summaryrefslogtreecommitdiffstats
path: root/lib/VMCore/ConstantFold.cpp
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2010-02-16 09:30:23 +0000
committerrdivacky <rdivacky@FreeBSD.org>2010-02-16 09:30:23 +0000
commitf25ddd991a5601d0101602c4c263a58c7af4b8a2 (patch)
tree4cfca640904d1896e25032757a61f8959c066919 /lib/VMCore/ConstantFold.cpp
parent3fd58f91dd318518f7daa4ba64c0aaf31799d89b (diff)
downloadFreeBSD-src-f25ddd991a5601d0101602c4c263a58c7af4b8a2.zip
FreeBSD-src-f25ddd991a5601d0101602c4c263a58c7af4b8a2.tar.gz
Update LLVM to r96341.
Diffstat (limited to 'lib/VMCore/ConstantFold.cpp')
-rw-r--r--lib/VMCore/ConstantFold.cpp637
1 files changed, 430 insertions, 207 deletions
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp
index ddd5587..78a45e8 100644
--- a/lib/VMCore/ConstantFold.cpp
+++ b/lib/VMCore/ConstantFold.cpp
@@ -24,7 +24,6 @@
#include "llvm/Function.h"
#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
-#include "llvm/LLVMContext.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
@@ -41,7 +40,7 @@ using namespace llvm;
/// BitCastConstantVector - Convert the specified ConstantVector node to the
/// specified vector type. At this point, we know that the elements of the
/// input vector constant are all simple integer or FP values.
-static Constant *BitCastConstantVector(LLVMContext &Context, ConstantVector *CV,
+static Constant *BitCastConstantVector(ConstantVector *CV,
const VectorType *DstTy) {
// If this cast changes element count then we can't handle it here:
// doing so requires endianness information. This should be handled by
@@ -91,8 +90,7 @@ foldConstantCastPair(
Type::getInt64Ty(DstTy->getContext()));
}
-static Constant *FoldBitCast(LLVMContext &Context,
- Constant *V, const Type *DestTy) {
+static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
const Type *SrcTy = V->getType();
if (SrcTy == DestTy)
return V; // no-op cast
@@ -103,7 +101,8 @@ static Constant *FoldBitCast(LLVMContext &Context,
if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
SmallVector<Value*, 8> IdxList;
- Value *Zero = Constant::getNullValue(Type::getInt32Ty(Context));
+ Value *Zero =
+ Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
IdxList.push_back(Zero);
const Type *ElTy = PTy->getElementType();
while (ElTy != DPTy->getElementType()) {
@@ -139,15 +138,14 @@ static Constant *FoldBitCast(LLVMContext &Context,
return Constant::getNullValue(DestTy);
if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
- return BitCastConstantVector(Context, CV, DestPTy);
+ return BitCastConstantVector(CV, DestPTy);
}
// Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
// This allows for other simplifications (although some of them
// can only be handled by Analysis/ConstantFolding.cpp).
if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
- return ConstantExpr::getBitCast(
- ConstantVector::get(&V, 1), DestPTy);
+ return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
}
// Finally, implement bitcast folding now. The code below doesn't handle
@@ -157,23 +155,24 @@ static Constant *FoldBitCast(LLVMContext &Context,
// Handle integral constant input.
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- if (DestTy->isInteger())
+ if (DestTy->isIntegerTy())
// Integral -> Integral. This is a no-op because the bit widths must
// be the same. Consequently, we just fold to V.
return V;
- if (DestTy->isFloatingPoint())
- return ConstantFP::get(Context, APFloat(CI->getValue(),
- DestTy != Type::getPPC_FP128Ty(Context)));
+ if (DestTy->isFloatingPointTy())
+ return ConstantFP::get(DestTy->getContext(),
+ APFloat(CI->getValue(),
+ !DestTy->isPPC_FP128Ty()));
// Otherwise, can't fold this (vector?)
return 0;
}
- // Handle ConstantFP input.
+ // Handle ConstantFP input: FP -> Integral.
if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
- // FP -> Integral.
- return ConstantInt::get(Context, FP->getValueAPF().bitcastToAPInt());
+ return ConstantInt::get(FP->getContext(),
+ FP->getValueAPF().bitcastToAPInt());
return 0;
}
@@ -323,9 +322,195 @@ static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
}
}
+/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
+/// on Ty, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy,
+ bool Folded) {
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
+ Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
+ return ConstantExpr::getNUWMul(E, N);
+ }
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ Constant *N = ConstantInt::get(DestTy, VTy->getNumElements());
+ Constant *E = getFoldedSizeOf(VTy->getElementType(), DestTy, true);
+ return ConstantExpr::getNUWMul(E, N);
+ }
+ if (const StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has size zero.
+ if (NumElems == 0)
+ return ConstantExpr::getNullValue(DestTy);
+ // Check for a struct with all members having the same size.
+ Constant *MemberSize =
+ getFoldedSizeOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberSize !=
+ getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame) {
+ Constant *N = ConstantInt::get(DestTy, NumElems);
+ return ConstantExpr::getNUWMul(MemberSize, N);
+ }
+ }
+
+ // Pointer size doesn't depend on the pointee type, so canonicalize them
+ // to an arbitrary pointee.
+ if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
+ if (!PTy->getElementType()->isIntegerTy(1))
+ return
+ getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
+ PTy->getAddressSpace()),
+ DestTy, true);
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular sizeof expression.
+ Constant *C = ConstantExpr::getSizeOf(Ty);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
+
+/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
+/// on Ty, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy,
+ bool Folded) {
+ // The alignment of an array is equal to the alignment of the
+ // array element. Note that this is not always true for vectors.
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy,
+ false),
+ C, DestTy);
+ return C;
+ }
+
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ // Packed structs always have an alignment of 1.
+ if (STy->isPacked())
+ return ConstantInt::get(DestTy, 1);
+
+ // Otherwise, struct alignment is the maximum alignment of any member.
+ // Without target data, we can't compare much, but we can check to see
+ // if all the members have the same alignment.
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has minimal alignment.
+ if (NumElems == 0)
+ return ConstantInt::get(DestTy, 1);
+ // Check for a struct with all members having the same alignment.
+ Constant *MemberAlign =
+ getFoldedAlignOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame)
+ return MemberAlign;
+ }
+
+ // Pointer alignment doesn't depend on the pointee type, so canonicalize them
+ // to an arbitrary pointee.
+ if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
+ if (!PTy->getElementType()->isIntegerTy(1))
+ return
+ getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
+ 1),
+ PTy->getAddressSpace()),
+ DestTy, true);
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular alignof expression.
+ Constant *C = ConstantExpr::getAlignOf(Ty);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
+
+/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
+/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo,
+ const Type *DestTy,
+ bool Folded) {
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
+ DestTy, false),
+ FieldNo, DestTy);
+ Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
+ return ConstantExpr::getNUWMul(E, N);
+ }
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
+ DestTy, false),
+ FieldNo, DestTy);
+ Constant *E = getFoldedSizeOf(VTy->getElementType(), DestTy, true);
+ return ConstantExpr::getNUWMul(E, N);
+ }
+ if (const StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has no members.
+ if (NumElems == 0)
+ return 0;
+ // Check for a struct with all members having the same size.
+ Constant *MemberSize =
+ getFoldedSizeOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberSize !=
+ getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame) {
+ Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
+ false,
+ DestTy,
+ false),
+ FieldNo, DestTy);
+ return ConstantExpr::getNUWMul(MemberSize, N);
+ }
+ }
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular offsetof expression.
+ Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
-Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
- unsigned opc, Constant *V,
+Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
const Type *DestTy) {
if (isa<UndefValue>(V)) {
// zext(undef) = 0, because the top bits will be zero.
@@ -394,7 +579,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
DestTy->isFP128Ty() ? APFloat::IEEEquad :
APFloat::Bogus,
APFloat::rmNearestTiesToEven, &ignored);
- return ConstantFP::get(Context, Val);
+ return ConstantFP::get(V->getContext(), Val);
}
return 0; // Can't fold.
case Instruction::FPToUI:
@@ -407,7 +592,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
(void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
APInt Val(DestBitWidth, 2, x);
- return ConstantInt::get(Context, Val);
+ return ConstantInt::get(FPC->getContext(), Val);
}
return 0; // Can't fold.
case Instruction::IntToPtr: //always treated as unsigned
@@ -415,9 +600,49 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
return ConstantPointerNull::get(cast<PointerType>(DestTy));
return 0; // Other pointer types cannot be casted
case Instruction::PtrToInt: // always treated as unsigned
- if (V->isNullValue()) // is it a null pointer value?
+ // Is it a null pointer value?
+ if (V->isNullValue())
return ConstantInt::get(DestTy, 0);
- return 0; // Other pointer types cannot be casted
+ // If this is a sizeof-like expression, pull out multiplications by
+ // known factors to expose them to subsequent folding. If it's an
+ // alignof-like expression, factor out known factors.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getOperand(0)->isNullValue()) {
+ const Type *Ty =
+ cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+ if (CE->getNumOperands() == 2) {
+ // Handle a sizeof-like expression.
+ Constant *Idx = CE->getOperand(1);
+ bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
+ if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
+ Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
+ DestTy, false),
+ Idx, DestTy);
+ return ConstantExpr::getMul(C, Idx);
+ }
+ } else if (CE->getNumOperands() == 3 &&
+ CE->getOperand(1)->isNullValue()) {
+ // Handle an alignof-like expression.
+ if (const StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
+ if (CI->isOne() &&
+ STy->getNumElements() == 2 &&
+ STy->getElementType(0)->isIntegerTy(1)) {
+ return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
+ }
+ }
+ // Handle an offsetof-like expression.
+ if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)){
+ if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
+ DestTy, false))
+ return C;
+ }
+ }
+ }
+ // Other pointer types cannot be casted
+ return 0;
case Instruction::UIToFP:
case Instruction::SIToFP:
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
@@ -428,7 +653,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
(void)apf.convertFromAPInt(api,
opc==Instruction::SIToFP,
APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Context, apf);
+ return ConstantFP::get(V->getContext(), apf);
}
return 0;
case Instruction::ZExt:
@@ -436,7 +661,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.zext(BitWidth);
- return ConstantInt::get(Context, Result);
+ return ConstantInt::get(V->getContext(), Result);
}
return 0;
case Instruction::SExt:
@@ -444,7 +669,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.sext(BitWidth);
- return ConstantInt::get(Context, Result);
+ return ConstantInt::get(V->getContext(), Result);
}
return 0;
case Instruction::Trunc: {
@@ -452,7 +677,7 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
APInt Result(CI->getValue());
Result.trunc(DestBitWidth);
- return ConstantInt::get(Context, Result);
+ return ConstantInt::get(V->getContext(), Result);
}
// The input must be a constantexpr. See if we can simplify this based on
@@ -466,12 +691,11 @@ Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
return 0;
}
case Instruction::BitCast:
- return FoldBitCast(Context, V, DestTy);
+ return FoldBitCast(V, DestTy);
}
}
-Constant *llvm::ConstantFoldSelectInstruction(LLVMContext&,
- Constant *Cond,
+Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
Constant *V1, Constant *V2) {
if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
return CB->getZExtValue() ? V1 : V2;
@@ -483,8 +707,7 @@ Constant *llvm::ConstantFoldSelectInstruction(LLVMContext&,
return 0;
}
-Constant *llvm::ConstantFoldExtractElementInstruction(LLVMContext &Context,
- Constant *Val,
+Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
Constant *Idx) {
if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
@@ -503,8 +726,7 @@ Constant *llvm::ConstantFoldExtractElementInstruction(LLVMContext &Context,
return 0;
}
-Constant *llvm::ConstantFoldInsertElementInstruction(LLVMContext &Context,
- Constant *Val,
+Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
Constant *Elt,
Constant *Idx) {
ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
@@ -563,8 +785,7 @@ Constant *llvm::ConstantFoldInsertElementInstruction(LLVMContext &Context,
/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
/// return the specified element value. Otherwise return null.
-static Constant *GetVectorElement(LLVMContext &Context, Constant *C,
- unsigned EltNo) {
+static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
return CV->getOperand(EltNo);
@@ -576,8 +797,7 @@ static Constant *GetVectorElement(LLVMContext &Context, Constant *C,
return 0;
}
-Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
- Constant *V1,
+Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
Constant *V2,
Constant *Mask) {
// Undefined shuffle mask -> undefined value.
@@ -590,7 +810,7 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
// Loop over the shuffle mask, evaluating each element.
SmallVector<Constant*, 32> Result;
for (unsigned i = 0; i != MaskNumElts; ++i) {
- Constant *InElt = GetVectorElement(Context, Mask, i);
+ Constant *InElt = GetVectorElement(Mask, i);
if (InElt == 0) return 0;
if (isa<UndefValue>(InElt))
@@ -600,9 +820,9 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
if (Elt >= SrcNumElts*2)
InElt = UndefValue::get(EltTy);
else if (Elt >= SrcNumElts)
- InElt = GetVectorElement(Context, V2, Elt - SrcNumElts);
+ InElt = GetVectorElement(V2, Elt - SrcNumElts);
else
- InElt = GetVectorElement(Context, V1, Elt);
+ InElt = GetVectorElement(V1, Elt);
if (InElt == 0) return 0;
} else {
// Unknown value.
@@ -614,8 +834,7 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
return ConstantVector::get(&Result[0], Result.size());
}
-Constant *llvm::ConstantFoldExtractValueInstruction(LLVMContext &Context,
- Constant *Agg,
+Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
const unsigned *Idxs,
unsigned NumIdx) {
// Base case: no indices, so return the entire value.
@@ -635,19 +854,18 @@ Constant *llvm::ConstantFoldExtractValueInstruction(LLVMContext &Context,
// Otherwise recurse.
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
- return ConstantFoldExtractValueInstruction(Context, CS->getOperand(*Idxs),
+ return ConstantFoldExtractValueInstruction(CS->getOperand(*Idxs),
Idxs+1, NumIdx-1);
if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
- return ConstantFoldExtractValueInstruction(Context, CA->getOperand(*Idxs),
+ return ConstantFoldExtractValueInstruction(CA->getOperand(*Idxs),
Idxs+1, NumIdx-1);
ConstantVector *CV = cast<ConstantVector>(Agg);
- return ConstantFoldExtractValueInstruction(Context, CV->getOperand(*Idxs),
+ return ConstantFoldExtractValueInstruction(CV->getOperand(*Idxs),
Idxs+1, NumIdx-1);
}
-Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
- Constant *Agg,
+Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
Constant *Val,
const unsigned *Idxs,
unsigned NumIdx) {
@@ -667,6 +885,8 @@ Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
unsigned numOps;
if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
numOps = AR->getNumElements();
+ else if (isa<UnionType>(AggTy))
+ numOps = 1;
else
numOps = cast<StructType>(AggTy)->getNumElements();
@@ -675,14 +895,18 @@ Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
const Type *MemberTy = AggTy->getTypeAtIndex(i);
Constant *Op =
(*Idxs == i) ?
- ConstantFoldInsertValueInstruction(Context, UndefValue::get(MemberTy),
+ ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
Val, Idxs+1, NumIdx-1) :
UndefValue::get(MemberTy);
Ops[i] = Op;
}
if (const StructType* ST = dyn_cast<StructType>(AggTy))
- return ConstantStruct::get(Context, Ops, ST->isPacked());
+ return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
+ if (const UnionType* UT = dyn_cast<UnionType>(AggTy)) {
+ assert(Ops.size() == 1 && "Union can only contain a single value!");
+ return ConstantUnion::get(UT, Ops[0]);
+ }
return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
}
@@ -706,15 +930,14 @@ Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
const Type *MemberTy = AggTy->getTypeAtIndex(i);
Constant *Op =
(*Idxs == i) ?
- ConstantFoldInsertValueInstruction(Context,
- Constant::getNullValue(MemberTy),
+ ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
Val, Idxs+1, NumIdx-1) :
Constant::getNullValue(MemberTy);
Ops[i] = Op;
}
- if (const StructType* ST = dyn_cast<StructType>(AggTy))
- return ConstantStruct::get(Context, Ops, ST->isPacked());
+ if (const StructType *ST = dyn_cast<StructType>(AggTy))
+ return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
}
@@ -724,13 +947,12 @@ Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
Constant *Op = cast<Constant>(Agg->getOperand(i));
if (*Idxs == i)
- Op = ConstantFoldInsertValueInstruction(Context, Op,
- Val, Idxs+1, NumIdx-1);
+ Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs+1, NumIdx-1);
Ops[i] = Op;
}
if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
- return ConstantStruct::get(Context, Ops, ST->isPacked());
+ return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
}
@@ -738,8 +960,7 @@ Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
}
-Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
- unsigned Opcode,
+Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
Constant *C1, Constant *C2) {
// No compile-time operations on this type yet.
if (C1->getType()->isPPC_FP128Ty())
@@ -896,51 +1117,51 @@ Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
default:
break;
case Instruction::Add:
- return ConstantInt::get(Context, C1V + C2V);
+ return ConstantInt::get(CI1->getContext(), C1V + C2V);
case Instruction::Sub:
- return ConstantInt::get(Context, C1V - C2V);
+ return ConstantInt::get(CI1->getContext(), C1V - C2V);
case Instruction::Mul:
- return ConstantInt::get(Context, C1V * C2V);
+ return ConstantInt::get(CI1->getContext(), C1V * C2V);
case Instruction::UDiv:
assert(!CI2->isNullValue() && "Div by zero handled above");
- return ConstantInt::get(Context, C1V.udiv(C2V));
+ return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
case Instruction::SDiv:
assert(!CI2->isNullValue() && "Div by zero handled above");
if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
- return ConstantInt::get(Context, C1V.sdiv(C2V));
+ return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
case Instruction::URem:
assert(!CI2->isNullValue() && "Div by zero handled above");
- return ConstantInt::get(Context, C1V.urem(C2V));
+ return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
case Instruction::SRem:
assert(!CI2->isNullValue() && "Div by zero handled above");
if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
- return ConstantInt::get(Context, C1V.srem(C2V));
+ return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
case Instruction::And:
- return ConstantInt::get(Context, C1V & C2V);
+ return ConstantInt::get(CI1->getContext(), C1V & C2V);
case Instruction::Or:
- return ConstantInt::get(Context, C1V | C2V);
+ return ConstantInt::get(CI1->getContext(), C1V | C2V);
case Instruction::Xor:
- return ConstantInt::get(Context, C1V ^ C2V);
+ return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
case Instruction::Shl: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(Context, C1V.shl(shiftAmt));
+ return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
case Instruction::LShr: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(Context, C1V.lshr(shiftAmt));
+ return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
case Instruction::AShr: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(Context, C1V.ashr(shiftAmt));
+ return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
@@ -970,19 +1191,19 @@ Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
break;
case Instruction::FAdd:
(void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Context, C3V);
+ return ConstantFP::get(C1->getContext(), C3V);
case Instruction::FSub:
(void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Context, C3V);
+ return ConstantFP::get(C1->getContext(), C3V);
case Instruction::FMul:
(void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Context, C3V);
+ return ConstantFP::get(C1->getContext(), C3V);
case Instruction::FDiv:
(void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Context, C3V);
+ return ConstantFP::get(C1->getContext(), C3V);
case Instruction::FRem:
(void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Context, C3V);
+ return ConstantFP::get(C1->getContext(), C3V);
}
}
} else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
@@ -1127,10 +1348,19 @@ Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
}
}
- if (isa<ConstantExpr>(C1)) {
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
// There are many possible foldings we could do here. We should probably
// at least fold add of a pointer with an integer into the appropriate
// getelementptr. This will improve alias analysis a bit.
+
+ // Given ((a + b) + c), if (b + c) folds to something interesting, return
+ // (a + (b + c)).
+ if (Instruction::isAssociative(Opcode, C1->getType()) &&
+ CE1->getOpcode() == Opcode) {
+ Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
+ if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
+ return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
+ }
} else if (isa<ConstantExpr>(C2)) {
// If C2 is a constant expr and C1 isn't, flop them around and fold the
// other way if possible.
@@ -1143,7 +1373,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
case Instruction::Or:
case Instruction::Xor:
// No change of opcode required.
- return ConstantFoldBinaryInstruction(Context, Opcode, C2, C1);
+ return ConstantFoldBinaryInstruction(Opcode, C2, C1);
case Instruction::Shl:
case Instruction::LShr:
@@ -1162,7 +1392,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
}
// i1 can be simplified in many cases.
- if (C1->getType()->isInteger(1)) {
+ if (C1->getType()->isIntegerTy(1)) {
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
@@ -1184,7 +1414,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
case Instruction::SRem:
// We can assume that C2 == 1. If it were zero the result would be
// undefined through division by zero.
- return ConstantInt::getFalse(Context);
+ return ConstantInt::getFalse(C1->getContext());
default:
break;
}
@@ -1218,8 +1448,7 @@ static bool isMaybeZeroSizedType(const Type *Ty) {
/// first is less than the second, return -1, if the second is less than the
/// first, return 1. If the constants are not integral, return -2.
///
-static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
- const Type *ElTy) {
+static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
if (C1 == C2) return 0;
// Ok, we found a different index. If they are not ConstantInt, we can't do
@@ -1229,11 +1458,11 @@ static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
// Ok, we have two differing integer indices. Sign extend them to be the same
// type. Long is always big enough, so we use it.
- if (!C1->getType()->isInteger(64))
- C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
+ if (!C1->getType()->isIntegerTy(64))
+ C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
- if (!C2->getType()->isInteger(64))
- C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
+ if (!C2->getType()->isIntegerTy(64))
+ C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
if (C1 == C2) return 0; // They are equal
@@ -1262,8 +1491,7 @@ static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two. We consider ConstantFP
/// to be the simplest, and ConstantExprs to be the most complex.
-static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
- Constant *V1, Constant *V2) {
+static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
assert(V1->getType() == V2->getType() &&
"Cannot compare values of different types!");
@@ -1296,7 +1524,7 @@ static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
}
// If the first operand is simple and second is ConstantExpr, swap operands.
- FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(Context, V2, V1);
+ FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
return FCmpInst::getSwappedPredicate(SwappedRelation);
} else {
@@ -1331,16 +1559,16 @@ static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
/// constants (like ConstantInt) to be the simplest, followed by
/// GlobalValues, followed by ConstantExpr's (the most complex).
///
-static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
- Constant *V1,
- Constant *V2,
+static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
bool isSigned) {
assert(V1->getType() == V2->getType() &&
"Cannot compare different types of values!");
if (V1 == V2) return ICmpInst::ICMP_EQ;
- if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
- if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
+ if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
+ !isa<BlockAddress>(V1)) {
+ if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
+ !isa<BlockAddress>(V2)) {
// We distilled this down to a simple case, use the standard constant
// folder.
ConstantInt *R = 0;
@@ -1363,36 +1591,63 @@ static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
// If the first operand is simple, swap operands.
ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(Context, V2, V1, isSigned);
+ evaluateICmpRelation(V2, V1, isSigned);
if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
return ICmpInst::getSwappedPredicate(SwappedRelation);
- } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
if (isa<ConstantExpr>(V2)) { // Swap as necessary.
ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(Context, V2, V1, isSigned);
+ evaluateICmpRelation(V2, V1, isSigned);
if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
return ICmpInst::getSwappedPredicate(SwappedRelation);
- else
- return ICmpInst::BAD_ICMP_PREDICATE;
+ return ICmpInst::BAD_ICMP_PREDICATE;
}
- // Now we know that the RHS is a GlobalValue or simple constant,
- // which (since the types must match) means that it's a ConstantPointerNull.
- if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
+ // Now we know that the RHS is a GlobalValue, BlockAddress or simple
+ // constant (which, since the types must match, means that it's a
+ // ConstantPointerNull).
+ if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
// Don't try to decide equality of aliases.
- if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
- if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
+ if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
+ if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
return ICmpInst::ICMP_NE;
+ } else if (isa<BlockAddress>(V2)) {
+ return ICmpInst::ICMP_NE; // Globals never equal labels.
} else {
assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
- // GlobalVals can never be null. Don't try to evaluate aliases.
- if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
+ // GlobalVals can never be null unless they have external weak linkage.
+ // We don't try to evaluate aliases here.
+ if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
return ICmpInst::ICMP_NE;
}
+ } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
+ if (isa<ConstantExpr>(V2)) { // Swap as necessary.
+ ICmpInst::Predicate SwappedRelation =
+ evaluateICmpRelation(V2, V1, isSigned);
+ if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
+ return ICmpInst::getSwappedPredicate(SwappedRelation);
+ return ICmpInst::BAD_ICMP_PREDICATE;
+ }
+
+ // Now we know that the RHS is a GlobalValue, BlockAddress or simple
+ // constant (which, since the types must match, means that it is a
+ // ConstantPointerNull).
+ if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
+ // Block address in another function can't equal this one, but block
+ // addresses in the current function might be the same if blocks are
+ // empty.
+ if (BA2->getFunction() != BA->getFunction())
+ return ICmpInst::ICMP_NE;
+ } else {
+ // Block addresses aren't null, don't equal the address of globals.
+ assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
+ "Canonicalization guarantee!");
+ return ICmpInst::ICMP_NE;
+ }
} else {
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
- // constantexpr, a CPR, or a simple constant.
+ // constantexpr, a global, block address, or a simple constant.
ConstantExpr *CE1 = cast<ConstantExpr>(V1);
Constant *CE1Op0 = CE1->getOperand(0);
@@ -1412,10 +1667,10 @@ static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
// If the cast is not actually changing bits, and the second operand is a
// null pointer, do the comparison with the pre-casted value.
if (V2->isNullValue() &&
- (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
+ (isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegerTy())) {
if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
- return evaluateICmpRelation(Context, CE1Op0,
+ return evaluateICmpRelation(CE1Op0,
Constant::getNullValue(CE1Op0->getType()),
isSigned);
}
@@ -1447,9 +1702,9 @@ static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
return ICmpInst::ICMP_EQ;
}
// Otherwise, we can't really say if the first operand is null or not.
- } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
+ } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
if (isa<ConstantPointerNull>(CE1Op0)) {
- if (CPR2->hasExternalWeakLinkage())
+ if (GV2->hasExternalWeakLinkage())
// Weak linkage GVals could be zero or not. We're comparing it to
// a null pointer, so its less-or-equal
return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
@@ -1457,8 +1712,8 @@ static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
// If its not weak linkage, the GVal must have a non-zero address
// so the result is less-than
return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
- if (CPR1 == CPR2) {
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
+ if (GV == GV2) {
// If this is a getelementptr of the same global, then it must be
// different. Because the types must match, the getelementptr could
// only have at most one index, and because we fold getelementptr's
@@ -1504,7 +1759,7 @@ static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
gep_type_iterator GTI = gep_type_begin(CE1);
for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
++i, ++GTI)
- switch (IdxCompare(Context, CE1->getOperand(i),
+ switch (IdxCompare(CE1->getOperand(i),
CE2->getOperand(i), GTI.getIndexedType())) {
case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
@@ -1540,14 +1795,14 @@ static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
return ICmpInst::BAD_ICMP_PREDICATE;
}
-Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
- unsigned short pred,
+Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
Constant *C1, Constant *C2) {
const Type *ResultTy;
if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
- ResultTy = VectorType::get(Type::getInt1Ty(Context), VT->getNumElements());
+ ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
+ VT->getNumElements());
else
- ResultTy = Type::getInt1Ty(Context);
+ ResultTy = Type::getInt1Ty(C1->getContext());
// Fold FCMP_FALSE/FCMP_TRUE unconditionally.
if (pred == FCmpInst::FCMP_FALSE)
@@ -1570,9 +1825,9 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
// Don't try to evaluate aliases. External weak GV can be null.
if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
if (pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(Context);
+ return ConstantInt::getFalse(C1->getContext());
else if (pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(Context);
+ return ConstantInt::getTrue(C1->getContext());
}
// icmp eq/ne(GV,null) -> false/true
} else if (C2->isNullValue()) {
@@ -1580,14 +1835,14 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
// Don't try to evaluate aliases. External weak GV can be null.
if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
if (pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(Context);
+ return ConstantInt::getFalse(C1->getContext());
else if (pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(Context);
+ return ConstantInt::getTrue(C1->getContext());
}
}
// If the comparison is a comparison between two i1's, simplify it.
- if (C1->getType()->isInteger(1)) {
+ if (C1->getType()->isIntegerTy(1)) {
switch(pred) {
case ICmpInst::ICMP_EQ:
if (isa<ConstantInt>(C2))
@@ -1605,26 +1860,16 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
APInt V2 = cast<ConstantInt>(C2)->getValue();
switch (pred) {
default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
- case ICmpInst::ICMP_EQ:
- return ConstantInt::get(Type::getInt1Ty(Context), V1 == V2);
- case ICmpInst::ICMP_NE:
- return ConstantInt::get(Type::getInt1Ty(Context), V1 != V2);
- case ICmpInst::ICMP_SLT:
- return ConstantInt::get(Type::getInt1Ty(Context), V1.slt(V2));
- case ICmpInst::ICMP_SGT:
- return ConstantInt::get(Type::getInt1Ty(Context), V1.sgt(V2));
- case ICmpInst::ICMP_SLE:
- return ConstantInt::get(Type::getInt1Ty(Context), V1.sle(V2));
- case ICmpInst::ICMP_SGE:
- return ConstantInt::get(Type::getInt1Ty(Context), V1.sge(V2));
- case ICmpInst::ICMP_ULT:
- return ConstantInt::get(Type::getInt1Ty(Context), V1.ult(V2));
- case ICmpInst::ICMP_UGT:
- return ConstantInt::get(Type::getInt1Ty(Context), V1.ugt(V2));
- case ICmpInst::ICMP_ULE:
- return ConstantInt::get(Type::getInt1Ty(Context), V1.ule(V2));
- case ICmpInst::ICMP_UGE:
- return ConstantInt::get(Type::getInt1Ty(Context), V1.uge(V2));
+ case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
+ case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
+ case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
+ case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
+ case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
+ case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
+ case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
+ case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
+ case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
+ case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
}
} else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
@@ -1632,47 +1877,47 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
APFloat::cmpResult R = C1V.compare(C2V);
switch (pred) {
default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
- case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse(Context);
- case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue(Context);
+ case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
+ case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
case FCmpInst::FCMP_UNO:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
case FCmpInst::FCMP_ORD:
- return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpUnordered);
+ return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
case FCmpInst::FCMP_UEQ:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
- R==APFloat::cmpEqual);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpEqual);
case FCmpInst::FCMP_OEQ:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpEqual);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
case FCmpInst::FCMP_UNE:
- return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpEqual);
+ return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
case FCmpInst::FCMP_ONE:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
- R==APFloat::cmpGreaterThan);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
+ R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULT:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
- R==APFloat::cmpLessThan);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpLessThan);
case FCmpInst::FCMP_OLT:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
case FCmpInst::FCMP_UGT:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
- R==APFloat::cmpGreaterThan);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OGT:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULE:
- return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpGreaterThan);
+ return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OLE:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
- R==APFloat::cmpEqual);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
+ R==APFloat::cmpEqual);
case FCmpInst::FCMP_UGE:
- return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpLessThan);
+ return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
case FCmpInst::FCMP_OGE:
- return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpEqual);
+ return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpEqual);
}
} else if (isa<VectorType>(C1->getType())) {
SmallVector<Constant*, 16> C1Elts, C2Elts;
- C1->getVectorElements(Context, C1Elts);
- C2->getVectorElements(Context, C2Elts);
+ C1->getVectorElements(C1Elts);
+ C2->getVectorElements(C2Elts);
if (C1Elts.empty() || C2Elts.empty())
return 0;
@@ -1686,9 +1931,9 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
return ConstantVector::get(&ResElts[0], ResElts.size());
}
- if (C1->getType()->isFloatingPoint()) {
+ if (C1->getType()->isFloatingPointTy()) {
int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
- switch (evaluateFCmpRelation(Context, C1, C2)) {
+ switch (evaluateFCmpRelation(C1, C2)) {
default: llvm_unreachable("Unknown relation!");
case FCmpInst::FCMP_UNO:
case FCmpInst::FCMP_ORD:
@@ -1742,12 +1987,12 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
// If we evaluated the result, return it now.
if (Result != -1)
- return ConstantInt::get(Type::getInt1Ty(Context), Result);
+ return ConstantInt::get(ResultTy, Result);
} else {
// Evaluate the relation between the two constants, per the predicate.
int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
- switch (evaluateICmpRelation(Context, C1, C2, CmpInst::isSigned(pred))) {
+ switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
default: llvm_unreachable("Unknown relational!");
case ICmpInst::BAD_ICMP_PREDICATE:
break; // Couldn't determine anything about these constants.
@@ -1812,13 +2057,15 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
// If we evaluated the result, return it now.
if (Result != -1)
- return ConstantInt::get(Type::getInt1Ty(Context), Result);
+ return ConstantInt::get(ResultTy, Result);
// If the right hand side is a bitcast, try using its inverse to simplify
- // it by moving it to the left hand side.
+ // it by moving it to the left hand side. We can't do this if it would turn
+ // a vector compare into a scalar compare or visa versa.
if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
- if (CE2->getOpcode() == Instruction::BitCast) {
- Constant *CE2Op0 = CE2->getOperand(0);
+ Constant *CE2Op0 = CE2->getOperand(0);
+ if (CE2->getOpcode() == Instruction::BitCast &&
+ isa<VectorType>(CE2->getType())==isa<VectorType>(CE2Op0->getType())) {
Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
}
@@ -1890,8 +2137,7 @@ static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) {
return true;
}
-Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
- Constant *C,
+Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
bool inBounds,
Constant* const *Idxs,
unsigned NumIdx) {
@@ -1951,10 +2197,9 @@ Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
if (!Idx0->isNullValue()) {
const Type *IdxTy = Combined->getType();
if (IdxTy != Idx0->getType()) {
- Constant *C1 =
- ConstantExpr::getSExtOrBitCast(Idx0, Type::getInt64Ty(Context));
- Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
- Type::getInt64Ty(Context));
+ const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
+ Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
+ Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
Combined = ConstantExpr::get(Instruction::Add, C1, C2);
} else {
Combined =
@@ -1975,7 +2220,7 @@ Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
}
// Implement folding of:
- // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
+ // int* getelementptr ([2 x int]* bitcast ([3 x int]* %X to [2 x int]*),
// long 0, long 0)
// To: int* getelementptr ([3 x int]* %X, long 0, long 0)
//
@@ -1992,28 +2237,6 @@ Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
ConstantExpr::getGetElementPtr(
(Constant*)CE->getOperand(0), Idxs, NumIdx);
}
-
- // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
- // Into: inttoptr (i64 0 to i8*)
- // This happens with pointers to member functions in C++.
- if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
- isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
- cast<PointerType>(CE->getType())->getElementType() ==
- Type::getInt8Ty(Context)) {
- Constant *Base = CE->getOperand(0);
- Constant *Offset = Idxs[0];
-
- // Convert the smaller integer to the larger type.
- if (Offset->getType()->getPrimitiveSizeInBits() <
- Base->getType()->getPrimitiveSizeInBits())
- Offset = ConstantExpr::getSExt(Offset, Base->getType());
- else if (Base->getType()->getPrimitiveSizeInBits() <
- Offset->getType()->getPrimitiveSizeInBits())
- Base = ConstantExpr::getZExt(Base, Offset->getType());
-
- Base = ConstantExpr::getAdd(Base, Offset);
- return ConstantExpr::getIntToPtr(Base, CE->getType());
- }
}
// Check to see if any array indices are not within the corresponding
@@ -2043,12 +2266,12 @@ Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
// Before adding, extend both operands to i64 to avoid
// overflow trouble.
- if (!PrevIdx->getType()->isInteger(64))
+ if (!PrevIdx->getType()->isIntegerTy(64))
PrevIdx = ConstantExpr::getSExt(PrevIdx,
- Type::getInt64Ty(Context));
- if (!Div->getType()->isInteger(64))
+ Type::getInt64Ty(Div->getContext()));
+ if (!Div->getType()->isIntegerTy(64))
Div = ConstantExpr::getSExt(Div,
- Type::getInt64Ty(Context));
+ Type::getInt64Ty(Div->getContext()));
NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
} else {
OpenPOWER on IntegriCloud