summaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Verifier.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2011-10-20 21:10:27 +0000
committerdim <dim@FreeBSD.org>2011-10-20 21:10:27 +0000
commit7b3392326c40c3c20697816acae597ba7b3144eb (patch)
tree2cbcf22585e99f8a87d12d5ff94f392c0d266819 /lib/VMCore/Verifier.cpp
parent1176aa52646fe641a4243a246aa7f960c708a274 (diff)
downloadFreeBSD-src-7b3392326c40c3c20697816acae597ba7b3144eb.zip
FreeBSD-src-7b3392326c40c3c20697816acae597ba7b3144eb.tar.gz
Vendor import of llvm release_30 branch r142614:
http://llvm.org/svn/llvm-project/llvm/branches/release_30@142614
Diffstat (limited to 'lib/VMCore/Verifier.cpp')
-rw-r--r--lib/VMCore/Verifier.cpp284
1 files changed, 209 insertions, 75 deletions
diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp
index b146b89..9564b7d 100644
--- a/lib/VMCore/Verifier.cpp
+++ b/lib/VMCore/Verifier.cpp
@@ -35,6 +35,12 @@
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
+// * A landing pad is defined by a landingpad instruction, and can be jumped to
+// only by the unwind edge of an invoke instruction.
+// * A landingpad instruction must be the first non-PHI instruction in the
+// block.
+// * All landingpad instructions must use the same personality function with
+// the same function.
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
@@ -131,18 +137,22 @@ namespace {
/// already.
SmallPtrSet<MDNode *, 32> MDNodes;
+ /// PersonalityFn - The personality function referenced by the
+ /// LandingPadInsts. All LandingPadInsts within the same function must use
+ /// the same personality function.
+ const Value *PersonalityFn;
+
Verifier()
- : FunctionPass(ID),
- Broken(false), RealPass(true), action(AbortProcessAction),
- Mod(0), Context(0), DT(0), MessagesStr(Messages) {
- initializeVerifierPass(*PassRegistry::getPassRegistry());
- }
+ : FunctionPass(ID), Broken(false), RealPass(true),
+ action(AbortProcessAction), Mod(0), Context(0), DT(0),
+ MessagesStr(Messages), PersonalityFn(0) {
+ initializeVerifierPass(*PassRegistry::getPassRegistry());
+ }
explicit Verifier(VerifierFailureAction ctn)
- : FunctionPass(ID),
- Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0),
- MessagesStr(Messages) {
- initializeVerifierPass(*PassRegistry::getPassRegistry());
- }
+ : FunctionPass(ID), Broken(false), RealPass(true), action(ctn), Mod(0),
+ Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
+ initializeVerifierPass(*PassRegistry::getPassRegistry());
+ }
bool doInitialization(Module &M) {
Mod = &M;
@@ -165,6 +175,7 @@ namespace {
visit(F);
InstsInThisBlock.clear();
+ PersonalityFn = 0;
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
@@ -278,18 +289,22 @@ namespace {
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
+ void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
+ void visitAtomicRMWInst(AtomicRMWInst &RMWI);
+ void visitFenceInst(FenceInst &FI);
void visitAllocaInst(AllocaInst &AI);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
+ void visitLandingPadInst(LandingPadInst &LPI);
void VerifyCallSite(CallSite CS);
- bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
+ bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
int VT, unsigned ArgNo, std::string &Suffix);
void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
unsigned RetNum, unsigned ParamNum, ...);
- void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
+ void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
bool isReturnValue, const Value *V);
- void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
+ void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
const Value *V);
void WriteValue(const Value *V) {
@@ -302,7 +317,7 @@ namespace {
}
}
- void WriteType(const Type *T) {
+ void WriteType(Type *T) {
if (!T) return;
MessagesStr << ' ' << *T;
}
@@ -323,7 +338,7 @@ namespace {
}
void CheckFailed(const Twine &Message, const Value *V1,
- const Type *T2, const Value *V3 = 0) {
+ Type *T2, const Value *V3 = 0) {
MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteType(T2);
@@ -331,8 +346,8 @@ namespace {
Broken = true;
}
- void CheckFailed(const Twine &Message, const Type *T1,
- const Type *T2 = 0, const Type *T3 = 0) {
+ void CheckFailed(const Twine &Message, Type *T1,
+ Type *T2 = 0, Type *T3 = 0) {
MessagesStr << Message.str() << "\n";
WriteType(T1);
WriteType(T2);
@@ -421,9 +436,9 @@ void Verifier::visitGlobalVariable(GlobalVariable &GV) {
"invalid linkage for intrinsic global variable", &GV);
// Don't worry about emitting an error for it not being an array,
// visitGlobalValue will complain on appending non-array.
- if (const ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
- const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
- const PointerType *FuncPtrTy =
+ if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
+ StructType *STy = dyn_cast<StructType>(ATy->getElementType());
+ PointerType *FuncPtrTy =
FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
Assert1(STy && STy->getNumElements() == 2 &&
STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
@@ -514,7 +529,7 @@ void Verifier::visitMDNode(MDNode &MD, Function *F) {
// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type. The value V is printed in error messages.
-void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
+void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
bool isReturnValue, const Value *V) {
if (Attrs == Attribute::None)
return;
@@ -541,7 +556,7 @@ void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
Attribute::getAsString(TypeI), V);
Attributes ByValI = Attrs & Attribute::ByVal;
- if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
+ if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
Assert1(!ByValI || PTy->getElementType()->isSized(),
"Attribute " + Attribute::getAsString(ByValI) +
" does not support unsized types!", V);
@@ -554,7 +569,7 @@ void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
// VerifyFunctionAttrs - Check parameter attributes against a function type.
// The value V is printed in error messages.
-void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
+void Verifier::VerifyFunctionAttrs(FunctionType *FT,
const AttrListPtr &Attrs,
const Value *V) {
if (Attrs.isEmpty())
@@ -565,7 +580,7 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
const AttributeWithIndex &Attr = Attrs.getSlot(i);
- const Type *Ty;
+ Type *Ty;
if (Attr.Index == 0)
Ty = FT->getReturnType();
else if (Attr.Index-1 < FT->getNumParams())
@@ -615,7 +630,7 @@ static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
//
void Verifier::visitFunction(Function &F) {
// Check function arguments.
- const FunctionType *FT = F.getFunctionType();
+ FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
Assert1(Context == &F.getContext(),
@@ -795,7 +810,7 @@ void Verifier::visitReturnInst(ReturnInst &RI) {
void Verifier::visitSwitchInst(SwitchInst &SI) {
// Check to make sure that all of the constants in the switch instruction
// have the same type as the switched-on value.
- const Type *SwitchTy = SI.getCondition()->getType();
+ Type *SwitchTy = SI.getCondition()->getType();
SmallPtrSet<ConstantInt*, 32> Constants;
for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
@@ -836,8 +851,8 @@ void Verifier::visitUserOp1(Instruction &I) {
void Verifier::visitTruncInst(TruncInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
@@ -854,8 +869,8 @@ void Verifier::visitTruncInst(TruncInst &I) {
void Verifier::visitZExtInst(ZExtInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
@@ -872,8 +887,8 @@ void Verifier::visitZExtInst(ZExtInst &I) {
void Verifier::visitSExtInst(SExtInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
@@ -890,8 +905,8 @@ void Verifier::visitSExtInst(SExtInst &I) {
void Verifier::visitFPTruncInst(FPTruncInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
@@ -907,8 +922,8 @@ void Verifier::visitFPTruncInst(FPTruncInst &I) {
void Verifier::visitFPExtInst(FPExtInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
@@ -925,8 +940,8 @@ void Verifier::visitFPExtInst(FPExtInst &I) {
void Verifier::visitUIToFPInst(UIToFPInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
@@ -948,8 +963,8 @@ void Verifier::visitUIToFPInst(UIToFPInst &I) {
void Verifier::visitSIToFPInst(SIToFPInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
@@ -971,8 +986,8 @@ void Verifier::visitSIToFPInst(SIToFPInst &I) {
void Verifier::visitFPToUIInst(FPToUIInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
@@ -994,8 +1009,8 @@ void Verifier::visitFPToUIInst(FPToUIInst &I) {
void Verifier::visitFPToSIInst(FPToSIInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
@@ -1017,8 +1032,8 @@ void Verifier::visitFPToSIInst(FPToSIInst &I) {
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
@@ -1028,8 +1043,8 @@ void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
@@ -1039,8 +1054,8 @@ void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
void Verifier::visitBitCastInst(BitCastInst &I) {
// Get the source and destination types
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DestTy = I.getType();
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
@@ -1090,11 +1105,11 @@ void Verifier::VerifyCallSite(CallSite CS) {
Assert1(CS.getCalledValue()->getType()->isPointerTy(),
"Called function must be a pointer!", I);
- const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
+ PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
Assert1(FPTy->getElementType()->isFunctionTy(),
"Called function is not pointer to function type!", I);
- const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
+ FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
@@ -1152,6 +1167,12 @@ void Verifier::visitCallInst(CallInst &CI) {
void Verifier::visitInvokeInst(InvokeInst &II) {
VerifyCallSite(&II);
+
+ // Verify that there is a landingpad instruction as the first non-PHI
+ // instruction of the 'unwind' destination.
+ Assert1(II.getUnwindDest()->isLandingPad(),
+ "The unwind destination does not have a landingpad instruction!",&II);
+
visitTerminatorInst(II);
}
@@ -1219,8 +1240,8 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) {
void Verifier::visitICmpInst(ICmpInst &IC) {
// Check that the operands are the same type
- const Type *Op0Ty = IC.getOperand(0)->getType();
- const Type *Op1Ty = IC.getOperand(1)->getType();
+ Type *Op0Ty = IC.getOperand(0)->getType();
+ Type *Op1Ty = IC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
@@ -1236,8 +1257,8 @@ void Verifier::visitICmpInst(ICmpInst &IC) {
void Verifier::visitFCmpInst(FCmpInst &FC) {
// Check that the operands are the same type
- const Type *Op0Ty = FC.getOperand(0)->getType();
- const Type *Op1Ty = FC.getOperand(1)->getType();
+ Type *Op0Ty = FC.getOperand(0)->getType();
+ Type *Op1Ty = FC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
@@ -1274,10 +1295,13 @@ void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ Assert1(cast<PointerType>(GEP.getOperand(0)->getType())
+ ->getElementType()->isSized(),
+ "GEP into unsized type!", &GEP);
+
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
- const Type *ElTy =
- GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
- Idxs.begin(), Idxs.end());
+ Type *ElTy =
+ GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), Idxs);
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
Assert2(GEP.getType()->isPointerTy() &&
cast<PointerType>(GEP.getType())->getElementType() == ElTy,
@@ -1286,26 +1310,44 @@ void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
void Verifier::visitLoadInst(LoadInst &LI) {
- const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
+ PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
Assert1(PTy, "Load operand must be a pointer.", &LI);
- const Type *ElTy = PTy->getElementType();
+ Type *ElTy = PTy->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
+ if (LI.isAtomic()) {
+ Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
+ "Load cannot have Release ordering", &LI);
+ Assert1(LI.getAlignment() != 0,
+ "Atomic load must specify explicit alignment", &LI);
+ } else {
+ Assert1(LI.getSynchScope() == CrossThread,
+ "Non-atomic load cannot have SynchronizationScope specified", &LI);
+ }
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
- const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
+ PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
Assert1(PTy, "Store operand must be a pointer.", &SI);
- const Type *ElTy = PTy->getElementType();
+ Type *ElTy = PTy->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!",
&SI, ElTy);
+ if (SI.isAtomic()) {
+ Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
+ "Store cannot have Acquire ordering", &SI);
+ Assert1(SI.getAlignment() != 0,
+ "Atomic store must specify explicit alignment", &SI);
+ } else {
+ Assert1(SI.getSynchScope() == CrossThread,
+ "Non-atomic store cannot have SynchronizationScope specified", &SI);
+ }
visitInstruction(SI);
}
void Verifier::visitAllocaInst(AllocaInst &AI) {
- const PointerType *PTy = AI.getType();
+ PointerType *PTy = AI.getType();
Assert1(PTy->getAddressSpace() == 0,
"Allocation instruction pointer not in the generic address space!",
&AI);
@@ -1316,6 +1358,49 @@ void Verifier::visitAllocaInst(AllocaInst &AI) {
visitInstruction(AI);
}
+void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
+ Assert1(CXI.getOrdering() != NotAtomic,
+ "cmpxchg instructions must be atomic.", &CXI);
+ Assert1(CXI.getOrdering() != Unordered,
+ "cmpxchg instructions cannot be unordered.", &CXI);
+ PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
+ Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
+ Type *ElTy = PTy->getElementType();
+ Assert2(ElTy == CXI.getOperand(1)->getType(),
+ "Expected value type does not match pointer operand type!",
+ &CXI, ElTy);
+ Assert2(ElTy == CXI.getOperand(2)->getType(),
+ "Stored value type does not match pointer operand type!",
+ &CXI, ElTy);
+ visitInstruction(CXI);
+}
+
+void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
+ Assert1(RMWI.getOrdering() != NotAtomic,
+ "atomicrmw instructions must be atomic.", &RMWI);
+ Assert1(RMWI.getOrdering() != Unordered,
+ "atomicrmw instructions cannot be unordered.", &RMWI);
+ PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
+ Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
+ Type *ElTy = PTy->getElementType();
+ Assert2(ElTy == RMWI.getOperand(1)->getType(),
+ "Argument value type does not match pointer operand type!",
+ &RMWI, ElTy);
+ Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
+ RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
+ "Invalid binary operation!", &RMWI);
+ visitInstruction(RMWI);
+}
+
+void Verifier::visitFenceInst(FenceInst &FI) {
+ const AtomicOrdering Ordering = FI.getOrdering();
+ Assert1(Ordering == Acquire || Ordering == Release ||
+ Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
+ "fence instructions may only have "
+ "acquire, release, acq_rel, or seq_cst ordering.", &FI);
+ visitInstruction(FI);
+}
+
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
EVI.getIndices()) ==
@@ -1334,6 +1419,55 @@ void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
visitInstruction(IVI);
}
+void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
+ BasicBlock *BB = LPI.getParent();
+
+ // The landingpad instruction is ill-formed if it doesn't have any clauses and
+ // isn't a cleanup.
+ Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
+ "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
+
+ // The landingpad instruction defines its parent as a landing pad block. The
+ // landing pad block may be branched to only by the unwind edge of an invoke.
+ for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
+ const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
+ Assert1(II && II->getUnwindDest() == BB,
+ "Block containing LandingPadInst must be jumped to "
+ "only by the unwind edge of an invoke.", &LPI);
+ }
+
+ // The landingpad instruction must be the first non-PHI instruction in the
+ // block.
+ Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
+ "LandingPadInst not the first non-PHI instruction in the block.",
+ &LPI);
+
+ // The personality functions for all landingpad instructions within the same
+ // function should match.
+ if (PersonalityFn)
+ Assert1(LPI.getPersonalityFn() == PersonalityFn,
+ "Personality function doesn't match others in function", &LPI);
+ PersonalityFn = LPI.getPersonalityFn();
+
+ // All operands must be constants.
+ Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
+ &LPI);
+ for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
+ Value *Clause = LPI.getClause(i);
+ Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
+ if (LPI.isCatch(i)) {
+ Assert1(isa<PointerType>(Clause->getType()),
+ "Catch operand does not have pointer type!", &LPI);
+ } else {
+ Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
+ Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
+ "Filter operand is not an array of constants!", &LPI);
+ }
+ }
+
+ visitInstruction(LPI);
+}
+
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
@@ -1588,20 +1722,20 @@ static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
return "Intrinsic result type #" + utostr(ArgNo);
}
-bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
+bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
int VT, unsigned ArgNo, std::string &Suffix) {
- const FunctionType *FTy = F->getFunctionType();
+ FunctionType *FTy = F->getFunctionType();
unsigned NumElts = 0;
- const Type *EltTy = Ty;
- const VectorType *VTy = dyn_cast<VectorType>(Ty);
+ Type *EltTy = Ty;
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
if (VTy) {
EltTy = VTy->getElementType();
NumElts = VTy->getNumElements();
}
- const Type *RetTy = FTy->getReturnType();
- const StructType *ST = dyn_cast<StructType>(RetTy);
+ Type *RetTy = FTy->getReturnType();
+ StructType *ST = dyn_cast<StructType>(RetTy);
unsigned NumRetVals;
if (RetTy->isVoidTy())
NumRetVals = 0;
@@ -1618,7 +1752,7 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
// type.
if ((Match & (ExtendedElementVectorType |
TruncatedElementVectorType)) != 0) {
- const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
+ IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
if (!VTy || !IEltTy) {
CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
"an integral vector type.", F);
@@ -1709,7 +1843,7 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
// Outside of TableGen, we don't distinguish iPTRAny (to any address space)
// and iPTR. In the verifier, we can not distinguish which case we have so
// allow either case to be legal.
- if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
+ if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
if (PointeeVT == MVT::Other) {
CheckFailed("Intrinsic has pointer to complex type.");
@@ -1757,7 +1891,7 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
unsigned NumParams, ...) {
va_list VA;
va_start(VA, NumParams);
- const FunctionType *FTy = F->getFunctionType();
+ FunctionType *FTy = F->getFunctionType();
// For overloaded intrinsics, the Suffix of the function name must match the
// types of the arguments. This variable keeps track of the expected
@@ -1769,8 +1903,8 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
return;
}
- const Type *Ty = FTy->getReturnType();
- const StructType *ST = dyn_cast<StructType>(Ty);
+ Type *Ty = FTy->getReturnType();
+ StructType *ST = dyn_cast<StructType>(Ty);
if (NumRetVals == 0 && !Ty->isVoidTy()) {
CheckFailed("Intrinsic should return void", F);
OpenPOWER on IntegriCloud