diff options
author | rdivacky <rdivacky@FreeBSD.org> | 2009-10-14 17:57:32 +0000 |
---|---|---|
committer | rdivacky <rdivacky@FreeBSD.org> | 2009-10-14 17:57:32 +0000 |
commit | cd749a9c07f1de2fb8affde90537efa4bc3e7c54 (patch) | |
tree | b21f6de4e08b89bb7931806bab798fc2a5e3a686 /lib/VMCore/Constants.cpp | |
parent | 72621d11de5b873f1695f391eb95f0b336c3d2d4 (diff) | |
download | FreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.zip FreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.tar.gz |
Update llvm to r84119.
Diffstat (limited to 'lib/VMCore/Constants.cpp')
-rw-r--r-- | lib/VMCore/Constants.cpp | 2274 |
1 files changed, 687 insertions, 1587 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp index a9e4e78..529c455 100644 --- a/lib/VMCore/Constants.cpp +++ b/lib/VMCore/Constants.cpp @@ -12,19 +12,23 @@ //===----------------------------------------------------------------------===// #include "llvm/Constants.h" +#include "LLVMContextImpl.h" #include "ConstantFold.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" -#include "llvm/MDNode.h" #include "llvm/Module.h" +#include "llvm/Operator.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/System/Mutex.h" #include "llvm/System/RWMutex.h" #include "llvm/System/Threading.h" @@ -38,8 +42,64 @@ using namespace llvm; // Constant Class //===----------------------------------------------------------------------===// -// Becomes a no-op when multithreading is disabled. -ManagedStatic<sys::SmartRWMutex<true> > ConstantsLock; +// Constructor to create a '0' constant of arbitrary type... +static const uint64_t zero[2] = {0, 0}; +Constant* Constant::getNullValue(const Type* Ty) { + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + return ConstantInt::get(Ty, 0); + case Type::FloatTyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0))); + case Type::DoubleTyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0))); + case Type::X86_FP80TyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero))); + case Type::FP128TyID: + return ConstantFP::get(Ty->getContext(), + APFloat(APInt(128, 2, zero), true)); + case Type::PPC_FP128TyID: + return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero))); + case Type::PointerTyID: + return ConstantPointerNull::get(cast<PointerType>(Ty)); + case Type::StructTyID: + case Type::ArrayTyID: + case Type::VectorTyID: + return ConstantAggregateZero::get(Ty); + default: + // Function, Label, or Opaque type? + assert(!"Cannot create a null constant of that type!"); + return 0; + } +} + +Constant* Constant::getIntegerValue(const Type* Ty, const APInt &V) { + const Type *ScalarTy = Ty->getScalarType(); + + // Create the base integer constant. + Constant *C = ConstantInt::get(Ty->getContext(), V); + + // Convert an integer to a pointer, if necessary. + if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) + C = ConstantExpr::getIntToPtr(C, PTy); + + // Broadcast a scalar to a vector, if necessary. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + +Constant* Constant::getAllOnesValue(const Type* Ty) { + if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) + return ConstantInt::get(Ty->getContext(), + APInt::getAllOnesValue(ITy->getBitWidth())); + + std::vector<Constant*> Elts; + const VectorType* VTy = cast<VectorType>(Ty); + Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); + assert(Elts[0] && "Not a vector integer type!"); + return cast<ConstantVector>(ConstantVector::get(Elts)); +} void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering @@ -52,10 +112,11 @@ void Constant::destroyConstantImpl() { while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... - if (!isa<Constant>(V)) - DOUT << "While deleting: " << *this - << "\n\nUse still stuck around after Def is destroyed: " - << *V << "\n\n"; + if (!isa<Constant>(V)) { + errs() << "While deleting: " << *this + << "\n\nUse still stuck around after Def is destroyed: " + << *V << "\n\n"; + } #endif assert(isa<Constant>(V) && "References remain to Constant being destroyed"); Constant *CV = cast<Constant>(V); @@ -99,85 +160,33 @@ bool Constant::canTrap() const { } } -/// ContainsRelocations - Return true if the constant value contains relocations -/// which cannot be resolved at compile time. Kind argument is used to filter -/// only 'interesting' sorts of relocations. -bool Constant::ContainsRelocations(unsigned Kind) const { - if (const GlobalValue* GV = dyn_cast<GlobalValue>(this)) { - bool isLocal = GV->hasLocalLinkage(); - if ((Kind & Reloc::Local) && isLocal) { - // Global has local linkage and 'local' kind of relocations are - // requested - return true; - } - - if ((Kind & Reloc::Global) && !isLocal) { - // Global has non-local linkage and 'global' kind of relocations are - // requested - return true; - } - return false; +/// getRelocationInfo - This method classifies the entry according to +/// whether or not it may generate a relocation entry. This must be +/// conservative, so if it might codegen to a relocatable entry, it should say +/// so. The return values are: +/// +/// NoRelocation: This constant pool entry is guaranteed to never have a +/// relocation applied to it (because it holds a simple constant like +/// '4'). +/// LocalRelocation: This entry has relocations, but the entries are +/// guaranteed to be resolvable by the static linker, so the dynamic +/// linker will never see them. +/// GlobalRelocations: This entry may have arbitrary relocations. +/// +/// FIXME: This really should not be in VMCore. +Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { + if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) + return LocalRelocation; // Local to this file/library. + return GlobalRelocations; // Global reference. } - + + PossibleRelocationsTy Result = NoRelocation; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (getOperand(i)->ContainsRelocations(Kind)) - return true; - - return false; -} - -// Static constructor to create a '0' constant of arbitrary type... -static const uint64_t zero[2] = {0, 0}; -Constant *Constant::getNullValue(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::IntegerTyID: - return ConstantInt::get(Ty, 0); - case Type::FloatTyID: - return ConstantFP::get(APFloat(APInt(32, 0))); - case Type::DoubleTyID: - return ConstantFP::get(APFloat(APInt(64, 0))); - case Type::X86_FP80TyID: - return ConstantFP::get(APFloat(APInt(80, 2, zero))); - case Type::FP128TyID: - return ConstantFP::get(APFloat(APInt(128, 2, zero), true)); - case Type::PPC_FP128TyID: - return ConstantFP::get(APFloat(APInt(128, 2, zero))); - case Type::PointerTyID: - return ConstantPointerNull::get(cast<PointerType>(Ty)); - case Type::StructTyID: - case Type::ArrayTyID: - case Type::VectorTyID: - return ConstantAggregateZero::get(Ty); - default: - // Function, Label, or Opaque type? - assert(!"Cannot create a null constant of that type!"); - return 0; - } -} - -Constant *Constant::getAllOnesValue(const Type *Ty) { - if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) - return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); - return ConstantVector::getAllOnesValue(cast<VectorType>(Ty)); -} - -// Static constructor to create an integral constant with all bits set -ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) { - if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) - return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); - return 0; -} - -/// @returns the value for a vector integer constant of the given type that -/// has all its bits set to true. -/// @brief Get the all ones value -ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) { - std::vector<Constant*> Elts; - Elts.resize(Ty->getNumElements(), - ConstantInt::getAllOnesValue(Ty->getElementType())); - assert(Elts[0] && "Not a vector integer type!"); - return cast<ConstantVector>(ConstantVector::get(Elts)); + Result = std::max(Result, getOperand(i)->getRelocationInfo()); + + return Result; } @@ -185,7 +194,8 @@ ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) { /// type, returns the elements of the vector in the specified smallvector. /// This handles breaking down a vector undef into undef elements, etc. For /// constant exprs and other cases we can't handle, we return an empty vector. -void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const { +void Constant::getVectorElements(LLVMContext &Context, + SmallVectorImpl<Constant*> &Elts) const { assert(isa<VectorType>(getType()) && "Not a vector constant!"); if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) { @@ -220,95 +230,45 @@ ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } -ConstantInt *ConstantInt::TheTrueVal = 0; -ConstantInt *ConstantInt::TheFalseVal = 0; - -namespace llvm { - void CleanupTrueFalse(void *) { - ConstantInt::ResetTrueFalse(); - } -} - -static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup; - -ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) { - assert(TheTrueVal == 0 && TheFalseVal == 0); - TheTrueVal = get(Type::Int1Ty, 1); - TheFalseVal = get(Type::Int1Ty, 0); - - // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal. - TrueFalseCleanup.Register(); - - return WhichOne ? TheTrueVal : TheFalseVal; +ConstantInt* ConstantInt::getTrue(LLVMContext &Context) { + LLVMContextImpl *pImpl = Context.pImpl; + sys::SmartScopedWriter<true>(pImpl->ConstantsLock); + if (pImpl->TheTrueVal) + return pImpl->TheTrueVal; + else + return (pImpl->TheTrueVal = + ConstantInt::get(IntegerType::get(Context, 1), 1)); } - -namespace { - struct DenseMapAPIntKeyInfo { - struct KeyTy { - APInt val; - const Type* type; - KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {} - KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} - bool operator==(const KeyTy& that) const { - return type == that.type && this->val == that.val; - } - bool operator!=(const KeyTy& that) const { - return !this->operator==(that); - } - }; - static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } - static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } - static unsigned getHashValue(const KeyTy &Key) { - return DenseMapInfo<void*>::getHashValue(Key.type) ^ - Key.val.getHashValue(); - } - static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { - return LHS == RHS; - } - static bool isPod() { return false; } - }; +ConstantInt* ConstantInt::getFalse(LLVMContext &Context) { + LLVMContextImpl *pImpl = Context.pImpl; + sys::SmartScopedWriter<true>(pImpl->ConstantsLock); + if (pImpl->TheFalseVal) + return pImpl->TheFalseVal; + else + return (pImpl->TheFalseVal = + ConstantInt::get(IntegerType::get(Context, 1), 0)); } -typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, - DenseMapAPIntKeyInfo> IntMapTy; -static ManagedStatic<IntMapTy> IntConstants; - -ConstantInt *ConstantInt::get(const IntegerType *Ty, - uint64_t V, bool isSigned) { - return get(APInt(Ty->getBitWidth(), V, isSigned)); -} - -Constant *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) { - Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); - - // For vectors, broadcast the value. - if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) - return - ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C)); - - return C; -} - // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the // operator== and operator!= to ensure that the DenseMap doesn't attempt to // compare APInt's of different widths, which would violate an APInt class // invariant which generates an assertion. -ConstantInt *ConstantInt::get(const APInt& V) { +ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) { // Get the corresponding integer type for the bit width of the value. - const IntegerType *ITy = IntegerType::get(V.getBitWidth()); + const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); // get an existing value or the insertion position DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); - ConstantsLock->reader_acquire(); - ConstantInt *&Slot = (*IntConstants)[Key]; - ConstantsLock->reader_release(); + Context.pImpl->ConstantsLock.reader_acquire(); + ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; + Context.pImpl->ConstantsLock.reader_release(); if (!Slot) { - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); - ConstantInt *&NewSlot = (*IntConstants)[Key]; + sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock); + ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key]; if (!Slot) { NewSlot = new ConstantInt(ITy, V); } @@ -319,117 +279,153 @@ ConstantInt *ConstantInt::get(const APInt& V) { } } -Constant *ConstantInt::get(const Type *Ty, const APInt &V) { - ConstantInt *C = ConstantInt::get(V); +Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) { + Constant *C = get(cast<IntegerType>(Ty->getScalarType()), + V, isSigned); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::get( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; +} + +ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V, + bool isSigned) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); +} + +ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant* ConstantInt::get(const Type* Ty, const APInt& V) { + ConstantInt *C = get(Ty->getContext(), V); assert(C->getType() == Ty->getScalarType() && "ConstantInt type doesn't match the type implied by its value!"); // For vectors, broadcast the value. if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) - return - ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C)); + return ConstantVector::get( + std::vector<Constant *>(VTy->getNumElements(), C)); return C; } +ConstantInt* ConstantInt::get(const IntegerType* Ty, const StringRef& Str, + uint8_t radix) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); +} + //===----------------------------------------------------------------------===// // ConstantFP //===----------------------------------------------------------------------===// static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { - if (Ty == Type::FloatTy) + if (Ty->isFloatTy()) return &APFloat::IEEEsingle; - if (Ty == Type::DoubleTy) + if (Ty->isDoubleTy()) return &APFloat::IEEEdouble; - if (Ty == Type::X86_FP80Ty) + if (Ty->isX86_FP80Ty()) return &APFloat::x87DoubleExtended; - else if (Ty == Type::FP128Ty) + else if (Ty->isFP128Ty()) return &APFloat::IEEEquad; - assert(Ty == Type::PPC_FP128Ty && "Unknown FP format"); + assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); return &APFloat::PPCDoubleDouble; } -ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) - : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { - assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && - "FP type Mismatch"); +/// get() - This returns a constant fp for the specified value in the +/// specified type. This should only be used for simple constant values like +/// 2.0/1.0 etc, that are known-valid both as double and as the target format. +Constant* ConstantFP::get(const Type* Ty, double V) { + LLVMContext &Context = Ty->getContext(); + + APFloat FV(V); + bool ignored; + FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), + APFloat::rmNearestTiesToEven, &ignored); + Constant *C = get(Context, FV); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::get( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; } -bool ConstantFP::isNullValue() const { - return Val.isZero() && !Val.isNegative(); + +Constant* ConstantFP::get(const Type* Ty, const StringRef& Str) { + LLVMContext &Context = Ty->getContext(); + + APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); + Constant *C = get(Context, FV); + + // For vectors, broadcast the value. + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::get( + std::vector<Constant *>(VTy->getNumElements(), C)); + + return C; } -ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) { + +ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) { + LLVMContext &Context = Ty->getContext(); APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); apf.changeSign(); - return ConstantFP::get(apf); + return get(Context, apf); } -bool ConstantFP::isExactlyValue(const APFloat& V) const { - return Val.bitwiseIsEqual(V); -} -namespace { - struct DenseMapAPFloatKeyInfo { - struct KeyTy { - APFloat val; - KeyTy(const APFloat& V) : val(V){} - KeyTy(const KeyTy& that) : val(that.val) {} - bool operator==(const KeyTy& that) const { - return this->val.bitwiseIsEqual(that.val); - } - bool operator!=(const KeyTy& that) const { - return !this->operator==(that); - } - }; - static inline KeyTy getEmptyKey() { - return KeyTy(APFloat(APFloat::Bogus,1)); - } - static inline KeyTy getTombstoneKey() { - return KeyTy(APFloat(APFloat::Bogus,2)); - } - static unsigned getHashValue(const KeyTy &Key) { - return Key.val.getHashValue(); - } - static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { - return LHS == RHS; +Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) { + if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) + if (PTy->getElementType()->isFloatingPoint()) { + std::vector<Constant*> zeros(PTy->getNumElements(), + getNegativeZero(PTy->getElementType())); + return ConstantVector::get(PTy, zeros); } - static bool isPod() { return false; } - }; -} -//---- ConstantFP::get() implementation... -// -typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, - DenseMapAPFloatKeyInfo> FPMapTy; + if (Ty->isFloatingPoint()) + return getNegativeZero(Ty); + + return Constant::getNullValue(Ty); +} -static ManagedStatic<FPMapTy> FPConstants; -ConstantFP *ConstantFP::get(const APFloat &V) { +// ConstantFP accessors. +ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { DenseMapAPFloatKeyInfo::KeyTy Key(V); - ConstantsLock->reader_acquire(); - ConstantFP *&Slot = (*FPConstants)[Key]; - ConstantsLock->reader_release(); + LLVMContextImpl* pImpl = Context.pImpl; + + pImpl->ConstantsLock.reader_acquire(); + ConstantFP *&Slot = pImpl->FPConstants[Key]; + pImpl->ConstantsLock.reader_release(); if (!Slot) { - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); - ConstantFP *&NewSlot = (*FPConstants)[Key]; + sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock); + ConstantFP *&NewSlot = pImpl->FPConstants[Key]; if (!NewSlot) { const Type *Ty; if (&V.getSemantics() == &APFloat::IEEEsingle) - Ty = Type::FloatTy; + Ty = Type::getFloatTy(Context); else if (&V.getSemantics() == &APFloat::IEEEdouble) - Ty = Type::DoubleTy; + Ty = Type::getDoubleTy(Context); else if (&V.getSemantics() == &APFloat::x87DoubleExtended) - Ty = Type::X86_FP80Ty; + Ty = Type::getX86_FP80Ty(Context); else if (&V.getSemantics() == &APFloat::IEEEquad) - Ty = Type::FP128Ty; + Ty = Type::getFP128Ty(Context); else { assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && "Unknown FP format"); - Ty = Type::PPC_FP128Ty; + Ty = Type::getPPC_FP128Ty(Context); } NewSlot = new ConstantFP(Ty, V); } @@ -440,22 +436,24 @@ ConstantFP *ConstantFP::get(const APFloat &V) { return Slot; } -/// get() - This returns a constant fp for the specified value in the -/// specified type. This should only be used for simple constant values like -/// 2.0/1.0 etc, that are known-valid both as double and as the target format. -Constant *ConstantFP::get(const Type *Ty, double V) { - APFloat FV(V); - bool ignored; - FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), - APFloat::rmNearestTiesToEven, &ignored); - Constant *C = get(FV); +ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) { + const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); + return ConstantFP::get(Ty->getContext(), + APFloat::getInf(Semantics, Negative)); +} - // For vectors, broadcast the value. - if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) - return - ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C)); +ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) + : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { + assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && + "FP type Mismatch"); +} - return C; +bool ConstantFP::isNullValue() const { + return Val.isZero() && !Val.isNegative(); +} + +bool ConstantFP::isExactlyValue(const APFloat& V) const { + return Val.bitwiseIsEqual(V); } //===----------------------------------------------------------------------===// @@ -474,14 +472,65 @@ ConstantArray::ConstantArray(const ArrayType *T, for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; - assert((C->getType() == T->getElementType() || - (T->isAbstract() && - C->getType()->getTypeID() == T->getElementType()->getTypeID())) && + assert(C->getType() == T->getElementType() && "Initializer for array element doesn't match array element type!"); *OL = C; } } +Constant *ConstantArray::get(const ArrayType *Ty, + const std::vector<Constant*> &V) { + for (unsigned i = 0, e = V.size(); i != e; ++i) { + assert(V[i]->getType() == Ty->getElementType() && + "Wrong type in array element initializer"); + } + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + // If this is an all-zero array, return a ConstantAggregateZero object + if (!V.empty()) { + Constant *C = V[0]; + if (!C->isNullValue()) { + // Implicitly locked. + return pImpl->ArrayConstants.getOrCreate(Ty, V); + } + for (unsigned i = 1, e = V.size(); i != e; ++i) + if (V[i] != C) { + // Implicitly locked. + return pImpl->ArrayConstants.getOrCreate(Ty, V); + } + } + + return ConstantAggregateZero::get(Ty); +} + + +Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals, + unsigned NumVals) { + // FIXME: make this the primary ctor method. + return get(T, std::vector<Constant*>(Vals, Vals+NumVals)); +} + +/// ConstantArray::get(const string&) - Return an array that is initialized to +/// contain the specified string. If length is zero then a null terminator is +/// added to the specified string so that it may be used in a natural way. +/// Otherwise, the length parameter specifies how much of the string to use +/// and it won't be null terminated. +/// +Constant* ConstantArray::get(LLVMContext &Context, const StringRef &Str, + bool AddNull) { + std::vector<Constant*> ElementVals; + for (unsigned i = 0; i < Str.size(); ++i) + ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i])); + + // Add a null terminator to the string... + if (AddNull) { + ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0)); + } + + ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size()); + return get(ATy, ElementVals); +} + + ConstantStruct::ConstantStruct(const StructType *T, const std::vector<Constant*> &V) @@ -494,16 +543,41 @@ ConstantStruct::ConstantStruct(const StructType *T, for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; - assert((C->getType() == T->getElementType(I-V.begin()) || - ((T->getElementType(I-V.begin())->isAbstract() || - C->getType()->isAbstract()) && - T->getElementType(I-V.begin())->getTypeID() == - C->getType()->getTypeID())) && + assert(C->getType() == T->getElementType(I-V.begin()) && "Initializer for struct element doesn't match struct element type!"); *OL = C; } } +// ConstantStruct accessors. +Constant* ConstantStruct::get(const StructType* T, + const std::vector<Constant*>& V) { + LLVMContextImpl* pImpl = T->getContext().pImpl; + + // Create a ConstantAggregateZero value if all elements are zeros... + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (!V[i]->isNullValue()) + // Implicitly locked. + return pImpl->StructConstants.getOrCreate(T, V); + + return ConstantAggregateZero::get(T); +} + +Constant* ConstantStruct::get(LLVMContext &Context, + const std::vector<Constant*>& V, bool packed) { + std::vector<const Type*> StructEls; + StructEls.reserve(V.size()); + for (unsigned i = 0, e = V.size(); i != e; ++i) + StructEls.push_back(V[i]->getType()); + return get(StructType::get(Context, StructEls, packed), V); +} + +Constant* ConstantStruct::get(LLVMContext &Context, + Constant* const *Vals, unsigned NumVals, + bool Packed) { + // FIXME: make this the primary ctor method. + return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed); +} ConstantVector::ConstantVector(const VectorType *T, const std::vector<Constant*> &V) @@ -514,297 +588,66 @@ ConstantVector::ConstantVector(const VectorType *T, for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; - assert((C->getType() == T->getElementType() || - (T->isAbstract() && - C->getType()->getTypeID() == T->getElementType()->getTypeID())) && + assert(C->getType() == T->getElementType() && "Initializer for vector element doesn't match vector element type!"); *OL = C; } } +// ConstantVector accessors. +Constant* ConstantVector::get(const VectorType* T, + const std::vector<Constant*>& V) { + assert(!V.empty() && "Vectors can't be empty"); + LLVMContext &Context = T->getContext(); + LLVMContextImpl *pImpl = Context.pImpl; + + // If this is an all-undef or alll-zero vector, return a + // ConstantAggregateZero or UndefValue. + Constant *C = V[0]; + bool isZero = C->isNullValue(); + bool isUndef = isa<UndefValue>(C); -namespace llvm { -// We declare several classes private to this file, so use an anonymous -// namespace -namespace { - -/// UnaryConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement unary constant exprs. -class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 1); - } - UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) - : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { - Op<0>() = C; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// BinaryConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement binary constant exprs. -class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) - : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { - Op<0>() = C1; - Op<1>() = C2; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// SelectConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement select constant exprs. -class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ExtractElementConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// extractelement constant exprs. -class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - ExtractElementConstantExpr(Constant *C1, Constant *C2) - : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), - Instruction::ExtractElement, &Op<0>(), 2) { - Op<0>() = C1; - Op<1>() = C2; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// InsertElementConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// insertelement constant exprs. -class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(C1->getType(), Instruction::InsertElement, - &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ShuffleVectorConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// shufflevector constant exprs. -class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(VectorType::get( - cast<VectorType>(C1->getType())->getElementType(), - cast<VectorType>(C3->getType())->getNumElements()), - Instruction::ShuffleVector, - &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ExtractValueConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// extractvalue constant exprs. -class VISIBILITY_HIDDEN ExtractValueConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 1); - } - ExtractValueConstantExpr(Constant *Agg, - const SmallVector<unsigned, 4> &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), - Indices(IdxList) { - Op<0>() = Agg; - } - - /// Indices - These identify which value to extract. - const SmallVector<unsigned, 4> Indices; - - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// InsertValueConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// insertvalue constant exprs. -class VISIBILITY_HIDDEN InsertValueConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 2); - } - InsertValueConstantExpr(Constant *Agg, Constant *Val, - const SmallVector<unsigned, 4> &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), - Indices(IdxList) { - Op<0>() = Agg; - Op<1>() = Val; - } - - /// Indices - These identify the position for the insertion. - const SmallVector<unsigned, 4> Indices; - - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - - -/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is -/// used behind the scenes to implement getelementpr constant exprs. -class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr { - GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, - const Type *DestTy); -public: - static GetElementPtrConstantExpr *Create(Constant *C, - const std::vector<Constant*>&IdxList, - const Type *DestTy) { - return new(IdxList.size() + 1) - GetElementPtrConstantExpr(C, IdxList, DestTy); - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -// CompareConstantExpr - This class is private to Constants.cpp, and is used -// behind the scenes to implement ICmp and FCmp constant expressions. This is -// needed in order to store the predicate value for these instructions. -struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - unsigned short predicate; - CompareConstantExpr(const Type *ty, Instruction::OtherOps opc, - unsigned short pred, Constant* LHS, Constant* RHS) - : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { - Op<0>() = LHS; - Op<1>() = RHS; + if (isZero || isUndef) { + for (unsigned i = 1, e = V.size(); i != e; ++i) + if (V[i] != C) { + isZero = isUndef = false; + break; + } } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -} // end anonymous namespace - -template <> -struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) - -template <> -struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) - -template <> -struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) - -template <> -struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) - -template <> -struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) - -template <> -struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) - -template <> -struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) - -template <> -struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) - -template <> -struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> { -}; - -GetElementPtrConstantExpr::GetElementPtrConstantExpr - (Constant *C, - const std::vector<Constant*> &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::GetElementPtr, - OperandTraits<GetElementPtrConstantExpr>::op_end(this) - - (IdxList.size()+1), - IdxList.size()+1) { - OperandList[0] = C; - for (unsigned i = 0, E = IdxList.size(); i != E; ++i) - OperandList[i+1] = IdxList[i]; + + if (isZero) + return ConstantAggregateZero::get(T); + if (isUndef) + return UndefValue::get(T); + + // Implicitly locked. + return pImpl->VectorConstants.getOrCreate(T, V); } -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) - +Constant* ConstantVector::get(const std::vector<Constant*>& V) { + assert(!V.empty() && "Cannot infer type if V is empty"); + return get(VectorType::get(V.front()->getType(),V.size()), V); +} -template <> -struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) +Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) { + // FIXME: make this the primary ctor method. + return get(std::vector<Constant*>(Vals, Vals+NumVals)); +} +Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Add, C1, C2, + OverflowingBinaryOperator::NoSignedWrap); +} -} // End llvm namespace +Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::Sub, C1, C2, + OverflowingBinaryOperator::NoSignedWrap); +} +Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) { + return getTy(C1->getType(), Instruction::SDiv, C1, C2, + SDivOperator::IsExact); +} // Utility function for determining if a ConstantExpr is a CastOp or not. This // can't be inline because we don't want to #include Instruction.h into @@ -814,8 +657,32 @@ bool ConstantExpr::isCast() const { } bool ConstantExpr::isCompare() const { - return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp || - getOpcode() == Instruction::VICmp || getOpcode() == Instruction::VFCmp; + return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; +} + +bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { + if (getOpcode() != Instruction::GetElementPtr) return false; + + gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); + User::const_op_iterator OI = next(this->op_begin()); + + // Skip the first index, as it has no static limit. + ++GEPI; + ++OI; + + // The remaining indices must be compile-time known integers within the + // bounds of the corresponding notional static array types. + for (; GEPI != E; ++GEPI, ++OI) { + ConstantInt *CI = dyn_cast<ConstantInt>(*OI); + if (!CI) return false; + if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) + if (CI->getValue().getActiveBits() > 64 || + CI->getZExtValue() >= ATy->getNumElements()) + return false; + } + + // All the indices checked out. + return true; } bool ConstantExpr::hasIndices() const { @@ -831,93 +698,11 @@ const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const { return cast<InsertValueConstantExpr>(this)->Indices; } -/// ConstantExpr::get* - Return some common constants without having to -/// specify the full Instruction::OPCODE identifier. -/// -Constant *ConstantExpr::getNeg(Constant *C) { - // API compatibility: Adjust integer opcodes to floating-point opcodes. - if (C->getType()->isFPOrFPVector()) - return getFNeg(C); - assert(C->getType()->isIntOrIntVector() && - "Cannot NEG a nonintegral value!"); - return get(Instruction::Sub, - ConstantExpr::getZeroValueForNegationExpr(C->getType()), - C); -} -Constant *ConstantExpr::getFNeg(Constant *C) { - assert(C->getType()->isFPOrFPVector() && - "Cannot FNEG a non-floating-point value!"); - return get(Instruction::FSub, - ConstantExpr::getZeroValueForNegationExpr(C->getType()), - C); -} -Constant *ConstantExpr::getNot(Constant *C) { - assert(C->getType()->isIntOrIntVector() && - "Cannot NOT a nonintegral value!"); - return get(Instruction::Xor, C, - Constant::getAllOnesValue(C->getType())); -} -Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) { - return get(Instruction::Add, C1, C2); -} -Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { - return get(Instruction::FAdd, C1, C2); -} -Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) { - return get(Instruction::Sub, C1, C2); -} -Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { - return get(Instruction::FSub, C1, C2); -} -Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) { - return get(Instruction::Mul, C1, C2); -} -Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { - return get(Instruction::FMul, C1, C2); -} -Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) { - return get(Instruction::UDiv, C1, C2); -} -Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) { - return get(Instruction::SDiv, C1, C2); -} -Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { - return get(Instruction::FDiv, C1, C2); -} -Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { - return get(Instruction::URem, C1, C2); -} -Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { - return get(Instruction::SRem, C1, C2); -} -Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { - return get(Instruction::FRem, C1, C2); -} -Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { - return get(Instruction::And, C1, C2); -} -Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { - return get(Instruction::Or, C1, C2); -} -Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { - return get(Instruction::Xor, C1, C2); -} unsigned ConstantExpr::getPredicate() const { assert(getOpcode() == Instruction::FCmp || - getOpcode() == Instruction::ICmp || - getOpcode() == Instruction::VFCmp || - getOpcode() == Instruction::VICmp); + getOpcode() == Instruction::ICmp); return ((const CompareConstantExpr*)this)->predicate; } -Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) { - return get(Instruction::Shl, C1, C2); -} -Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) { - return get(Instruction::LShr, C1, C2); -} -Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) { - return get(Instruction::AShr, C1, C2); -} /// getWithOperandReplaced - Return a constant expression identical to this /// one, but with the specified operand set to the specified value. @@ -969,15 +754,19 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { for (unsigned i = 1, e = getNumOperands(); i != e; ++i) Ops[i-1] = getOperand(i); if (OpNo == 0) - return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); + return cast<GEPOperator>(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) : + ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); Ops[OpNo-1] = Op; - return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); + return cast<GEPOperator>(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0], Ops.size()) : + ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); } default: assert(getNumOperands() == 2 && "Must be binary operator?"); Op0 = (OpNo == 0) ? Op : getOperand(0); Op1 = (OpNo == 1) ? Op : getOperand(1); - return ConstantExpr::get(getOpcode(), Op0, Op1); + return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassData); } } @@ -1019,15 +808,15 @@ getWithOperands(Constant* const *Ops, unsigned NumOps) const { case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: - return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1); + return cast<GEPOperator>(this)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) : + ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1); case Instruction::ICmp: case Instruction::FCmp: - case Instruction::VICmp: - case Instruction::VFCmp: return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); default: assert(getNumOperands() == 2 && "Must be binary operator?"); - return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]); + return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassData); } } @@ -1037,7 +826,7 @@ getWithOperands(Constant* const *Ops, unsigned NumOps) const { bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay - if (Ty == Type::Int1Ty) + if (Ty == Type::getInt1Ty(Ty->getContext())) return Val == 0 || Val == 1; if (NumBits >= 64) return true; // always true, has to fit in largest type @@ -1047,7 +836,7 @@ bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay - if (Ty == Type::Int1Ty) + if (Ty == Type::getInt1Ty(Ty->getContext())) return Val == 0 || Val == 1 || Val == -1; if (NumBits >= 64) return true; // always true, has to fit in largest type @@ -1096,404 +885,36 @@ bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { //===----------------------------------------------------------------------===// // Factory Function Implementation - -// The number of operands for each ConstantCreator::create method is -// determined by the ConstantTraits template. -// ConstantCreator - A class that is used to create constants by -// ValueMap*. This class should be partially specialized if there is -// something strange that needs to be done to interface to the ctor for the -// constant. -// -namespace llvm { - template<class ValType> - struct ConstantTraits; - - template<typename T, typename Alloc> - struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > { - static unsigned uses(const std::vector<T, Alloc>& v) { - return v.size(); - } - }; - - template<class ConstantClass, class TypeClass, class ValType> - struct VISIBILITY_HIDDEN ConstantCreator { - static ConstantClass *create(const TypeClass *Ty, const ValType &V) { - return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); - } - }; - - template<class ConstantClass, class TypeClass> - struct VISIBILITY_HIDDEN ConvertConstantType { - static void convert(ConstantClass *OldC, const TypeClass *NewTy) { - assert(0 && "This type cannot be converted!\n"); - abort(); - } - }; - - template<class ValType, class TypeClass, class ConstantClass, - bool HasLargeKey = false /*true for arrays and structs*/ > - class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser { - public: - typedef std::pair<const Type*, ValType> MapKey; - typedef std::map<MapKey, Constant *> MapTy; - typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy; - typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy; - private: - /// Map - This is the main map from the element descriptor to the Constants. - /// This is the primary way we avoid creating two of the same shape - /// constant. - MapTy Map; - - /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping - /// from the constants to their element in Map. This is important for - /// removal of constants from the array, which would otherwise have to scan - /// through the map with very large keys. - InverseMapTy InverseMap; - - /// AbstractTypeMap - Map for abstract type constants. - /// - AbstractTypeMapTy AbstractTypeMap; - - /// ValueMapLock - Mutex for this map. - sys::SmartMutex<true> ValueMapLock; - - public: - // NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator map_end() { return Map.end(); } - - /// InsertOrGetItem - Return an iterator for the specified element. - /// If the element exists in the map, the returned iterator points to the - /// entry and Exists=true. If not, the iterator points to the newly - /// inserted entry and returns Exists=false. Newly inserted entries have - /// I->second == 0, and should be filled in. - /// NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *> - &InsertVal, - bool &Exists) { - std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); - Exists = !IP.second; - return IP.first; - } - -private: - typename MapTy::iterator FindExistingElement(ConstantClass *CP) { - if (HasLargeKey) { - typename InverseMapTy::iterator IMI = InverseMap.find(CP); - assert(IMI != InverseMap.end() && IMI->second != Map.end() && - IMI->second->second == CP && - "InverseMap corrupt!"); - return IMI->second; - } - - typename MapTy::iterator I = - Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()), - getValType(CP))); - if (I == Map.end() || I->second != CP) { - // FIXME: This should not use a linear scan. If this gets to be a - // performance problem, someone should look at this. - for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) - /* empty */; - } - return I; - } - - ConstantClass* Create(const TypeClass *Ty, const ValType &V, - typename MapTy::iterator I) { - ConstantClass* Result = - ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); - - assert(Result->getType() == Ty && "Type specified is not correct!"); - I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); - - if (HasLargeKey) // Remember the reverse mapping if needed. - InverseMap.insert(std::make_pair(Result, I)); - - // If the type of the constant is abstract, make sure that an entry - // exists for it in the AbstractTypeMap. - if (Ty->isAbstract()) { - typename AbstractTypeMapTy::iterator TI = - AbstractTypeMap.find(Ty); - - if (TI == AbstractTypeMap.end()) { - // Add ourselves to the ATU list of the type. - cast<DerivedType>(Ty)->addAbstractTypeUser(this); - - AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); - } - } - - return Result; - } -public: - - /// getOrCreate - Return the specified constant from the map, creating it if - /// necessary. - ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { - sys::SmartScopedLock<true> Lock(&ValueMapLock); - MapKey Lookup(Ty, V); - ConstantClass* Result = 0; - - typename MapTy::iterator I = Map.find(Lookup); - // Is it in the map? - if (I != Map.end()) - Result = static_cast<ConstantClass *>(I->second); - - if (!Result) { - // If no preexisting value, create one now... - Result = Create(Ty, V, I); - } - - return Result; - } - - void remove(ConstantClass *CP) { - sys::SmartScopedLock<true> Lock(&ValueMapLock); - typename MapTy::iterator I = FindExistingElement(CP); - assert(I != Map.end() && "Constant not found in constant table!"); - assert(I->second == CP && "Didn't find correct element?"); - - if (HasLargeKey) // Remember the reverse mapping if needed. - InverseMap.erase(CP); - - // Now that we found the entry, make sure this isn't the entry that - // the AbstractTypeMap points to. - const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first); - if (Ty->isAbstract()) { - assert(AbstractTypeMap.count(Ty) && - "Abstract type not in AbstractTypeMap?"); - typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; - if (ATMEntryIt == I) { - // Yes, we are removing the representative entry for this type. - // See if there are any other entries of the same type. - typename MapTy::iterator TmpIt = ATMEntryIt; - - // First check the entry before this one... - if (TmpIt != Map.begin()) { - --TmpIt; - if (TmpIt->first.first != Ty) // Not the same type, move back... - ++TmpIt; - } - - // If we didn't find the same type, try to move forward... - if (TmpIt == ATMEntryIt) { - ++TmpIt; - if (TmpIt == Map.end() || TmpIt->first.first != Ty) - --TmpIt; // No entry afterwards with the same type - } - - // If there is another entry in the map of the same abstract type, - // update the AbstractTypeMap entry now. - if (TmpIt != ATMEntryIt) { - ATMEntryIt = TmpIt; - } else { - // Otherwise, we are removing the last instance of this type - // from the table. Remove from the ATM, and from user list. - cast<DerivedType>(Ty)->removeAbstractTypeUser(this); - AbstractTypeMap.erase(Ty); - } - } - } - - Map.erase(I); - } - - - /// MoveConstantToNewSlot - If we are about to change C to be the element - /// specified by I, update our internal data structures to reflect this - /// fact. - /// NOTE: This function is not locked. It is the responsibility of the - /// caller to enforce proper synchronization if using this method. - void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { - // First, remove the old location of the specified constant in the map. - typename MapTy::iterator OldI = FindExistingElement(C); - assert(OldI != Map.end() && "Constant not found in constant table!"); - assert(OldI->second == C && "Didn't find correct element?"); - - // If this constant is the representative element for its abstract type, - // update the AbstractTypeMap so that the representative element is I. - if (C->getType()->isAbstract()) { - typename AbstractTypeMapTy::iterator ATI = - AbstractTypeMap.find(C->getType()); - assert(ATI != AbstractTypeMap.end() && - "Abstract type not in AbstractTypeMap?"); - if (ATI->second == OldI) - ATI->second = I; - } - - // Remove the old entry from the map. - Map.erase(OldI); - - // Update the inverse map so that we know that this constant is now - // located at descriptor I. - if (HasLargeKey) { - assert(I->second == C && "Bad inversemap entry!"); - InverseMap[C] = I; - } - } - - void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { - sys::SmartScopedLock<true> Lock(&ValueMapLock); - typename AbstractTypeMapTy::iterator I = - AbstractTypeMap.find(cast<Type>(OldTy)); - - assert(I != AbstractTypeMap.end() && - "Abstract type not in AbstractTypeMap?"); - - // Convert a constant at a time until the last one is gone. The last one - // leaving will remove() itself, causing the AbstractTypeMapEntry to be - // eliminated eventually. - do { - ConvertConstantType<ConstantClass, - TypeClass>::convert( - static_cast<ConstantClass *>(I->second->second), - cast<TypeClass>(NewTy)); - - I = AbstractTypeMap.find(cast<Type>(OldTy)); - } while (I != AbstractTypeMap.end()); - } - - // If the type became concrete without being refined to any other existing - // type, we just remove ourselves from the ATU list. - void typeBecameConcrete(const DerivedType *AbsTy) { - AbsTy->removeAbstractTypeUser(this); - } - - void dump() const { - DOUT << "Constant.cpp: ValueMap\n"; - } - }; -} - - - -//---- ConstantAggregateZero::get() implementation... -// -namespace llvm { - // ConstantAggregateZero does not take extra "value" argument... - template<class ValType> - struct ConstantCreator<ConstantAggregateZero, Type, ValType> { - static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ - return new ConstantAggregateZero(Ty); - } - }; - - template<> - struct ConvertConstantType<ConstantAggregateZero, Type> { - static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { - // Make everyone now use a constant of the new type... - Constant *New = ConstantAggregateZero::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static ManagedStatic<ValueMap<char, Type, - ConstantAggregateZero> > AggZeroConstants; - -static char getValType(ConstantAggregateZero *CPZ) { return 0; } - -ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) { +ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) { assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) && "Cannot create an aggregate zero of non-aggregate type!"); + LLVMContextImpl *pImpl = Ty->getContext().pImpl; // Implicitly locked. - return AggZeroConstants->getOrCreate(Ty, 0); + return pImpl->AggZeroConstants.getOrCreate(Ty, 0); } /// destroyConstant - Remove the constant from the constant table... /// void ConstantAggregateZero::destroyConstant() { // Implicitly locked. - AggZeroConstants->remove(this); + getType()->getContext().pImpl->AggZeroConstants.remove(this); destroyConstantImpl(); } -//---- ConstantArray::get() implementation... -// -namespace llvm { - template<> - struct ConvertConstantType<ConstantArray, ArrayType> { - static void convert(ConstantArray *OldC, const ArrayType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector<Constant*> C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast<Constant>(OldC->getOperand(i))); - Constant *New = ConstantArray::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static std::vector<Constant*> getValType(ConstantArray *CA) { - std::vector<Constant*> Elements; - Elements.reserve(CA->getNumOperands()); - for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) - Elements.push_back(cast<Constant>(CA->getOperand(i))); - return Elements; -} - -typedef ValueMap<std::vector<Constant*>, ArrayType, - ConstantArray, true /*largekey*/> ArrayConstantsTy; -static ManagedStatic<ArrayConstantsTy> ArrayConstants; - -Constant *ConstantArray::get(const ArrayType *Ty, - const std::vector<Constant*> &V) { - // If this is an all-zero array, return a ConstantAggregateZero object - if (!V.empty()) { - Constant *C = V[0]; - if (!C->isNullValue()) { - // Implicitly locked. - return ArrayConstants->getOrCreate(Ty, V); - } - for (unsigned i = 1, e = V.size(); i != e; ++i) - if (V[i] != C) { - // Implicitly locked. - return ArrayConstants->getOrCreate(Ty, V); - } - } - - return ConstantAggregateZero::get(Ty); -} - /// destroyConstant - Remove the constant from the constant table... /// void ConstantArray::destroyConstant() { // Implicitly locked. - ArrayConstants->remove(this); + getType()->getContext().pImpl->ArrayConstants.remove(this); destroyConstantImpl(); } -/// ConstantArray::get(const string&) - Return an array that is initialized to -/// contain the specified string. If length is zero then a null terminator is -/// added to the specified string so that it may be used in a natural way. -/// Otherwise, the length parameter specifies how much of the string to use -/// and it won't be null terminated. -/// -Constant *ConstantArray::get(const std::string &Str, bool AddNull) { - std::vector<Constant*> ElementVals; - for (unsigned i = 0; i < Str.length(); ++i) - ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i])); - - // Add a null terminator to the string... - if (AddNull) { - ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0)); - } - - ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size()); - return ConstantArray::get(ATy, ElementVals); -} - /// isString - This method returns true if the array is an array of i8, and /// if the elements of the array are all ConstantInt's. bool ConstantArray::isString() const { // Check the element type for i8... - if (getType()->getElementType() != Type::Int8Ty) + if (getType()->getElementType() != Type::getInt8Ty(getContext())) return false; // Check the elements to make sure they are all integers, not constant // expressions. @@ -1508,17 +929,17 @@ bool ConstantArray::isString() const { /// null bytes except its terminator. bool ConstantArray::isCString() const { // Check the element type for i8... - if (getType()->getElementType() != Type::Int8Ty) + if (getType()->getElementType() != Type::getInt8Ty(getContext())) return false; - Constant *Zero = Constant::getNullValue(getOperand(0)->getType()); + // Last element must be a null. - if (getOperand(getNumOperands()-1) != Zero) + if (!getOperand(getNumOperands()-1)->isNullValue()) return false; // Other elements must be non-null integers. for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) { if (!isa<ConstantInt>(getOperand(i))) return false; - if (getOperand(i) == Zero) + if (getOperand(i)->isNullValue()) return false; } return true; @@ -1543,126 +964,22 @@ std::string ConstantArray::getAsString() const { // namespace llvm { - template<> - struct ConvertConstantType<ConstantStruct, StructType> { - static void convert(ConstantStruct *OldC, const StructType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector<Constant*> C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast<Constant>(OldC->getOperand(i))); - Constant *New = ConstantStruct::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -typedef ValueMap<std::vector<Constant*>, StructType, - ConstantStruct, true /*largekey*/> StructConstantsTy; -static ManagedStatic<StructConstantsTy> StructConstants; - -static std::vector<Constant*> getValType(ConstantStruct *CS) { - std::vector<Constant*> Elements; - Elements.reserve(CS->getNumOperands()); - for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) - Elements.push_back(cast<Constant>(CS->getOperand(i))); - return Elements; -} - -Constant *ConstantStruct::get(const StructType *Ty, - const std::vector<Constant*> &V) { - // Create a ConstantAggregateZero value if all elements are zeros... - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (!V[i]->isNullValue()) - // Implicitly locked. - return StructConstants->getOrCreate(Ty, V); - return ConstantAggregateZero::get(Ty); -} - -Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) { - std::vector<const Type*> StructEls; - StructEls.reserve(V.size()); - for (unsigned i = 0, e = V.size(); i != e; ++i) - StructEls.push_back(V[i]->getType()); - return get(StructType::get(StructEls, packed), V); } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { // Implicitly locked. - StructConstants->remove(this); + getType()->getContext().pImpl->StructConstants.remove(this); destroyConstantImpl(); } -//---- ConstantVector::get() implementation... -// -namespace llvm { - template<> - struct ConvertConstantType<ConstantVector, VectorType> { - static void convert(ConstantVector *OldC, const VectorType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector<Constant*> C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast<Constant>(OldC->getOperand(i))); - Constant *New = ConstantVector::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static std::vector<Constant*> getValType(ConstantVector *CP) { - std::vector<Constant*> Elements; - Elements.reserve(CP->getNumOperands()); - for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) - Elements.push_back(CP->getOperand(i)); - return Elements; -} - -static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType, - ConstantVector> > VectorConstants; - -Constant *ConstantVector::get(const VectorType *Ty, - const std::vector<Constant*> &V) { - assert(!V.empty() && "Vectors can't be empty"); - // If this is an all-undef or alll-zero vector, return a - // ConstantAggregateZero or UndefValue. - Constant *C = V[0]; - bool isZero = C->isNullValue(); - bool isUndef = isa<UndefValue>(C); - - if (isZero || isUndef) { - for (unsigned i = 1, e = V.size(); i != e; ++i) - if (V[i] != C) { - isZero = isUndef = false; - break; - } - } - - if (isZero) - return ConstantAggregateZero::get(Ty); - if (isUndef) - return UndefValue::get(Ty); - - // Implicitly locked. - return VectorConstants->getOrCreate(Ty, V); -} - -Constant *ConstantVector::get(const std::vector<Constant*> &V) { - assert(!V.empty() && "Cannot infer type if V is empty"); - return get(VectorType::get(V.front()->getType(),V.size()), V); -} - // destroyConstant - Remove the constant from the constant table... // void ConstantVector::destroyConstant() { // Implicitly locked. - VectorConstants->remove(this); + getType()->getContext().pImpl->VectorConstants.remove(this); destroyConstantImpl(); } @@ -1696,45 +1013,16 @@ Constant *ConstantVector::getSplatValue() { //---- ConstantPointerNull::get() implementation... // -namespace llvm { - // ConstantPointerNull does not take extra "value" argument... - template<class ValType> - struct ConstantCreator<ConstantPointerNull, PointerType, ValType> { - static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ - return new ConstantPointerNull(Ty); - } - }; - - template<> - struct ConvertConstantType<ConstantPointerNull, PointerType> { - static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { - // Make everyone now use a constant of the new type... - Constant *New = ConstantPointerNull::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static ManagedStatic<ValueMap<char, PointerType, - ConstantPointerNull> > NullPtrConstants; - -static char getValType(ConstantPointerNull *) { - return 0; -} - - ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { // Implicitly locked. - return NullPtrConstants->getOrCreate(Ty, 0); + return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { // Implicitly locked. - NullPtrConstants->remove(this); + getType()->getContext().pImpl->NullPtrConstants.remove(this); destroyConstantImpl(); } @@ -1742,295 +1030,39 @@ void ConstantPointerNull::destroyConstant() { //---- UndefValue::get() implementation... // -namespace llvm { - // UndefValue does not take extra "value" argument... - template<class ValType> - struct ConstantCreator<UndefValue, Type, ValType> { - static UndefValue *create(const Type *Ty, const ValType &V) { - return new UndefValue(Ty); - } - }; - - template<> - struct ConvertConstantType<UndefValue, Type> { - static void convert(UndefValue *OldC, const Type *NewTy) { - // Make everyone now use a constant of the new type. - Constant *New = UndefValue::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} - -static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants; - -static char getValType(UndefValue *) { - return 0; -} - - UndefValue *UndefValue::get(const Type *Ty) { // Implicitly locked. - return UndefValueConstants->getOrCreate(Ty, 0); + return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table. // void UndefValue::destroyConstant() { // Implicitly locked. - UndefValueConstants->remove(this); - destroyConstantImpl(); -} - -//---- MDString::get() implementation -// - -MDString::MDString(const char *begin, const char *end) - : Constant(Type::MetadataTy, MDStringVal, 0, 0), - StrBegin(begin), StrEnd(end) {} - -static ManagedStatic<StringMap<MDString*> > MDStringCache; - -MDString *MDString::get(const char *StrBegin, const char *StrEnd) { - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); - StringMapEntry<MDString *> &Entry = MDStringCache->GetOrCreateValue( - StrBegin, StrEnd); - MDString *&S = Entry.getValue(); - if (!S) S = new MDString(Entry.getKeyData(), - Entry.getKeyData() + Entry.getKeyLength()); - - return S; -} - -MDString *MDString::get(const std::string &Str) { - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); - StringMapEntry<MDString *> &Entry = MDStringCache->GetOrCreateValue( - Str.data(), Str.data() + Str.size()); - MDString *&S = Entry.getValue(); - if (!S) S = new MDString(Entry.getKeyData(), - Entry.getKeyData() + Entry.getKeyLength()); - - return S; -} - -void MDString::destroyConstant() { - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); - MDStringCache->erase(MDStringCache->find(StrBegin, StrEnd)); - destroyConstantImpl(); -} - -//---- MDNode::get() implementation -// - -static ManagedStatic<FoldingSet<MDNode> > MDNodeSet; - -MDNode::MDNode(Value*const* Vals, unsigned NumVals) - : Constant(Type::MetadataTy, MDNodeVal, 0, 0) { - for (unsigned i = 0; i != NumVals; ++i) - Node.push_back(ElementVH(Vals[i], this)); -} - -void MDNode::Profile(FoldingSetNodeID &ID) const { - for (const_elem_iterator I = elem_begin(), E = elem_end(); I != E; ++I) - ID.AddPointer(*I); -} - -MDNode *MDNode::get(Value*const* Vals, unsigned NumVals) { - FoldingSetNodeID ID; - for (unsigned i = 0; i != NumVals; ++i) - ID.AddPointer(Vals[i]); - - ConstantsLock->reader_acquire(); - void *InsertPoint; - MDNode *N = MDNodeSet->FindNodeOrInsertPos(ID, InsertPoint); - ConstantsLock->reader_release(); - - if (!N) { - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); - N = MDNodeSet->FindNodeOrInsertPos(ID, InsertPoint); - if (!N) { - // InsertPoint will have been set by the FindNodeOrInsertPos call. - N = new(0) MDNode(Vals, NumVals); - MDNodeSet->InsertNode(N, InsertPoint); - } - } - return N; -} - -void MDNode::destroyConstant() { - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); - MDNodeSet->RemoveNode(this); - + getType()->getContext().pImpl->UndefValueConstants.remove(this); destroyConstantImpl(); } //---- ConstantExpr::get() implementations... // -namespace { - -struct ExprMapKeyType { - typedef SmallVector<unsigned, 4> IndexList; - - ExprMapKeyType(unsigned opc, - const std::vector<Constant*> &ops, - unsigned short pred = 0, - const IndexList &inds = IndexList()) - : opcode(opc), predicate(pred), operands(ops), indices(inds) {} - uint16_t opcode; - uint16_t predicate; - std::vector<Constant*> operands; - IndexList indices; - bool operator==(const ExprMapKeyType& that) const { - return this->opcode == that.opcode && - this->predicate == that.predicate && - this->operands == that.operands && - this->indices == that.indices; - } - bool operator<(const ExprMapKeyType & that) const { - return this->opcode < that.opcode || - (this->opcode == that.opcode && this->predicate < that.predicate) || - (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands < that.operands) || - (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands == that.operands && this->indices < that.indices); - } - - bool operator!=(const ExprMapKeyType& that) const { - return !(*this == that); - } -}; - -} - -namespace llvm { - template<> - struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { - static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, - unsigned short pred = 0) { - if (Instruction::isCast(V.opcode)) - return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); - if ((V.opcode >= Instruction::BinaryOpsBegin && - V.opcode < Instruction::BinaryOpsEnd)) - return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); - if (V.opcode == Instruction::Select) - return new SelectConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::ExtractElement) - return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); - if (V.opcode == Instruction::InsertElement) - return new InsertElementConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::ShuffleVector) - return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::InsertValue) - return new InsertValueConstantExpr(V.operands[0], V.operands[1], - V.indices, Ty); - if (V.opcode == Instruction::ExtractValue) - return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); - if (V.opcode == Instruction::GetElementPtr) { - std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); - return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty); - } - - // The compare instructions are weird. We have to encode the predicate - // value and it is combined with the instruction opcode by multiplying - // the opcode by one hundred. We must decode this to get the predicate. - if (V.opcode == Instruction::ICmp) - return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, - V.operands[0], V.operands[1]); - if (V.opcode == Instruction::FCmp) - return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, - V.operands[0], V.operands[1]); - if (V.opcode == Instruction::VICmp) - return new CompareConstantExpr(Ty, Instruction::VICmp, V.predicate, - V.operands[0], V.operands[1]); - if (V.opcode == Instruction::VFCmp) - return new CompareConstantExpr(Ty, Instruction::VFCmp, V.predicate, - V.operands[0], V.operands[1]); - assert(0 && "Invalid ConstantExpr!"); - return 0; - } - }; - - template<> - struct ConvertConstantType<ConstantExpr, Type> { - static void convert(ConstantExpr *OldC, const Type *NewTy) { - Constant *New; - switch (OldC->getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), - NewTy); - break; - case Instruction::Select: - New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), - OldC->getOperand(1), - OldC->getOperand(2)); - break; - default: - assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && - OldC->getOpcode() < Instruction::BinaryOpsEnd); - New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), - OldC->getOperand(1)); - break; - case Instruction::GetElementPtr: - // Make everyone now use a constant of the new type... - std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end()); - New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), - &Idx[0], Idx.size()); - break; - } - - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } - }; -} // end namespace llvm - - -static ExprMapKeyType getValType(ConstantExpr *CE) { - std::vector<Constant*> Operands; - Operands.reserve(CE->getNumOperands()); - for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) - Operands.push_back(cast<Constant>(CE->getOperand(i))); - return ExprMapKeyType(CE->getOpcode(), Operands, - CE->isCompare() ? CE->getPredicate() : 0, - CE->hasIndices() ? - CE->getIndices() : SmallVector<unsigned, 4>()); -} - -static ManagedStatic<ValueMap<ExprMapKeyType, Type, - ConstantExpr> > ExprConstants; - /// This is a utility function to handle folding of casts and lookup of the /// cast in the ExprConstants map. It is used by the various get* methods below. static inline Constant *getFoldedCast( Instruction::CastOps opc, Constant *C, const Type *Ty) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); // Fold a few common cases - if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) + if (Constant *FC = ConstantFoldCastInstruction(Ty->getContext(), opc, C, Ty)) return FC; + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + // Look up the constant in the table first to ensure uniqueness std::vector<Constant*> argVec(1, C); ExprMapKeyType Key(opc, argVec); // Implicitly locked. - return ExprConstants->getOrCreate(Ty, Key); + return pImpl->ExprConstants.getOrCreate(Ty, Key); } Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { @@ -2041,7 +1073,7 @@ Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { switch (opc) { default: - assert(0 && "Invalid cast opcode"); + llvm_unreachable("Invalid cast opcode"); break; case Instruction::Trunc: return getTrunc(C, Ty); case Instruction::ZExt: return getZExt(C, Ty); @@ -2256,27 +1288,9 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { return getFoldedCast(Instruction::BitCast, C, DstTy); } -Constant *ConstantExpr::getAlignOf(const Type *Ty) { - // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1 - const Type *AligningTy = StructType::get(Type::Int8Ty, Ty, NULL); - Constant *NullPtr = getNullValue(AligningTy->getPointerTo()); - Constant *Zero = ConstantInt::get(Type::Int32Ty, 0); - Constant *One = ConstantInt::get(Type::Int32Ty, 1); - Constant *Indices[2] = { Zero, One }; - Constant *GEP = getGetElementPtr(NullPtr, Indices, 2); - return getCast(Instruction::PtrToInt, GEP, Type::Int32Ty); -} - -Constant *ConstantExpr::getSizeOf(const Type *Ty) { - // sizeof is implemented as: (i64) gep (Ty*)null, 1 - Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1); - Constant *GEP = - getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1); - return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty); -} - Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, - Constant *C1, Constant *C2) { + Constant *C1, Constant *C2, + unsigned Flags) { // Check the operands for consistency first assert(Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd && @@ -2284,40 +1298,42 @@ Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); - if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty) - if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) + if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext())) + if (Constant *FC = ConstantFoldBinaryInstruction(ReqTy->getContext(), + Opcode, C1, C2)) return FC; // Fold a few common cases... std::vector<Constant*> argVec(1, C1); argVec.push_back(C2); - ExprMapKeyType Key(Opcode, argVec); + ExprMapKeyType Key(Opcode, argVec, 0, Flags); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getCompareTy(unsigned short predicate, Constant *C1, Constant *C2) { - bool isVectorType = C1->getType()->getTypeID() == Type::VectorTyID; switch (predicate) { - default: assert(0 && "Invalid CmpInst predicate"); + default: llvm_unreachable("Invalid CmpInst predicate"); case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: case CmpInst::FCMP_TRUE: - return isVectorType ? getVFCmp(predicate, C1, C2) - : getFCmp(predicate, C1, C2); + return getFCmp(predicate, C1, C2); + case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: - return isVectorType ? getVICmp(predicate, C1, C2) - : getICmp(predicate, C1, C2); + return getICmp(predicate, C1, C2); } } -Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { +Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, + unsigned Flags) { // API compatibility: Adjust integer opcodes to floating-point opcodes. if (C1->getType()->isFPOrFPVector()) { if (Opcode == Instruction::Add) Opcode = Instruction::FAdd; @@ -2382,7 +1398,44 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { } #endif - return getTy(C1->getType(), Opcode, C1, C2); + return getTy(C1->getType(), Opcode, C1, C2, Flags); +} + +Constant* ConstantExpr::getSizeOf(const Type* Ty) { + // sizeof is implemented as: (i64) gep (Ty*)null, 1 + // Note that a non-inbounds gep is used, as null isn't within any object. + Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); + Constant *GEP = getGetElementPtr( + Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1); + return getCast(Instruction::PtrToInt, GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant* ConstantExpr::getAlignOf(const Type* Ty) { + // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1 + // Note that a non-inbounds gep is used, as null isn't within any object. + const Type *AligningTy = StructType::get(Ty->getContext(), + Type::getInt8Ty(Ty->getContext()), Ty, NULL); + Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); + Constant *Zero = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 0); + Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); + Constant *Indices[2] = { Zero, One }; + Constant *GEP = getGetElementPtr(NullPtr, Indices, 2); + return getCast(Instruction::PtrToInt, GEP, + Type::getInt32Ty(Ty->getContext())); +} + +Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) { + // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo + // Note that a non-inbounds gep is used, as null isn't within any object. + Constant *GEPIdx[] = { + ConstantInt::get(Type::getInt64Ty(STy->getContext()), 0), + ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo) + }; + Constant *GEP = getGetElementPtr( + Constant::getNullValue(PointerType::getUnqual(STy)), GEPIdx, 2); + return getCast(Instruction::PtrToInt, GEP, + Type::getInt64Ty(STy->getContext())); } Constant *ConstantExpr::getCompare(unsigned short pred, @@ -2396,7 +1449,8 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); if (ReqTy == V1->getType()) - if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) + if (Constant *SC = ConstantFoldSelectInstruction( + ReqTy->getContext(), C, V1, V2)) return SC; // Fold common cases std::vector<Constant*> argVec(3, C); @@ -2404,8 +1458,10 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, argVec[2] = V2; ExprMapKeyType Key(Instruction::Select, argVec); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, @@ -2416,7 +1472,9 @@ Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, cast<PointerType>(ReqTy)->getElementType() && "GEP indices invalid!"); - if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx)) + if (Constant *FC = ConstantFoldGetElementPtr( + ReqTy->getContext(), C, /*inBounds=*/false, + (Constant**)Idxs, NumIdx)) return FC; // Fold a few common cases... assert(isa<PointerType>(C->getType()) && @@ -2429,8 +1487,41 @@ Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, ArgVec.push_back(cast<Constant>(Idxs[i])); const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + + // Implicitly locked. + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy, + Constant *C, + Value* const *Idxs, + unsigned NumIdx) { + assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, + Idxs+NumIdx) == + cast<PointerType>(ReqTy)->getElementType() && + "GEP indices invalid!"); + + if (Constant *FC = ConstantFoldGetElementPtr( + ReqTy->getContext(), C, /*inBounds=*/true, + (Constant**)Idxs, NumIdx)) + return FC; // Fold a few common cases... + + assert(isa<PointerType>(C->getType()) && + "Non-pointer type for constant GetElementPtr expression"); + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec; + ArgVec.reserve(NumIdx+1); + ArgVec.push_back(C); + for (unsigned i = 0; i != NumIdx; ++i) + ArgVec.push_back(cast<Constant>(Idxs[i])); + const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, + GEPOperator::IsInBounds); + + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, @@ -2443,11 +1534,27 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx); } +Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C, + Value* const *Idxs, + unsigned NumIdx) { + // Get the result type of the getelementptr! + const Type *Ty = + GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx); + assert(Ty && "GEP indices invalid!"); + unsigned As = cast<PointerType>(C->getType())->getAddressSpace(); + return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx); +} + Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs, unsigned NumIdx) { return getGetElementPtr(C, (Value* const *)Idxs, NumIdx); } +Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C, + Constant* const *Idxs, + unsigned NumIdx) { + return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx); +} Constant * ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { @@ -2455,7 +1562,8 @@ ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); - if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + if (Constant *FC = ConstantFoldCompareInstruction( + LHS->getContext(), pred, LHS, RHS)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness @@ -2465,8 +1573,11 @@ ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); + LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; + // Implicitly locked. - return ExprConstants->getOrCreate(Type::Int1Ty, Key); + return + pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key); } Constant * @@ -2474,7 +1585,8 @@ ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { assert(LHS->getType() == RHS->getType()); assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); - if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + if (Constant *FC = ConstantFoldCompareInstruction( + LHS->getContext(), pred, LHS, RHS)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness @@ -2484,123 +1596,33 @@ ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); - // Implicitly locked. - return ExprConstants->getOrCreate(Type::Int1Ty, Key); -} - -Constant * -ConstantExpr::getVICmp(unsigned short pred, Constant* LHS, Constant* RHS) { - assert(isa<VectorType>(LHS->getType()) && LHS->getType() == RHS->getType() && - "Tried to create vicmp operation on non-vector type!"); - assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && - pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp Predicate"); - - const VectorType *VTy = cast<VectorType>(LHS->getType()); - const Type *EltTy = VTy->getElementType(); - unsigned NumElts = VTy->getNumElements(); - - // See if we can fold the element-wise comparison of the LHS and RHS. - SmallVector<Constant *, 16> LHSElts, RHSElts; - LHS->getVectorElements(LHSElts); - RHS->getVectorElements(RHSElts); - - if (!LHSElts.empty() && !RHSElts.empty()) { - SmallVector<Constant *, 16> Elts; - for (unsigned i = 0; i != NumElts; ++i) { - Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i], - RHSElts[i]); - if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) { - if (FCI->getZExtValue()) - Elts.push_back(ConstantInt::getAllOnesValue(EltTy)); - else - Elts.push_back(ConstantInt::get(EltTy, 0ULL)); - } else if (FC && isa<UndefValue>(FC)) { - Elts.push_back(UndefValue::get(EltTy)); - } else { - break; - } - } - if (Elts.size() == NumElts) - return ConstantVector::get(&Elts[0], Elts.size()); - } - - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec; - ArgVec.push_back(LHS); - ArgVec.push_back(RHS); - // Get the key type with both the opcode and predicate - const ExprMapKeyType Key(Instruction::VICmp, ArgVec, pred); - - // Implicitly locked. - return ExprConstants->getOrCreate(LHS->getType(), Key); -} - -Constant * -ConstantExpr::getVFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { - assert(isa<VectorType>(LHS->getType()) && - "Tried to create vfcmp operation on non-vector type!"); - assert(LHS->getType() == RHS->getType()); - assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp Predicate"); - - const VectorType *VTy = cast<VectorType>(LHS->getType()); - unsigned NumElts = VTy->getNumElements(); - const Type *EltTy = VTy->getElementType(); - const Type *REltTy = IntegerType::get(EltTy->getPrimitiveSizeInBits()); - const Type *ResultTy = VectorType::get(REltTy, NumElts); - - // See if we can fold the element-wise comparison of the LHS and RHS. - SmallVector<Constant *, 16> LHSElts, RHSElts; - LHS->getVectorElements(LHSElts); - RHS->getVectorElements(RHSElts); - - if (!LHSElts.empty() && !RHSElts.empty()) { - SmallVector<Constant *, 16> Elts; - for (unsigned i = 0; i != NumElts; ++i) { - Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i], - RHSElts[i]); - if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) { - if (FCI->getZExtValue()) - Elts.push_back(ConstantInt::getAllOnesValue(REltTy)); - else - Elts.push_back(ConstantInt::get(REltTy, 0ULL)); - } else if (FC && isa<UndefValue>(FC)) { - Elts.push_back(UndefValue::get(REltTy)); - } else { - break; - } - } - if (Elts.size() == NumElts) - return ConstantVector::get(&Elts[0], Elts.size()); - } - - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec; - ArgVec.push_back(LHS); - ArgVec.push_back(RHS); - // Get the key type with both the opcode and predicate - const ExprMapKeyType Key(Instruction::VFCmp, ArgVec, pred); + LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; // Implicitly locked. - return ExprConstants->getOrCreate(ResultTy, Key); + return + pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key); } Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, Constant *Idx) { - if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) + if (Constant *FC = ConstantFoldExtractElementInstruction( + ReqTy->getContext(), Val, Idx)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector<Constant*> ArgVec(1, Val); ArgVec.push_back(Idx); const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { assert(isa<VectorType>(Val->getType()) && "Tried to create extractelement operation on non-vector type!"); - assert(Idx->getType() == Type::Int32Ty && + assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) && "Extractelement index must be i32 type!"); return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(), Val, Idx); @@ -2608,7 +1630,8 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, Constant *Elt, Constant *Idx) { - if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) + if (Constant *FC = ConstantFoldInsertElementInstruction( + ReqTy->getContext(), Val, Elt, Idx)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector<Constant*> ArgVec(1, Val); @@ -2616,8 +1639,10 @@ Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, ArgVec.push_back(Idx); const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, @@ -2626,14 +1651,15 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, "Tried to create insertelement operation on non-vector type!"); assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && "Insertelement types must match!"); - assert(Idx->getType() == Type::Int32Ty && + assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) && "Insertelement index must be i32 type!"); return getInsertElementTy(Val->getType(), Val, Elt, Idx); } Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, Constant *V2, Constant *Mask) { - if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) + if (Constant *FC = ConstantFoldShuffleVectorInstruction( + ReqTy->getContext(), V1, V2, Mask)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector<Constant*> ArgVec(1, V1); @@ -2641,8 +1667,10 @@ Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, ArgVec.push_back(Mask); const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); + LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + // Implicitly locked. - return ExprConstants->getOrCreate(ReqTy, Key); + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, @@ -2666,7 +1694,8 @@ Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg, "insertvalue type invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant InsertValue expression"); - Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx); + Constant *FC = ConstantFoldInsertValueInstruction( + ReqTy->getContext(), Agg, Val, Idxs, NumIdx); assert(FC && "InsertValue constant expr couldn't be folded!"); return FC; } @@ -2692,7 +1721,8 @@ Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg, "extractvalue indices invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant extractvalue expression"); - Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx); + Constant *FC = ConstantFoldExtractValueInstruction( + ReqTy->getContext(), Agg, Idxs, NumIdx); assert(FC && "ExtractValue constant expr couldn't be folded!"); return FC; } @@ -2708,25 +1738,109 @@ Constant *ConstantExpr::getExtractValue(Constant *Agg, return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx); } -Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) { - if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) - if (PTy->getElementType()->isFloatingPoint()) { - std::vector<Constant*> zeros(PTy->getNumElements(), - ConstantFP::getNegativeZero(PTy->getElementType())); - return ConstantVector::get(PTy, zeros); - } +Constant* ConstantExpr::getNeg(Constant* C) { + // API compatibility: Adjust integer opcodes to floating-point opcodes. + if (C->getType()->isFPOrFPVector()) + return getFNeg(C); + assert(C->getType()->isIntOrIntVector() && + "Cannot NEG a nonintegral value!"); + return get(Instruction::Sub, + ConstantFP::getZeroValueForNegation(C->getType()), + C); +} - if (Ty->isFloatingPoint()) - return ConstantFP::getNegativeZero(Ty); +Constant* ConstantExpr::getFNeg(Constant* C) { + assert(C->getType()->isFPOrFPVector() && + "Cannot FNEG a non-floating-point value!"); + return get(Instruction::FSub, + ConstantFP::getZeroValueForNegation(C->getType()), + C); +} - return Constant::getNullValue(Ty); +Constant* ConstantExpr::getNot(Constant* C) { + assert(C->getType()->isIntOrIntVector() && + "Cannot NOT a nonintegral value!"); + return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); +} + +Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) { + return get(Instruction::Add, C1, C2); +} + +Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) { + return get(Instruction::FAdd, C1, C2); +} + +Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) { + return get(Instruction::Sub, C1, C2); +} + +Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) { + return get(Instruction::FSub, C1, C2); +} + +Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) { + return get(Instruction::Mul, C1, C2); +} + +Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) { + return get(Instruction::FMul, C1, C2); +} + +Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) { + return get(Instruction::UDiv, C1, C2); +} + +Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) { + return get(Instruction::SDiv, C1, C2); +} + +Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) { + return get(Instruction::FDiv, C1, C2); +} + +Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) { + return get(Instruction::URem, C1, C2); +} + +Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) { + return get(Instruction::SRem, C1, C2); +} + +Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) { + return get(Instruction::FRem, C1, C2); +} + +Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) { + return get(Instruction::And, C1, C2); +} + +Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) { + return get(Instruction::Or, C1, C2); +} + +Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) { + return get(Instruction::Xor, C1, C2); +} + +Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) { + return get(Instruction::Shl, C1, C2); +} + +Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) { + return get(Instruction::LShr, C1, C2); +} + +Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) { + return get(Instruction::AShr, C1, C2); } // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { // Implicitly locked. - ExprConstants->remove(this); + LLVMContextImpl *pImpl = getType()->getContext().pImpl; + pImpl->ExprConstants.remove(this); destroyConstantImpl(); } @@ -2747,12 +1861,16 @@ const char *ConstantExpr::getOpcodeName() const { /// single invocation handles all 1000 uses. Handling them one at a time would /// work, but would be really slow because it would have to unique each updated /// array instance. + void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast<Constant>(To); - std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup; + LLVMContext &Context = getType()->getContext(); + LLVMContextImpl *pImpl = Context.pImpl; + + std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup; Lookup.first.first = getType(); Lookup.second = this; @@ -2774,7 +1892,7 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, } } else { isAllZeros = true; - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) { Constant *Val = cast<Constant>(O->get()); if (Val == From) { Val = ToC; @@ -2790,10 +1908,10 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Replacement = ConstantAggregateZero::get(getType()); } else { // Check to see if we have this array type already. - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); + sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock); bool Exists; - ArrayConstantsTy::MapTy::iterator I = - ArrayConstants->InsertOrGetItem(Lookup, Exists); + LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = + pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; @@ -2802,12 +1920,12 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, // creating a new constant array, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! - ArrayConstants->MoveConstantToNewSlot(this, I); + pImpl->ArrayConstants.MoveConstantToNewSlot(this, I); // Update to the new value. Optimize for the case when we have a single // operand that we're changing, but handle bulk updates efficiently. if (NumUpdated == 1) { - unsigned OperandToUpdate = U-OperandList; + unsigned OperandToUpdate = U - OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); setOperand(OperandToUpdate, ToC); @@ -2838,7 +1956,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, unsigned OperandToUpdate = U-OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - std::pair<StructConstantsTy::MapKey, Constant*> Lookup; + std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup; Lookup.first.first = getType(); Lookup.second = this; std::vector<Constant*> &Values = Lookup.first.second; @@ -2849,7 +1967,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, // compute whether this turns into an all-zeros struct. bool isAllZeros = false; if (!ToC->isNullValue()) { - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) + for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) Values.push_back(cast<Constant>(O->get())); } else { isAllZeros = true; @@ -2861,15 +1979,18 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, } Values[OperandToUpdate] = ToC; + LLVMContext &Context = getType()->getContext(); + LLVMContextImpl *pImpl = Context.pImpl; + Constant *Replacement = 0; if (isAllZeros) { Replacement = ConstantAggregateZero::get(getType()); } else { // Check to see if we have this array type already. - sys::SmartScopedWriter<true> Writer(&*ConstantsLock); + sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock); bool Exists; - StructConstantsTy::MapTy::iterator I = - StructConstants->InsertOrGetItem(Lookup, Exists); + LLVMContextImpl::StructConstantsTy::MapTy::iterator I = + pImpl->StructConstants.InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; @@ -2878,7 +1999,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, // creating a new constant struct, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! - StructConstants->MoveConstantToNewSlot(this, I); + pImpl->StructConstants.MoveConstantToNewSlot(this, I); // Update to the new value. setOperand(OperandToUpdate, ToC); @@ -2907,7 +2028,7 @@ void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Values.push_back(Val); } - Constant *Replacement = ConstantVector::get(getType(), Values); + Constant *Replacement = get(getType(), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. @@ -2992,22 +2113,18 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, if (C2 == From) C2 = To; if (getOpcode() == Instruction::ICmp) Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); - else if (getOpcode() == Instruction::FCmp) - Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); - else if (getOpcode() == Instruction::VICmp) - Replacement = ConstantExpr::getVICmp(getPredicate(), C1, C2); else { - assert(getOpcode() == Instruction::VFCmp); - Replacement = ConstantExpr::getVFCmp(getPredicate(), C1, C2); + assert(getOpcode() == Instruction::FCmp); + Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); } } else if (getNumOperands() == 2) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; - Replacement = ConstantExpr::get(getOpcode(), C1, C2); + Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassData); } else { - assert(0 && "Unknown ConstantExpr type!"); + llvm_unreachable("Unknown ConstantExpr type!"); return; } @@ -3019,20 +2136,3 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, // Delete the old constant! destroyConstant(); } - -void MDNode::replaceElement(Value *From, Value *To) { - SmallVector<Value*, 4> Values; - Values.reserve(getNumElements()); // Build replacement array... - for (unsigned i = 0, e = getNumElements(); i != e; ++i) { - Value *Val = getElement(i); - if (Val == From) Val = To; - Values.push_back(Val); - } - - MDNode *Replacement = MDNode::get(&Values[0], Values.size()); - assert(Replacement != this && "I didn't contain From!"); - - uncheckedReplaceAllUsesWith(Replacement); - - destroyConstant(); -} |