diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /lib/VMCore/ConstantFold.cpp | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'lib/VMCore/ConstantFold.cpp')
-rw-r--r-- | lib/VMCore/ConstantFold.cpp | 1681 |
1 files changed, 1681 insertions, 0 deletions
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp new file mode 100644 index 0000000..7e4902f --- /dev/null +++ b/lib/VMCore/ConstantFold.cpp @@ -0,0 +1,1681 @@ +//===- ConstantFold.cpp - LLVM constant folder ----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements folding of constants for LLVM. This implements the +// (internal) ConstantFold.h interface, which is used by the +// ConstantExpr::get* methods to automatically fold constants when possible. +// +// The current constant folding implementation is implemented in two pieces: the +// template-based folder for simple primitive constants like ConstantInt, and +// the special case hackery that we use to symbolically evaluate expressions +// that use ConstantExprs. +// +//===----------------------------------------------------------------------===// + +#include "ConstantFold.h" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalAlias.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include <limits> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// ConstantFold*Instruction Implementations +//===----------------------------------------------------------------------===// + +/// BitCastConstantVector - Convert the specified ConstantVector node to the +/// specified vector type. At this point, we know that the elements of the +/// input vector constant are all simple integer or FP values. +static Constant *BitCastConstantVector(ConstantVector *CV, + const VectorType *DstTy) { + // If this cast changes element count then we can't handle it here: + // doing so requires endianness information. This should be handled by + // Analysis/ConstantFolding.cpp + unsigned NumElts = DstTy->getNumElements(); + if (NumElts != CV->getNumOperands()) + return 0; + + // Check to verify that all elements of the input are simple. + for (unsigned i = 0; i != NumElts; ++i) { + if (!isa<ConstantInt>(CV->getOperand(i)) && + !isa<ConstantFP>(CV->getOperand(i))) + return 0; + } + + // Bitcast each element now. + std::vector<Constant*> Result; + const Type *DstEltTy = DstTy->getElementType(); + for (unsigned i = 0; i != NumElts; ++i) + Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy)); + return ConstantVector::get(Result); +} + +/// This function determines which opcode to use to fold two constant cast +/// expressions together. It uses CastInst::isEliminableCastPair to determine +/// the opcode. Consequently its just a wrapper around that function. +/// @brief Determine if it is valid to fold a cast of a cast +static unsigned +foldConstantCastPair( + unsigned opc, ///< opcode of the second cast constant expression + const ConstantExpr*Op, ///< the first cast constant expression + const Type *DstTy ///< desintation type of the first cast +) { + assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); + assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); + assert(CastInst::isCast(opc) && "Invalid cast opcode"); + + // The the types and opcodes for the two Cast constant expressions + const Type *SrcTy = Op->getOperand(0)->getType(); + const Type *MidTy = Op->getType(); + Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); + Instruction::CastOps secondOp = Instruction::CastOps(opc); + + // Let CastInst::isEliminableCastPair do the heavy lifting. + return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, + Type::Int64Ty); +} + +static Constant *FoldBitCast(Constant *V, const Type *DestTy) { + const Type *SrcTy = V->getType(); + if (SrcTy == DestTy) + return V; // no-op cast + + // Check to see if we are casting a pointer to an aggregate to a pointer to + // the first element. If so, return the appropriate GEP instruction. + if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) + if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) + if (PTy->getAddressSpace() == DPTy->getAddressSpace()) { + SmallVector<Value*, 8> IdxList; + IdxList.push_back(Constant::getNullValue(Type::Int32Ty)); + const Type *ElTy = PTy->getElementType(); + while (ElTy != DPTy->getElementType()) { + if (const StructType *STy = dyn_cast<StructType>(ElTy)) { + if (STy->getNumElements() == 0) break; + ElTy = STy->getElementType(0); + IdxList.push_back(Constant::getNullValue(Type::Int32Ty)); + } else if (const SequentialType *STy = + dyn_cast<SequentialType>(ElTy)) { + if (isa<PointerType>(ElTy)) break; // Can't index into pointers! + ElTy = STy->getElementType(); + IdxList.push_back(IdxList[0]); + } else { + break; + } + } + + if (ElTy == DPTy->getElementType()) + return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size()); + } + + // Handle casts from one vector constant to another. We know that the src + // and dest type have the same size (otherwise its an illegal cast). + if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { + if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { + assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && + "Not cast between same sized vectors!"); + SrcTy = NULL; + // First, check for null. Undef is already handled. + if (isa<ConstantAggregateZero>(V)) + return Constant::getNullValue(DestTy); + + if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) + return BitCastConstantVector(CV, DestPTy); + } + + // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts + // This allows for other simplifications (although some of them + // can only be handled by Analysis/ConstantFolding.cpp). + if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) + return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy); + } + + // Finally, implement bitcast folding now. The code below doesn't handle + // bitcast right. + if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. + return ConstantPointerNull::get(cast<PointerType>(DestTy)); + + // Handle integral constant input. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + if (DestTy->isInteger()) + // Integral -> Integral. This is a no-op because the bit widths must + // be the same. Consequently, we just fold to V. + return V; + + if (DestTy->isFloatingPoint()) + return ConstantFP::get(APFloat(CI->getValue(), + DestTy != Type::PPC_FP128Ty)); + + // Otherwise, can't fold this (vector?) + return 0; + } + + // Handle ConstantFP input. + if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) + // FP -> Integral. + return ConstantInt::get(FP->getValueAPF().bitcastToAPInt()); + + return 0; +} + + +Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V, + const Type *DestTy) { + if (isa<UndefValue>(V)) { + // zext(undef) = 0, because the top bits will be zero. + // sext(undef) = 0, because the top bits will all be the same. + // [us]itofp(undef) = 0, because the result value is bounded. + if (opc == Instruction::ZExt || opc == Instruction::SExt || + opc == Instruction::UIToFP || opc == Instruction::SIToFP) + return Constant::getNullValue(DestTy); + return UndefValue::get(DestTy); + } + // No compile-time operations on this type yet. + if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty) + return 0; + + // If the cast operand is a constant expression, there's a few things we can + // do to try to simplify it. + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + if (CE->isCast()) { + // Try hard to fold cast of cast because they are often eliminable. + if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) + return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); + } else if (CE->getOpcode() == Instruction::GetElementPtr) { + // If all of the indexes in the GEP are null values, there is no pointer + // adjustment going on. We might as well cast the source pointer. + bool isAllNull = true; + for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) + if (!CE->getOperand(i)->isNullValue()) { + isAllNull = false; + break; + } + if (isAllNull) + // This is casting one pointer type to another, always BitCast + return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); + } + } + + // We actually have to do a cast now. Perform the cast according to the + // opcode specified. + switch (opc) { + case Instruction::FPTrunc: + case Instruction::FPExt: + if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { + bool ignored; + APFloat Val = FPC->getValueAPF(); + Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle : + DestTy == Type::DoubleTy ? APFloat::IEEEdouble : + DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended : + DestTy == Type::FP128Ty ? APFloat::IEEEquad : + APFloat::Bogus, + APFloat::rmNearestTiesToEven, &ignored); + return ConstantFP::get(Val); + } + return 0; // Can't fold. + case Instruction::FPToUI: + case Instruction::FPToSI: + if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { + const APFloat &V = FPC->getValueAPF(); + bool ignored; + uint64_t x[2]; + uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); + (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI, + APFloat::rmTowardZero, &ignored); + APInt Val(DestBitWidth, 2, x); + return ConstantInt::get(Val); + } + if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) { + std::vector<Constant*> res; + const VectorType *DestVecTy = cast<VectorType>(DestTy); + const Type *DstEltTy = DestVecTy->getElementType(); + for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) + res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy)); + return ConstantVector::get(DestVecTy, res); + } + return 0; // Can't fold. + case Instruction::IntToPtr: //always treated as unsigned + if (V->isNullValue()) // Is it an integral null value? + return ConstantPointerNull::get(cast<PointerType>(DestTy)); + return 0; // Other pointer types cannot be casted + case Instruction::PtrToInt: // always treated as unsigned + if (V->isNullValue()) // is it a null pointer value? + return ConstantInt::get(DestTy, 0); + return 0; // Other pointer types cannot be casted + case Instruction::UIToFP: + case Instruction::SIToFP: + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + APInt api = CI->getValue(); + const uint64_t zero[] = {0, 0}; + APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(), + 2, zero)); + (void)apf.convertFromAPInt(api, + opc==Instruction::SIToFP, + APFloat::rmNearestTiesToEven); + return ConstantFP::get(apf); + } + if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) { + std::vector<Constant*> res; + const VectorType *DestVecTy = cast<VectorType>(DestTy); + const Type *DstEltTy = DestVecTy->getElementType(); + for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) + res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy)); + return ConstantVector::get(DestVecTy, res); + } + return 0; + case Instruction::ZExt: + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); + APInt Result(CI->getValue()); + Result.zext(BitWidth); + return ConstantInt::get(Result); + } + return 0; + case Instruction::SExt: + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); + APInt Result(CI->getValue()); + Result.sext(BitWidth); + return ConstantInt::get(Result); + } + return 0; + case Instruction::Trunc: + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); + APInt Result(CI->getValue()); + Result.trunc(BitWidth); + return ConstantInt::get(Result); + } + return 0; + case Instruction::BitCast: + return FoldBitCast(const_cast<Constant*>(V), DestTy); + default: + assert(!"Invalid CE CastInst opcode"); + break; + } + + assert(0 && "Failed to cast constant expression"); + return 0; +} + +Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond, + const Constant *V1, + const Constant *V2) { + if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond)) + return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2); + + if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2); + if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1); + if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1); + if (V1 == V2) return const_cast<Constant*>(V1); + return 0; +} + +Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val, + const Constant *Idx) { + if (isa<UndefValue>(Val)) // ee(undef, x) -> undef + return UndefValue::get(cast<VectorType>(Val->getType())->getElementType()); + if (Val->isNullValue()) // ee(zero, x) -> zero + return Constant::getNullValue( + cast<VectorType>(Val->getType())->getElementType()); + + if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) { + if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) { + return CVal->getOperand(CIdx->getZExtValue()); + } else if (isa<UndefValue>(Idx)) { + // ee({w,x,y,z}, undef) -> w (an arbitrary value). + return CVal->getOperand(0); + } + } + return 0; +} + +Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val, + const Constant *Elt, + const Constant *Idx) { + const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); + if (!CIdx) return 0; + APInt idxVal = CIdx->getValue(); + if (isa<UndefValue>(Val)) { + // Insertion of scalar constant into vector undef + // Optimize away insertion of undef + if (isa<UndefValue>(Elt)) + return const_cast<Constant*>(Val); + // Otherwise break the aggregate undef into multiple undefs and do + // the insertion + unsigned numOps = + cast<VectorType>(Val->getType())->getNumElements(); + std::vector<Constant*> Ops; + Ops.reserve(numOps); + for (unsigned i = 0; i < numOps; ++i) { + const Constant *Op = + (idxVal == i) ? Elt : UndefValue::get(Elt->getType()); + Ops.push_back(const_cast<Constant*>(Op)); + } + return ConstantVector::get(Ops); + } + if (isa<ConstantAggregateZero>(Val)) { + // Insertion of scalar constant into vector aggregate zero + // Optimize away insertion of zero + if (Elt->isNullValue()) + return const_cast<Constant*>(Val); + // Otherwise break the aggregate zero into multiple zeros and do + // the insertion + unsigned numOps = + cast<VectorType>(Val->getType())->getNumElements(); + std::vector<Constant*> Ops; + Ops.reserve(numOps); + for (unsigned i = 0; i < numOps; ++i) { + const Constant *Op = + (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType()); + Ops.push_back(const_cast<Constant*>(Op)); + } + return ConstantVector::get(Ops); + } + if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) { + // Insertion of scalar constant into vector constant + std::vector<Constant*> Ops; + Ops.reserve(CVal->getNumOperands()); + for (unsigned i = 0; i < CVal->getNumOperands(); ++i) { + const Constant *Op = + (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i)); + Ops.push_back(const_cast<Constant*>(Op)); + } + return ConstantVector::get(Ops); + } + + return 0; +} + +/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef +/// return the specified element value. Otherwise return null. +static Constant *GetVectorElement(const Constant *C, unsigned EltNo) { + if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) + return CV->getOperand(EltNo); + + const Type *EltTy = cast<VectorType>(C->getType())->getElementType(); + if (isa<ConstantAggregateZero>(C)) + return Constant::getNullValue(EltTy); + if (isa<UndefValue>(C)) + return UndefValue::get(EltTy); + return 0; +} + +Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1, + const Constant *V2, + const Constant *Mask) { + // Undefined shuffle mask -> undefined value. + if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType()); + + unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements(); + unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements(); + const Type *EltTy = cast<VectorType>(V1->getType())->getElementType(); + + // Loop over the shuffle mask, evaluating each element. + SmallVector<Constant*, 32> Result; + for (unsigned i = 0; i != MaskNumElts; ++i) { + Constant *InElt = GetVectorElement(Mask, i); + if (InElt == 0) return 0; + + if (isa<UndefValue>(InElt)) + InElt = UndefValue::get(EltTy); + else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) { + unsigned Elt = CI->getZExtValue(); + if (Elt >= SrcNumElts*2) + InElt = UndefValue::get(EltTy); + else if (Elt >= SrcNumElts) + InElt = GetVectorElement(V2, Elt - SrcNumElts); + else + InElt = GetVectorElement(V1, Elt); + if (InElt == 0) return 0; + } else { + // Unknown value. + return 0; + } + Result.push_back(InElt); + } + + return ConstantVector::get(&Result[0], Result.size()); +} + +Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg, + const unsigned *Idxs, + unsigned NumIdx) { + // Base case: no indices, so return the entire value. + if (NumIdx == 0) + return const_cast<Constant *>(Agg); + + if (isa<UndefValue>(Agg)) // ev(undef, x) -> undef + return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(), + Idxs, + Idxs + NumIdx)); + + if (isa<ConstantAggregateZero>(Agg)) // ev(0, x) -> 0 + return + Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(), + Idxs, + Idxs + NumIdx)); + + // Otherwise recurse. + return ConstantFoldExtractValueInstruction(Agg->getOperand(*Idxs), + Idxs+1, NumIdx-1); +} + +Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg, + const Constant *Val, + const unsigned *Idxs, + unsigned NumIdx) { + // Base case: no indices, so replace the entire value. + if (NumIdx == 0) + return const_cast<Constant *>(Val); + + if (isa<UndefValue>(Agg)) { + // Insertion of constant into aggregate undef + // Optimize away insertion of undef + if (isa<UndefValue>(Val)) + return const_cast<Constant*>(Agg); + // Otherwise break the aggregate undef into multiple undefs and do + // the insertion + const CompositeType *AggTy = cast<CompositeType>(Agg->getType()); + unsigned numOps; + if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy)) + numOps = AR->getNumElements(); + else + numOps = cast<StructType>(AggTy)->getNumElements(); + std::vector<Constant*> Ops(numOps); + for (unsigned i = 0; i < numOps; ++i) { + const Type *MemberTy = AggTy->getTypeAtIndex(i); + const Constant *Op = + (*Idxs == i) ? + ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy), + Val, Idxs+1, NumIdx-1) : + UndefValue::get(MemberTy); + Ops[i] = const_cast<Constant*>(Op); + } + if (isa<StructType>(AggTy)) + return ConstantStruct::get(Ops); + else + return ConstantArray::get(cast<ArrayType>(AggTy), Ops); + } + if (isa<ConstantAggregateZero>(Agg)) { + // Insertion of constant into aggregate zero + // Optimize away insertion of zero + if (Val->isNullValue()) + return const_cast<Constant*>(Agg); + // Otherwise break the aggregate zero into multiple zeros and do + // the insertion + const CompositeType *AggTy = cast<CompositeType>(Agg->getType()); + unsigned numOps; + if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy)) + numOps = AR->getNumElements(); + else + numOps = cast<StructType>(AggTy)->getNumElements(); + std::vector<Constant*> Ops(numOps); + for (unsigned i = 0; i < numOps; ++i) { + const Type *MemberTy = AggTy->getTypeAtIndex(i); + const Constant *Op = + (*Idxs == i) ? + ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy), + Val, Idxs+1, NumIdx-1) : + Constant::getNullValue(MemberTy); + Ops[i] = const_cast<Constant*>(Op); + } + if (isa<StructType>(AggTy)) + return ConstantStruct::get(Ops); + else + return ConstantArray::get(cast<ArrayType>(AggTy), Ops); + } + if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) { + // Insertion of constant into aggregate constant + std::vector<Constant*> Ops(Agg->getNumOperands()); + for (unsigned i = 0; i < Agg->getNumOperands(); ++i) { + const Constant *Op = + (*Idxs == i) ? + ConstantFoldInsertValueInstruction(Agg->getOperand(i), + Val, Idxs+1, NumIdx-1) : + Agg->getOperand(i); + Ops[i] = const_cast<Constant*>(Op); + } + Constant *C; + if (isa<StructType>(Agg->getType())) + C = ConstantStruct::get(Ops); + else + C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops); + return C; + } + + return 0; +} + +/// EvalVectorOp - Given two vector constants and a function pointer, apply the +/// function pointer to each element pair, producing a new ConstantVector +/// constant. Either or both of V1 and V2 may be NULL, meaning a +/// ConstantAggregateZero operand. +static Constant *EvalVectorOp(const ConstantVector *V1, + const ConstantVector *V2, + const VectorType *VTy, + Constant *(*FP)(Constant*, Constant*)) { + std::vector<Constant*> Res; + const Type *EltTy = VTy->getElementType(); + for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { + const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy); + const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy); + Res.push_back(FP(const_cast<Constant*>(C1), + const_cast<Constant*>(C2))); + } + return ConstantVector::get(Res); +} + +Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, + const Constant *C1, + const Constant *C2) { + // No compile-time operations on this type yet. + if (C1->getType() == Type::PPC_FP128Ty) + return 0; + + // Handle UndefValue up front + if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { + switch (Opcode) { + case Instruction::Xor: + if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) + // Handle undef ^ undef -> 0 special case. This is a common + // idiom (misuse). + return Constant::getNullValue(C1->getType()); + // Fallthrough + case Instruction::Add: + case Instruction::Sub: + return UndefValue::get(C1->getType()); + case Instruction::Mul: + case Instruction::And: + return Constant::getNullValue(C1->getType()); + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + if (!isa<UndefValue>(C2)) // undef / X -> 0 + return Constant::getNullValue(C1->getType()); + return const_cast<Constant*>(C2); // X / undef -> undef + case Instruction::Or: // X | undef -> -1 + if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType())) + return ConstantVector::getAllOnesValue(PTy); + return ConstantInt::getAllOnesValue(C1->getType()); + case Instruction::LShr: + if (isa<UndefValue>(C2) && isa<UndefValue>(C1)) + return const_cast<Constant*>(C1); // undef lshr undef -> undef + return Constant::getNullValue(C1->getType()); // X lshr undef -> 0 + // undef lshr X -> 0 + case Instruction::AShr: + if (!isa<UndefValue>(C2)) + return const_cast<Constant*>(C1); // undef ashr X --> undef + else if (isa<UndefValue>(C1)) + return const_cast<Constant*>(C1); // undef ashr undef -> undef + else + return const_cast<Constant*>(C1); // X ashr undef --> X + case Instruction::Shl: + // undef << X -> 0 or X << undef -> 0 + return Constant::getNullValue(C1->getType()); + } + } + + // Handle simplifications of the RHS when a constant int. + if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { + switch (Opcode) { + case Instruction::Add: + if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X + 0 == X + break; + case Instruction::Sub: + if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X - 0 == X + break; + case Instruction::Mul: + if (CI2->equalsInt(0)) return const_cast<Constant*>(C2); // X * 0 == 0 + if (CI2->equalsInt(1)) + return const_cast<Constant*>(C1); // X * 1 == X + break; + case Instruction::UDiv: + case Instruction::SDiv: + if (CI2->equalsInt(1)) + return const_cast<Constant*>(C1); // X / 1 == X + if (CI2->equalsInt(0)) + return UndefValue::get(CI2->getType()); // X / 0 == undef + break; + case Instruction::URem: + case Instruction::SRem: + if (CI2->equalsInt(1)) + return Constant::getNullValue(CI2->getType()); // X % 1 == 0 + if (CI2->equalsInt(0)) + return UndefValue::get(CI2->getType()); // X % 0 == undef + break; + case Instruction::And: + if (CI2->isZero()) return const_cast<Constant*>(C2); // X & 0 == 0 + if (CI2->isAllOnesValue()) + return const_cast<Constant*>(C1); // X & -1 == X + + if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { + // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) + if (CE1->getOpcode() == Instruction::ZExt) { + unsigned DstWidth = CI2->getType()->getBitWidth(); + unsigned SrcWidth = + CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); + APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); + if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) + return const_cast<Constant*>(C1); + } + + // If and'ing the address of a global with a constant, fold it. + if (CE1->getOpcode() == Instruction::PtrToInt && + isa<GlobalValue>(CE1->getOperand(0))) { + GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); + + // Functions are at least 4-byte aligned. + unsigned GVAlign = GV->getAlignment(); + if (isa<Function>(GV)) + GVAlign = std::max(GVAlign, 4U); + + if (GVAlign > 1) { + unsigned DstWidth = CI2->getType()->getBitWidth(); + unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign)); + APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); + + // If checking bits we know are clear, return zero. + if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) + return Constant::getNullValue(CI2->getType()); + } + } + } + break; + case Instruction::Or: + if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X | 0 == X + if (CI2->isAllOnesValue()) + return const_cast<Constant*>(C2); // X | -1 == -1 + break; + case Instruction::Xor: + if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X ^ 0 == X + break; + case Instruction::AShr: + // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 + if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) + if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. + return ConstantExpr::getLShr(const_cast<Constant*>(C1), + const_cast<Constant*>(C2)); + break; + } + } + + // At this point we know neither constant is an UndefValue. + if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { + if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { + using namespace APIntOps; + const APInt &C1V = CI1->getValue(); + const APInt &C2V = CI2->getValue(); + switch (Opcode) { + default: + break; + case Instruction::Add: + return ConstantInt::get(C1V + C2V); + case Instruction::Sub: + return ConstantInt::get(C1V - C2V); + case Instruction::Mul: + return ConstantInt::get(C1V * C2V); + case Instruction::UDiv: + assert(!CI2->isNullValue() && "Div by zero handled above"); + return ConstantInt::get(C1V.udiv(C2V)); + case Instruction::SDiv: + assert(!CI2->isNullValue() && "Div by zero handled above"); + if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) + return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef + return ConstantInt::get(C1V.sdiv(C2V)); + case Instruction::URem: + assert(!CI2->isNullValue() && "Div by zero handled above"); + return ConstantInt::get(C1V.urem(C2V)); + case Instruction::SRem: + assert(!CI2->isNullValue() && "Div by zero handled above"); + if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) + return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef + return ConstantInt::get(C1V.srem(C2V)); + case Instruction::And: + return ConstantInt::get(C1V & C2V); + case Instruction::Or: + return ConstantInt::get(C1V | C2V); + case Instruction::Xor: + return ConstantInt::get(C1V ^ C2V); + case Instruction::Shl: { + uint32_t shiftAmt = C2V.getZExtValue(); + if (shiftAmt < C1V.getBitWidth()) + return ConstantInt::get(C1V.shl(shiftAmt)); + else + return UndefValue::get(C1->getType()); // too big shift is undef + } + case Instruction::LShr: { + uint32_t shiftAmt = C2V.getZExtValue(); + if (shiftAmt < C1V.getBitWidth()) + return ConstantInt::get(C1V.lshr(shiftAmt)); + else + return UndefValue::get(C1->getType()); // too big shift is undef + } + case Instruction::AShr: { + uint32_t shiftAmt = C2V.getZExtValue(); + if (shiftAmt < C1V.getBitWidth()) + return ConstantInt::get(C1V.ashr(shiftAmt)); + else + return UndefValue::get(C1->getType()); // too big shift is undef + } + } + } + } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { + if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { + APFloat C1V = CFP1->getValueAPF(); + APFloat C2V = CFP2->getValueAPF(); + APFloat C3V = C1V; // copy for modification + switch (Opcode) { + default: + break; + case Instruction::Add: + (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C3V); + case Instruction::Sub: + (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C3V); + case Instruction::Mul: + (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C3V); + case Instruction::FDiv: + (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C3V); + case Instruction::FRem: + (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven); + return ConstantFP::get(C3V); + } + } + } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { + const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1); + const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2); + if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) && + (CP2 != NULL || isa<ConstantAggregateZero>(C2))) { + switch (Opcode) { + default: + break; + case Instruction::Add: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd); + case Instruction::Sub: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub); + case Instruction::Mul: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul); + case Instruction::UDiv: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv); + case Instruction::SDiv: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv); + case Instruction::FDiv: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv); + case Instruction::URem: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem); + case Instruction::SRem: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem); + case Instruction::FRem: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem); + case Instruction::And: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd); + case Instruction::Or: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr); + case Instruction::Xor: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor); + case Instruction::LShr: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getLShr); + case Instruction::AShr: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAShr); + case Instruction::Shl: + return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getShl); + } + } + } + + if (isa<ConstantExpr>(C1)) { + // There are many possible foldings we could do here. We should probably + // at least fold add of a pointer with an integer into the appropriate + // getelementptr. This will improve alias analysis a bit. + } else if (isa<ConstantExpr>(C2)) { + // If C2 is a constant expr and C1 isn't, flop them around and fold the + // other way if possible. + switch (Opcode) { + case Instruction::Add: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + // No change of opcode required. + return ConstantFoldBinaryInstruction(Opcode, C2, C1); + + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::Sub: + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + default: // These instructions cannot be flopped around. + break; + } + } + + // We don't know how to fold this. + return 0; +} + +/// isZeroSizedType - This type is zero sized if its an array or structure of +/// zero sized types. The only leaf zero sized type is an empty structure. +static bool isMaybeZeroSizedType(const Type *Ty) { + if (isa<OpaqueType>(Ty)) return true; // Can't say. + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + + // If all of elements have zero size, this does too. + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) + if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; + return true; + + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + return isMaybeZeroSizedType(ATy->getElementType()); + } + return false; +} + +/// IdxCompare - Compare the two constants as though they were getelementptr +/// indices. This allows coersion of the types to be the same thing. +/// +/// If the two constants are the "same" (after coersion), return 0. If the +/// first is less than the second, return -1, if the second is less than the +/// first, return 1. If the constants are not integral, return -2. +/// +static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) { + if (C1 == C2) return 0; + + // Ok, we found a different index. If they are not ConstantInt, we can't do + // anything with them. + if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) + return -2; // don't know! + + // Ok, we have two differing integer indices. Sign extend them to be the same + // type. Long is always big enough, so we use it. + if (C1->getType() != Type::Int64Ty) + C1 = ConstantExpr::getSExt(C1, Type::Int64Ty); + + if (C2->getType() != Type::Int64Ty) + C2 = ConstantExpr::getSExt(C2, Type::Int64Ty); + + if (C1 == C2) return 0; // They are equal + + // If the type being indexed over is really just a zero sized type, there is + // no pointer difference being made here. + if (isMaybeZeroSizedType(ElTy)) + return -2; // dunno. + + // If they are really different, now that they are the same type, then we + // found a difference! + if (cast<ConstantInt>(C1)->getSExtValue() < + cast<ConstantInt>(C2)->getSExtValue()) + return -1; + else + return 1; +} + +/// evaluateFCmpRelation - This function determines if there is anything we can +/// decide about the two constants provided. This doesn't need to handle simple +/// things like ConstantFP comparisons, but should instead handle ConstantExprs. +/// If we can determine that the two constants have a particular relation to +/// each other, we should return the corresponding FCmpInst predicate, +/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in +/// ConstantFoldCompareInstruction. +/// +/// To simplify this code we canonicalize the relation so that the first +/// operand is always the most "complex" of the two. We consider ConstantFP +/// to be the simplest, and ConstantExprs to be the most complex. +static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1, + const Constant *V2) { + assert(V1->getType() == V2->getType() && + "Cannot compare values of different types!"); + + // No compile-time operations on this type yet. + if (V1->getType() == Type::PPC_FP128Ty) + return FCmpInst::BAD_FCMP_PREDICATE; + + // Handle degenerate case quickly + if (V1 == V2) return FCmpInst::FCMP_OEQ; + + if (!isa<ConstantExpr>(V1)) { + if (!isa<ConstantExpr>(V2)) { + // We distilled thisUse the standard constant folder for a few cases + ConstantInt *R = 0; + Constant *C1 = const_cast<Constant*>(V1); + Constant *C2 = const_cast<Constant*>(V2); + R = dyn_cast<ConstantInt>( + ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2)); + if (R && !R->isZero()) + return FCmpInst::FCMP_OEQ; + R = dyn_cast<ConstantInt>( + ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2)); + if (R && !R->isZero()) + return FCmpInst::FCMP_OLT; + R = dyn_cast<ConstantInt>( + ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2)); + if (R && !R->isZero()) + return FCmpInst::FCMP_OGT; + + // Nothing more we can do + return FCmpInst::BAD_FCMP_PREDICATE; + } + + // If the first operand is simple and second is ConstantExpr, swap operands. + FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); + if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) + return FCmpInst::getSwappedPredicate(SwappedRelation); + } else { + // Ok, the LHS is known to be a constantexpr. The RHS can be any of a + // constantexpr or a simple constant. + const ConstantExpr *CE1 = cast<ConstantExpr>(V1); + switch (CE1->getOpcode()) { + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + // We might be able to do something with these but we don't right now. + break; + default: + break; + } + } + // There are MANY other foldings that we could perform here. They will + // probably be added on demand, as they seem needed. + return FCmpInst::BAD_FCMP_PREDICATE; +} + +/// evaluateICmpRelation - This function determines if there is anything we can +/// decide about the two constants provided. This doesn't need to handle simple +/// things like integer comparisons, but should instead handle ConstantExprs +/// and GlobalValues. If we can determine that the two constants have a +/// particular relation to each other, we should return the corresponding ICmp +/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE. +/// +/// To simplify this code we canonicalize the relation so that the first +/// operand is always the most "complex" of the two. We consider simple +/// constants (like ConstantInt) to be the simplest, followed by +/// GlobalValues, followed by ConstantExpr's (the most complex). +/// +static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1, + const Constant *V2, + bool isSigned) { + assert(V1->getType() == V2->getType() && + "Cannot compare different types of values!"); + if (V1 == V2) return ICmpInst::ICMP_EQ; + + if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) { + if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) { + // We distilled this down to a simple case, use the standard constant + // folder. + ConstantInt *R = 0; + Constant *C1 = const_cast<Constant*>(V1); + Constant *C2 = const_cast<Constant*>(V2); + ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; + R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2)); + if (R && !R->isZero()) + return pred; + pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; + R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2)); + if (R && !R->isZero()) + return pred; + pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2)); + if (R && !R->isZero()) + return pred; + + // If we couldn't figure it out, bail. + return ICmpInst::BAD_ICMP_PREDICATE; + } + + // If the first operand is simple, swap operands. + ICmpInst::Predicate SwappedRelation = + evaluateICmpRelation(V2, V1, isSigned); + if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) + return ICmpInst::getSwappedPredicate(SwappedRelation); + + } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) { + if (isa<ConstantExpr>(V2)) { // Swap as necessary. + ICmpInst::Predicate SwappedRelation = + evaluateICmpRelation(V2, V1, isSigned); + if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) + return ICmpInst::getSwappedPredicate(SwappedRelation); + else + return ICmpInst::BAD_ICMP_PREDICATE; + } + + // Now we know that the RHS is a GlobalValue or simple constant, + // which (since the types must match) means that it's a ConstantPointerNull. + if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) { + // Don't try to decide equality of aliases. + if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2)) + if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage()) + return ICmpInst::ICMP_NE; + } else { + assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); + // GlobalVals can never be null. Don't try to evaluate aliases. + if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1)) + return ICmpInst::ICMP_NE; + } + } else { + // Ok, the LHS is known to be a constantexpr. The RHS can be any of a + // constantexpr, a CPR, or a simple constant. + const ConstantExpr *CE1 = cast<ConstantExpr>(V1); + const Constant *CE1Op0 = CE1->getOperand(0); + + switch (CE1->getOpcode()) { + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + break; // We can't evaluate floating point casts or truncations. + + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::BitCast: + case Instruction::ZExt: + case Instruction::SExt: + // If the cast is not actually changing bits, and the second operand is a + // null pointer, do the comparison with the pre-casted value. + if (V2->isNullValue() && + (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) { + bool sgnd = isSigned; + if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; + if (CE1->getOpcode() == Instruction::SExt) isSigned = true; + return evaluateICmpRelation(CE1Op0, + Constant::getNullValue(CE1Op0->getType()), + sgnd); + } + + // If the dest type is a pointer type, and the RHS is a constantexpr cast + // from the same type as the src of the LHS, evaluate the inputs. This is + // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)", + // which happens a lot in compilers with tagged integers. + if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) + if (CE2->isCast() && isa<PointerType>(CE1->getType()) && + CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() && + CE1->getOperand(0)->getType()->isInteger()) { + bool sgnd = isSigned; + if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; + if (CE1->getOpcode() == Instruction::SExt) isSigned = true; + return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0), + sgnd); + } + break; + + case Instruction::GetElementPtr: + // Ok, since this is a getelementptr, we know that the constant has a + // pointer type. Check the various cases. + if (isa<ConstantPointerNull>(V2)) { + // If we are comparing a GEP to a null pointer, check to see if the base + // of the GEP equals the null pointer. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { + if (GV->hasExternalWeakLinkage()) + // Weak linkage GVals could be zero or not. We're comparing that + // to null pointer so its greater-or-equal + return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; + else + // If its not weak linkage, the GVal must have a non-zero address + // so the result is greater-than + return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + } else if (isa<ConstantPointerNull>(CE1Op0)) { + // If we are indexing from a null pointer, check to see if we have any + // non-zero indices. + for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) + if (!CE1->getOperand(i)->isNullValue()) + // Offsetting from null, must not be equal. + return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + // Only zero indexes from null, must still be zero. + return ICmpInst::ICMP_EQ; + } + // Otherwise, we can't really say if the first operand is null or not. + } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) { + if (isa<ConstantPointerNull>(CE1Op0)) { + if (CPR2->hasExternalWeakLinkage()) + // Weak linkage GVals could be zero or not. We're comparing it to + // a null pointer, so its less-or-equal + return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; + else + // If its not weak linkage, the GVal must have a non-zero address + // so the result is less-than + return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; + } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) { + if (CPR1 == CPR2) { + // If this is a getelementptr of the same global, then it must be + // different. Because the types must match, the getelementptr could + // only have at most one index, and because we fold getelementptr's + // with a single zero index, it must be nonzero. + assert(CE1->getNumOperands() == 2 && + !CE1->getOperand(1)->isNullValue() && + "Suprising getelementptr!"); + return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + } else { + // If they are different globals, we don't know what the value is, + // but they can't be equal. + return ICmpInst::ICMP_NE; + } + } + } else { + const ConstantExpr *CE2 = cast<ConstantExpr>(V2); + const Constant *CE2Op0 = CE2->getOperand(0); + + // There are MANY other foldings that we could perform here. They will + // probably be added on demand, as they seem needed. + switch (CE2->getOpcode()) { + default: break; + case Instruction::GetElementPtr: + // By far the most common case to handle is when the base pointers are + // obviously to the same or different globals. + if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { + if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal + return ICmpInst::ICMP_NE; + // Ok, we know that both getelementptr instructions are based on the + // same global. From this, we can precisely determine the relative + // ordering of the resultant pointers. + unsigned i = 1; + + // Compare all of the operands the GEP's have in common. + gep_type_iterator GTI = gep_type_begin(CE1); + for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); + ++i, ++GTI) + switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i), + GTI.getIndexedType())) { + case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; + case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; + case -2: return ICmpInst::BAD_ICMP_PREDICATE; + } + + // Ok, we ran out of things they have in common. If any leftovers + // are non-zero then we have a difference, otherwise we are equal. + for (; i < CE1->getNumOperands(); ++i) + if (!CE1->getOperand(i)->isNullValue()) { + if (isa<ConstantInt>(CE1->getOperand(i))) + return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + else + return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. + } + + for (; i < CE2->getNumOperands(); ++i) + if (!CE2->getOperand(i)->isNullValue()) { + if (isa<ConstantInt>(CE2->getOperand(i))) + return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; + else + return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. + } + return ICmpInst::ICMP_EQ; + } + } + } + default: + break; + } + } + + return ICmpInst::BAD_ICMP_PREDICATE; +} + +Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, + const Constant *C1, + const Constant *C2) { + // Fold FCMP_FALSE/FCMP_TRUE unconditionally. + if (pred == FCmpInst::FCMP_FALSE) { + if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) + return Constant::getNullValue(VectorType::getInteger(VT)); + else + return ConstantInt::getFalse(); + } + + if (pred == FCmpInst::FCMP_TRUE) { + if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) + return Constant::getAllOnesValue(VectorType::getInteger(VT)); + else + return ConstantInt::getTrue(); + } + + // Handle some degenerate cases first + if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { + // vicmp/vfcmp -> [vector] undef + if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) + return UndefValue::get(VectorType::getInteger(VTy)); + + // icmp/fcmp -> i1 undef + return UndefValue::get(Type::Int1Ty); + } + + // No compile-time operations on this type yet. + if (C1->getType() == Type::PPC_FP128Ty) + return 0; + + // icmp eq/ne(null,GV) -> false/true + if (C1->isNullValue()) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) + // Don't try to evaluate aliases. External weak GV can be null. + if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) { + if (pred == ICmpInst::ICMP_EQ) + return ConstantInt::getFalse(); + else if (pred == ICmpInst::ICMP_NE) + return ConstantInt::getTrue(); + } + // icmp eq/ne(GV,null) -> false/true + } else if (C2->isNullValue()) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) + // Don't try to evaluate aliases. External weak GV can be null. + if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) { + if (pred == ICmpInst::ICMP_EQ) + return ConstantInt::getFalse(); + else if (pred == ICmpInst::ICMP_NE) + return ConstantInt::getTrue(); + } + } + + if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { + APInt V1 = cast<ConstantInt>(C1)->getValue(); + APInt V2 = cast<ConstantInt>(C2)->getValue(); + switch (pred) { + default: assert(0 && "Invalid ICmp Predicate"); return 0; + case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2); + case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2); + case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2)); + case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2)); + case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2)); + case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2)); + case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2)); + case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2)); + case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2)); + case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2)); + } + } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { + APFloat C1V = cast<ConstantFP>(C1)->getValueAPF(); + APFloat C2V = cast<ConstantFP>(C2)->getValueAPF(); + APFloat::cmpResult R = C1V.compare(C2V); + switch (pred) { + default: assert(0 && "Invalid FCmp Predicate"); return 0; + case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse(); + case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue(); + case FCmpInst::FCMP_UNO: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered); + case FCmpInst::FCMP_ORD: + return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered); + case FCmpInst::FCMP_UEQ: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered || + R==APFloat::cmpEqual); + case FCmpInst::FCMP_OEQ: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual); + case FCmpInst::FCMP_UNE: + return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual); + case FCmpInst::FCMP_ONE: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan || + R==APFloat::cmpGreaterThan); + case FCmpInst::FCMP_ULT: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered || + R==APFloat::cmpLessThan); + case FCmpInst::FCMP_OLT: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan); + case FCmpInst::FCMP_UGT: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered || + R==APFloat::cmpGreaterThan); + case FCmpInst::FCMP_OGT: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan); + case FCmpInst::FCMP_ULE: + return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan); + case FCmpInst::FCMP_OLE: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan || + R==APFloat::cmpEqual); + case FCmpInst::FCMP_UGE: + return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan); + case FCmpInst::FCMP_OGE: + return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan || + R==APFloat::cmpEqual); + } + } else if (isa<VectorType>(C1->getType())) { + SmallVector<Constant*, 16> C1Elts, C2Elts; + C1->getVectorElements(C1Elts); + C2->getVectorElements(C2Elts); + + // If we can constant fold the comparison of each element, constant fold + // the whole vector comparison. + SmallVector<Constant*, 4> ResElts; + const Type *InEltTy = C1Elts[0]->getType(); + bool isFP = InEltTy->isFloatingPoint(); + const Type *ResEltTy = InEltTy; + if (isFP) + ResEltTy = IntegerType::get(InEltTy->getPrimitiveSizeInBits()); + + for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) { + // Compare the elements, producing an i1 result or constant expr. + Constant *C; + if (isFP) + C = ConstantExpr::getFCmp(pred, C1Elts[i], C2Elts[i]); + else + C = ConstantExpr::getICmp(pred, C1Elts[i], C2Elts[i]); + + // If it is a bool or undef result, convert to the dest type. + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + if (CI->isZero()) + ResElts.push_back(Constant::getNullValue(ResEltTy)); + else + ResElts.push_back(Constant::getAllOnesValue(ResEltTy)); + } else if (isa<UndefValue>(C)) { + ResElts.push_back(UndefValue::get(ResEltTy)); + } else { + break; + } + } + + if (ResElts.size() == C1Elts.size()) + return ConstantVector::get(&ResElts[0], ResElts.size()); + } + + if (C1->getType()->isFloatingPoint()) { + int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. + switch (evaluateFCmpRelation(C1, C2)) { + default: assert(0 && "Unknown relation!"); + case FCmpInst::FCMP_UNO: + case FCmpInst::FCMP_ORD: + case FCmpInst::FCMP_UEQ: + case FCmpInst::FCMP_UNE: + case FCmpInst::FCMP_ULT: + case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_TRUE: + case FCmpInst::FCMP_FALSE: + case FCmpInst::BAD_FCMP_PREDICATE: + break; // Couldn't determine anything about these constants. + case FCmpInst::FCMP_OEQ: // We know that C1 == C2 + Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || + pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || + pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); + break; + case FCmpInst::FCMP_OLT: // We know that C1 < C2 + Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || + pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || + pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); + break; + case FCmpInst::FCMP_OGT: // We know that C1 > C2 + Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || + pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || + pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); + break; + case FCmpInst::FCMP_OLE: // We know that C1 <= C2 + // We can only partially decide this relation. + if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) + Result = 0; + else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) + Result = 1; + break; + case FCmpInst::FCMP_OGE: // We known that C1 >= C2 + // We can only partially decide this relation. + if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) + Result = 0; + else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) + Result = 1; + break; + case ICmpInst::ICMP_NE: // We know that C1 != C2 + // We can only partially decide this relation. + if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) + Result = 0; + else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) + Result = 1; + break; + } + + // If we evaluated the result, return it now. + if (Result != -1) { + if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) { + if (Result == 0) + return Constant::getNullValue(VectorType::getInteger(VT)); + else + return Constant::getAllOnesValue(VectorType::getInteger(VT)); + } + return ConstantInt::get(Type::Int1Ty, Result); + } + + } else { + // Evaluate the relation between the two constants, per the predicate. + int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. + switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) { + default: assert(0 && "Unknown relational!"); + case ICmpInst::BAD_ICMP_PREDICATE: + break; // Couldn't determine anything about these constants. + case ICmpInst::ICMP_EQ: // We know the constants are equal! + // If we know the constants are equal, we can decide the result of this + // computation precisely. + Result = (pred == ICmpInst::ICMP_EQ || + pred == ICmpInst::ICMP_ULE || + pred == ICmpInst::ICMP_SLE || + pred == ICmpInst::ICMP_UGE || + pred == ICmpInst::ICMP_SGE); + break; + case ICmpInst::ICMP_ULT: + // If we know that C1 < C2, we can decide the result of this computation + // precisely. + Result = (pred == ICmpInst::ICMP_ULT || + pred == ICmpInst::ICMP_NE || + pred == ICmpInst::ICMP_ULE); + break; + case ICmpInst::ICMP_SLT: + // If we know that C1 < C2, we can decide the result of this computation + // precisely. + Result = (pred == ICmpInst::ICMP_SLT || + pred == ICmpInst::ICMP_NE || + pred == ICmpInst::ICMP_SLE); + break; + case ICmpInst::ICMP_UGT: + // If we know that C1 > C2, we can decide the result of this computation + // precisely. + Result = (pred == ICmpInst::ICMP_UGT || + pred == ICmpInst::ICMP_NE || + pred == ICmpInst::ICMP_UGE); + break; + case ICmpInst::ICMP_SGT: + // If we know that C1 > C2, we can decide the result of this computation + // precisely. + Result = (pred == ICmpInst::ICMP_SGT || + pred == ICmpInst::ICMP_NE || + pred == ICmpInst::ICMP_SGE); + break; + case ICmpInst::ICMP_ULE: + // If we know that C1 <= C2, we can only partially decide this relation. + if (pred == ICmpInst::ICMP_UGT) Result = 0; + if (pred == ICmpInst::ICMP_ULT) Result = 1; + break; + case ICmpInst::ICMP_SLE: + // If we know that C1 <= C2, we can only partially decide this relation. + if (pred == ICmpInst::ICMP_SGT) Result = 0; + if (pred == ICmpInst::ICMP_SLT) Result = 1; + break; + + case ICmpInst::ICMP_UGE: + // If we know that C1 >= C2, we can only partially decide this relation. + if (pred == ICmpInst::ICMP_ULT) Result = 0; + if (pred == ICmpInst::ICMP_UGT) Result = 1; + break; + case ICmpInst::ICMP_SGE: + // If we know that C1 >= C2, we can only partially decide this relation. + if (pred == ICmpInst::ICMP_SLT) Result = 0; + if (pred == ICmpInst::ICMP_SGT) Result = 1; + break; + + case ICmpInst::ICMP_NE: + // If we know that C1 != C2, we can only partially decide this relation. + if (pred == ICmpInst::ICMP_EQ) Result = 0; + if (pred == ICmpInst::ICMP_NE) Result = 1; + break; + } + + // If we evaluated the result, return it now. + if (Result != -1) { + if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) { + if (Result == 0) + return Constant::getNullValue(VT); + else + return Constant::getAllOnesValue(VT); + } + return ConstantInt::get(Type::Int1Ty, Result); + } + + if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) { + // If C2 is a constant expr and C1 isn't, flop them around and fold the + // other way if possible. + switch (pred) { + case ICmpInst::ICMP_EQ: + case ICmpInst::ICMP_NE: + // No change of predicate required. + return ConstantFoldCompareInstruction(pred, C2, C1); + + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_ULE: + case ICmpInst::ICMP_SLE: + case ICmpInst::ICMP_UGE: + case ICmpInst::ICMP_SGE: + // Change the predicate as necessary to swap the operands. + pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); + return ConstantFoldCompareInstruction(pred, C2, C1); + + default: // These predicates cannot be flopped around. + break; + } + } + } + return 0; +} + +Constant *llvm::ConstantFoldGetElementPtr(const Constant *C, + Constant* const *Idxs, + unsigned NumIdx) { + if (NumIdx == 0 || + (NumIdx == 1 && Idxs[0]->isNullValue())) + return const_cast<Constant*>(C); + + if (isa<UndefValue>(C)) { + const PointerType *Ptr = cast<PointerType>(C->getType()); + const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, + (Value **)Idxs, + (Value **)Idxs+NumIdx); + assert(Ty != 0 && "Invalid indices for GEP!"); + return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace())); + } + + Constant *Idx0 = Idxs[0]; + if (C->isNullValue()) { + bool isNull = true; + for (unsigned i = 0, e = NumIdx; i != e; ++i) + if (!Idxs[i]->isNullValue()) { + isNull = false; + break; + } + if (isNull) { + const PointerType *Ptr = cast<PointerType>(C->getType()); + const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, + (Value**)Idxs, + (Value**)Idxs+NumIdx); + assert(Ty != 0 && "Invalid indices for GEP!"); + return + ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace())); + } + } + + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) { + // Combine Indices - If the source pointer to this getelementptr instruction + // is a getelementptr instruction, combine the indices of the two + // getelementptr instructions into a single instruction. + // + if (CE->getOpcode() == Instruction::GetElementPtr) { + const Type *LastTy = 0; + for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); + I != E; ++I) + LastTy = *I; + + if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) { + SmallVector<Value*, 16> NewIndices; + NewIndices.reserve(NumIdx + CE->getNumOperands()); + for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i) + NewIndices.push_back(CE->getOperand(i)); + + // Add the last index of the source with the first index of the new GEP. + // Make sure to handle the case when they are actually different types. + Constant *Combined = CE->getOperand(CE->getNumOperands()-1); + // Otherwise it must be an array. + if (!Idx0->isNullValue()) { + const Type *IdxTy = Combined->getType(); + if (IdxTy != Idx0->getType()) { + Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty); + Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, + Type::Int64Ty); + Combined = ConstantExpr::get(Instruction::Add, C1, C2); + } else { + Combined = + ConstantExpr::get(Instruction::Add, Idx0, Combined); + } + } + + NewIndices.push_back(Combined); + NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx); + return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0], + NewIndices.size()); + } + } + + // Implement folding of: + // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*), + // long 0, long 0) + // To: int* getelementptr ([3 x int]* %X, long 0, long 0) + // + if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) { + if (const PointerType *SPT = + dyn_cast<PointerType>(CE->getOperand(0)->getType())) + if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType())) + if (const ArrayType *CAT = + dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType())) + if (CAT->getElementType() == SAT->getElementType()) + return ConstantExpr::getGetElementPtr( + (Constant*)CE->getOperand(0), Idxs, NumIdx); + } + + // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1) + // Into: inttoptr (i64 0 to i8*) + // This happens with pointers to member functions in C++. + if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 && + isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) && + cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) { + Constant *Base = CE->getOperand(0); + Constant *Offset = Idxs[0]; + + // Convert the smaller integer to the larger type. + if (Offset->getType()->getPrimitiveSizeInBits() < + Base->getType()->getPrimitiveSizeInBits()) + Offset = ConstantExpr::getSExt(Offset, Base->getType()); + else if (Base->getType()->getPrimitiveSizeInBits() < + Offset->getType()->getPrimitiveSizeInBits()) + Base = ConstantExpr::getZExt(Base, Offset->getType()); + + Base = ConstantExpr::getAdd(Base, Offset); + return ConstantExpr::getIntToPtr(Base, CE->getType()); + } + } + return 0; +} + |