summaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Constants.cpp
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /lib/VMCore/Constants.cpp
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'lib/VMCore/Constants.cpp')
-rw-r--r--lib/VMCore/Constants.cpp2832
1 files changed, 2832 insertions, 0 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
new file mode 100644
index 0000000..97f3ac9
--- /dev/null
+++ b/lib/VMCore/Constants.cpp
@@ -0,0 +1,2832 @@
+//===-- Constants.cpp - Implement Constant nodes --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Constant* classes...
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Constants.h"
+#include "ConstantFold.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/Instructions.h"
+#include "llvm/MDNode.h"
+#include "llvm/Module.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include <algorithm>
+#include <map>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Constant Class
+//===----------------------------------------------------------------------===//
+
+void Constant::destroyConstantImpl() {
+ // When a Constant is destroyed, there may be lingering
+ // references to the constant by other constants in the constant pool. These
+ // constants are implicitly dependent on the module that is being deleted,
+ // but they don't know that. Because we only find out when the CPV is
+ // deleted, we must now notify all of our users (that should only be
+ // Constants) that they are, in fact, invalid now and should be deleted.
+ //
+ while (!use_empty()) {
+ Value *V = use_back();
+#ifndef NDEBUG // Only in -g mode...
+ if (!isa<Constant>(V))
+ DOUT << "While deleting: " << *this
+ << "\n\nUse still stuck around after Def is destroyed: "
+ << *V << "\n\n";
+#endif
+ assert(isa<Constant>(V) && "References remain to Constant being destroyed");
+ Constant *CV = cast<Constant>(V);
+ CV->destroyConstant();
+
+ // The constant should remove itself from our use list...
+ assert((use_empty() || use_back() != V) && "Constant not removed!");
+ }
+
+ // Value has no outstanding references it is safe to delete it now...
+ delete this;
+}
+
+/// canTrap - Return true if evaluation of this constant could trap. This is
+/// true for things like constant expressions that could divide by zero.
+bool Constant::canTrap() const {
+ assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
+ // The only thing that could possibly trap are constant exprs.
+ const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
+ if (!CE) return false;
+
+ // ConstantExpr traps if any operands can trap.
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (getOperand(i)->canTrap())
+ return true;
+
+ // Otherwise, only specific operations can trap.
+ switch (CE->getOpcode()) {
+ default:
+ return false;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ // Div and rem can trap if the RHS is not known to be non-zero.
+ if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
+ return true;
+ return false;
+ }
+}
+
+/// ContainsRelocations - Return true if the constant value contains relocations
+/// which cannot be resolved at compile time. Kind argument is used to filter
+/// only 'interesting' sorts of relocations.
+bool Constant::ContainsRelocations(unsigned Kind) const {
+ if (const GlobalValue* GV = dyn_cast<GlobalValue>(this)) {
+ bool isLocal = GV->hasLocalLinkage();
+ if ((Kind & Reloc::Local) && isLocal) {
+ // Global has local linkage and 'local' kind of relocations are
+ // requested
+ return true;
+ }
+
+ if ((Kind & Reloc::Global) && !isLocal) {
+ // Global has non-local linkage and 'global' kind of relocations are
+ // requested
+ return true;
+ }
+
+ return false;
+ }
+
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (getOperand(i)->ContainsRelocations(Kind))
+ return true;
+
+ return false;
+}
+
+// Static constructor to create a '0' constant of arbitrary type...
+Constant *Constant::getNullValue(const Type *Ty) {
+ static uint64_t zero[2] = {0, 0};
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ return ConstantInt::get(Ty, 0);
+ case Type::FloatTyID:
+ return ConstantFP::get(APFloat(APInt(32, 0)));
+ case Type::DoubleTyID:
+ return ConstantFP::get(APFloat(APInt(64, 0)));
+ case Type::X86_FP80TyID:
+ return ConstantFP::get(APFloat(APInt(80, 2, zero)));
+ case Type::FP128TyID:
+ return ConstantFP::get(APFloat(APInt(128, 2, zero), true));
+ case Type::PPC_FP128TyID:
+ return ConstantFP::get(APFloat(APInt(128, 2, zero)));
+ case Type::PointerTyID:
+ return ConstantPointerNull::get(cast<PointerType>(Ty));
+ case Type::StructTyID:
+ case Type::ArrayTyID:
+ case Type::VectorTyID:
+ return ConstantAggregateZero::get(Ty);
+ default:
+ // Function, Label, or Opaque type?
+ assert(!"Cannot create a null constant of that type!");
+ return 0;
+ }
+}
+
+Constant *Constant::getAllOnesValue(const Type *Ty) {
+ if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
+ return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
+ return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
+}
+
+// Static constructor to create an integral constant with all bits set
+ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
+ if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
+ return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
+ return 0;
+}
+
+/// @returns the value for a vector integer constant of the given type that
+/// has all its bits set to true.
+/// @brief Get the all ones value
+ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
+ std::vector<Constant*> Elts;
+ Elts.resize(Ty->getNumElements(),
+ ConstantInt::getAllOnesValue(Ty->getElementType()));
+ assert(Elts[0] && "Not a vector integer type!");
+ return cast<ConstantVector>(ConstantVector::get(Elts));
+}
+
+
+/// getVectorElements - This method, which is only valid on constant of vector
+/// type, returns the elements of the vector in the specified smallvector.
+/// This handles breaking down a vector undef into undef elements, etc. For
+/// constant exprs and other cases we can't handle, we return an empty vector.
+void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
+ assert(isa<VectorType>(getType()) && "Not a vector constant!");
+
+ if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
+ for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
+ Elts.push_back(CV->getOperand(i));
+ return;
+ }
+
+ const VectorType *VT = cast<VectorType>(getType());
+ if (isa<ConstantAggregateZero>(this)) {
+ Elts.assign(VT->getNumElements(),
+ Constant::getNullValue(VT->getElementType()));
+ return;
+ }
+
+ if (isa<UndefValue>(this)) {
+ Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
+ return;
+ }
+
+ // Unknown type, must be constant expr etc.
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// ConstantInt
+//===----------------------------------------------------------------------===//
+
+ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
+ : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
+ assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
+}
+
+ConstantInt *ConstantInt::TheTrueVal = 0;
+ConstantInt *ConstantInt::TheFalseVal = 0;
+
+namespace llvm {
+ void CleanupTrueFalse(void *) {
+ ConstantInt::ResetTrueFalse();
+ }
+}
+
+static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
+
+ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
+ assert(TheTrueVal == 0 && TheFalseVal == 0);
+ TheTrueVal = get(Type::Int1Ty, 1);
+ TheFalseVal = get(Type::Int1Ty, 0);
+
+ // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
+ TrueFalseCleanup.Register();
+
+ return WhichOne ? TheTrueVal : TheFalseVal;
+}
+
+
+namespace {
+ struct DenseMapAPIntKeyInfo {
+ struct KeyTy {
+ APInt val;
+ const Type* type;
+ KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
+ KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
+ bool operator==(const KeyTy& that) const {
+ return type == that.type && this->val == that.val;
+ }
+ bool operator!=(const KeyTy& that) const {
+ return !this->operator==(that);
+ }
+ };
+ static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
+ static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
+ static unsigned getHashValue(const KeyTy &Key) {
+ return DenseMapInfo<void*>::getHashValue(Key.type) ^
+ Key.val.getHashValue();
+ }
+ static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
+ return LHS == RHS;
+ }
+ static bool isPod() { return false; }
+ };
+}
+
+
+typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
+ DenseMapAPIntKeyInfo> IntMapTy;
+static ManagedStatic<IntMapTy> IntConstants;
+
+ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
+ const IntegerType *ITy = cast<IntegerType>(Ty);
+ return get(APInt(ITy->getBitWidth(), V, isSigned));
+}
+
+// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
+// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
+// operator== and operator!= to ensure that the DenseMap doesn't attempt to
+// compare APInt's of different widths, which would violate an APInt class
+// invariant which generates an assertion.
+ConstantInt *ConstantInt::get(const APInt& V) {
+ // Get the corresponding integer type for the bit width of the value.
+ const IntegerType *ITy = IntegerType::get(V.getBitWidth());
+ // get an existing value or the insertion position
+ DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
+ ConstantInt *&Slot = (*IntConstants)[Key];
+ // if it exists, return it.
+ if (Slot)
+ return Slot;
+ // otherwise create a new one, insert it, and return it.
+ return Slot = new ConstantInt(ITy, V);
+}
+
+//===----------------------------------------------------------------------===//
+// ConstantFP
+//===----------------------------------------------------------------------===//
+
+static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
+ if (Ty == Type::FloatTy)
+ return &APFloat::IEEEsingle;
+ if (Ty == Type::DoubleTy)
+ return &APFloat::IEEEdouble;
+ if (Ty == Type::X86_FP80Ty)
+ return &APFloat::x87DoubleExtended;
+ else if (Ty == Type::FP128Ty)
+ return &APFloat::IEEEquad;
+
+ assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
+ return &APFloat::PPCDoubleDouble;
+}
+
+ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
+ : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
+ assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
+ "FP type Mismatch");
+}
+
+bool ConstantFP::isNullValue() const {
+ return Val.isZero() && !Val.isNegative();
+}
+
+ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) {
+ APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
+ apf.changeSign();
+ return ConstantFP::get(apf);
+}
+
+bool ConstantFP::isExactlyValue(const APFloat& V) const {
+ return Val.bitwiseIsEqual(V);
+}
+
+namespace {
+ struct DenseMapAPFloatKeyInfo {
+ struct KeyTy {
+ APFloat val;
+ KeyTy(const APFloat& V) : val(V){}
+ KeyTy(const KeyTy& that) : val(that.val) {}
+ bool operator==(const KeyTy& that) const {
+ return this->val.bitwiseIsEqual(that.val);
+ }
+ bool operator!=(const KeyTy& that) const {
+ return !this->operator==(that);
+ }
+ };
+ static inline KeyTy getEmptyKey() {
+ return KeyTy(APFloat(APFloat::Bogus,1));
+ }
+ static inline KeyTy getTombstoneKey() {
+ return KeyTy(APFloat(APFloat::Bogus,2));
+ }
+ static unsigned getHashValue(const KeyTy &Key) {
+ return Key.val.getHashValue();
+ }
+ static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
+ return LHS == RHS;
+ }
+ static bool isPod() { return false; }
+ };
+}
+
+//---- ConstantFP::get() implementation...
+//
+typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
+ DenseMapAPFloatKeyInfo> FPMapTy;
+
+static ManagedStatic<FPMapTy> FPConstants;
+
+ConstantFP *ConstantFP::get(const APFloat &V) {
+ DenseMapAPFloatKeyInfo::KeyTy Key(V);
+ ConstantFP *&Slot = (*FPConstants)[Key];
+ if (Slot) return Slot;
+
+ const Type *Ty;
+ if (&V.getSemantics() == &APFloat::IEEEsingle)
+ Ty = Type::FloatTy;
+ else if (&V.getSemantics() == &APFloat::IEEEdouble)
+ Ty = Type::DoubleTy;
+ else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
+ Ty = Type::X86_FP80Ty;
+ else if (&V.getSemantics() == &APFloat::IEEEquad)
+ Ty = Type::FP128Ty;
+ else {
+ assert(&V.getSemantics() == &APFloat::PPCDoubleDouble&&"Unknown FP format");
+ Ty = Type::PPC_FP128Ty;
+ }
+
+ return Slot = new ConstantFP(Ty, V);
+}
+
+/// get() - This returns a constant fp for the specified value in the
+/// specified type. This should only be used for simple constant values like
+/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
+ConstantFP *ConstantFP::get(const Type *Ty, double V) {
+ APFloat FV(V);
+ bool ignored;
+ FV.convert(*TypeToFloatSemantics(Ty), APFloat::rmNearestTiesToEven, &ignored);
+ return get(FV);
+}
+
+//===----------------------------------------------------------------------===//
+// ConstantXXX Classes
+//===----------------------------------------------------------------------===//
+
+
+ConstantArray::ConstantArray(const ArrayType *T,
+ const std::vector<Constant*> &V)
+ : Constant(T, ConstantArrayVal,
+ OperandTraits<ConstantArray>::op_end(this) - V.size(),
+ V.size()) {
+ assert(V.size() == T->getNumElements() &&
+ "Invalid initializer vector for constant array");
+ Use *OL = OperandList;
+ for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
+ I != E; ++I, ++OL) {
+ Constant *C = *I;
+ assert((C->getType() == T->getElementType() ||
+ (T->isAbstract() &&
+ C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
+ "Initializer for array element doesn't match array element type!");
+ *OL = C;
+ }
+}
+
+
+ConstantStruct::ConstantStruct(const StructType *T,
+ const std::vector<Constant*> &V)
+ : Constant(T, ConstantStructVal,
+ OperandTraits<ConstantStruct>::op_end(this) - V.size(),
+ V.size()) {
+ assert(V.size() == T->getNumElements() &&
+ "Invalid initializer vector for constant structure");
+ Use *OL = OperandList;
+ for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
+ I != E; ++I, ++OL) {
+ Constant *C = *I;
+ assert((C->getType() == T->getElementType(I-V.begin()) ||
+ ((T->getElementType(I-V.begin())->isAbstract() ||
+ C->getType()->isAbstract()) &&
+ T->getElementType(I-V.begin())->getTypeID() ==
+ C->getType()->getTypeID())) &&
+ "Initializer for struct element doesn't match struct element type!");
+ *OL = C;
+ }
+}
+
+
+ConstantVector::ConstantVector(const VectorType *T,
+ const std::vector<Constant*> &V)
+ : Constant(T, ConstantVectorVal,
+ OperandTraits<ConstantVector>::op_end(this) - V.size(),
+ V.size()) {
+ Use *OL = OperandList;
+ for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
+ I != E; ++I, ++OL) {
+ Constant *C = *I;
+ assert((C->getType() == T->getElementType() ||
+ (T->isAbstract() &&
+ C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
+ "Initializer for vector element doesn't match vector element type!");
+ *OL = C;
+ }
+}
+
+
+namespace llvm {
+// We declare several classes private to this file, so use an anonymous
+// namespace
+namespace {
+
+/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement unary constant exprs.
+class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
+ : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
+ Op<0>() = C;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement binary constant exprs.
+class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
+ : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// SelectConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement select constant exprs.
+class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ExtractElementConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// extractelement constant exprs.
+class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ ExtractElementConstantExpr(Constant *C1, Constant *C2)
+ : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
+ Instruction::ExtractElement, &Op<0>(), 2) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// InsertElementConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// insertelement constant exprs.
+class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(C1->getType(), Instruction::InsertElement,
+ &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ShuffleVectorConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// shufflevector constant exprs.
+class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(VectorType::get(
+ cast<VectorType>(C1->getType())->getElementType(),
+ cast<VectorType>(C3->getType())->getNumElements()),
+ Instruction::ShuffleVector,
+ &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ExtractValueConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// extractvalue constant exprs.
+class VISIBILITY_HIDDEN ExtractValueConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ ExtractValueConstantExpr(Constant *Agg,
+ const SmallVector<unsigned, 4> &IdxList,
+ const Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
+ Indices(IdxList) {
+ Op<0>() = Agg;
+ }
+
+ /// Indices - These identify which value to extract.
+ const SmallVector<unsigned, 4> Indices;
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// InsertValueConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// insertvalue constant exprs.
+class VISIBILITY_HIDDEN InsertValueConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ InsertValueConstantExpr(Constant *Agg, Constant *Val,
+ const SmallVector<unsigned, 4> &IdxList,
+ const Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
+ Indices(IdxList) {
+ Op<0>() = Agg;
+ Op<1>() = Val;
+ }
+
+ /// Indices - These identify the position for the insertion.
+ const SmallVector<unsigned, 4> Indices;
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+
+/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
+/// used behind the scenes to implement getelementpr constant exprs.
+class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
+ GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
+ const Type *DestTy);
+public:
+ static GetElementPtrConstantExpr *Create(Constant *C,
+ const std::vector<Constant*>&IdxList,
+ const Type *DestTy) {
+ return new(IdxList.size() + 1)
+ GetElementPtrConstantExpr(C, IdxList, DestTy);
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+// CompareConstantExpr - This class is private to Constants.cpp, and is used
+// behind the scenes to implement ICmp and FCmp constant expressions. This is
+// needed in order to store the predicate value for these instructions.
+struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ unsigned short predicate;
+ CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
+ unsigned short pred, Constant* LHS, Constant* RHS)
+ : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
+ Op<0>() = LHS;
+ Op<1>() = RHS;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+} // end anonymous namespace
+
+template <>
+struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
+
+template <>
+struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
+};
+
+GetElementPtrConstantExpr::GetElementPtrConstantExpr
+ (Constant *C,
+ const std::vector<Constant*> &IdxList,
+ const Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::GetElementPtr,
+ OperandTraits<GetElementPtrConstantExpr>::op_end(this)
+ - (IdxList.size()+1),
+ IdxList.size()+1) {
+ OperandList[0] = C;
+ for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
+ OperandList[i+1] = IdxList[i];
+}
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
+
+
+template <>
+struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
+
+
+} // End llvm namespace
+
+
+// Utility function for determining if a ConstantExpr is a CastOp or not. This
+// can't be inline because we don't want to #include Instruction.h into
+// Constant.h
+bool ConstantExpr::isCast() const {
+ return Instruction::isCast(getOpcode());
+}
+
+bool ConstantExpr::isCompare() const {
+ return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp ||
+ getOpcode() == Instruction::VICmp || getOpcode() == Instruction::VFCmp;
+}
+
+bool ConstantExpr::hasIndices() const {
+ return getOpcode() == Instruction::ExtractValue ||
+ getOpcode() == Instruction::InsertValue;
+}
+
+const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
+ if (const ExtractValueConstantExpr *EVCE =
+ dyn_cast<ExtractValueConstantExpr>(this))
+ return EVCE->Indices;
+
+ return cast<InsertValueConstantExpr>(this)->Indices;
+}
+
+/// ConstantExpr::get* - Return some common constants without having to
+/// specify the full Instruction::OPCODE identifier.
+///
+Constant *ConstantExpr::getNeg(Constant *C) {
+ return get(Instruction::Sub,
+ ConstantExpr::getZeroValueForNegationExpr(C->getType()),
+ C);
+}
+Constant *ConstantExpr::getNot(Constant *C) {
+ assert((isa<IntegerType>(C->getType()) ||
+ cast<VectorType>(C->getType())->getElementType()->isInteger()) &&
+ "Cannot NOT a nonintegral value!");
+ return get(Instruction::Xor, C,
+ Constant::getAllOnesValue(C->getType()));
+}
+Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
+ return get(Instruction::Add, C1, C2);
+}
+Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
+ return get(Instruction::Sub, C1, C2);
+}
+Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
+ return get(Instruction::Mul, C1, C2);
+}
+Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) {
+ return get(Instruction::UDiv, C1, C2);
+}
+Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) {
+ return get(Instruction::SDiv, C1, C2);
+}
+Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
+ return get(Instruction::FDiv, C1, C2);
+}
+Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
+ return get(Instruction::URem, C1, C2);
+}
+Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
+ return get(Instruction::SRem, C1, C2);
+}
+Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
+ return get(Instruction::FRem, C1, C2);
+}
+Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
+ return get(Instruction::And, C1, C2);
+}
+Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
+ return get(Instruction::Or, C1, C2);
+}
+Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
+ return get(Instruction::Xor, C1, C2);
+}
+unsigned ConstantExpr::getPredicate() const {
+ assert(getOpcode() == Instruction::FCmp ||
+ getOpcode() == Instruction::ICmp ||
+ getOpcode() == Instruction::VFCmp ||
+ getOpcode() == Instruction::VICmp);
+ return ((const CompareConstantExpr*)this)->predicate;
+}
+Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
+ return get(Instruction::Shl, C1, C2);
+}
+Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) {
+ return get(Instruction::LShr, C1, C2);
+}
+Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
+ return get(Instruction::AShr, C1, C2);
+}
+
+/// getWithOperandReplaced - Return a constant expression identical to this
+/// one, but with the specified operand set to the specified value.
+Constant *
+ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
+ assert(OpNo < getNumOperands() && "Operand num is out of range!");
+ assert(Op->getType() == getOperand(OpNo)->getType() &&
+ "Replacing operand with value of different type!");
+ if (getOperand(OpNo) == Op)
+ return const_cast<ConstantExpr*>(this);
+
+ Constant *Op0, *Op1, *Op2;
+ switch (getOpcode()) {
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ return ConstantExpr::getCast(getOpcode(), Op, getType());
+ case Instruction::Select:
+ Op0 = (OpNo == 0) ? Op : getOperand(0);
+ Op1 = (OpNo == 1) ? Op : getOperand(1);
+ Op2 = (OpNo == 2) ? Op : getOperand(2);
+ return ConstantExpr::getSelect(Op0, Op1, Op2);
+ case Instruction::InsertElement:
+ Op0 = (OpNo == 0) ? Op : getOperand(0);
+ Op1 = (OpNo == 1) ? Op : getOperand(1);
+ Op2 = (OpNo == 2) ? Op : getOperand(2);
+ return ConstantExpr::getInsertElement(Op0, Op1, Op2);
+ case Instruction::ExtractElement:
+ Op0 = (OpNo == 0) ? Op : getOperand(0);
+ Op1 = (OpNo == 1) ? Op : getOperand(1);
+ return ConstantExpr::getExtractElement(Op0, Op1);
+ case Instruction::ShuffleVector:
+ Op0 = (OpNo == 0) ? Op : getOperand(0);
+ Op1 = (OpNo == 1) ? Op : getOperand(1);
+ Op2 = (OpNo == 2) ? Op : getOperand(2);
+ return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
+ case Instruction::GetElementPtr: {
+ SmallVector<Constant*, 8> Ops;
+ Ops.resize(getNumOperands()-1);
+ for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
+ Ops[i-1] = getOperand(i);
+ if (OpNo == 0)
+ return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
+ Ops[OpNo-1] = Op;
+ return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
+ }
+ default:
+ assert(getNumOperands() == 2 && "Must be binary operator?");
+ Op0 = (OpNo == 0) ? Op : getOperand(0);
+ Op1 = (OpNo == 1) ? Op : getOperand(1);
+ return ConstantExpr::get(getOpcode(), Op0, Op1);
+ }
+}
+
+/// getWithOperands - This returns the current constant expression with the
+/// operands replaced with the specified values. The specified operands must
+/// match count and type with the existing ones.
+Constant *ConstantExpr::
+getWithOperands(Constant* const *Ops, unsigned NumOps) const {
+ assert(NumOps == getNumOperands() && "Operand count mismatch!");
+ bool AnyChange = false;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ assert(Ops[i]->getType() == getOperand(i)->getType() &&
+ "Operand type mismatch!");
+ AnyChange |= Ops[i] != getOperand(i);
+ }
+ if (!AnyChange) // No operands changed, return self.
+ return const_cast<ConstantExpr*>(this);
+
+ switch (getOpcode()) {
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
+ case Instruction::Select:
+ return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
+ case Instruction::InsertElement:
+ return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ExtractElement:
+ return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
+ case Instruction::ShuffleVector:
+ return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
+ case Instruction::GetElementPtr:
+ return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::VICmp:
+ case Instruction::VFCmp:
+ return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
+ default:
+ assert(getNumOperands() == 2 && "Must be binary operator?");
+ return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// isValueValidForType implementations
+
+bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
+ unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
+ if (Ty == Type::Int1Ty)
+ return Val == 0 || Val == 1;
+ if (NumBits >= 64)
+ return true; // always true, has to fit in largest type
+ uint64_t Max = (1ll << NumBits) - 1;
+ return Val <= Max;
+}
+
+bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
+ unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
+ if (Ty == Type::Int1Ty)
+ return Val == 0 || Val == 1 || Val == -1;
+ if (NumBits >= 64)
+ return true; // always true, has to fit in largest type
+ int64_t Min = -(1ll << (NumBits-1));
+ int64_t Max = (1ll << (NumBits-1)) - 1;
+ return (Val >= Min && Val <= Max);
+}
+
+bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
+ // convert modifies in place, so make a copy.
+ APFloat Val2 = APFloat(Val);
+ bool losesInfo;
+ switch (Ty->getTypeID()) {
+ default:
+ return false; // These can't be represented as floating point!
+
+ // FIXME rounding mode needs to be more flexible
+ case Type::FloatTyID: {
+ if (&Val2.getSemantics() == &APFloat::IEEEsingle)
+ return true;
+ Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
+ return !losesInfo;
+ }
+ case Type::DoubleTyID: {
+ if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
+ &Val2.getSemantics() == &APFloat::IEEEdouble)
+ return true;
+ Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
+ return !losesInfo;
+ }
+ case Type::X86_FP80TyID:
+ return &Val2.getSemantics() == &APFloat::IEEEsingle ||
+ &Val2.getSemantics() == &APFloat::IEEEdouble ||
+ &Val2.getSemantics() == &APFloat::x87DoubleExtended;
+ case Type::FP128TyID:
+ return &Val2.getSemantics() == &APFloat::IEEEsingle ||
+ &Val2.getSemantics() == &APFloat::IEEEdouble ||
+ &Val2.getSemantics() == &APFloat::IEEEquad;
+ case Type::PPC_FP128TyID:
+ return &Val2.getSemantics() == &APFloat::IEEEsingle ||
+ &Val2.getSemantics() == &APFloat::IEEEdouble ||
+ &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Factory Function Implementation
+
+
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
+// ConstantCreator - A class that is used to create constants by
+// ValueMap*. This class should be partially specialized if there is
+// something strange that needs to be done to interface to the ctor for the
+// constant.
+//
+namespace llvm {
+ template<class ValType>
+ struct ConstantTraits;
+
+ template<typename T, typename Alloc>
+ struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
+ static unsigned uses(const std::vector<T, Alloc>& v) {
+ return v.size();
+ }
+ };
+
+ template<class ConstantClass, class TypeClass, class ValType>
+ struct VISIBILITY_HIDDEN ConstantCreator {
+ static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
+ return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+ }
+ };
+
+ template<class ConstantClass, class TypeClass>
+ struct VISIBILITY_HIDDEN ConvertConstantType {
+ static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
+ assert(0 && "This type cannot be converted!\n");
+ abort();
+ }
+ };
+
+ template<class ValType, class TypeClass, class ConstantClass,
+ bool HasLargeKey = false /*true for arrays and structs*/ >
+ class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
+ public:
+ typedef std::pair<const Type*, ValType> MapKey;
+ typedef std::map<MapKey, Constant *> MapTy;
+ typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
+ typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
+ private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+ /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
+ /// from the constants to their element in Map. This is important for
+ /// removal of constants from the array, which would otherwise have to scan
+ /// through the map with very large keys.
+ InverseMapTy InverseMap;
+
+ /// AbstractTypeMap - Map for abstract type constants.
+ ///
+ AbstractTypeMapTy AbstractTypeMap;
+
+ public:
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ /// InsertOrGetItem - Return an iterator for the specified element.
+ /// If the element exists in the map, the returned iterator points to the
+ /// entry and Exists=true. If not, the iterator points to the newly
+ /// inserted entry and returns Exists=false. Newly inserted entries have
+ /// I->second == 0, and should be filled in.
+ typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
+ &InsertVal,
+ bool &Exists) {
+ std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
+ Exists = !IP.second;
+ return IP.first;
+ }
+
+private:
+ typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
+ if (HasLargeKey) {
+ typename InverseMapTy::iterator IMI = InverseMap.find(CP);
+ assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
+ IMI->second->second == CP &&
+ "InverseMap corrupt!");
+ return IMI->second;
+ }
+
+ typename MapTy::iterator I =
+ Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
+ getValType(CP)));
+ if (I == Map.end() || I->second != CP) {
+ // FIXME: This should not use a linear scan. If this gets to be a
+ // performance problem, someone should look at this.
+ for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
+ /* empty */;
+ }
+ return I;
+ }
+public:
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
+ MapKey Lookup(Ty, V);
+ typename MapTy::iterator I = Map.find(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ return static_cast<ConstantClass *>(I->second);
+
+ // If no preexisting value, create one now...
+ ConstantClass *Result =
+ ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
+
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.insert(std::make_pair(Result, I));
+
+ // If the type of the constant is abstract, make sure that an entry exists
+ // for it in the AbstractTypeMap.
+ if (Ty->isAbstract()) {
+ typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(Ty);
+
+ if (TI == AbstractTypeMap.end()) {
+ // Add ourselves to the ATU list of the type.
+ cast<DerivedType>(Ty)->addAbstractTypeUser(this);
+
+ AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
+ }
+ }
+ return Result;
+ }
+
+ void remove(ConstantClass *CP) {
+ typename MapTy::iterator I = FindExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->second == CP && "Didn't find correct element?");
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.erase(CP);
+
+ // Now that we found the entry, make sure this isn't the entry that
+ // the AbstractTypeMap points to.
+ const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
+ if (Ty->isAbstract()) {
+ assert(AbstractTypeMap.count(Ty) &&
+ "Abstract type not in AbstractTypeMap?");
+ typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
+ if (ATMEntryIt == I) {
+ // Yes, we are removing the representative entry for this type.
+ // See if there are any other entries of the same type.
+ typename MapTy::iterator TmpIt = ATMEntryIt;
+
+ // First check the entry before this one...
+ if (TmpIt != Map.begin()) {
+ --TmpIt;
+ if (TmpIt->first.first != Ty) // Not the same type, move back...
+ ++TmpIt;
+ }
+
+ // If we didn't find the same type, try to move forward...
+ if (TmpIt == ATMEntryIt) {
+ ++TmpIt;
+ if (TmpIt == Map.end() || TmpIt->first.first != Ty)
+ --TmpIt; // No entry afterwards with the same type
+ }
+
+ // If there is another entry in the map of the same abstract type,
+ // update the AbstractTypeMap entry now.
+ if (TmpIt != ATMEntryIt) {
+ ATMEntryIt = TmpIt;
+ } else {
+ // Otherwise, we are removing the last instance of this type
+ // from the table. Remove from the ATM, and from user list.
+ cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
+ AbstractTypeMap.erase(Ty);
+ }
+ }
+ }
+
+ Map.erase(I);
+ }
+
+
+ /// MoveConstantToNewSlot - If we are about to change C to be the element
+ /// specified by I, update our internal data structures to reflect this
+ /// fact.
+ void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
+ // First, remove the old location of the specified constant in the map.
+ typename MapTy::iterator OldI = FindExistingElement(C);
+ assert(OldI != Map.end() && "Constant not found in constant table!");
+ assert(OldI->second == C && "Didn't find correct element?");
+
+ // If this constant is the representative element for its abstract type,
+ // update the AbstractTypeMap so that the representative element is I.
+ if (C->getType()->isAbstract()) {
+ typename AbstractTypeMapTy::iterator ATI =
+ AbstractTypeMap.find(C->getType());
+ assert(ATI != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+ if (ATI->second == OldI)
+ ATI->second = I;
+ }
+
+ // Remove the old entry from the map.
+ Map.erase(OldI);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey) {
+ assert(I->second == C && "Bad inversemap entry!");
+ InverseMap[C] = I;
+ }
+ }
+
+ void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
+ typename AbstractTypeMapTy::iterator I =
+ AbstractTypeMap.find(cast<Type>(OldTy));
+
+ assert(I != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+
+ // Convert a constant at a time until the last one is gone. The last one
+ // leaving will remove() itself, causing the AbstractTypeMapEntry to be
+ // eliminated eventually.
+ do {
+ ConvertConstantType<ConstantClass,
+ TypeClass>::convert(
+ static_cast<ConstantClass *>(I->second->second),
+ cast<TypeClass>(NewTy));
+
+ I = AbstractTypeMap.find(cast<Type>(OldTy));
+ } while (I != AbstractTypeMap.end());
+ }
+
+ // If the type became concrete without being refined to any other existing
+ // type, we just remove ourselves from the ATU list.
+ void typeBecameConcrete(const DerivedType *AbsTy) {
+ AbsTy->removeAbstractTypeUser(this);
+ }
+
+ void dump() const {
+ DOUT << "Constant.cpp: ValueMap\n";
+ }
+ };
+}
+
+
+
+//---- ConstantAggregateZero::get() implementation...
+//
+namespace llvm {
+ // ConstantAggregateZero does not take extra "value" argument...
+ template<class ValType>
+ struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
+ static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
+ return new ConstantAggregateZero(Ty);
+ }
+ };
+
+ template<>
+ struct ConvertConstantType<ConstantAggregateZero, Type> {
+ static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
+ // Make everyone now use a constant of the new type...
+ Constant *New = ConstantAggregateZero::get(NewTy);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+ };
+}
+
+static ManagedStatic<ValueMap<char, Type,
+ ConstantAggregateZero> > AggZeroConstants;
+
+static char getValType(ConstantAggregateZero *CPZ) { return 0; }
+
+ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) {
+ assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
+ "Cannot create an aggregate zero of non-aggregate type!");
+ return AggZeroConstants->getOrCreate(Ty, 0);
+}
+
+/// destroyConstant - Remove the constant from the constant table...
+///
+void ConstantAggregateZero::destroyConstant() {
+ AggZeroConstants->remove(this);
+ destroyConstantImpl();
+}
+
+//---- ConstantArray::get() implementation...
+//
+namespace llvm {
+ template<>
+ struct ConvertConstantType<ConstantArray, ArrayType> {
+ static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = ConstantArray::get(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+ };
+}
+
+static std::vector<Constant*> getValType(ConstantArray *CA) {
+ std::vector<Constant*> Elements;
+ Elements.reserve(CA->getNumOperands());
+ for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
+ Elements.push_back(cast<Constant>(CA->getOperand(i)));
+ return Elements;
+}
+
+typedef ValueMap<std::vector<Constant*>, ArrayType,
+ ConstantArray, true /*largekey*/> ArrayConstantsTy;
+static ManagedStatic<ArrayConstantsTy> ArrayConstants;
+
+Constant *ConstantArray::get(const ArrayType *Ty,
+ const std::vector<Constant*> &V) {
+ // If this is an all-zero array, return a ConstantAggregateZero object
+ if (!V.empty()) {
+ Constant *C = V[0];
+ if (!C->isNullValue())
+ return ArrayConstants->getOrCreate(Ty, V);
+ for (unsigned i = 1, e = V.size(); i != e; ++i)
+ if (V[i] != C)
+ return ArrayConstants->getOrCreate(Ty, V);
+ }
+ return ConstantAggregateZero::get(Ty);
+}
+
+/// destroyConstant - Remove the constant from the constant table...
+///
+void ConstantArray::destroyConstant() {
+ ArrayConstants->remove(this);
+ destroyConstantImpl();
+}
+
+/// ConstantArray::get(const string&) - Return an array that is initialized to
+/// contain the specified string. If length is zero then a null terminator is
+/// added to the specified string so that it may be used in a natural way.
+/// Otherwise, the length parameter specifies how much of the string to use
+/// and it won't be null terminated.
+///
+Constant *ConstantArray::get(const std::string &Str, bool AddNull) {
+ std::vector<Constant*> ElementVals;
+ for (unsigned i = 0; i < Str.length(); ++i)
+ ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));
+
+ // Add a null terminator to the string...
+ if (AddNull) {
+ ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
+ }
+
+ ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size());
+ return ConstantArray::get(ATy, ElementVals);
+}
+
+/// isString - This method returns true if the array is an array of i8, and
+/// if the elements of the array are all ConstantInt's.
+bool ConstantArray::isString() const {
+ // Check the element type for i8...
+ if (getType()->getElementType() != Type::Int8Ty)
+ return false;
+ // Check the elements to make sure they are all integers, not constant
+ // expressions.
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (!isa<ConstantInt>(getOperand(i)))
+ return false;
+ return true;
+}
+
+/// isCString - This method returns true if the array is a string (see
+/// isString) and it ends in a null byte \\0 and does not contains any other
+/// null bytes except its terminator.
+bool ConstantArray::isCString() const {
+ // Check the element type for i8...
+ if (getType()->getElementType() != Type::Int8Ty)
+ return false;
+ Constant *Zero = Constant::getNullValue(getOperand(0)->getType());
+ // Last element must be a null.
+ if (getOperand(getNumOperands()-1) != Zero)
+ return false;
+ // Other elements must be non-null integers.
+ for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
+ if (!isa<ConstantInt>(getOperand(i)))
+ return false;
+ if (getOperand(i) == Zero)
+ return false;
+ }
+ return true;
+}
+
+
+/// getAsString - If the sub-element type of this array is i8
+/// then this method converts the array to an std::string and returns it.
+/// Otherwise, it asserts out.
+///
+std::string ConstantArray::getAsString() const {
+ assert(isString() && "Not a string!");
+ std::string Result;
+ Result.reserve(getNumOperands());
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
+ return Result;
+}
+
+
+//---- ConstantStruct::get() implementation...
+//
+
+namespace llvm {
+ template<>
+ struct ConvertConstantType<ConstantStruct, StructType> {
+ static void convert(ConstantStruct *OldC, const StructType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = ConstantStruct::get(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+ };
+}
+
+typedef ValueMap<std::vector<Constant*>, StructType,
+ ConstantStruct, true /*largekey*/> StructConstantsTy;
+static ManagedStatic<StructConstantsTy> StructConstants;
+
+static std::vector<Constant*> getValType(ConstantStruct *CS) {
+ std::vector<Constant*> Elements;
+ Elements.reserve(CS->getNumOperands());
+ for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
+ Elements.push_back(cast<Constant>(CS->getOperand(i)));
+ return Elements;
+}
+
+Constant *ConstantStruct::get(const StructType *Ty,
+ const std::vector<Constant*> &V) {
+ // Create a ConstantAggregateZero value if all elements are zeros...
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (!V[i]->isNullValue())
+ return StructConstants->getOrCreate(Ty, V);
+
+ return ConstantAggregateZero::get(Ty);
+}
+
+Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
+ std::vector<const Type*> StructEls;
+ StructEls.reserve(V.size());
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ StructEls.push_back(V[i]->getType());
+ return get(StructType::get(StructEls, packed), V);
+}
+
+// destroyConstant - Remove the constant from the constant table...
+//
+void ConstantStruct::destroyConstant() {
+ StructConstants->remove(this);
+ destroyConstantImpl();
+}
+
+//---- ConstantVector::get() implementation...
+//
+namespace llvm {
+ template<>
+ struct ConvertConstantType<ConstantVector, VectorType> {
+ static void convert(ConstantVector *OldC, const VectorType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = ConstantVector::get(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+ };
+}
+
+static std::vector<Constant*> getValType(ConstantVector *CP) {
+ std::vector<Constant*> Elements;
+ Elements.reserve(CP->getNumOperands());
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ Elements.push_back(CP->getOperand(i));
+ return Elements;
+}
+
+static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
+ ConstantVector> > VectorConstants;
+
+Constant *ConstantVector::get(const VectorType *Ty,
+ const std::vector<Constant*> &V) {
+ assert(!V.empty() && "Vectors can't be empty");
+ // If this is an all-undef or alll-zero vector, return a
+ // ConstantAggregateZero or UndefValue.
+ Constant *C = V[0];
+ bool isZero = C->isNullValue();
+ bool isUndef = isa<UndefValue>(C);
+
+ if (isZero || isUndef) {
+ for (unsigned i = 1, e = V.size(); i != e; ++i)
+ if (V[i] != C) {
+ isZero = isUndef = false;
+ break;
+ }
+ }
+
+ if (isZero)
+ return ConstantAggregateZero::get(Ty);
+ if (isUndef)
+ return UndefValue::get(Ty);
+ return VectorConstants->getOrCreate(Ty, V);
+}
+
+Constant *ConstantVector::get(const std::vector<Constant*> &V) {
+ assert(!V.empty() && "Cannot infer type if V is empty");
+ return get(VectorType::get(V.front()->getType(),V.size()), V);
+}
+
+// destroyConstant - Remove the constant from the constant table...
+//
+void ConstantVector::destroyConstant() {
+ VectorConstants->remove(this);
+ destroyConstantImpl();
+}
+
+/// This function will return true iff every element in this vector constant
+/// is set to all ones.
+/// @returns true iff this constant's emements are all set to all ones.
+/// @brief Determine if the value is all ones.
+bool ConstantVector::isAllOnesValue() const {
+ // Check out first element.
+ const Constant *Elt = getOperand(0);
+ const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
+ if (!CI || !CI->isAllOnesValue()) return false;
+ // Then make sure all remaining elements point to the same value.
+ for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
+ if (getOperand(I) != Elt) return false;
+ }
+ return true;
+}
+
+/// getSplatValue - If this is a splat constant, where all of the
+/// elements have the same value, return that value. Otherwise return null.
+Constant *ConstantVector::getSplatValue() {
+ // Check out first element.
+ Constant *Elt = getOperand(0);
+ // Then make sure all remaining elements point to the same value.
+ for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
+ if (getOperand(I) != Elt) return 0;
+ return Elt;
+}
+
+//---- ConstantPointerNull::get() implementation...
+//
+
+namespace llvm {
+ // ConstantPointerNull does not take extra "value" argument...
+ template<class ValType>
+ struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
+ static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
+ return new ConstantPointerNull(Ty);
+ }
+ };
+
+ template<>
+ struct ConvertConstantType<ConstantPointerNull, PointerType> {
+ static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ Constant *New = ConstantPointerNull::get(NewTy);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+ };
+}
+
+static ManagedStatic<ValueMap<char, PointerType,
+ ConstantPointerNull> > NullPtrConstants;
+
+static char getValType(ConstantPointerNull *) {
+ return 0;
+}
+
+
+ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
+ return NullPtrConstants->getOrCreate(Ty, 0);
+}
+
+// destroyConstant - Remove the constant from the constant table...
+//
+void ConstantPointerNull::destroyConstant() {
+ NullPtrConstants->remove(this);
+ destroyConstantImpl();
+}
+
+
+//---- UndefValue::get() implementation...
+//
+
+namespace llvm {
+ // UndefValue does not take extra "value" argument...
+ template<class ValType>
+ struct ConstantCreator<UndefValue, Type, ValType> {
+ static UndefValue *create(const Type *Ty, const ValType &V) {
+ return new UndefValue(Ty);
+ }
+ };
+
+ template<>
+ struct ConvertConstantType<UndefValue, Type> {
+ static void convert(UndefValue *OldC, const Type *NewTy) {
+ // Make everyone now use a constant of the new type.
+ Constant *New = UndefValue::get(NewTy);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+ };
+}
+
+static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;
+
+static char getValType(UndefValue *) {
+ return 0;
+}
+
+
+UndefValue *UndefValue::get(const Type *Ty) {
+ return UndefValueConstants->getOrCreate(Ty, 0);
+}
+
+// destroyConstant - Remove the constant from the constant table.
+//
+void UndefValue::destroyConstant() {
+ UndefValueConstants->remove(this);
+ destroyConstantImpl();
+}
+
+//---- MDString::get() implementation
+//
+
+MDString::MDString(const char *begin, const char *end)
+ : Constant(Type::MetadataTy, MDStringVal, 0, 0),
+ StrBegin(begin), StrEnd(end) {}
+
+static ManagedStatic<StringMap<MDString*> > MDStringCache;
+
+MDString *MDString::get(const char *StrBegin, const char *StrEnd) {
+ StringMapEntry<MDString *> &Entry = MDStringCache->GetOrCreateValue(StrBegin,
+ StrEnd);
+ MDString *&S = Entry.getValue();
+ if (!S) S = new MDString(Entry.getKeyData(),
+ Entry.getKeyData() + Entry.getKeyLength());
+ return S;
+}
+
+void MDString::destroyConstant() {
+ MDStringCache->erase(MDStringCache->find(StrBegin, StrEnd));
+ destroyConstantImpl();
+}
+
+//---- MDNode::get() implementation
+//
+
+static ManagedStatic<FoldingSet<MDNode> > MDNodeSet;
+
+MDNode::MDNode(Value*const* Vals, unsigned NumVals)
+ : Constant(Type::MetadataTy, MDNodeVal, 0, 0) {
+ for (unsigned i = 0; i != NumVals; ++i)
+ Node.push_back(ElementVH(Vals[i], this));
+}
+
+void MDNode::Profile(FoldingSetNodeID &ID) const {
+ for (const_elem_iterator I = elem_begin(), E = elem_end(); I != E; ++I)
+ ID.AddPointer(*I);
+}
+
+MDNode *MDNode::get(Value*const* Vals, unsigned NumVals) {
+ FoldingSetNodeID ID;
+ for (unsigned i = 0; i != NumVals; ++i)
+ ID.AddPointer(Vals[i]);
+
+ void *InsertPoint;
+ if (MDNode *N = MDNodeSet->FindNodeOrInsertPos(ID, InsertPoint))
+ return N;
+
+ // InsertPoint will have been set by the FindNodeOrInsertPos call.
+ MDNode *N = new(0) MDNode(Vals, NumVals);
+ MDNodeSet->InsertNode(N, InsertPoint);
+ return N;
+}
+
+void MDNode::destroyConstant() {
+ MDNodeSet->RemoveNode(this);
+ destroyConstantImpl();
+}
+
+//---- ConstantExpr::get() implementations...
+//
+
+namespace {
+
+struct ExprMapKeyType {
+ typedef SmallVector<unsigned, 4> IndexList;
+
+ ExprMapKeyType(unsigned opc,
+ const std::vector<Constant*> &ops,
+ unsigned short pred = 0,
+ const IndexList &inds = IndexList())
+ : opcode(opc), predicate(pred), operands(ops), indices(inds) {}
+ uint16_t opcode;
+ uint16_t predicate;
+ std::vector<Constant*> operands;
+ IndexList indices;
+ bool operator==(const ExprMapKeyType& that) const {
+ return this->opcode == that.opcode &&
+ this->predicate == that.predicate &&
+ this->operands == that.operands &&
+ this->indices == that.indices;
+ }
+ bool operator<(const ExprMapKeyType & that) const {
+ return this->opcode < that.opcode ||
+ (this->opcode == that.opcode && this->predicate < that.predicate) ||
+ (this->opcode == that.opcode && this->predicate == that.predicate &&
+ this->operands < that.operands) ||
+ (this->opcode == that.opcode && this->predicate == that.predicate &&
+ this->operands == that.operands && this->indices < that.indices);
+ }
+
+ bool operator!=(const ExprMapKeyType& that) const {
+ return !(*this == that);
+ }
+};
+
+}
+
+namespace llvm {
+ template<>
+ struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
+ static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
+ unsigned short pred = 0) {
+ if (Instruction::isCast(V.opcode))
+ return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
+ if ((V.opcode >= Instruction::BinaryOpsBegin &&
+ V.opcode < Instruction::BinaryOpsEnd))
+ return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::Select)
+ return new SelectConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ExtractElement)
+ return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::InsertElement)
+ return new InsertElementConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ShuffleVector)
+ return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::InsertValue)
+ return new InsertValueConstantExpr(V.operands[0], V.operands[1],
+ V.indices, Ty);
+ if (V.opcode == Instruction::ExtractValue)
+ return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
+ if (V.opcode == Instruction::GetElementPtr) {
+ std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
+ return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
+ }
+
+ // The compare instructions are weird. We have to encode the predicate
+ // value and it is combined with the instruction opcode by multiplying
+ // the opcode by one hundred. We must decode this to get the predicate.
+ if (V.opcode == Instruction::ICmp)
+ return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate,
+ V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::FCmp)
+ return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate,
+ V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::VICmp)
+ return new CompareConstantExpr(Ty, Instruction::VICmp, V.predicate,
+ V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::VFCmp)
+ return new CompareConstantExpr(Ty, Instruction::VFCmp, V.predicate,
+ V.operands[0], V.operands[1]);
+ assert(0 && "Invalid ConstantExpr!");
+ return 0;
+ }
+ };
+
+ template<>
+ struct ConvertConstantType<ConstantExpr, Type> {
+ static void convert(ConstantExpr *OldC, const Type *NewTy) {
+ Constant *New;
+ switch (OldC->getOpcode()) {
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
+ NewTy);
+ break;
+ case Instruction::Select:
+ New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
+ OldC->getOperand(1),
+ OldC->getOperand(2));
+ break;
+ default:
+ assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
+ OldC->getOpcode() < Instruction::BinaryOpsEnd);
+ New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
+ OldC->getOperand(1));
+ break;
+ case Instruction::GetElementPtr:
+ // Make everyone now use a constant of the new type...
+ std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
+ New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
+ &Idx[0], Idx.size());
+ break;
+ }
+
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+ };
+} // end namespace llvm
+
+
+static ExprMapKeyType getValType(ConstantExpr *CE) {
+ std::vector<Constant*> Operands;
+ Operands.reserve(CE->getNumOperands());
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
+ Operands.push_back(cast<Constant>(CE->getOperand(i)));
+ return ExprMapKeyType(CE->getOpcode(), Operands,
+ CE->isCompare() ? CE->getPredicate() : 0,
+ CE->hasIndices() ?
+ CE->getIndices() : SmallVector<unsigned, 4>());
+}
+
+static ManagedStatic<ValueMap<ExprMapKeyType, Type,
+ ConstantExpr> > ExprConstants;
+
+/// This is a utility function to handle folding of casts and lookup of the
+/// cast in the ExprConstants map. It is used by the various get* methods below.
+static inline Constant *getFoldedCast(
+ Instruction::CastOps opc, Constant *C, const Type *Ty) {
+ assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
+ // Fold a few common cases
+ if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
+ return FC;
+
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> argVec(1, C);
+ ExprMapKeyType Key(opc, argVec);
+ return ExprConstants->getOrCreate(Ty, Key);
+}
+
+Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
+ Instruction::CastOps opc = Instruction::CastOps(oc);
+ assert(Instruction::isCast(opc) && "opcode out of range");
+ assert(C && Ty && "Null arguments to getCast");
+ assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
+
+ switch (opc) {
+ default:
+ assert(0 && "Invalid cast opcode");
+ break;
+ case Instruction::Trunc: return getTrunc(C, Ty);
+ case Instruction::ZExt: return getZExt(C, Ty);
+ case Instruction::SExt: return getSExt(C, Ty);
+ case Instruction::FPTrunc: return getFPTrunc(C, Ty);
+ case Instruction::FPExt: return getFPExtend(C, Ty);
+ case Instruction::UIToFP: return getUIToFP(C, Ty);
+ case Instruction::SIToFP: return getSIToFP(C, Ty);
+ case Instruction::FPToUI: return getFPToUI(C, Ty);
+ case Instruction::FPToSI: return getFPToSI(C, Ty);
+ case Instruction::PtrToInt: return getPtrToInt(C, Ty);
+ case Instruction::IntToPtr: return getIntToPtr(C, Ty);
+ case Instruction::BitCast: return getBitCast(C, Ty);
+ }
+ return 0;
+}
+
+Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
+ if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return getCast(Instruction::BitCast, C, Ty);
+ return getCast(Instruction::ZExt, C, Ty);
+}
+
+Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
+ if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return getCast(Instruction::BitCast, C, Ty);
+ return getCast(Instruction::SExt, C, Ty);
+}
+
+Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
+ if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+ return getCast(Instruction::BitCast, C, Ty);
+ return getCast(Instruction::Trunc, C, Ty);
+}
+
+Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
+ assert(isa<PointerType>(S->getType()) && "Invalid cast");
+ assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
+
+ if (Ty->isInteger())
+ return getCast(Instruction::PtrToInt, S, Ty);
+ return getCast(Instruction::BitCast, S, Ty);
+}
+
+Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
+ bool isSigned) {
+ assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
+ unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
+ unsigned DstBits = Ty->getPrimitiveSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::Trunc :
+ (isSigned ? Instruction::SExt : Instruction::ZExt)));
+ return getCast(opcode, C, Ty);
+}
+
+Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ "Invalid cast");
+ unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
+ unsigned DstBits = Ty->getPrimitiveSizeInBits();
+ if (SrcBits == DstBits)
+ return C; // Avoid a useless cast
+ Instruction::CastOps opcode =
+ (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
+ return getCast(opcode, C, Ty);
+}
+
+Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
+ assert(C->getType()->isInteger() && "Trunc operand must be integer");
+ assert(Ty->isInteger() && "Trunc produces only integral");
+ assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be larger than DestTy for Trunc!");
+
+ return getFoldedCast(Instruction::Trunc, C, Ty);
+}
+
+Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
+ assert(C->getType()->isInteger() && "SEXt operand must be integral");
+ assert(Ty->isInteger() && "SExt produces only integer");
+ assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be smaller than DestTy for SExt!");
+
+ return getFoldedCast(Instruction::SExt, C, Ty);
+}
+
+Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
+ assert(C->getType()->isInteger() && "ZEXt operand must be integral");
+ assert(Ty->isInteger() && "ZExt produces only integer");
+ assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be smaller than DestTy for ZExt!");
+
+ return getFoldedCast(Instruction::ZExt, C, Ty);
+}
+
+Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
+ "This is an illegal floating point truncation!");
+ return getFoldedCast(Instruction::FPTrunc, C, Ty);
+}
+
+Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "This is an illegal floating point extension!");
+ return getFoldedCast(Instruction::FPExt, C, Ty);
+}
+
+Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
+#ifndef NDEBUG
+ bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
+ bool toVec = Ty->getTypeID() == Type::VectorTyID;
+#endif
+ assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
+ assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
+ "This is an illegal uint to floating point cast!");
+ return getFoldedCast(Instruction::UIToFP, C, Ty);
+}
+
+Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
+#ifndef NDEBUG
+ bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
+ bool toVec = Ty->getTypeID() == Type::VectorTyID;
+#endif
+ assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
+ assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
+ "This is an illegal sint to floating point cast!");
+ return getFoldedCast(Instruction::SIToFP, C, Ty);
+}
+
+Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
+#ifndef NDEBUG
+ bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
+ bool toVec = Ty->getTypeID() == Type::VectorTyID;
+#endif
+ assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
+ assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
+ "This is an illegal floating point to uint cast!");
+ return getFoldedCast(Instruction::FPToUI, C, Ty);
+}
+
+Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
+#ifndef NDEBUG
+ bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
+ bool toVec = Ty->getTypeID() == Type::VectorTyID;
+#endif
+ assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
+ assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
+ "This is an illegal floating point to sint cast!");
+ return getFoldedCast(Instruction::FPToSI, C, Ty);
+}
+
+Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
+ assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
+ assert(DstTy->isInteger() && "PtrToInt destination must be integral");
+ return getFoldedCast(Instruction::PtrToInt, C, DstTy);
+}
+
+Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
+ assert(C->getType()->isInteger() && "IntToPtr source must be integral");
+ assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
+ return getFoldedCast(Instruction::IntToPtr, C, DstTy);
+}
+
+Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
+ // BitCast implies a no-op cast of type only. No bits change. However, you
+ // can't cast pointers to anything but pointers.
+#ifndef NDEBUG
+ const Type *SrcTy = C->getType();
+ assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
+ "BitCast cannot cast pointer to non-pointer and vice versa");
+
+ // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
+ // or nonptr->ptr). For all the other types, the cast is okay if source and
+ // destination bit widths are identical.
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
+#endif
+ assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
+
+ // It is common to ask for a bitcast of a value to its own type, handle this
+ // speedily.
+ if (C->getType() == DstTy) return C;
+
+ return getFoldedCast(Instruction::BitCast, C, DstTy);
+}
+
+Constant *ConstantExpr::getAlignOf(const Type *Ty) {
+ // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
+ const Type *AligningTy = StructType::get(Type::Int8Ty, Ty, NULL);
+ Constant *NullPtr = getNullValue(AligningTy->getPointerTo());
+ Constant *Zero = ConstantInt::get(Type::Int32Ty, 0);
+ Constant *One = ConstantInt::get(Type::Int32Ty, 1);
+ Constant *Indices[2] = { Zero, One };
+ Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
+ return getCast(Instruction::PtrToInt, GEP, Type::Int32Ty);
+}
+
+Constant *ConstantExpr::getSizeOf(const Type *Ty) {
+ // sizeof is implemented as: (i64) gep (Ty*)null, 1
+ Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
+ Constant *GEP =
+ getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
+ return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
+}
+
+Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
+ Constant *C1, Constant *C2) {
+ // Check the operands for consistency first
+ assert(Opcode >= Instruction::BinaryOpsBegin &&
+ Opcode < Instruction::BinaryOpsEnd &&
+ "Invalid opcode in binary constant expression");
+ assert(C1->getType() == C2->getType() &&
+ "Operand types in binary constant expression should match");
+
+ if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
+ if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
+ return FC; // Fold a few common cases...
+
+ std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
+ ExprMapKeyType Key(Opcode, argVec);
+ return ExprConstants->getOrCreate(ReqTy, Key);
+}
+
+Constant *ConstantExpr::getCompareTy(unsigned short predicate,
+ Constant *C1, Constant *C2) {
+ bool isVectorType = C1->getType()->getTypeID() == Type::VectorTyID;
+ switch (predicate) {
+ default: assert(0 && "Invalid CmpInst predicate");
+ case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
+ case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
+ case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
+ case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
+ case CmpInst::FCMP_TRUE:
+ return isVectorType ? getVFCmp(predicate, C1, C2)
+ : getFCmp(predicate, C1, C2);
+ case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
+ case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
+ case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
+ case CmpInst::ICMP_SLE:
+ return isVectorType ? getVICmp(predicate, C1, C2)
+ : getICmp(predicate, C1, C2);
+ }
+}
+
+Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
+#ifndef NDEBUG
+ switch (Opcode) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ assert(C1->getType() == C2->getType() && "Op types should be identical!");
+ assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
+ isa<VectorType>(C1->getType())) &&
+ "Tried to create an arithmetic operation on a non-arithmetic type!");
+ break;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ assert(C1->getType() == C2->getType() && "Op types should be identical!");
+ assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
+ cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
+ "Tried to create an arithmetic operation on a non-arithmetic type!");
+ break;
+ case Instruction::FDiv:
+ assert(C1->getType() == C2->getType() && "Op types should be identical!");
+ assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
+ && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint()))
+ && "Tried to create an arithmetic operation on a non-arithmetic type!");
+ break;
+ case Instruction::URem:
+ case Instruction::SRem:
+ assert(C1->getType() == C2->getType() && "Op types should be identical!");
+ assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
+ cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
+ "Tried to create an arithmetic operation on a non-arithmetic type!");
+ break;
+ case Instruction::FRem:
+ assert(C1->getType() == C2->getType() && "Op types should be identical!");
+ assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
+ && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint()))
+ && "Tried to create an arithmetic operation on a non-arithmetic type!");
+ break;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ assert(C1->getType() == C2->getType() && "Op types should be identical!");
+ assert((C1->getType()->isInteger() || isa<VectorType>(C1->getType())) &&
+ "Tried to create a logical operation on a non-integral type!");
+ break;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ assert(C1->getType() == C2->getType() && "Op types should be identical!");
+ assert(C1->getType()->isIntOrIntVector() &&
+ "Tried to create a shift operation on a non-integer type!");
+ break;
+ default:
+ break;
+ }
+#endif
+
+ return getTy(C1->getType(), Opcode, C1, C2);
+}
+
+Constant *ConstantExpr::getCompare(unsigned short pred,
+ Constant *C1, Constant *C2) {
+ assert(C1->getType() == C2->getType() && "Op types should be identical!");
+ return getCompareTy(pred, C1, C2);
+}
+
+Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
+ Constant *V1, Constant *V2) {
+ assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
+
+ if (ReqTy == V1->getType())
+ if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
+ return SC; // Fold common cases
+
+ std::vector<Constant*> argVec(3, C);
+ argVec[1] = V1;
+ argVec[2] = V2;
+ ExprMapKeyType Key(Instruction::Select, argVec);
+ return ExprConstants->getOrCreate(ReqTy, Key);
+}
+
+Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
+ Value* const *Idxs,
+ unsigned NumIdx) {
+ assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
+ Idxs+NumIdx) ==
+ cast<PointerType>(ReqTy)->getElementType() &&
+ "GEP indices invalid!");
+
+ if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx))
+ return FC; // Fold a few common cases...
+
+ assert(isa<PointerType>(C->getType()) &&
+ "Non-pointer type for constant GetElementPtr expression");
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec;
+ ArgVec.reserve(NumIdx+1);
+ ArgVec.push_back(C);
+ for (unsigned i = 0; i != NumIdx; ++i)
+ ArgVec.push_back(cast<Constant>(Idxs[i]));
+ const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
+ return ExprConstants->getOrCreate(ReqTy, Key);
+}
+
+Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
+ unsigned NumIdx) {
+ // Get the result type of the getelementptr!
+ const Type *Ty =
+ GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
+ assert(Ty && "GEP indices invalid!");
+ unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
+ return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
+}
+
+Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
+ unsigned NumIdx) {
+ return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
+}
+
+
+Constant *
+ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
+ assert(LHS->getType() == RHS->getType());
+ assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
+ pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
+
+ if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
+ return FC; // Fold a few common cases...
+
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec;
+ ArgVec.push_back(LHS);
+ ArgVec.push_back(RHS);
+ // Get the key type with both the opcode and predicate
+ const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
+ return ExprConstants->getOrCreate(Type::Int1Ty, Key);
+}
+
+Constant *
+ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
+ assert(LHS->getType() == RHS->getType());
+ assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
+
+ if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
+ return FC; // Fold a few common cases...
+
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec;
+ ArgVec.push_back(LHS);
+ ArgVec.push_back(RHS);
+ // Get the key type with both the opcode and predicate
+ const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
+ return ExprConstants->getOrCreate(Type::Int1Ty, Key);
+}
+
+Constant *
+ConstantExpr::getVICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
+ assert(isa<VectorType>(LHS->getType()) && LHS->getType() == RHS->getType() &&
+ "Tried to create vicmp operation on non-vector type!");
+ assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
+ pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp Predicate");
+
+ const VectorType *VTy = cast<VectorType>(LHS->getType());
+ const Type *EltTy = VTy->getElementType();
+ unsigned NumElts = VTy->getNumElements();
+
+ // See if we can fold the element-wise comparison of the LHS and RHS.
+ SmallVector<Constant *, 16> LHSElts, RHSElts;
+ LHS->getVectorElements(LHSElts);
+ RHS->getVectorElements(RHSElts);
+
+ if (!LHSElts.empty() && !RHSElts.empty()) {
+ SmallVector<Constant *, 16> Elts;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i],
+ RHSElts[i]);
+ if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) {
+ if (FCI->getZExtValue())
+ Elts.push_back(ConstantInt::getAllOnesValue(EltTy));
+ else
+ Elts.push_back(ConstantInt::get(EltTy, 0ULL));
+ } else if (FC && isa<UndefValue>(FC)) {
+ Elts.push_back(UndefValue::get(EltTy));
+ } else {
+ break;
+ }
+ }
+ if (Elts.size() == NumElts)
+ return ConstantVector::get(&Elts[0], Elts.size());
+ }
+
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec;
+ ArgVec.push_back(LHS);
+ ArgVec.push_back(RHS);
+ // Get the key type with both the opcode and predicate
+ const ExprMapKeyType Key(Instruction::VICmp, ArgVec, pred);
+ return ExprConstants->getOrCreate(LHS->getType(), Key);
+}
+
+Constant *
+ConstantExpr::getVFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
+ assert(isa<VectorType>(LHS->getType()) &&
+ "Tried to create vfcmp operation on non-vector type!");
+ assert(LHS->getType() == RHS->getType());
+ assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp Predicate");
+
+ const VectorType *VTy = cast<VectorType>(LHS->getType());
+ unsigned NumElts = VTy->getNumElements();
+ const Type *EltTy = VTy->getElementType();
+ const Type *REltTy = IntegerType::get(EltTy->getPrimitiveSizeInBits());
+ const Type *ResultTy = VectorType::get(REltTy, NumElts);
+
+ // See if we can fold the element-wise comparison of the LHS and RHS.
+ SmallVector<Constant *, 16> LHSElts, RHSElts;
+ LHS->getVectorElements(LHSElts);
+ RHS->getVectorElements(RHSElts);
+
+ if (!LHSElts.empty() && !RHSElts.empty()) {
+ SmallVector<Constant *, 16> Elts;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i],
+ RHSElts[i]);
+ if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) {
+ if (FCI->getZExtValue())
+ Elts.push_back(ConstantInt::getAllOnesValue(REltTy));
+ else
+ Elts.push_back(ConstantInt::get(REltTy, 0ULL));
+ } else if (FC && isa<UndefValue>(FC)) {
+ Elts.push_back(UndefValue::get(REltTy));
+ } else {
+ break;
+ }
+ }
+ if (Elts.size() == NumElts)
+ return ConstantVector::get(&Elts[0], Elts.size());
+ }
+
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec;
+ ArgVec.push_back(LHS);
+ ArgVec.push_back(RHS);
+ // Get the key type with both the opcode and predicate
+ const ExprMapKeyType Key(Instruction::VFCmp, ArgVec, pred);
+ return ExprConstants->getOrCreate(ResultTy, Key);
+}
+
+Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
+ Constant *Idx) {
+ if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
+ return FC; // Fold a few common cases...
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec(1, Val);
+ ArgVec.push_back(Idx);
+ const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
+ return ExprConstants->getOrCreate(ReqTy, Key);
+}
+
+Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
+ assert(isa<VectorType>(Val->getType()) &&
+ "Tried to create extractelement operation on non-vector type!");
+ assert(Idx->getType() == Type::Int32Ty &&
+ "Extractelement index must be i32 type!");
+ return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
+ Val, Idx);
+}
+
+Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
+ Constant *Elt, Constant *Idx) {
+ if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
+ return FC; // Fold a few common cases...
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec(1, Val);
+ ArgVec.push_back(Elt);
+ ArgVec.push_back(Idx);
+ const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
+ return ExprConstants->getOrCreate(ReqTy, Key);
+}
+
+Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
+ Constant *Idx) {
+ assert(isa<VectorType>(Val->getType()) &&
+ "Tried to create insertelement operation on non-vector type!");
+ assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
+ && "Insertelement types must match!");
+ assert(Idx->getType() == Type::Int32Ty &&
+ "Insertelement index must be i32 type!");
+ return getInsertElementTy(Val->getType(), Val, Elt, Idx);
+}
+
+Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
+ Constant *V2, Constant *Mask) {
+ if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
+ return FC; // Fold a few common cases...
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec(1, V1);
+ ArgVec.push_back(V2);
+ ArgVec.push_back(Mask);
+ const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
+ return ExprConstants->getOrCreate(ReqTy, Key);
+}
+
+Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
+ Constant *Mask) {
+ assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
+ "Invalid shuffle vector constant expr operands!");
+
+ unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
+ const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
+ const Type *ShufTy = VectorType::get(EltTy, NElts);
+ return getShuffleVectorTy(ShufTy, V1, V2, Mask);
+}
+
+Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
+ Constant *Val,
+ const unsigned *Idxs, unsigned NumIdx) {
+ assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
+ Idxs+NumIdx) == Val->getType() &&
+ "insertvalue indices invalid!");
+ assert(Agg->getType() == ReqTy &&
+ "insertvalue type invalid!");
+ assert(Agg->getType()->isFirstClassType() &&
+ "Non-first-class type for constant InsertValue expression");
+ Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx);
+ assert(FC && "InsertValue constant expr couldn't be folded!");
+ return FC;
+}
+
+Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
+ const unsigned *IdxList, unsigned NumIdx) {
+ assert(Agg->getType()->isFirstClassType() &&
+ "Tried to create insertelement operation on non-first-class type!");
+
+ const Type *ReqTy = Agg->getType();
+#ifndef NDEBUG
+ const Type *ValTy =
+ ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
+#endif
+ assert(ValTy == Val->getType() && "insertvalue indices invalid!");
+ return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
+}
+
+Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
+ const unsigned *Idxs, unsigned NumIdx) {
+ assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
+ Idxs+NumIdx) == ReqTy &&
+ "extractvalue indices invalid!");
+ assert(Agg->getType()->isFirstClassType() &&
+ "Non-first-class type for constant extractvalue expression");
+ Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx);
+ assert(FC && "ExtractValue constant expr couldn't be folded!");
+ return FC;
+}
+
+Constant *ConstantExpr::getExtractValue(Constant *Agg,
+ const unsigned *IdxList, unsigned NumIdx) {
+ assert(Agg->getType()->isFirstClassType() &&
+ "Tried to create extractelement operation on non-first-class type!");
+
+ const Type *ReqTy =
+ ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
+ assert(ReqTy && "extractvalue indices invalid!");
+ return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
+}
+
+Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
+ if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
+ if (PTy->getElementType()->isFloatingPoint()) {
+ std::vector<Constant*> zeros(PTy->getNumElements(),
+ ConstantFP::getNegativeZero(PTy->getElementType()));
+ return ConstantVector::get(PTy, zeros);
+ }
+
+ if (Ty->isFloatingPoint())
+ return ConstantFP::getNegativeZero(Ty);
+
+ return Constant::getNullValue(Ty);
+}
+
+// destroyConstant - Remove the constant from the constant table...
+//
+void ConstantExpr::destroyConstant() {
+ ExprConstants->remove(this);
+ destroyConstantImpl();
+}
+
+const char *ConstantExpr::getOpcodeName() const {
+ return Instruction::getOpcodeName(getOpcode());
+}
+
+//===----------------------------------------------------------------------===//
+// replaceUsesOfWithOnConstant implementations
+
+/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
+/// 'From' to be uses of 'To'. This must update the uniquing data structures
+/// etc.
+///
+/// Note that we intentionally replace all uses of From with To here. Consider
+/// a large array that uses 'From' 1000 times. By handling this case all here,
+/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
+/// single invocation handles all 1000 uses. Handling them one at a time would
+/// work, but would be really slow because it would have to unique each updated
+/// array instance.
+void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
+ Use *U) {
+ assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
+ Constant *ToC = cast<Constant>(To);
+
+ std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
+ Lookup.first.first = getType();
+ Lookup.second = this;
+
+ std::vector<Constant*> &Values = Lookup.first.second;
+ Values.reserve(getNumOperands()); // Build replacement array.
+
+ // Fill values with the modified operands of the constant array. Also,
+ // compute whether this turns into an all-zeros array.
+ bool isAllZeros = false;
+ unsigned NumUpdated = 0;
+ if (!ToC->isNullValue()) {
+ for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
+ Constant *Val = cast<Constant>(O->get());
+ if (Val == From) {
+ Val = ToC;
+ ++NumUpdated;
+ }
+ Values.push_back(Val);
+ }
+ } else {
+ isAllZeros = true;
+ for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
+ Constant *Val = cast<Constant>(O->get());
+ if (Val == From) {
+ Val = ToC;
+ ++NumUpdated;
+ }
+ Values.push_back(Val);
+ if (isAllZeros) isAllZeros = Val->isNullValue();
+ }
+ }
+
+ Constant *Replacement = 0;
+ if (isAllZeros) {
+ Replacement = ConstantAggregateZero::get(getType());
+ } else {
+ // Check to see if we have this array type already.
+ bool Exists;
+ ArrayConstantsTy::MapTy::iterator I =
+ ArrayConstants->InsertOrGetItem(Lookup, Exists);
+
+ if (Exists) {
+ Replacement = I->second;
+ } else {
+ // Okay, the new shape doesn't exist in the system yet. Instead of
+ // creating a new constant array, inserting it, replaceallusesof'ing the
+ // old with the new, then deleting the old... just update the current one
+ // in place!
+ ArrayConstants->MoveConstantToNewSlot(this, I);
+
+ // Update to the new value. Optimize for the case when we have a single
+ // operand that we're changing, but handle bulk updates efficiently.
+ if (NumUpdated == 1) {
+ unsigned OperandToUpdate = U-OperandList;
+ assert(getOperand(OperandToUpdate) == From &&
+ "ReplaceAllUsesWith broken!");
+ setOperand(OperandToUpdate, ToC);
+ } else {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (getOperand(i) == From)
+ setOperand(i, ToC);
+ }
+ return;
+ }
+ }
+
+ // Otherwise, I do need to replace this with an existing value.
+ assert(Replacement != this && "I didn't contain From!");
+
+ // Everyone using this now uses the replacement.
+ uncheckedReplaceAllUsesWith(Replacement);
+
+ // Delete the old constant!
+ destroyConstant();
+}
+
+void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
+ Use *U) {
+ assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
+ Constant *ToC = cast<Constant>(To);
+
+ unsigned OperandToUpdate = U-OperandList;
+ assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
+
+ std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
+ Lookup.first.first = getType();
+ Lookup.second = this;
+ std::vector<Constant*> &Values = Lookup.first.second;
+ Values.reserve(getNumOperands()); // Build replacement struct.
+
+
+ // Fill values with the modified operands of the constant struct. Also,
+ // compute whether this turns into an all-zeros struct.
+ bool isAllZeros = false;
+ if (!ToC->isNullValue()) {
+ for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
+ Values.push_back(cast<Constant>(O->get()));
+ } else {
+ isAllZeros = true;
+ for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
+ Constant *Val = cast<Constant>(O->get());
+ Values.push_back(Val);
+ if (isAllZeros) isAllZeros = Val->isNullValue();
+ }
+ }
+ Values[OperandToUpdate] = ToC;
+
+ Constant *Replacement = 0;
+ if (isAllZeros) {
+ Replacement = ConstantAggregateZero::get(getType());
+ } else {
+ // Check to see if we have this array type already.
+ bool Exists;
+ StructConstantsTy::MapTy::iterator I =
+ StructConstants->InsertOrGetItem(Lookup, Exists);
+
+ if (Exists) {
+ Replacement = I->second;
+ } else {
+ // Okay, the new shape doesn't exist in the system yet. Instead of
+ // creating a new constant struct, inserting it, replaceallusesof'ing the
+ // old with the new, then deleting the old... just update the current one
+ // in place!
+ StructConstants->MoveConstantToNewSlot(this, I);
+
+ // Update to the new value.
+ setOperand(OperandToUpdate, ToC);
+ return;
+ }
+ }
+
+ assert(Replacement != this && "I didn't contain From!");
+
+ // Everyone using this now uses the replacement.
+ uncheckedReplaceAllUsesWith(Replacement);
+
+ // Delete the old constant!
+ destroyConstant();
+}
+
+void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
+ Use *U) {
+ assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
+
+ std::vector<Constant*> Values;
+ Values.reserve(getNumOperands()); // Build replacement array...
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ Constant *Val = getOperand(i);
+ if (Val == From) Val = cast<Constant>(To);
+ Values.push_back(Val);
+ }
+
+ Constant *Replacement = ConstantVector::get(getType(), Values);
+ assert(Replacement != this && "I didn't contain From!");
+
+ // Everyone using this now uses the replacement.
+ uncheckedReplaceAllUsesWith(Replacement);
+
+ // Delete the old constant!
+ destroyConstant();
+}
+
+void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
+ Use *U) {
+ assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
+ Constant *To = cast<Constant>(ToV);
+
+ Constant *Replacement = 0;
+ if (getOpcode() == Instruction::GetElementPtr) {
+ SmallVector<Constant*, 8> Indices;
+ Constant *Pointer = getOperand(0);
+ Indices.reserve(getNumOperands()-1);
+ if (Pointer == From) Pointer = To;
+
+ for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+ Constant *Val = getOperand(i);
+ if (Val == From) Val = To;
+ Indices.push_back(Val);
+ }
+ Replacement = ConstantExpr::getGetElementPtr(Pointer,
+ &Indices[0], Indices.size());
+ } else if (getOpcode() == Instruction::ExtractValue) {
+ Constant *Agg = getOperand(0);
+ if (Agg == From) Agg = To;
+
+ const SmallVector<unsigned, 4> &Indices = getIndices();
+ Replacement = ConstantExpr::getExtractValue(Agg,
+ &Indices[0], Indices.size());
+ } else if (getOpcode() == Instruction::InsertValue) {
+ Constant *Agg = getOperand(0);
+ Constant *Val = getOperand(1);
+ if (Agg == From) Agg = To;
+ if (Val == From) Val = To;
+
+ const SmallVector<unsigned, 4> &Indices = getIndices();
+ Replacement = ConstantExpr::getInsertValue(Agg, Val,
+ &Indices[0], Indices.size());
+ } else if (isCast()) {
+ assert(getOperand(0) == From && "Cast only has one use!");
+ Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
+ } else if (getOpcode() == Instruction::Select) {
+ Constant *C1 = getOperand(0);
+ Constant *C2 = getOperand(1);
+ Constant *C3 = getOperand(2);
+ if (C1 == From) C1 = To;
+ if (C2 == From) C2 = To;
+ if (C3 == From) C3 = To;
+ Replacement = ConstantExpr::getSelect(C1, C2, C3);
+ } else if (getOpcode() == Instruction::ExtractElement) {
+ Constant *C1 = getOperand(0);
+ Constant *C2 = getOperand(1);
+ if (C1 == From) C1 = To;
+ if (C2 == From) C2 = To;
+ Replacement = ConstantExpr::getExtractElement(C1, C2);
+ } else if (getOpcode() == Instruction::InsertElement) {
+ Constant *C1 = getOperand(0);
+ Constant *C2 = getOperand(1);
+ Constant *C3 = getOperand(1);
+ if (C1 == From) C1 = To;
+ if (C2 == From) C2 = To;
+ if (C3 == From) C3 = To;
+ Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
+ } else if (getOpcode() == Instruction::ShuffleVector) {
+ Constant *C1 = getOperand(0);
+ Constant *C2 = getOperand(1);
+ Constant *C3 = getOperand(2);
+ if (C1 == From) C1 = To;
+ if (C2 == From) C2 = To;
+ if (C3 == From) C3 = To;
+ Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
+ } else if (isCompare()) {
+ Constant *C1 = getOperand(0);
+ Constant *C2 = getOperand(1);
+ if (C1 == From) C1 = To;
+ if (C2 == From) C2 = To;
+ if (getOpcode() == Instruction::ICmp)
+ Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
+ else if (getOpcode() == Instruction::FCmp)
+ Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
+ else if (getOpcode() == Instruction::VICmp)
+ Replacement = ConstantExpr::getVICmp(getPredicate(), C1, C2);
+ else {
+ assert(getOpcode() == Instruction::VFCmp);
+ Replacement = ConstantExpr::getVFCmp(getPredicate(), C1, C2);
+ }
+ } else if (getNumOperands() == 2) {
+ Constant *C1 = getOperand(0);
+ Constant *C2 = getOperand(1);
+ if (C1 == From) C1 = To;
+ if (C2 == From) C2 = To;
+ Replacement = ConstantExpr::get(getOpcode(), C1, C2);
+ } else {
+ assert(0 && "Unknown ConstantExpr type!");
+ return;
+ }
+
+ assert(Replacement != this && "I didn't contain From!");
+
+ // Everyone using this now uses the replacement.
+ uncheckedReplaceAllUsesWith(Replacement);
+
+ // Delete the old constant!
+ destroyConstant();
+}
+
+void MDNode::replaceElement(Value *From, Value *To) {
+ SmallVector<Value*, 4> Values;
+ Values.reserve(getNumElements()); // Build replacement array...
+ for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
+ Value *Val = getElement(i);
+ if (Val == From) Val = To;
+ Values.push_back(Val);
+ }
+
+ MDNode *Replacement = MDNode::get(&Values[0], Values.size());
+ assert(Replacement != this && "I didn't contain From!");
+
+ uncheckedReplaceAllUsesWith(Replacement);
+
+ destroyConstant();
+}
OpenPOWER on IntegriCloud