diff options
author | dim <dim@FreeBSD.org> | 2012-04-14 13:54:10 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2012-04-14 13:54:10 +0000 |
commit | 1fc08f5e9ef733ef1ce6f363fecedc2260e78974 (patch) | |
tree | 19c69a04768629f2d440944b71cbe90adae0b615 /lib/VMCore/Dominators.cpp | |
parent | 07637c87f826cdf411f0673595e9bc92ebd793f2 (diff) | |
download | FreeBSD-src-1fc08f5e9ef733ef1ce6f363fecedc2260e78974.zip FreeBSD-src-1fc08f5e9ef733ef1ce6f363fecedc2260e78974.tar.gz |
Vendor import of llvm trunk r154661:
http://llvm.org/svn/llvm-project/llvm/trunk@r154661
Diffstat (limited to 'lib/VMCore/Dominators.cpp')
-rw-r--r-- | lib/VMCore/Dominators.cpp | 202 |
1 files changed, 181 insertions, 21 deletions
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp index 08b845e..219e631 100644 --- a/lib/VMCore/Dominators.cpp +++ b/lib/VMCore/Dominators.cpp @@ -80,27 +80,187 @@ void DominatorTree::print(raw_ostream &OS, const Module *) const { DT->print(OS); } -// dominates - Return true if A dominates a use in B. This performs the -// special checks necessary if A and B are in the same basic block. -bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{ - const BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); - - // If A is an invoke instruction, its value is only available in this normal - // successor block. - if (const InvokeInst *II = dyn_cast<InvokeInst>(A)) - BBA = II->getNormalDest(); - - if (BBA != BBB) return dominates(BBA, BBB); - - // It is not possible to determine dominance between two PHI nodes - // based on their ordering. - if (isa<PHINode>(A) && isa<PHINode>(B)) +// dominates - Return true if Def dominates a use in User. This performs +// the special checks necessary if Def and User are in the same basic block. +// Note that Def doesn't dominate a use in Def itself! +bool DominatorTree::dominates(const Instruction *Def, + const Instruction *User) const { + const BasicBlock *UseBB = User->getParent(); + const BasicBlock *DefBB = Def->getParent(); + + // Any unreachable use is dominated, even if Def == User. + if (!isReachableFromEntry(UseBB)) + return true; + + // Unreachable definitions don't dominate anything. + if (!isReachableFromEntry(DefBB)) + return false; + + // An instruction doesn't dominate a use in itself. + if (Def == User) return false; - - // Loop through the basic block until we find A or B. - BasicBlock::const_iterator I = BBA->begin(); - for (; &*I != A && &*I != B; ++I) + + // The value defined by an invoke dominates an instruction only if + // it dominates every instruction in UseBB. + // A PHI is dominated only if the instruction dominates every possible use + // in the UseBB. + if (isa<InvokeInst>(Def) || isa<PHINode>(User)) + return dominates(Def, UseBB); + + if (DefBB != UseBB) + return dominates(DefBB, UseBB); + + // Loop through the basic block until we find Def or User. + BasicBlock::const_iterator I = DefBB->begin(); + for (; &*I != Def && &*I != User; ++I) /*empty*/; - - return &*I == A; + + return &*I == Def; +} + +// true if Def would dominate a use in any instruction in UseBB. +// note that dominates(Def, Def->getParent()) is false. +bool DominatorTree::dominates(const Instruction *Def, + const BasicBlock *UseBB) const { + const BasicBlock *DefBB = Def->getParent(); + + // Any unreachable use is dominated, even if DefBB == UseBB. + if (!isReachableFromEntry(UseBB)) + return true; + + // Unreachable definitions don't dominate anything. + if (!isReachableFromEntry(DefBB)) + return false; + + if (DefBB == UseBB) + return false; + + const InvokeInst *II = dyn_cast<InvokeInst>(Def); + if (!II) + return dominates(DefBB, UseBB); + + // Invoke results are only usable in the normal destination, not in the + // exceptional destination. + BasicBlock *NormalDest = II->getNormalDest(); + if (!dominates(NormalDest, UseBB)) + return false; + + // Simple case: if the normal destination has a single predecessor, the + // fact that it dominates the use block implies that we also do. + if (NormalDest->getSinglePredecessor()) + return true; + + // The normal edge from the invoke is critical. Conceptually, what we would + // like to do is split it and check if the new block dominates the use. + // With X being the new block, the graph would look like: + // + // DefBB + // /\ . . + // / \ . . + // / \ . . + // / \ | | + // A X B C + // | \ | / + // . \|/ + // . NormalDest + // . + // + // Given the definition of dominance, NormalDest is dominated by X iff X + // dominates all of NormalDest's predecessors (X, B, C in the example). X + // trivially dominates itself, so we only have to find if it dominates the + // other predecessors. Since the only way out of X is via NormalDest, X can + // only properly dominate a node if NormalDest dominates that node too. + for (pred_iterator PI = pred_begin(NormalDest), + E = pred_end(NormalDest); PI != E; ++PI) { + const BasicBlock *BB = *PI; + if (BB == DefBB) + continue; + + if (!DT->isReachableFromEntry(BB)) + continue; + + if (!dominates(NormalDest, BB)) + return false; + } + return true; +} + +bool DominatorTree::dominates(const Instruction *Def, + const Use &U) const { + Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); + + // Instructions do not dominate non-instructions. + if (!UserInst) + return false; + + const BasicBlock *DefBB = Def->getParent(); + + // Determine the block in which the use happens. PHI nodes use + // their operands on edges; simulate this by thinking of the use + // happening at the end of the predecessor block. + const BasicBlock *UseBB; + if (PHINode *PN = dyn_cast<PHINode>(UserInst)) + UseBB = PN->getIncomingBlock(U); + else + UseBB = UserInst->getParent(); + + // Any unreachable use is dominated, even if Def == User. + if (!isReachableFromEntry(UseBB)) + return true; + + // Unreachable definitions don't dominate anything. + if (!isReachableFromEntry(DefBB)) + return false; + + // Invoke instructions define their return values on the edges + // to their normal successors, so we have to handle them specially. + // Among other things, this means they don't dominate anything in + // their own block, except possibly a phi, so we don't need to + // walk the block in any case. + if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { + // A PHI in the normal successor using the invoke's return value is + // dominated by the invoke's return value. + if (isa<PHINode>(UserInst) && + UserInst->getParent() == II->getNormalDest() && + cast<PHINode>(UserInst)->getIncomingBlock(U) == DefBB) + return true; + + // Otherwise use the instruction-dominates-block query, which + // handles the crazy case of an invoke with a critical edge + // properly. + return dominates(Def, UseBB); + } + + // If the def and use are in different blocks, do a simple CFG dominator + // tree query. + if (DefBB != UseBB) + return dominates(DefBB, UseBB); + + // Ok, def and use are in the same block. If the def is an invoke, it + // doesn't dominate anything in the block. If it's a PHI, it dominates + // everything in the block. + if (isa<PHINode>(UserInst)) + return true; + + // Otherwise, just loop through the basic block until we find Def or User. + BasicBlock::const_iterator I = DefBB->begin(); + for (; &*I != Def && &*I != UserInst; ++I) + /*empty*/; + + return &*I != UserInst; +} + +bool DominatorTree::isReachableFromEntry(const Use &U) const { + Instruction *I = dyn_cast<Instruction>(U.getUser()); + + // ConstantExprs aren't really reachable from the entry block, but they + // don't need to be treated like unreachable code either. + if (!I) return true; + + // PHI nodes use their operands on their incoming edges. + if (PHINode *PN = dyn_cast<PHINode>(I)) + return isReachableFromEntry(PN->getIncomingBlock(U)); + + // Everything else uses their operands in their own block. + return isReachableFromEntry(I->getParent()); } |