig = 0x7FFFFFFF; + goto roundAndPack; + } + else { + aSig >>= aExp & 1; + mul32To64( zSig, zSig, &term0, &term1 ); + sub64( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits32) rem0 < 0 ) { + --zSig; + shortShift64Left( 0, zSig, 1, &term0, &term1 ); + term1 |= 1; + add64( rem0, rem1, term0, term1, &rem0, &rem1 ); + } + zSig |= ( ( rem0 | rem1 ) != 0 ); + } + } + shift32RightJamming( zSig, 1, &zSig ); + roundAndPack: + return roundAndPackFloat32( 0, zExp, zSig ); + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +or equal to the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq_signaling( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + int16 aExp, bExp; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig0, aSig1, absZ, aSigExtra; + int32 z; + int8 roundingMode; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + shiftCount = aExp - 0x413; + if ( 0 <= shiftCount ) { + if ( 0x41E < aExp ) { + if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0; + goto invalid; + } + shortShift64Left( + aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra ); + if ( 0x80000000 < absZ ) goto invalid; + } + else { + aSig1 = ( aSig1 != 0 ); + if ( aExp < 0x3FE ) { + aSigExtra = aExp | aSig0 | aSig1; + absZ = 0; + } + else { + aSig0 |= 0x00100000; + aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1; + absZ = aSig0>>( - shiftCount ); + } + } + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + if ( (sbits32) aSigExtra < 0 ) { + ++absZ; + if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1; + } + z = aSign ? - absZ : absZ; + } + else { + aSigExtra = ( aSigExtra != 0 ); + if ( aSign ) { + z = - ( absZ + + ( ( roundingMode == float_round_down ) & aSigExtra ) ); + } + else { + z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra ); + } + } + if ( ( aSign ^ ( z < 0 ) ) && z ) { + invalid: + float_raise( float_flag_invalid ); + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; + } + if ( aSigExtra ) float_exception_flags |= float_flag_inexact; + return z; + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. +If `a' is a NaN, the largest positive integer is returned. Otherwise, if +the conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig0, aSig1, absZ, aSigExtra; + int32 z; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + shiftCount = aExp - 0x413; + if ( 0 <= shiftCount ) { + if ( 0x41E < aExp ) { + if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0; + goto invalid; + } + shortShift64Left( + aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra ); + } + else { + if ( aExp < 0x3FF ) { + if ( aExp | aSig0 | aSig1 ) { + float_exception_flags |= float_flag_inexact; + } + return 0; + } + aSig0 |= 0x00100000; + aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1; + absZ = aSig0>>( - shiftCount ); + } + z = aSign ? - absZ : absZ; + if ( ( aSign ^ ( z < 0 ) ) && z ) { + invalid: + float_raise( float_flag_invalid ); + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; + } + if ( aSigExtra ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the single-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float64_to_float32( float64 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig0, aSig1, zSig; + bits32 allZero; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) { + return commonNaNToFloat32( float64ToCommonNaN( a ) ); + } + return packFloat32( aSign, 0xFF, 0 ); + } + shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig ); + if ( aExp ) zSig |= 0x40000000; + return roundAndPackFloat32( aSign, aExp - 0x381, zSig ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Rounds the double-precision floating-point value `a' to an integer, +and returns the result as a double-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_round_to_int( float64 a ) +{ + flag aSign; + int16 aExp; + bits32 lastBitMask, roundBitsMask; + int8 roundingMode; + float64 z; + + aExp = extractFloat64Exp( a ); + if ( 0x413 <= aExp ) { + if ( 0x433 <= aExp ) { + if ( ( aExp == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) { + return propagateFloat64NaN( a, a ); + } + return a; + } + lastBitMask = 1; + lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + if ( lastBitMask ) { + add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); + if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; + } + else { + if ( (sbits32) z.low < 0 ) { + ++z.high; + if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1; + } + } + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat64Sign( z ) + ^ ( roundingMode == float_round_up ) ) { + add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); + } + } + z.low &= ~ roundBitsMask; + } + else { + if ( aExp <= 0x3FE ) { + if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a; + float_exception_flags |= float_flag_inexact; + aSign = extractFloat64Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FE ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) + ) { + return packFloat64( aSign, 0x3FF, 0, 0 ); + } + break; + case float_round_down: + return + aSign ? packFloat64( 1, 0x3FF, 0, 0 ) + : packFloat64( 0, 0, 0, 0 ); + case float_round_up: + return + aSign ? packFloat64( 1, 0, 0, 0 ) + : packFloat64( 0, 0x3FF, 0, 0 ); + } + return packFloat64( aSign, 0, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x413 - aExp; + roundBitsMask = lastBitMask - 1; + z.low = 0; + z.high = a.high; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z.high += lastBitMask>>1; + if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { + z.high &= ~ lastBitMask; + } + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat64Sign( z ) + ^ ( roundingMode == float_round_up ) ) { + z.high |= ( a.low != 0 ); + z.high += roundBitsMask; + } + } + z.high &= ~ roundBitsMask; + } + if ( ( z.low != a.low ) || ( z.high != a.high ) ) { + float_exception_flags |= float_flag_inexact; + } + return z; + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the double-precision +floating-point values `a' and `b'. If `zSign' is 1, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; + int16 expDiff; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) { + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig0 |= 0x00100000; + } + shift64ExtraRightJamming( + bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig0 |= 0x00100000; + } + shift64ExtraRightJamming( + aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); + zExp = bExp; + } + else { + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 | bSig0 | bSig1 ) { + return propagateFloat64NaN( a, b ); + } + return a; + } + add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 ); + zSig2 = 0; + zSig0 |= 0x00200000; + zExp = aExp; + goto shiftRight1; + } + aSig0 |= 0x00100000; + add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + --zExp; + if ( zSig0 < 0x00200000 ) goto roundAndPack; + ++zExp; + shiftRight1: + shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); + roundAndPack: + return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the double- +precision floating-point values `a' and `b'. If `zSign' is 1, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; + int16 expDiff; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 ); + shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 ); + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 | bSig0 | bSig1 ) { + return propagateFloat64NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig0 < aSig0 ) goto aBigger; + if ( aSig0 < bSig0 ) goto bBigger; + if ( bSig1 < aSig1 ) goto aBigger; + if ( aSig1 < bSig1 ) goto bBigger; + return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign ^ 1, 0x7FF, 0, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig0 |= 0x40000000; + } + shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); + bSig0 |= 0x40000000; + bBigger: + sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig0 |= 0x40000000; + } + shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); + aSig0 |= 0x40000000; + aBigger: + sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the double-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_add( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return addFloat64Sigs( a, b, aSign ); + } + else { + return subFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sub( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return subFloat64Sigs( a, b, aSign ); + } + else { + return addFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_mul( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( ( aSig0 | aSig1 ) + || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) { + return propagateFloat64NaN( a, b ); + } + if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + if ( ( aExp | aSig0 | aSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); + normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); + normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + zExp = aExp + bExp - 0x400; + aSig0 |= 0x00100000; + shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 ); + mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); + add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); + zSig2 |= ( zSig3 != 0 ); + if ( 0x00200000 <= zSig0 ) { + shift64ExtraRightJamming( + zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); + ++zExp; + } + return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the double-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_div( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; + bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + goto invalid; + } + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0, 0, 0 ); + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) { + if ( ( aExp | aSig0 | aSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + return float64_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); + normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + zExp = aExp - bExp + 0x3FD; + shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 ); + shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 ); + if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) { + shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); + ++zExp; + } + zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 ); + mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); + sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); + while ( (sbits32) rem0 < 0 ) { + --zSig0; + add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); + } + zSig1 = estimateDiv64To32( rem1, rem2, bSig0 ); + if ( ( zSig1 & 0x3FF ) <= 4 ) { + mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); + sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits32) rem1 < 0 ) { + --zSig1; + add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 ); + return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the remainder of the double-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_rem( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; + bits32 allZero, alternateASig0, alternateASig1, sigMean1; + sbits32 sigMean0; + float64 z; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + if ( aExp == 0x7FF ) { + if ( ( aSig0 | aSig1 ) + || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) { + return propagateFloat64NaN( a, b ); + } + goto invalid; + } + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + return float64_default_nan; + } + normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return a; + normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + expDiff = aExp - bExp; + if ( expDiff < -1 ) return a; + shortShift64Left( + aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 ); + shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 ); + q = le64( bSig0, bSig1, aSig0, aSig1 ); + if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); + expDiff -= 32; + while ( 0 < expDiff ) { + q = estimateDiv64To32( aSig0, aSig1, bSig0 ); + q = ( 4 < q ) ? q - 4 : 0; + mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 ); + shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero ); + shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero ); + sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 ); + expDiff -= 29; + } + if ( -32 < expDiff ) { + q = estimateDiv64To32( aSig0, aSig1, bSig0 ); + q = ( 4 < q ) ? q - 4 : 0; + q >>= - expDiff; + shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 ); + expDiff += 24; + if ( expDiff < 0 ) { + shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); + } + else { + shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); + } + mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 ); + sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); + } + else { + shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 ); + shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 ); + } + do { + alternateASig0 = aSig0; + alternateASig1 = aSig1; + ++q; + sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); + } while ( 0 <= (sbits32) aSig0 ); + add64( + aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); + if ( ( sigMean0 < 0 ) + || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { + aSig0 = alternateASig0; + aSig1 = alternateASig1; + } + zSign = ( (sbits32) aSig0 < 0 ); + if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); + return + normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 ); + +} +#endif + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the square root of the double-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sqrt( float64 a ) +{ + flag aSign; + int16 aExp, zExp; + bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; + bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + float64 z; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a ); + if ( ! aSign ) return a; + goto invalid; + } + if ( aSign ) { + if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; + invalid: + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 ); + normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; + aSig0 |= 0x00100000; + shortShift64Left( aSig0, aSig1, 11, &term0, &term1 ); + zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1; + if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF; + doubleZSig0 = zSig0 + zSig0; + shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 ); + mul32To64( zSig0, zSig0, &term0, &term1 ); + sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 ); + while ( (sbits32) rem0 < 0 ) { + --zSig0; + doubleZSig0 -= 2; + add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 ); + } + zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 ); + if ( ( zSig1 & 0x1FF ) <= 5 ) { + if ( zSig1 == 0 ) zSig1 = 1; + mul32To64( doubleZSig0, zSig1, &term1, &term2 ); + sub64( rem1, 0, term1, term2, &rem1, &rem2 ); + mul32To64( zSig1, zSig1, &term2, &term3 ); + sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits32) rem1 < 0 ) { + --zSig1; + shortShift64Left( 0, zSig1, 1, &term2, &term3 ); + term3 |= 1; + term2 |= doubleZSig0; + add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 ); + return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 ); + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +or equal to the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) + return aSign || + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == + 0 ); + return ( a == b ) || + ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) + return aSign && + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) != + 0 ); + return ( a != b ) && + ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq_signaling( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +#endif |