summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2011-02-20 12:57:14 +0000
committerdim <dim@FreeBSD.org>2011-02-20 12:57:14 +0000
commitcbb70ce070d220642b038ea101d9c0f9fbf860d6 (patch)
treed2b61ce94e654cb01a254d2195259db5f9cc3f3c /lib/Transforms/Utils
parent4ace901e87dac5bbbac78ed325e75462e48e386e (diff)
downloadFreeBSD-src-cbb70ce070d220642b038ea101d9c0f9fbf860d6.zip
FreeBSD-src-cbb70ce070d220642b038ea101d9c0f9fbf860d6.tar.gz
Vendor import of llvm trunk r126079:
http://llvm.org/svn/llvm-project/llvm/trunk@126079
Diffstat (limited to 'lib/Transforms/Utils')
-rw-r--r--lib/Transforms/Utils/AddrModeMatcher.cpp28
-rw-r--r--lib/Transforms/Utils/BasicBlockUtils.cpp157
-rw-r--r--lib/Transforms/Utils/BreakCriticalEdges.cpp56
-rw-r--r--lib/Transforms/Utils/BuildLibCalls.cpp54
-rw-r--r--lib/Transforms/Utils/CMakeLists.txt3
-rw-r--r--lib/Transforms/Utils/CloneFunction.cpp40
-rw-r--r--lib/Transforms/Utils/CloneLoop.cpp45
-rw-r--r--lib/Transforms/Utils/CloneModule.cpp8
-rw-r--r--lib/Transforms/Utils/CodeExtractor.cpp4
-rw-r--r--lib/Transforms/Utils/DemoteRegToStack.cpp2
-rw-r--r--lib/Transforms/Utils/InlineFunction.cpp173
-rw-r--r--lib/Transforms/Utils/InstructionNamer.cpp9
-rw-r--r--lib/Transforms/Utils/LCSSA.cpp12
-rw-r--r--lib/Transforms/Utils/Local.cpp148
-rw-r--r--lib/Transforms/Utils/LoopSimplify.cpp69
-rw-r--r--lib/Transforms/Utils/LoopUnroll.cpp38
-rw-r--r--lib/Transforms/Utils/LowerInvoke.cpp27
-rw-r--r--lib/Transforms/Utils/LowerSwitch.cpp9
-rw-r--r--lib/Transforms/Utils/Mem2Reg.cpp17
-rw-r--r--lib/Transforms/Utils/PromoteMemoryToRegister.cpp209
-rw-r--r--lib/Transforms/Utils/SSAUpdater.cpp171
-rw-r--r--lib/Transforms/Utils/SimplifyCFG.cpp2003
-rw-r--r--lib/Transforms/Utils/SimplifyInstructions.cpp94
-rw-r--r--lib/Transforms/Utils/UnifyFunctionExitNodes.cpp2
-rw-r--r--lib/Transforms/Utils/Utils.cpp37
-rw-r--r--lib/Transforms/Utils/ValueMapper.cpp178
26 files changed, 2147 insertions, 1446 deletions
diff --git a/lib/Transforms/Utils/AddrModeMatcher.cpp b/lib/Transforms/Utils/AddrModeMatcher.cpp
index 4d64c85..be7bed1 100644
--- a/lib/Transforms/Utils/AddrModeMatcher.cpp
+++ b/lib/Transforms/Utils/AddrModeMatcher.cpp
@@ -21,6 +21,7 @@
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/CallSite.h"
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -379,27 +380,10 @@ bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
/// return false.
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
const TargetLowering &TLI) {
- std::vector<InlineAsm::ConstraintInfo>
- Constraints = IA->ParseConstraints();
-
- unsigned ArgNo = 0; // The argument of the CallInst.
- for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo OpInfo(Constraints[i]);
-
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- if (OpInfo.isIndirect)
- OpInfo.CallOperandVal = CI->getArgOperand(ArgNo++);
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = CI->getArgOperand(ArgNo++);
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
-
+ TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
+ for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+ TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
+
// Compute the constraint code and ConstraintType to use.
TLI.ComputeConstraintToUse(OpInfo, SDValue());
@@ -584,7 +568,7 @@ IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
MemoryInst, Result);
Matcher.IgnoreProfitability = true;
bool Success = Matcher.MatchAddr(Address, 0);
- Success = Success; assert(Success && "Couldn't select *anything*?");
+ (void)Success; assert(Success && "Couldn't select *anything*?");
// If the match didn't cover I, then it won't be shared by it.
if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
diff --git a/lib/Transforms/Utils/BasicBlockUtils.cpp b/lib/Transforms/Utils/BasicBlockUtils.cpp
index 093083a..acaea19 100644
--- a/lib/Transforms/Utils/BasicBlockUtils.cpp
+++ b/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -19,8 +19,9 @@
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Scalar.h"
@@ -63,12 +64,27 @@ void llvm::DeleteDeadBlock(BasicBlock *BB) {
/// any single-entry PHI nodes in it, fold them away. This handles the case
/// when all entries to the PHI nodes in a block are guaranteed equal, such as
/// when the block has exactly one predecessor.
-void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
+void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
+ if (!isa<PHINode>(BB->begin())) return;
+
+ AliasAnalysis *AA = 0;
+ MemoryDependenceAnalysis *MemDep = 0;
+ if (P) {
+ AA = P->getAnalysisIfAvailable<AliasAnalysis>();
+ MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
+ }
+
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
else
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+
+ if (MemDep)
+ MemDep->removeInstruction(PN); // Memdep updates AA itself.
+ else if (AA && isa<PointerType>(PN->getType()))
+ AA->deleteValue(PN);
+
PN->eraseFromParent();
}
}
@@ -110,7 +126,7 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
if (isa<InvokeInst>(PredBB->getTerminator())) return false;
succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
- BasicBlock* OnlySucc = BB;
+ BasicBlock *OnlySucc = BB;
for (; SI != SE; ++SI)
if (*SI != OnlySucc) {
OnlySucc = 0; // There are multiple distinct successors!
@@ -131,10 +147,8 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
}
// Begin by getting rid of unneeded PHIs.
- while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
- PN->replaceAllUsesWith(PN->getIncomingValue(0));
- BB->getInstList().pop_front(); // Delete the phi node...
- }
+ if (isa<PHINode>(BB->front()))
+ FoldSingleEntryPHINodes(BB, P);
// Delete the unconditional branch from the predecessor...
PredBB->getInstList().pop_back();
@@ -152,24 +166,27 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
// Finally, erase the old block and update dominator info.
if (P) {
- if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
- DomTreeNode* DTN = DT->getNode(BB);
- DomTreeNode* PredDTN = DT->getNode(PredBB);
-
- if (DTN) {
- SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
- for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
+ if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
+ if (DomTreeNode *DTN = DT->getNode(BB)) {
+ DomTreeNode *PredDTN = DT->getNode(PredBB);
+ SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
+ for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(),
DE = Children.end(); DI != DE; ++DI)
DT->changeImmediateDominator(*DI, PredDTN);
DT->eraseNode(BB);
}
+
+ if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
+ LI->removeBlock(BB);
+
+ if (MemoryDependenceAnalysis *MD =
+ P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
+ MD->invalidateCachedPredecessors();
}
}
BB->eraseFromParent();
-
-
return true;
}
@@ -218,52 +235,6 @@ void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
}
-/// RemoveSuccessor - Change the specified terminator instruction such that its
-/// successor SuccNum no longer exists. Because this reduces the outgoing
-/// degree of the current basic block, the actual terminator instruction itself
-/// may have to be changed. In the case where the last successor of the block
-/// is deleted, a return instruction is inserted in its place which can cause a
-/// surprising change in program behavior if it is not expected.
-///
-void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
- assert(SuccNum < TI->getNumSuccessors() &&
- "Trying to remove a nonexistant successor!");
-
- // If our old successor block contains any PHI nodes, remove the entry in the
- // PHI nodes that comes from this branch...
- //
- BasicBlock *BB = TI->getParent();
- TI->getSuccessor(SuccNum)->removePredecessor(BB);
-
- TerminatorInst *NewTI = 0;
- switch (TI->getOpcode()) {
- case Instruction::Br:
- // If this is a conditional branch... convert to unconditional branch.
- if (TI->getNumSuccessors() == 2) {
- cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
- } else { // Otherwise convert to a return instruction...
- Value *RetVal = 0;
-
- // Create a value to return... if the function doesn't return null...
- if (!BB->getParent()->getReturnType()->isVoidTy())
- RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
-
- // Create the return...
- NewTI = ReturnInst::Create(TI->getContext(), RetVal);
- }
- break;
-
- case Instruction::Invoke: // Should convert to call
- case Instruction::Switch: // Should remove entry
- default:
- case Instruction::Ret: // Cannot happen, has no successors!
- llvm_unreachable("Unhandled terminator inst type in RemoveSuccessor!");
- }
-
- if (NewTI) // If it's a different instruction, replace.
- ReplaceInstWithInst(TI, NewTI);
-}
-
/// GetSuccessorNumber - Search for the specified successor of basic block BB
/// and return its position in the terminator instruction's list of
/// successors. It is an error to call this with a block that is not a
@@ -300,13 +271,13 @@ BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
assert(SP == BB && "CFG broken");
SP = NULL;
return SplitBlock(Succ, Succ->begin(), P);
- } else {
- // Otherwise, if BB has a single successor, split it at the bottom of the
- // block.
- assert(BB->getTerminator()->getNumSuccessors() == 1 &&
- "Should have a single succ!");
- return SplitBlock(BB, BB->getTerminator(), P);
}
+
+ // Otherwise, if BB has a single successor, split it at the bottom of the
+ // block.
+ assert(BB->getTerminator()->getNumSuccessors() == 1 &&
+ "Should have a single succ!");
+ return SplitBlock(BB, BB->getTerminator(), P);
}
/// SplitBlock - Split the specified block at the specified instruction - every
@@ -322,12 +293,12 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
// The new block lives in whichever loop the old one did. This preserves
// LCSSA as well, because we force the split point to be after any PHI nodes.
- if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
+ if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
if (Loop *L = LI->getLoopFor(Old))
L->addBasicBlockToLoop(New, LI->getBase());
if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
- // Old dominates New. New node domiantes all other nodes dominated by Old.
+ // Old dominates New. New node dominates all other nodes dominated by Old.
DomTreeNode *OldNode = DT->getNode(Old);
std::vector<DomTreeNode *> Children;
for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
@@ -340,9 +311,6 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
DT->changeImmediateDominator(*I, NewNode);
}
- if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
- DF->splitBlock(Old);
-
return New;
}
@@ -354,10 +322,9 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
/// suffix of 'Suffix'.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
-/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
-/// In particular, it does not preserve LoopSimplify (because it's
-/// complicated to handle the case where one of the edges being split
-/// is an exit of a loop with other exits).
+/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
+/// preserve LoopSimplify (because it's complicated to handle the case where one
+/// of the edges being split is an exit of a loop with other exits).
///
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
BasicBlock *const *Preds,
@@ -407,13 +374,10 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
}
}
- // Update dominator tree and dominator frontier if available.
+ // Update dominator tree if available.
DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
if (DT)
DT->splitBlock(NewBB);
- if (DominanceFrontier *DF =
- P ? P->getAnalysisIfAvailable<DominanceFrontier>() : 0)
- DF->splitBlock(NewBB);
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
// node becomes an incoming value for BB's phi node. However, if the Preds
@@ -545,7 +509,32 @@ void llvm::FindFunctionBackedges(const Function &F,
// Go up one level.
InStack.erase(VisitStack.pop_back_val().first);
}
- } while (!VisitStack.empty());
-
-
+ } while (!VisitStack.empty());
+}
+
+/// FoldReturnIntoUncondBranch - This method duplicates the specified return
+/// instruction into a predecessor which ends in an unconditional branch. If
+/// the return instruction returns a value defined by a PHI, propagate the
+/// right value into the return. It returns the new return instruction in the
+/// predecessor.
+ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
+ BasicBlock *Pred) {
+ Instruction *UncondBranch = Pred->getTerminator();
+ // Clone the return and add it to the end of the predecessor.
+ Instruction *NewRet = RI->clone();
+ Pred->getInstList().push_back(NewRet);
+
+ // If the return instruction returns a value, and if the value was a
+ // PHI node in "BB", propagate the right value into the return.
+ for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
+ i != e; ++i)
+ if (PHINode *PN = dyn_cast<PHINode>(*i))
+ if (PN->getParent() == BB)
+ *i = PN->getIncomingValueForBlock(Pred);
+
+ // Update any PHI nodes in the returning block to realize that we no
+ // longer branch to them.
+ BB->removePredecessor(Pred);
+ UncondBranch->eraseFromParent();
+ return cast<ReturnInst>(NewRet);
}
diff --git a/lib/Transforms/Utils/BreakCriticalEdges.cpp b/lib/Transforms/Utils/BreakCriticalEdges.cpp
index f75ffe6..616b066 100644
--- a/lib/Transforms/Utils/BreakCriticalEdges.cpp
+++ b/lib/Transforms/Utils/BreakCriticalEdges.cpp
@@ -11,8 +11,7 @@
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, the structure type is
// forward declared. This pass obviously invalidates the CFG, but can update
-// forward dominator (set, immediate dominators, tree, and frontier)
-// information.
+// dominator trees.
//
//===----------------------------------------------------------------------===//
@@ -36,13 +35,14 @@ STATISTIC(NumBroken, "Number of blocks inserted");
namespace {
struct BreakCriticalEdges : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
- BreakCriticalEdges() : FunctionPass(ID) {}
+ BreakCriticalEdges() : FunctionPass(ID) {
+ initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
- AU.addPreserved<DominanceFrontier>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<ProfileInfo>();
@@ -54,7 +54,7 @@ namespace {
char BreakCriticalEdges::ID = 0;
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
- "Break critical edges in CFG", false, false);
+ "Break critical edges in CFG", false, false)
// Publically exposed interface to pass...
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
@@ -150,10 +150,9 @@ static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
}
/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
-/// split the critical edge. This will update DominatorTree and
-/// DominatorFrontier information if it is available, thus calling this pass
-/// will not invalidate either of them. This returns the new block if the edge
-/// was split, null otherwise.
+/// split the critical edge. This will update DominatorTree information if it
+/// is available, thus calling this pass will not invalidate either of them.
+/// This returns the new block if the edge was split, null otherwise.
///
/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
/// specified successor will be merged into the same critical edge block.
@@ -255,12 +254,11 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
if (P == 0) return NewBB;
DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
- DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>();
LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
// If we have nothing to update, just return.
- if (DT == 0 && DF == 0 && LI == 0 && PI == 0)
+ if (DT == 0 && LI == 0 && PI == 0)
return NewBB;
// Now update analysis information. Since the only predecessor of NewBB is
@@ -281,7 +279,7 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
I != E; ++I) {
BasicBlock *P = *I;
if (P != NewBB)
- OtherPreds.push_back(P);
+ OtherPreds.push_back(P);
}
}
@@ -318,40 +316,6 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
}
}
- // Should we update DominanceFrontier information?
- if (DF) {
- // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
- if (!OtherPreds.empty()) {
- // FIXME: IMPLEMENT THIS!
- llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset."
- " not implemented yet!");
- }
-
- // Since the new block is dominated by its only predecessor TIBB,
- // it cannot be in any block's dominance frontier. If NewBB dominates
- // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
- // just {DestBB}.
- DominanceFrontier::DomSetType NewDFSet;
- if (NewBBDominatesDestBB) {
- DominanceFrontier::iterator I = DF->find(DestBB);
- if (I != DF->end()) {
- DF->addBasicBlock(NewBB, I->second);
-
- if (I->second.count(DestBB)) {
- // However NewBB's frontier does not include DestBB.
- DominanceFrontier::iterator NF = DF->find(NewBB);
- DF->removeFromFrontier(NF, DestBB);
- }
- }
- else
- DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
- } else {
- DominanceFrontier::DomSetType NewDFSet;
- NewDFSet.insert(DestBB);
- DF->addBasicBlock(NewBB, NewDFSet);
- }
- }
-
// Update LoopInfo if it is around.
if (LI) {
if (Loop *TIL = LI->getLoopFor(TIBB)) {
diff --git a/lib/Transforms/Utils/BuildLibCalls.cpp b/lib/Transforms/Utils/BuildLibCalls.cpp
index c313949..4a90751 100644
--- a/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -131,21 +131,6 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
return CI;
}
-
-/// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
-/// expects that Len has type 'intptr_t' and Dst/Src are pointers.
-Value *llvm::EmitMemCpy(Value *Dst, Value *Src, Value *Len, unsigned Align,
- bool isVolatile, IRBuilder<> &B, const TargetData *TD) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Dst = CastToCStr(Dst, B);
- Src = CastToCStr(Src, B);
- const Type *ArgTys[3] = { Dst->getType(), Src->getType(), Len->getType() };
- Value *MemCpy = Intrinsic::getDeclaration(M, Intrinsic::memcpy, ArgTys, 3);
- return B.CreateCall5(MemCpy, Dst, Src, Len,
- ConstantInt::get(B.getInt32Ty(), Align),
- ConstantInt::get(B.getInt1Ty(), isVolatile));
-}
-
/// EmitMemCpyChk - Emit a call to the __memcpy_chk function to the builder.
/// This expects that the Len and ObjSize have type 'intptr_t' and Dst/Src
/// are pointers.
@@ -170,22 +155,6 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
return CI;
}
-/// EmitMemMove - Emit a call to the memmove function to the builder. This
-/// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
-Value *llvm::EmitMemMove(Value *Dst, Value *Src, Value *Len, unsigned Align,
- bool isVolatile, IRBuilder<> &B, const TargetData *TD) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- LLVMContext &Context = B.GetInsertBlock()->getContext();
- const Type *ArgTys[3] = { Dst->getType(), Src->getType(),
- TD->getIntPtrType(Context) };
- Value *MemMove = Intrinsic::getDeclaration(M, Intrinsic::memmove, ArgTys, 3);
- Dst = CastToCStr(Dst, B);
- Src = CastToCStr(Src, B);
- Value *A = ConstantInt::get(B.getInt32Ty(), Align);
- Value *Vol = ConstantInt::get(B.getInt1Ty(), isVolatile);
- return B.CreateCall5(MemMove, Dst, Src, Len, A, Vol);
-}
-
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
@@ -233,18 +202,6 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
return CI;
}
-/// EmitMemSet - Emit a call to the memset function
-Value *llvm::EmitMemSet(Value *Dst, Value *Val, Value *Len, bool isVolatile,
- IRBuilder<> &B, const TargetData *TD) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Intrinsic::ID IID = Intrinsic::memset;
- const Type *Tys[2] = { Dst->getType(), Len->getType() };
- Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 2);
- Value *Align = ConstantInt::get(B.getInt32Ty(), 1);
- Value *Vol = ConstantInt::get(B.getInt1Ty(), isVolatile);
- return B.CreateCall5(MemSet, CastToCStr(Dst, B), Val, Len, Align, Vol);
-}
-
/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
/// 'floor'). This function is known to take a single of type matching 'Op' and
/// returns one value with the same type. If 'Op' is a long double, 'l' is
@@ -422,8 +379,8 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const TargetData *TD) {
return false;
if (isFoldable(3, 2, false)) {
- EmitMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1, false, B, TD);
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
replaceCall(CI->getArgOperand(0));
return true;
}
@@ -445,8 +402,8 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const TargetData *TD) {
return false;
if (isFoldable(3, 2, false)) {
- EmitMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1, false, B, TD);
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
replaceCall(CI->getArgOperand(0));
return true;
}
@@ -465,8 +422,7 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const TargetData *TD) {
if (isFoldable(3, 2, false)) {
Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
false);
- EmitMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2),
- false, B, TD);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
replaceCall(CI->getArgOperand(0));
return true;
}
diff --git a/lib/Transforms/Utils/CMakeLists.txt b/lib/Transforms/Utils/CMakeLists.txt
index 61cbeb2..5b76bb2 100644
--- a/lib/Transforms/Utils/CMakeLists.txt
+++ b/lib/Transforms/Utils/CMakeLists.txt
@@ -21,8 +21,9 @@ add_llvm_library(LLVMTransformUtils
PromoteMemoryToRegister.cpp
SSAUpdater.cpp
SimplifyCFG.cpp
+ SimplifyInstructions.cpp
UnifyFunctionExitNodes.cpp
+ Utils.cpp
ValueMapper.cpp
)
-target_link_libraries (LLVMTransformUtils LLVMSupport)
diff --git a/lib/Transforms/Utils/CloneFunction.cpp b/lib/Transforms/Utils/CloneFunction.cpp
index f43186e..d967ceb 100644
--- a/lib/Transforms/Utils/CloneFunction.cpp
+++ b/lib/Transforms/Utils/CloneFunction.cpp
@@ -112,8 +112,7 @@ void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
const BasicBlock &BB = *BI;
// Create a new basic block and copy instructions into it!
- BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc,
- CodeInfo);
+ BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
VMap[&BB] = CBB; // Add basic block mapping.
if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
@@ -122,12 +121,12 @@ void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
// Loop over all of the instructions in the function, fixing up operand
// references as we go. This uses VMap to do all the hard work.
- //
for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
BE = NewFunc->end(); BB != BE; ++BB)
// Loop over all instructions, fixing each one as we find it...
for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
- RemapInstruction(II, VMap, ModuleLevelChanges);
+ RemapInstruction(II, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
}
/// CloneFunction - Return a copy of the specified function, but without
@@ -138,8 +137,7 @@ void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
/// updated to include mappings from all of the instructions and basicblocks in
/// the function from their old to new values.
///
-Function *llvm::CloneFunction(const Function *F,
- ValueToValueMapTy &VMap,
+Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
bool ModuleLevelChanges,
ClonedCodeInfo *CodeInfo) {
std::vector<const Type*> ArgTypes;
@@ -216,7 +214,7 @@ namespace {
/// anything that it can reach.
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
std::vector<const BasicBlock*> &ToClone){
- Value *&BBEntry = VMap[BB];
+ TrackingVH<Value> &BBEntry = VMap[BB];
// Have we already cloned this block?
if (BBEntry) return;
@@ -262,8 +260,10 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
// If the condition was a known constant in the callee...
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
// Or is a known constant in the caller...
- if (Cond == 0)
- Cond = dyn_cast_or_null<ConstantInt>(VMap[BI->getCondition()]);
+ if (Cond == 0) {
+ Value *V = VMap[BI->getCondition()];
+ Cond = dyn_cast_or_null<ConstantInt>(V);
+ }
// Constant fold to uncond branch!
if (Cond) {
@@ -276,8 +276,10 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
} else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
// If switching on a value known constant in the caller.
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
- if (Cond == 0) // Or known constant after constant prop in the callee...
- Cond = dyn_cast_or_null<ConstantInt>(VMap[SI->getCondition()]);
+ if (Cond == 0) { // Or known constant after constant prop in the callee...
+ Value *V = VMap[SI->getCondition()];
+ Cond = dyn_cast_or_null<ConstantInt>(V);
+ }
if (Cond) { // Constant fold to uncond branch!
BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
@@ -318,7 +320,8 @@ ConstantFoldMappedInstruction(const Instruction *I) {
SmallVector<Constant*, 8> Ops;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
- VMap, ModuleLevelChanges)))
+ VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges)))
Ops.push_back(Op);
else
return 0; // All operands not constant!
@@ -394,7 +397,8 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
SmallVector<const PHINode*, 16> PHIToResolve;
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
BI != BE; ++BI) {
- BasicBlock *NewBB = cast_or_null<BasicBlock>(VMap[BI]);
+ Value *V = VMap[BI];
+ BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
if (NewBB == 0) continue; // Dead block.
// Add the new block to the new function.
@@ -455,7 +459,8 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
I->setDebugLoc(DebugLoc());
}
}
- RemapInstruction(I, VMap, ModuleLevelChanges);
+ RemapInstruction(I, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
}
}
@@ -474,10 +479,11 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
OPN = PHIToResolve[phino];
PHINode *PN = cast<PHINode>(VMap[OPN]);
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
- if (BasicBlock *MappedBlock =
- cast_or_null<BasicBlock>(VMap[PN->getIncomingBlock(pred)])) {
+ Value *V = VMap[PN->getIncomingBlock(pred)];
+ if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
Value *InVal = MapValue(PN->getIncomingValue(pred),
- VMap, ModuleLevelChanges);
+ VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
assert(InVal && "Unknown input value?");
PN->setIncomingValue(pred, InVal);
PN->setIncomingBlock(pred, MappedBlock);
diff --git a/lib/Transforms/Utils/CloneLoop.cpp b/lib/Transforms/Utils/CloneLoop.cpp
index 551b630..87dd141 100644
--- a/lib/Transforms/Utils/CloneLoop.cpp
+++ b/lib/Transforms/Utils/CloneLoop.cpp
@@ -19,15 +19,14 @@
using namespace llvm;
-/// CloneDominatorInfo - Clone basicblock's dominator tree and, if available,
-/// dominance info. It is expected that basic block is already cloned.
+/// CloneDominatorInfo - Clone a basic block's dominator tree. It is expected
+/// that the basic block is already cloned.
static void CloneDominatorInfo(BasicBlock *BB,
- ValueMap<const Value *, Value *> &VMap,
- DominatorTree *DT,
- DominanceFrontier *DF) {
+ ValueToValueMapTy &VMap,
+ DominatorTree *DT) {
assert (DT && "DominatorTree is not available");
- ValueMap<const Value *, Value*>::iterator BI = VMap.find(BB);
+ ValueToValueMapTy::iterator BI = VMap.find(BB);
assert (BI != VMap.end() && "BasicBlock clone is missing");
BasicBlock *NewBB = cast<BasicBlock>(BI->second);
@@ -42,45 +41,23 @@ static void CloneDominatorInfo(BasicBlock *BB,
// NewBB's dominator is either BB's dominator or BB's dominator's clone.
BasicBlock *NewBBDom = BBDom;
- ValueMap<const Value *, Value*>::iterator BBDomI = VMap.find(BBDom);
+ ValueToValueMapTy::iterator BBDomI = VMap.find(BBDom);
if (BBDomI != VMap.end()) {
NewBBDom = cast<BasicBlock>(BBDomI->second);
if (!DT->getNode(NewBBDom))
- CloneDominatorInfo(BBDom, VMap, DT, DF);
+ CloneDominatorInfo(BBDom, VMap, DT);
}
DT->addNewBlock(NewBB, NewBBDom);
-
- // Copy cloned dominance frontiner set
- if (DF) {
- DominanceFrontier::DomSetType NewDFSet;
- DominanceFrontier::iterator DFI = DF->find(BB);
- if ( DFI != DF->end()) {
- DominanceFrontier::DomSetType S = DFI->second;
- for (DominanceFrontier::DomSetType::iterator I = S.begin(), E = S.end();
- I != E; ++I) {
- BasicBlock *DB = *I;
- ValueMap<const Value*, Value*>::iterator IDM = VMap.find(DB);
- if (IDM != VMap.end())
- NewDFSet.insert(cast<BasicBlock>(IDM->second));
- else
- NewDFSet.insert(DB);
- }
- }
- DF->addBasicBlock(NewBB, NewDFSet);
- }
}
/// CloneLoop - Clone Loop. Clone dominator info. Populate VMap
/// using old blocks to new blocks mapping.
Loop *llvm::CloneLoop(Loop *OrigL, LPPassManager *LPM, LoopInfo *LI,
- ValueMap<const Value *, Value *> &VMap, Pass *P) {
+ ValueToValueMapTy &VMap, Pass *P) {
DominatorTree *DT = NULL;
- DominanceFrontier *DF = NULL;
- if (P) {
+ if (P)
DT = P->getAnalysisIfAvailable<DominatorTree>();
- DF = P->getAnalysisIfAvailable<DominanceFrontier>();
- }
SmallVector<BasicBlock *, 16> NewBlocks;
@@ -116,7 +93,7 @@ Loop *llvm::CloneLoop(Loop *OrigL, LPPassManager *LPM, LoopInfo *LI,
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
- CloneDominatorInfo(BB, VMap, DT, DF);
+ CloneDominatorInfo(BB, VMap, DT);
}
// Process sub loops
@@ -134,7 +111,7 @@ Loop *llvm::CloneLoop(Loop *OrigL, LPPassManager *LPM, LoopInfo *LI,
for (unsigned index = 0, num_ops = Insn->getNumOperands();
index != num_ops; ++index) {
Value *Op = Insn->getOperand(index);
- ValueMap<const Value *, Value *>::iterator OpItr = VMap.find(Op);
+ ValueToValueMapTy::iterator OpItr = VMap.find(Op);
if (OpItr != VMap.end())
Insn->setOperand(index, OpItr->second);
}
diff --git a/lib/Transforms/Utils/CloneModule.cpp b/lib/Transforms/Utils/CloneModule.cpp
index b347bf5..1046c38 100644
--- a/lib/Transforms/Utils/CloneModule.cpp
+++ b/lib/Transforms/Utils/CloneModule.cpp
@@ -89,8 +89,7 @@ Module *llvm::CloneModule(const Module *M,
GlobalVariable *GV = cast<GlobalVariable>(VMap[I]);
if (I->hasInitializer())
GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(),
- VMap,
- true)));
+ VMap, RF_None)));
GV->setLinkage(I->getLinkage());
GV->setThreadLocal(I->isThreadLocal());
GV->setConstant(I->isConstant());
@@ -121,7 +120,7 @@ Module *llvm::CloneModule(const Module *M,
GlobalAlias *GA = cast<GlobalAlias>(VMap[I]);
GA->setLinkage(I->getLinkage());
if (const Constant* C = I->getAliasee())
- GA->setAliasee(cast<Constant>(MapValue(C, VMap, true)));
+ GA->setAliasee(cast<Constant>(MapValue(C, VMap, RF_None)));
}
// And named metadata....
@@ -130,7 +129,8 @@ Module *llvm::CloneModule(const Module *M,
const NamedMDNode &NMD = *I;
NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName());
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
- NewNMD->addOperand(cast<MDNode>(MapValue(NMD.getOperand(i), VMap, true)));
+ NewNMD->addOperand(cast<MDNode>(MapValue(NMD.getOperand(i), VMap,
+ RF_None)));
}
return New;
diff --git a/lib/Transforms/Utils/CodeExtractor.cpp b/lib/Transforms/Utils/CodeExtractor.cpp
index b51f751..e633772 100644
--- a/lib/Transforms/Utils/CodeExtractor.cpp
+++ b/lib/Transforms/Utils/CodeExtractor.cpp
@@ -186,8 +186,8 @@ void CodeExtractor::splitReturnBlocks() {
if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
if (DT) {
- // Old dominates New. New node domiantes all other nodes dominated
- //by Old.
+ // Old dominates New. New node dominates all other nodes dominated
+ // by Old.
DomTreeNode *OldNode = DT->getNode(*I);
SmallVector<DomTreeNode*, 8> Children;
for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
diff --git a/lib/Transforms/Utils/DemoteRegToStack.cpp b/lib/Transforms/Utils/DemoteRegToStack.cpp
index 8e82a02..8cc2649 100644
--- a/lib/Transforms/Utils/DemoteRegToStack.cpp
+++ b/lib/Transforms/Utils/DemoteRegToStack.cpp
@@ -129,7 +129,7 @@ AllocaInst* llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) {
assert(II->getParent() != P->getIncomingBlock(i) &&
- "Invoke edge not supported yet"); II=II;
+ "Invoke edge not supported yet"); (void)II;
}
new StoreInst(P->getIncomingValue(i), Slot,
P->getIncomingBlock(i)->getTerminator());
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp
index 88979e86..c1faf24 100644
--- a/lib/Transforms/Utils/InlineFunction.cpp
+++ b/lib/Transforms/Utils/InlineFunction.cpp
@@ -22,7 +22,9 @@
#include "llvm/Attributes.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CallSite.h"
@@ -170,7 +172,7 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
Function::iterator FirstNewBlock,
- ValueMap<const Value*, Value*> &VMap,
+ ValueToValueMapTy &VMap,
InlineFunctionInfo &IFI) {
CallGraph &CG = *IFI.CG;
const Function *Caller = CS.getInstruction()->getParent()->getParent();
@@ -193,7 +195,7 @@ static void UpdateCallGraphAfterInlining(CallSite CS,
for (; I != E; ++I) {
const Value *OrigCall = I->first;
- ValueMap<const Value*, Value*>::iterator VMI = VMap.find(OrigCall);
+ ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
// Only copy the edge if the call was inlined!
if (VMI == VMap.end() || VMI->second == 0)
continue;
@@ -228,6 +230,90 @@ static void UpdateCallGraphAfterInlining(CallSite CS,
CallerNode->removeCallEdgeFor(CS);
}
+/// HandleByValArgument - When inlining a call site that has a byval argument,
+/// we have to make the implicit memcpy explicit by adding it.
+static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
+ const Function *CalledFunc,
+ InlineFunctionInfo &IFI,
+ unsigned ByValAlignment) {
+ const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
+
+ // If the called function is readonly, then it could not mutate the caller's
+ // copy of the byval'd memory. In this case, it is safe to elide the copy and
+ // temporary.
+ if (CalledFunc->onlyReadsMemory()) {
+ // If the byval argument has a specified alignment that is greater than the
+ // passed in pointer, then we either have to round up the input pointer or
+ // give up on this transformation.
+ if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
+ return Arg;
+
+ // If the pointer is already known to be sufficiently aligned, or if we can
+ // round it up to a larger alignment, then we don't need a temporary.
+ if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
+ IFI.TD) >= ByValAlignment)
+ return Arg;
+
+ // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
+ // for code quality, but rarely happens and is required for correctness.
+ }
+
+ LLVMContext &Context = Arg->getContext();
+
+ const Type *VoidPtrTy = Type::getInt8PtrTy(Context);
+
+ // Create the alloca. If we have TargetData, use nice alignment.
+ unsigned Align = 1;
+ if (IFI.TD)
+ Align = IFI.TD->getPrefTypeAlignment(AggTy);
+
+ // If the byval had an alignment specified, we *must* use at least that
+ // alignment, as it is required by the byval argument (and uses of the
+ // pointer inside the callee).
+ Align = std::max(Align, ByValAlignment);
+
+ Function *Caller = TheCall->getParent()->getParent();
+
+ Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
+ &*Caller->begin()->begin());
+ // Emit a memcpy.
+ const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
+ Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
+ Intrinsic::memcpy,
+ Tys, 3);
+ Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
+ Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
+
+ Value *Size;
+ if (IFI.TD == 0)
+ Size = ConstantExpr::getSizeOf(AggTy);
+ else
+ Size = ConstantInt::get(Type::getInt64Ty(Context),
+ IFI.TD->getTypeStoreSize(AggTy));
+
+ // Always generate a memcpy of alignment 1 here because we don't know
+ // the alignment of the src pointer. Other optimizations can infer
+ // better alignment.
+ Value *CallArgs[] = {
+ DestCast, SrcCast, Size,
+ ConstantInt::get(Type::getInt32Ty(Context), 1),
+ ConstantInt::getFalse(Context) // isVolatile
+ };
+ CallInst *TheMemCpy =
+ CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
+
+ // If we have a call graph, update it.
+ if (CallGraph *CG = IFI.CG) {
+ CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
+ CallGraphNode *CallerNode = (*CG)[Caller];
+ CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
+ }
+
+ // Uses of the argument in the function should use our new alloca
+ // instead.
+ return NewAlloca;
+}
+
// InlineFunction - This function inlines the called function into the basic
// block of the caller. This returns false if it is not possible to inline this
// call. The program is still in a well defined state if this occurs though.
@@ -251,7 +337,6 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
CalledFunc->isDeclaration() || // call, or call to a vararg function!
CalledFunc->getFunctionType()->isVarArg()) return false;
-
// If the call to the callee is not a tail call, we must clear the 'tail'
// flags on any calls that we inline.
bool MustClearTailCallFlags =
@@ -287,7 +372,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
Function::iterator FirstNewBlock;
{ // Scope to destroy VMap after cloning.
- ValueMap<const Value*, Value*> VMap;
+ ValueToValueMapTy VMap;
assert(CalledFunc->arg_size() == CS.arg_size() &&
"No varargs calls can be inlined!");
@@ -304,58 +389,14 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
// by them explicit. However, we don't do this if the callee is readonly
// or readnone, because the copy would be unneeded: the callee doesn't
// modify the struct.
- if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
- !CalledFunc->onlyReadsMemory()) {
- const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
- const Type *VoidPtrTy =
- Type::getInt8PtrTy(Context);
-
- // Create the alloca. If we have TargetData, use nice alignment.
- unsigned Align = 1;
- if (IFI.TD) Align = IFI.TD->getPrefTypeAlignment(AggTy);
- Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
- I->getName(),
- &*Caller->begin()->begin());
- // Emit a memcpy.
- const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
- Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
- Intrinsic::memcpy,
- Tys, 3);
- Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
- Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
-
- Value *Size;
- if (IFI.TD == 0)
- Size = ConstantExpr::getSizeOf(AggTy);
- else
- Size = ConstantInt::get(Type::getInt64Ty(Context),
- IFI.TD->getTypeStoreSize(AggTy));
-
- // Always generate a memcpy of alignment 1 here because we don't know
- // the alignment of the src pointer. Other optimizations can infer
- // better alignment.
- Value *CallArgs[] = {
- DestCast, SrcCast, Size,
- ConstantInt::get(Type::getInt32Ty(Context), 1),
- ConstantInt::get(Type::getInt1Ty(Context), 0)
- };
- CallInst *TheMemCpy =
- CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
-
- // If we have a call graph, update it.
- if (CallGraph *CG = IFI.CG) {
- CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
- CallGraphNode *CallerNode = (*CG)[Caller];
- CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
- }
-
- // Uses of the argument in the function should use our new alloca
- // instead.
- ActualArg = NewAlloca;
-
+ if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
+ ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
+ CalledFunc->getParamAlignment(ArgNo+1));
+
// Calls that we inline may use the new alloca, so we need to clear
- // their 'tail' flags.
- MustClearTailCallFlags = true;
+ // their 'tail' flags if HandleByValArgument introduced a new alloca and
+ // the callee has calls.
+ MustClearTailCallFlags |= ActualArg != *AI;
}
VMap[I] = ActualArg;
@@ -399,8 +440,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
if (!isa<Constant>(AI->getArraySize()))
continue;
- // Keep track of the static allocas that we inline into the caller if the
- // StaticAllocas pointer is non-null.
+ // Keep track of the static allocas that we inline into the caller.
IFI.StaticAllocas.push_back(AI);
// Scan for the block of allocas that we can move over, and move them
@@ -579,10 +619,10 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
// any users of the original call/invoke instruction.
const Type *RTy = CalledFunc->getReturnType();
+ PHINode *PHI = 0;
if (Returns.size() > 1) {
// The PHI node should go at the front of the new basic block to merge all
// possible incoming values.
- PHINode *PHI = 0;
if (!TheCall->use_empty()) {
PHI = PHINode::Create(RTy, TheCall->getName(),
AfterCallBB->begin());
@@ -600,14 +640,6 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
"Ret value not consistent in function!");
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
}
-
- // Now that we inserted the PHI, check to see if it has a single value
- // (e.g. all the entries are the same or undef). If so, remove the PHI so
- // it doesn't block other optimizations.
- if (Value *V = PHI->hasConstantValue()) {
- PHI->replaceAllUsesWith(V);
- PHI->eraseFromParent();
- }
}
@@ -664,5 +696,14 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
// Now we can remove the CalleeEntry block, which is now empty.
Caller->getBasicBlockList().erase(CalleeEntry);
+ // If we inserted a phi node, check to see if it has a single value (e.g. all
+ // the entries are the same or undef). If so, remove the PHI so it doesn't
+ // block other optimizations.
+ if (PHI)
+ if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
+ PHI->replaceAllUsesWith(V);
+ PHI->eraseFromParent();
+ }
+
return true;
}
diff --git a/lib/Transforms/Utils/InstructionNamer.cpp b/lib/Transforms/Utils/InstructionNamer.cpp
index 5ca8299..45c15de 100644
--- a/lib/Transforms/Utils/InstructionNamer.cpp
+++ b/lib/Transforms/Utils/InstructionNamer.cpp
@@ -23,7 +23,9 @@ using namespace llvm;
namespace {
struct InstNamer : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
- InstNamer() : FunctionPass(ID) {}
+ InstNamer() : FunctionPass(ID) {
+ initializeInstNamerPass(*PassRegistry::getPassRegistry());
+ }
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
@@ -48,11 +50,10 @@ namespace {
};
char InstNamer::ID = 0;
- INITIALIZE_PASS(InstNamer, "instnamer",
- "Assign names to anonymous instructions", false, false);
}
-
+INITIALIZE_PASS(InstNamer, "instnamer",
+ "Assign names to anonymous instructions", false, false)
char &llvm::InstructionNamerID = InstNamer::ID;
//===----------------------------------------------------------------------===//
//
diff --git a/lib/Transforms/Utils/LCSSA.cpp b/lib/Transforms/Utils/LCSSA.cpp
index 275b265..b2e5fa6 100644
--- a/lib/Transforms/Utils/LCSSA.cpp
+++ b/lib/Transforms/Utils/LCSSA.cpp
@@ -47,7 +47,9 @@ STATISTIC(NumLCSSA, "Number of live out of a loop variables");
namespace {
struct LCSSA : public LoopPass {
static char ID; // Pass identification, replacement for typeid
- LCSSA() : LoopPass(ID) {}
+ LCSSA() : LoopPass(ID) {
+ initializeLCSSAPass(*PassRegistry::getPassRegistry());
+ }
// Cached analysis information for the current function.
DominatorTree *DT;
@@ -65,10 +67,7 @@ namespace {
AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
- AU.addPreserved<DominatorTree>();
- AU.addPreserved<DominanceFrontier>();
AU.addRequired<LoopInfo>();
- AU.addPreserved<LoopInfo>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreserved<ScalarEvolution>();
}
@@ -90,7 +89,10 @@ namespace {
}
char LCSSA::ID = 0;
-INITIALIZE_PASS(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false);
+INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
Pass *llvm::createLCSSAPass() { return new LCSSA(); }
char &llvm::LCSSAID = LCSSA::ID;
diff --git a/lib/Transforms/Utils/Local.cpp b/lib/Transforms/Utils/Local.cpp
index 52f0499..063c76e 100644
--- a/lib/Transforms/Utils/Local.cpp
+++ b/lib/Transforms/Utils/Local.cpp
@@ -22,9 +22,11 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
@@ -66,9 +68,9 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
assert(BI->getParent() && "Terminator not inserted in block!");
OldDest->removePredecessor(BI->getParent());
- // Set the unconditional destination, and change the insn to be an
- // unconditional branch.
- BI->setUnconditionalDest(Destination);
+ // Replace the conditional branch with an unconditional one.
+ BranchInst::Create(Destination, BI);
+ BI->eraseFromParent();
return true;
}
@@ -81,8 +83,9 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
assert(BI->getParent() && "Terminator not inserted in block!");
Dest1->removePredecessor(BI->getParent());
- // Change a conditional branch to unconditional.
- BI->setUnconditionalDest(Dest1);
+ // Replace the conditional branch with an unconditional one.
+ BranchInst::Create(Dest1, BI);
+ BI->eraseFromParent();
return true;
}
return false;
@@ -209,9 +212,6 @@ bool llvm::isInstructionTriviallyDead(Instruction *I) {
// We don't want debug info removed by anything this general.
if (isa<DbgInfoIntrinsic>(I)) return false;
- // Likewise for memory use markers.
- if (isa<MemoryUseIntrinsic>(I)) return false;
-
if (!I->mayHaveSideEffects()) return true;
// Special case intrinsics that "may have side effects" but can be deleted
@@ -260,29 +260,45 @@ bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
return true;
}
+/// areAllUsesEqual - Check whether the uses of a value are all the same.
+/// This is similar to Instruction::hasOneUse() except this will also return
+/// true when there are multiple uses that all refer to the same value.
+static bool areAllUsesEqual(Instruction *I) {
+ Value::use_iterator UI = I->use_begin();
+ Value::use_iterator UE = I->use_end();
+ if (UI == UE)
+ return false;
+
+ User *TheUse = *UI;
+ for (++UI; UI != UE; ++UI) {
+ if (*UI != TheUse)
+ return false;
+ }
+ return true;
+}
+
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it. If that makes any of its operands trivially dead, delete them
/// too, recursively. Return true if the PHI node is actually deleted.
-bool
-llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
+bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
// We can remove a PHI if it is on a cycle in the def-use graph
// where each node in the cycle has degree one, i.e. only one use,
// and is an instruction with no side effects.
- if (!PN->hasOneUse())
+ if (!areAllUsesEqual(PN))
return false;
bool Changed = false;
SmallPtrSet<PHINode *, 4> PHIs;
PHIs.insert(PN);
for (Instruction *J = cast<Instruction>(*PN->use_begin());
- J->hasOneUse() && !J->mayHaveSideEffects();
+ areAllUsesEqual(J) && !J->mayHaveSideEffects();
J = cast<Instruction>(*J->use_begin()))
// If we find a PHI more than once, we're on a cycle that
// won't prove fruitful.
if (PHINode *JP = dyn_cast<PHINode>(J))
- if (!PHIs.insert(cast<PHINode>(JP))) {
+ if (!PHIs.insert(JP)) {
// Break the cycle and delete the PHI and its operands.
JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
(void)RecursivelyDeleteTriviallyDeadInstructions(JP);
@@ -346,13 +362,13 @@ void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
WeakVH PhiIt = &BB->front();
while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
-
- Value *PNV = PN->hasConstantValue();
+
+ Value *PNV = SimplifyInstruction(PN, TD);
if (PNV == 0) continue;
-
+
// If we're able to simplify the phi to a single value, substitute the new
// value into all of its uses.
- assert(PNV != PN && "hasConstantValue broken");
+ assert(PNV != PN && "SimplifyInstruction broken!");
Value *OldPhiIt = PhiIt;
ReplaceAndSimplifyAllUses(PN, PNV, TD);
@@ -402,6 +418,12 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
PredBB->replaceAllUsesWith(DestBB);
if (P) {
+ DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
+ if (DT) {
+ BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
+ DT->changeImmediateDominator(DestBB, PredBBIDom);
+ DT->eraseNode(PredBB);
+ }
ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
if (PI) {
PI->replaceAllUses(PredBB, DestBB);
@@ -645,3 +667,95 @@ bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
return Changed;
}
+
+/// enforceKnownAlignment - If the specified pointer points to an object that
+/// we control, modify the object's alignment to PrefAlign. This isn't
+/// often possible though. If alignment is important, a more reliable approach
+/// is to simply align all global variables and allocation instructions to
+/// their preferred alignment from the beginning.
+///
+static unsigned enforceKnownAlignment(Value *V, unsigned Align,
+ unsigned PrefAlign) {
+
+ User *U = dyn_cast<User>(V);
+ if (!U) return Align;
+
+ switch (Operator::getOpcode(U)) {
+ default: break;
+ case Instruction::BitCast:
+ return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
+ case Instruction::GetElementPtr: {
+ // If all indexes are zero, it is just the alignment of the base pointer.
+ bool AllZeroOperands = true;
+ for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
+ if (!isa<Constant>(*i) ||
+ !cast<Constant>(*i)->isNullValue()) {
+ AllZeroOperands = false;
+ break;
+ }
+
+ if (AllZeroOperands) {
+ // Treat this like a bitcast.
+ return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
+ }
+ return Align;
+ }
+ case Instruction::Alloca: {
+ AllocaInst *AI = cast<AllocaInst>(V);
+ // If there is a requested alignment and if this is an alloca, round up.
+ if (AI->getAlignment() >= PrefAlign)
+ return AI->getAlignment();
+ AI->setAlignment(PrefAlign);
+ return PrefAlign;
+ }
+ }
+
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // If there is a large requested alignment and we can, bump up the alignment
+ // of the global.
+ if (GV->isDeclaration()) return Align;
+
+ if (GV->getAlignment() >= PrefAlign)
+ return GV->getAlignment();
+ // We can only increase the alignment of the global if it has no alignment
+ // specified or if it is not assigned a section. If it is assigned a
+ // section, the global could be densely packed with other objects in the
+ // section, increasing the alignment could cause padding issues.
+ if (!GV->hasSection() || GV->getAlignment() == 0)
+ GV->setAlignment(PrefAlign);
+ return GV->getAlignment();
+ }
+
+ return Align;
+}
+
+/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
+/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
+/// and it is more than the alignment of the ultimate object, see if we can
+/// increase the alignment of the ultimate object, making this check succeed.
+unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
+ const TargetData *TD) {
+ assert(V->getType()->isPointerTy() &&
+ "getOrEnforceKnownAlignment expects a pointer!");
+ unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
+ APInt Mask = APInt::getAllOnesValue(BitWidth);
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
+ unsigned TrailZ = KnownZero.countTrailingOnes();
+
+ // Avoid trouble with rediculously large TrailZ values, such as
+ // those computed from a null pointer.
+ TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
+
+ unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
+
+ // LLVM doesn't support alignments larger than this currently.
+ Align = std::min(Align, +Value::MaximumAlignment);
+
+ if (PrefAlign > Align)
+ Align = enforceKnownAlignment(V, Align, PrefAlign);
+
+ // We don't need to make any adjustment.
+ return Align;
+}
+
diff --git a/lib/Transforms/Utils/LoopSimplify.cpp b/lib/Transforms/Utils/LoopSimplify.cpp
index b3c4801..2462630 100644
--- a/lib/Transforms/Utils/LoopSimplify.cpp
+++ b/lib/Transforms/Utils/LoopSimplify.cpp
@@ -37,7 +37,7 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "loopsimplify"
+#define DEBUG_TYPE "loop-simplify"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
@@ -46,9 +46,10 @@
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
@@ -65,7 +66,9 @@ STATISTIC(NumNested , "Number of nested loops split out");
namespace {
struct LoopSimplify : public LoopPass {
static char ID; // Pass identification, replacement for typeid
- LoopSimplify() : LoopPass(ID) {}
+ LoopSimplify() : LoopPass(ID) {
+ initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
+ }
// AA - If we have an alias analysis object to update, this is it, otherwise
// this is null.
@@ -87,8 +90,6 @@ namespace {
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<ScalarEvolution>();
AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
- AU.addPreserved<DominanceFrontier>();
- AU.addPreservedID(LCSSAID);
}
/// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
@@ -107,8 +108,12 @@ namespace {
}
char LoopSimplify::ID = 0;
-INITIALIZE_PASS(LoopSimplify, "loopsimplify",
- "Canonicalize natural loops", true, false);
+INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
+ "Canonicalize natural loops", true, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
+ "Canonicalize natural loops", true, false)
// Publically exposed interface to pass...
char &llvm::LoopSimplifyID = LoopSimplify::ID;
@@ -157,9 +162,8 @@ ReprocessLoop:
for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
E = BadPreds.end(); I != E; ++I) {
- DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
- WriteAsOperand(dbgs(), *I, false);
- dbgs() << "\n");
+ DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
+ << (*I)->getName() << "\n");
// Inform each successor of each dead pred.
for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
@@ -184,9 +188,8 @@ ReprocessLoop:
if (BI->isConditional()) {
if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
- DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
- WriteAsOperand(dbgs(), *I, false);
- dbgs() << "\n");
+ DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
+ << (*I)->getName() << "\n");
BI->setCondition(ConstantInt::get(Cond->getType(),
!L->contains(BI->getSuccessor(0))));
@@ -262,8 +265,9 @@ ReprocessLoop:
PHINode *PN;
for (BasicBlock::iterator I = L->getHeader()->begin();
(PN = dyn_cast<PHINode>(I++)); )
- if (Value *V = PN->hasConstantValue(DT)) {
+ if (Value *V = SimplifyInstruction(PN, 0, DT)) {
if (AA) AA->deleteValue(PN);
+ if (SE) SE->forgetValue(PN);
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
}
@@ -317,29 +321,22 @@ ReprocessLoop:
if (!FoldBranchToCommonDest(BI)) continue;
// Success. The block is now dead, so remove it from the loop,
- // update the dominator tree and dominance frontier, and delete it.
-
- DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block ";
- WriteAsOperand(dbgs(), ExitingBlock, false);
- dbgs() << "\n");
+ // update the dominator tree and delete it.
+ DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
+ << ExitingBlock->getName() << "\n");
assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
Changed = true;
LI->removeBlock(ExitingBlock);
- DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
DomTreeNode *Node = DT->getNode(ExitingBlock);
const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
Node->getChildren();
while (!Children.empty()) {
DomTreeNode *Child = Children.front();
DT->changeImmediateDominator(Child, Node->getIDom());
- if (DF) DF->changeImmediateDominator(Child->getBlock(),
- Node->getIDom()->getBlock(),
- DT);
}
DT->eraseNode(ExitingBlock);
- if (DF) DF->removeBlock(ExitingBlock);
BI->getSuccessor(0)->removePredecessor(ExitingBlock);
BI->getSuccessor(1)->removePredecessor(ExitingBlock);
@@ -378,9 +375,8 @@ BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
".preheader", this);
- DEBUG(dbgs() << "LoopSimplify: Creating pre-header ";
- WriteAsOperand(dbgs(), NewBB, false);
- dbgs() << "\n");
+ DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << NewBB->getName()
+ << "\n");
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
// code layout too horribly.
@@ -409,10 +405,8 @@ BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
LoopBlocks.size(), ".loopexit",
this);
- DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block ";
- WriteAsOperand(dbgs(), NewBB, false);
- dbgs() << "\n");
-
+ DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
+ << NewBB->getName() << "\n");
return NewBB;
}
@@ -438,11 +432,11 @@ static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
/// PHI node that tells us how to partition the loops.
static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
- AliasAnalysis *AA) {
+ AliasAnalysis *AA, LoopInfo *LI) {
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I);
++I;
- if (Value *V = PN->hasConstantValue(DT)) {
+ if (Value *V = SimplifyInstruction(PN, 0, DT)) {
// This is a degenerate PHI already, don't modify it!
PN->replaceAllUsesWith(V);
if (AA) AA->deleteValue(PN);
@@ -516,7 +510,7 @@ void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
/// created.
///
Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
- PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
+ PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
if (PN == 0) return 0; // No known way to partition.
// Pull out all predecessors that have varying values in the loop. This
@@ -643,9 +637,8 @@ LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
Header->getName()+".backedge", F);
BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
- DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block ";
- WriteAsOperand(dbgs(), BEBlock, false);
- dbgs() << "\n");
+ DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
+ << BEBlock->getName() << "\n");
// Move the new backedge block to right after the last backedge block.
Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
@@ -721,8 +714,6 @@ LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
// Update dominator information
DT->splitBlock(BEBlock);
- if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
- DF->splitBlock(BEBlock);
return BEBlock;
}
diff --git a/lib/Transforms/Utils/LoopUnroll.cpp b/lib/Transforms/Utils/LoopUnroll.cpp
index 236bbe9..7da7271 100644
--- a/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/lib/Transforms/Utils/LoopUnroll.cpp
@@ -16,13 +16,14 @@
//
// The process of unrolling can produce extraneous basic blocks linked with
// unconditional branches. This will be corrected in the future.
+//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/BasicBlock.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/Debug.h"
@@ -30,20 +31,19 @@
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
-
using namespace llvm;
// TODO: Should these be here or in LoopUnroll?
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
-STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
+STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
/// RemapInstruction - Convert the instruction operands from referencing the
/// current values into those specified by VMap.
static inline void RemapInstruction(Instruction *I,
- ValueMap<const Value *, Value*> &VMap) {
+ ValueToValueMapTy &VMap) {
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
Value *Op = I->getOperand(op);
- ValueMap<const Value *, Value*>::iterator It = VMap.find(Op);
+ ValueToValueMapTy::iterator It = VMap.find(Op);
if (It != VMap.end())
I->setOperand(op, It->second);
}
@@ -96,7 +96,7 @@ static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
}
/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
-/// if unrolling was succesful, or false if the loop was unmodified. Unrolling
+/// if unrolling was successful, or false if the loop was unmodified. Unrolling
/// can only fail when the loop's latch block is not terminated by a conditional
/// branch instruction. However, if the trip count (and multiple) are not known,
/// loop unrolling will mostly produce more code that is no faster.
@@ -105,7 +105,8 @@ static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
///
/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
/// removed from the LoopPassManager as well. LPM can also be NULL.
-bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
+bool llvm::UnrollLoop(Loop *L, unsigned Count,
+ LoopInfo *LI, LPPassManager *LPM) {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
@@ -127,6 +128,13 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
" Can't unroll; loop not terminated by a conditional branch.\n");
return false;
}
+
+ if (Header->hasAddressTaken()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ DEBUG(dbgs() <<
+ " Won't unroll loop: address of header block is taken.\n");
+ return false;
+ }
// Notify ScalarEvolution that the loop will be substantially changed,
// if not outright eliminated.
@@ -189,7 +197,6 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
// For the first iteration of the loop, we should use the precloned values for
// PHI nodes. Insert associations now.
- typedef ValueMap<const Value*, Value*> ValueToValueMapTy;
ValueToValueMapTy LastValueMap;
std::vector<PHINode*> OrigPHINode;
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
@@ -274,7 +281,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
for (unsigned i = 0; i < NewBlocks.size(); ++i)
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end(); I != E; ++I)
- RemapInstruction(I, LastValueMap);
+ ::RemapInstruction(I, LastValueMap);
}
// The latch block exits the loop. If there are any PHI nodes in the
@@ -342,7 +349,9 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
// iteration.
Term->setSuccessor(!ContinueOnTrue, Dest);
} else {
- Term->setUnconditionalDest(Dest);
+ // Replace the conditional branch with an unconditional one.
+ BranchInst::Create(Dest, Term);
+ Term->eraseFromParent();
// Merge adjacent basic blocks, if possible.
if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) {
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
@@ -362,10 +371,11 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
if (isInstructionTriviallyDead(Inst))
(*BB)->getInstList().erase(Inst);
- else if (Constant *C = ConstantFoldInstruction(Inst)) {
- Inst->replaceAllUsesWith(C);
- (*BB)->getInstList().erase(Inst);
- }
+ else if (Value *V = SimplifyInstruction(Inst))
+ if (LI->replacementPreservesLCSSAForm(Inst, V)) {
+ Inst->replaceAllUsesWith(V);
+ (*BB)->getInstList().erase(Inst);
+ }
}
NumCompletelyUnrolled += CompletelyUnroll;
diff --git a/lib/Transforms/Utils/LowerInvoke.cpp b/lib/Transforms/Utils/LowerInvoke.cpp
index a46dd84..025ae0d 100644
--- a/lib/Transforms/Utils/LowerInvoke.cpp
+++ b/lib/Transforms/Utils/LowerInvoke.cpp
@@ -79,7 +79,9 @@ namespace {
explicit LowerInvoke(const TargetLowering *tli = NULL,
bool useExpensiveEHSupport = ExpensiveEHSupport)
: FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport),
- TLI(tli) { }
+ TLI(tli) {
+ initializeLowerInvokePass(*PassRegistry::getPassRegistry());
+ }
bool doInitialization(Module &M);
bool runOnFunction(Function &F);
@@ -102,7 +104,7 @@ namespace {
char LowerInvoke::ID = 0;
INITIALIZE_PASS(LowerInvoke, "lowerinvoke",
"Lower invoke and unwind, for unwindless code generators",
- false, false);
+ false, false)
char &llvm::LowerInvokePassID = LowerInvoke::ID;
@@ -148,19 +150,20 @@ bool LowerInvoke::doInitialization(Module &M) {
"llvm.sjljeh.jblist");
}
-// VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
-// so it looks like Intrinsic::_setjmp
-#if defined(_MSC_VER) && defined(setjmp)
-#define setjmp_undefined_for_visual_studio
-#undef setjmp
+// VisualStudio defines setjmp as _setjmp
+#if defined(_MSC_VER) && defined(setjmp) && \
+ !defined(setjmp_undefined_for_msvc)
+# pragma push_macro("setjmp")
+# undef setjmp
+# define setjmp_undefined_for_msvc
#endif
SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
-#if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio)
-// let's return it to _setjmp state in case anyone ever needs it after this
-// point under VisualStudio
-#define setjmp _setjmp
+#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
+ // let's return it to _setjmp state
+# pragma pop_macro("setjmp")
+# undef setjmp_undefined_for_msvc
#endif
LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
@@ -186,6 +189,7 @@ bool LowerInvoke::insertCheapEHSupport(Function &F) {
NewCall->takeName(II);
NewCall->setCallingConv(II->getCallingConv());
NewCall->setAttributes(II->getAttributes());
+ NewCall->setDebugLoc(II->getDebugLoc());
II->replaceAllUsesWith(NewCall);
// Insert an unconditional branch to the normal destination.
@@ -266,6 +270,7 @@ void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
NewCall->takeName(II);
NewCall->setCallingConv(II->getCallingConv());
NewCall->setAttributes(II->getAttributes());
+ NewCall->setDebugLoc(II->getDebugLoc());
II->replaceAllUsesWith(NewCall);
// Replace the invoke with an uncond branch.
diff --git a/lib/Transforms/Utils/LowerSwitch.cpp b/lib/Transforms/Utils/LowerSwitch.cpp
index 5530b47..914a439 100644
--- a/lib/Transforms/Utils/LowerSwitch.cpp
+++ b/lib/Transforms/Utils/LowerSwitch.cpp
@@ -33,7 +33,9 @@ namespace {
class LowerSwitch : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
- LowerSwitch() : FunctionPass(ID) {}
+ LowerSwitch() : FunctionPass(ID) {
+ initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnFunction(Function &F);
@@ -80,7 +82,7 @@ namespace {
char LowerSwitch::ID = 0;
INITIALIZE_PASS(LowerSwitch, "lowerswitch",
- "Lower SwitchInst's to branches", false, false);
+ "Lower SwitchInst's to branches", false, false)
// Publically exposed interface to pass...
char &llvm::LowerSwitchID = LowerSwitch::ID;
@@ -107,7 +109,8 @@ bool LowerSwitch::runOnFunction(Function &F) {
// operator<< - Used for debugging purposes.
//
static raw_ostream& operator<<(raw_ostream &O,
- const LowerSwitch::CaseVector &C) ATTRIBUTE_USED;
+ const LowerSwitch::CaseVector &C)
+ LLVM_ATTRIBUTE_USED;
static raw_ostream& operator<<(raw_ostream &O,
const LowerSwitch::CaseVector &C) {
O << "[";
diff --git a/lib/Transforms/Utils/Mem2Reg.cpp b/lib/Transforms/Utils/Mem2Reg.cpp
index 101645b..f4ca81a 100644
--- a/lib/Transforms/Utils/Mem2Reg.cpp
+++ b/lib/Transforms/Utils/Mem2Reg.cpp
@@ -27,18 +27,17 @@ STATISTIC(NumPromoted, "Number of alloca's promoted");
namespace {
struct PromotePass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
- PromotePass() : FunctionPass(ID) {}
+ PromotePass() : FunctionPass(ID) {
+ initializePromotePassPass(*PassRegistry::getPassRegistry());
+ }
// runOnFunction - To run this pass, first we calculate the alloca
// instructions that are safe for promotion, then we promote each one.
//
virtual bool runOnFunction(Function &F);
- // getAnalysisUsage - We need dominance frontiers
- //
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
- AU.addRequired<DominanceFrontier>();
AU.setPreservesCFG();
// This is a cluster of orthogonal Transforms
AU.addPreserved<UnifyFunctionExitNodes>();
@@ -49,8 +48,11 @@ namespace {
} // end of anonymous namespace
char PromotePass::ID = 0;
-INITIALIZE_PASS(PromotePass, "mem2reg", "Promote Memory to Register",
- false, false);
+INITIALIZE_PASS_BEGIN(PromotePass, "mem2reg", "Promote Memory to Register",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_END(PromotePass, "mem2reg", "Promote Memory to Register",
+ false, false)
bool PromotePass::runOnFunction(Function &F) {
std::vector<AllocaInst*> Allocas;
@@ -60,7 +62,6 @@ bool PromotePass::runOnFunction(Function &F) {
bool Changed = false;
DominatorTree &DT = getAnalysis<DominatorTree>();
- DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
while (1) {
Allocas.clear();
@@ -74,7 +75,7 @@ bool PromotePass::runOnFunction(Function &F) {
if (Allocas.empty()) break;
- PromoteMemToReg(Allocas, DT, DF);
+ PromoteMemToReg(Allocas, DT);
NumPromoted += Allocas.size();
Changed = true;
}
diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index a4e3029..e6a4373 100644
--- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -9,10 +9,19 @@
//
// This file promotes memory references to be register references. It promotes
// alloca instructions which only have loads and stores as uses. An alloca is
-// transformed by using dominator frontiers to place PHI nodes, then traversing
-// the function in depth-first order to rewrite loads and stores as appropriate.
-// This is just the standard SSA construction algorithm to construct "pruned"
-// SSA form.
+// transformed by using iterated dominator frontiers to place PHI nodes, then
+// traversing the function in depth-first order to rewrite loads and stores as
+// appropriate.
+//
+// The algorithm used here is based on:
+//
+// Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
+// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
+// Programming Languages
+// POPL '95. ACM, New York, NY, 62-73.
+//
+// It has been modified to not explicitly use the DJ graph data structure and to
+// directly compute pruned SSA using per-variable liveness information.
//
//===----------------------------------------------------------------------===//
@@ -24,9 +33,10 @@
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Metadata.h"
+#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
@@ -34,6 +44,8 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
+#include <map>
+#include <queue>
using namespace llvm;
STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
@@ -178,7 +190,6 @@ namespace {
///
std::vector<AllocaInst*> Allocas;
DominatorTree &DT;
- DominanceFrontier &DF;
DIFactory *DIF;
/// AST - An AliasSetTracker object to update. If null, don't update it.
@@ -187,7 +198,7 @@ namespace {
/// AllocaLookup - Reverse mapping of Allocas.
///
- std::map<AllocaInst*, unsigned> AllocaLookup;
+ DenseMap<AllocaInst*, unsigned> AllocaLookup;
/// NewPhiNodes - The PhiNodes we're adding.
///
@@ -216,12 +227,15 @@ namespace {
/// non-determinstic behavior.
DenseMap<BasicBlock*, unsigned> BBNumbers;
+ /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
+ DenseMap<DomTreeNode*, unsigned> DomLevels;
+
/// BBNumPreds - Lazily compute the number of predecessors a block has.
DenseMap<const BasicBlock*, unsigned> BBNumPreds;
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
- DominanceFrontier &df, AliasSetTracker *ast)
- : Allocas(A), DT(dt), DF(df), DIF(0), AST(ast) {}
+ AliasSetTracker *ast)
+ : Allocas(A), DT(dt), DIF(0), AST(ast) {}
~PromoteMem2Reg() {
delete DIF;
}
@@ -264,13 +278,12 @@ namespace {
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
RenamePassData::ValVector &IncVals,
std::vector<RenamePassData> &Worklist);
- bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
- SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
+ bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
};
struct AllocaInfo {
- std::vector<BasicBlock*> DefiningBlocks;
- std::vector<BasicBlock*> UsingBlocks;
+ SmallVector<BasicBlock*, 32> DefiningBlocks;
+ SmallVector<BasicBlock*, 32> UsingBlocks;
StoreInst *OnlyStore;
BasicBlock *OnlyBlock;
@@ -325,11 +338,19 @@ namespace {
DbgDeclare = FindAllocaDbgDeclare(AI);
}
};
+
+ typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
+
+ struct DomTreeNodeCompare {
+ bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
+ return LHS.second < RHS.second;
+ }
+ };
} // end of anonymous namespace
void PromoteMem2Reg::run() {
- Function &F = *DF.getRoot()->getParent();
+ Function &F = *DT.getRoot()->getParent();
if (AST) PointerAllocaValues.resize(Allocas.size());
AllocaDbgDeclares.resize(Allocas.size());
@@ -422,7 +443,26 @@ void PromoteMem2Reg::run() {
continue;
}
}
-
+
+ // If we haven't computed dominator tree levels, do so now.
+ if (DomLevels.empty()) {
+ SmallVector<DomTreeNode*, 32> Worklist;
+
+ DomTreeNode *Root = DT.getRootNode();
+ DomLevels[Root] = 0;
+ Worklist.push_back(Root);
+
+ while (!Worklist.empty()) {
+ DomTreeNode *Node = Worklist.pop_back_val();
+ unsigned ChildLevel = DomLevels[Node] + 1;
+ for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
+ CI != CE; ++CI) {
+ DomLevels[*CI] = ChildLevel;
+ Worklist.push_back(*CI);
+ }
+ }
+ }
+
// If we haven't computed a numbering for the BB's in the function, do so
// now.
if (BBNumbers.empty()) {
@@ -484,9 +524,8 @@ void PromoteMem2Reg::run() {
Instruction *A = Allocas[i];
// If there are any uses of the alloca instructions left, they must be in
- // sections of dead code that were not processed on the dominance frontier.
- // Just delete the users now.
- //
+ // unreachable basic blocks that were not processed by walking the dominator
+ // tree. Just delete the users now.
if (!A->use_empty())
A->replaceAllUsesWith(UndefValue::get(A->getType()));
if (AST) AST->deleteValue(A);
@@ -509,9 +548,9 @@ void PromoteMem2Reg::run() {
for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
PHINode *PN = I->second;
-
+
// If this PHI node merges one value and/or undefs, get the value.
- if (Value *V = PN->hasConstantValue(&DT)) {
+ if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
if (AST && PN->getType()->isPointerTy())
AST->deleteValue(PN);
PN->replaceAllUsesWith(V);
@@ -663,7 +702,6 @@ ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
/// avoiding insertion of dead phi nodes.
void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
AllocaInfo &Info) {
-
// Unique the set of defining blocks for efficient lookup.
SmallPtrSet<BasicBlock*, 32> DefBlocks;
DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
@@ -673,47 +711,78 @@ void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
- // Compute the locations where PhiNodes need to be inserted. Look at the
- // dominance frontier of EACH basic-block we have a write in.
- unsigned CurrentVersion = 0;
- SmallPtrSet<PHINode*, 16> InsertedPHINodes;
- std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
- while (!Info.DefiningBlocks.empty()) {
- BasicBlock *BB = Info.DefiningBlocks.back();
- Info.DefiningBlocks.pop_back();
-
- // Look up the DF for this write, add it to defining blocks.
- DominanceFrontier::const_iterator it = DF.find(BB);
- if (it == DF.end()) continue;
-
- const DominanceFrontier::DomSetType &S = it->second;
-
- // In theory we don't need the indirection through the DFBlocks vector.
- // In practice, the order of calling QueuePhiNode would depend on the
- // (unspecified) ordering of basic blocks in the dominance frontier,
- // which would give PHI nodes non-determinstic subscripts. Fix this by
- // processing blocks in order of the occurance in the function.
- for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
- PE = S.end(); P != PE; ++P) {
- // If the frontier block is not in the live-in set for the alloca, don't
- // bother processing it.
- if (!LiveInBlocks.count(*P))
- continue;
-
- DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
- }
-
- // Sort by which the block ordering in the function.
- if (DFBlocks.size() > 1)
- std::sort(DFBlocks.begin(), DFBlocks.end());
-
- for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
- BasicBlock *BB = DFBlocks[i].second;
- if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
- Info.DefiningBlocks.push_back(BB);
+ // Use a priority queue keyed on dominator tree level so that inserted nodes
+ // are handled from the bottom of the dominator tree upwards.
+ typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
+ DomTreeNodeCompare> IDFPriorityQueue;
+ IDFPriorityQueue PQ;
+
+ for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
+ E = DefBlocks.end(); I != E; ++I) {
+ if (DomTreeNode *Node = DT.getNode(*I))
+ PQ.push(std::make_pair(Node, DomLevels[Node]));
+ }
+
+ SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
+ SmallPtrSet<DomTreeNode*, 32> Visited;
+ SmallVector<DomTreeNode*, 32> Worklist;
+ while (!PQ.empty()) {
+ DomTreeNodePair RootPair = PQ.top();
+ PQ.pop();
+ DomTreeNode *Root = RootPair.first;
+ unsigned RootLevel = RootPair.second;
+
+ // Walk all dominator tree children of Root, inspecting their CFG edges with
+ // targets elsewhere on the dominator tree. Only targets whose level is at
+ // most Root's level are added to the iterated dominance frontier of the
+ // definition set.
+
+ Worklist.clear();
+ Worklist.push_back(Root);
+
+ while (!Worklist.empty()) {
+ DomTreeNode *Node = Worklist.pop_back_val();
+ BasicBlock *BB = Node->getBlock();
+
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
+ ++SI) {
+ DomTreeNode *SuccNode = DT.getNode(*SI);
+
+ // Quickly skip all CFG edges that are also dominator tree edges instead
+ // of catching them below.
+ if (SuccNode->getIDom() == Node)
+ continue;
+
+ unsigned SuccLevel = DomLevels[SuccNode];
+ if (SuccLevel > RootLevel)
+ continue;
+
+ if (!Visited.insert(SuccNode))
+ continue;
+
+ BasicBlock *SuccBB = SuccNode->getBlock();
+ if (!LiveInBlocks.count(SuccBB))
+ continue;
+
+ DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
+ if (!DefBlocks.count(SuccBB))
+ PQ.push(std::make_pair(SuccNode, SuccLevel));
+ }
+
+ for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
+ ++CI) {
+ if (!Visited.count(*CI))
+ Worklist.push_back(*CI);
+ }
}
- DFBlocks.clear();
}
+
+ if (DFBlocks.size() > 1)
+ std::sort(DFBlocks.begin(), DFBlocks.end());
+
+ unsigned CurrentVersion = 0;
+ for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
+ QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
}
/// RewriteSingleStoreAlloca - If there is only a single store to this value,
@@ -900,8 +969,7 @@ void PromoteMem2Reg::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
- unsigned &Version,
- SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
+ unsigned &Version) {
// Look up the basic-block in question.
PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
@@ -916,8 +984,6 @@ bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
++NumPHIInsert;
PhiToAllocaMap[PN] = AllocaNo;
PN->reserveOperandSpace(getNumPreds(BB));
-
- InsertedPHINodes.insert(PN);
if (AST && PN->getType()->isPointerTy())
AST->copyValue(PointerAllocaValues[AllocaNo], PN);
@@ -986,7 +1052,7 @@ NextIteration:
AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
if (!Src) continue;
- std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
+ DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
if (AI == AllocaLookup.end()) continue;
Value *V = IncomingVals[AI->second];
@@ -1002,7 +1068,7 @@ NextIteration:
AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
if (!Dest) continue;
- std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
+ DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
if (ai == AllocaLookup.end())
continue;
@@ -1036,18 +1102,17 @@ NextIteration:
}
/// PromoteMemToReg - Promote the specified list of alloca instructions into
-/// scalar registers, inserting PHI nodes as appropriate. This function makes
-/// use of DominanceFrontier information. This function does not modify the CFG
-/// of the function at all. All allocas must be from the same function.
+/// scalar registers, inserting PHI nodes as appropriate. This function does
+/// not modify the CFG of the function at all. All allocas must be from the
+/// same function.
///
/// If AST is specified, the specified tracker is updated to reflect changes
/// made to the IR.
///
void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
- DominatorTree &DT, DominanceFrontier &DF,
- AliasSetTracker *AST) {
+ DominatorTree &DT, AliasSetTracker *AST) {
// If there is nothing to do, bail out...
if (Allocas.empty()) return;
- PromoteMem2Reg(Allocas, DT, DF, AST).run();
+ PromoteMem2Reg(Allocas, DT, AST).run();
}
diff --git a/lib/Transforms/Utils/SSAUpdater.cpp b/lib/Transforms/Utils/SSAUpdater.cpp
index c855988..3896d98 100644
--- a/lib/Transforms/Utils/SSAUpdater.cpp
+++ b/lib/Transforms/Utils/SSAUpdater.cpp
@@ -14,6 +14,7 @@
#define DEBUG_TYPE "ssaupdater"
#include "llvm/Instructions.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CFG.h"
@@ -178,9 +179,9 @@ Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
// See if the PHI node can be merged to a single value. This can happen in
// loop cases when we get a PHI of itself and one other value.
- if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
+ if (Value *V = SimplifyInstruction(InsertedPHI)) {
InsertedPHI->eraseFromParent();
- return ConstVal;
+ return V;
}
// If the client wants to know about all new instructions, tell it.
@@ -342,3 +343,169 @@ Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
return Impl.GetValue(BB);
}
+
+//===----------------------------------------------------------------------===//
+// LoadAndStorePromoter Implementation
+//===----------------------------------------------------------------------===//
+
+LoadAndStorePromoter::
+LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
+ SSAUpdater &S, StringRef BaseName) : SSA(S) {
+ if (Insts.empty()) return;
+
+ Value *SomeVal;
+ if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
+ SomeVal = LI;
+ else
+ SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
+
+ if (BaseName.empty())
+ BaseName = SomeVal->getName();
+ SSA.Initialize(SomeVal->getType(), BaseName);
+}
+
+
+void LoadAndStorePromoter::
+run(const SmallVectorImpl<Instruction*> &Insts) const {
+
+ // First step: bucket up uses of the alloca by the block they occur in.
+ // This is important because we have to handle multiple defs/uses in a block
+ // ourselves: SSAUpdater is purely for cross-block references.
+ // FIXME: Want a TinyVector<Instruction*> since there is often 0/1 element.
+ DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
+
+ for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
+ Instruction *User = Insts[i];
+ UsesByBlock[User->getParent()].push_back(User);
+ }
+
+ // Okay, now we can iterate over all the blocks in the function with uses,
+ // processing them. Keep track of which loads are loading a live-in value.
+ // Walk the uses in the use-list order to be determinstic.
+ SmallVector<LoadInst*, 32> LiveInLoads;
+ DenseMap<Value*, Value*> ReplacedLoads;
+
+ for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
+ Instruction *User = Insts[i];
+ BasicBlock *BB = User->getParent();
+ std::vector<Instruction*> &BlockUses = UsesByBlock[BB];
+
+ // If this block has already been processed, ignore this repeat use.
+ if (BlockUses.empty()) continue;
+
+ // Okay, this is the first use in the block. If this block just has a
+ // single user in it, we can rewrite it trivially.
+ if (BlockUses.size() == 1) {
+ // If it is a store, it is a trivial def of the value in the block.
+ if (StoreInst *SI = dyn_cast<StoreInst>(User))
+ SSA.AddAvailableValue(BB, SI->getOperand(0));
+ else
+ // Otherwise it is a load, queue it to rewrite as a live-in load.
+ LiveInLoads.push_back(cast<LoadInst>(User));
+ BlockUses.clear();
+ continue;
+ }
+
+ // Otherwise, check to see if this block is all loads.
+ bool HasStore = false;
+ for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
+ if (isa<StoreInst>(BlockUses[i])) {
+ HasStore = true;
+ break;
+ }
+ }
+
+ // If so, we can queue them all as live in loads. We don't have an
+ // efficient way to tell which on is first in the block and don't want to
+ // scan large blocks, so just add all loads as live ins.
+ if (!HasStore) {
+ for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
+ LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
+ BlockUses.clear();
+ continue;
+ }
+
+ // Otherwise, we have mixed loads and stores (or just a bunch of stores).
+ // Since SSAUpdater is purely for cross-block values, we need to determine
+ // the order of these instructions in the block. If the first use in the
+ // block is a load, then it uses the live in value. The last store defines
+ // the live out value. We handle this by doing a linear scan of the block.
+ Value *StoredValue = 0;
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
+ if (LoadInst *L = dyn_cast<LoadInst>(II)) {
+ // If this is a load from an unrelated pointer, ignore it.
+ if (!isInstInList(L, Insts)) continue;
+
+ // If we haven't seen a store yet, this is a live in use, otherwise
+ // use the stored value.
+ if (StoredValue) {
+ replaceLoadWithValue(L, StoredValue);
+ L->replaceAllUsesWith(StoredValue);
+ ReplacedLoads[L] = StoredValue;
+ } else {
+ LiveInLoads.push_back(L);
+ }
+ continue;
+ }
+
+ if (StoreInst *S = dyn_cast<StoreInst>(II)) {
+ // If this is a store to an unrelated pointer, ignore it.
+ if (!isInstInList(S, Insts)) continue;
+
+ // Remember that this is the active value in the block.
+ StoredValue = S->getOperand(0);
+ }
+ }
+
+ // The last stored value that happened is the live-out for the block.
+ assert(StoredValue && "Already checked that there is a store in block");
+ SSA.AddAvailableValue(BB, StoredValue);
+ BlockUses.clear();
+ }
+
+ // Okay, now we rewrite all loads that use live-in values in the loop,
+ // inserting PHI nodes as necessary.
+ for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
+ LoadInst *ALoad = LiveInLoads[i];
+ Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
+ replaceLoadWithValue(ALoad, NewVal);
+
+ // Avoid assertions in unreachable code.
+ if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
+ ALoad->replaceAllUsesWith(NewVal);
+ ReplacedLoads[ALoad] = NewVal;
+ }
+
+ // Allow the client to do stuff before we start nuking things.
+ doExtraRewritesBeforeFinalDeletion();
+
+ // Now that everything is rewritten, delete the old instructions from the
+ // function. They should all be dead now.
+ for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
+ Instruction *User = Insts[i];
+
+ // If this is a load that still has uses, then the load must have been added
+ // as a live value in the SSAUpdate data structure for a block (e.g. because
+ // the loaded value was stored later). In this case, we need to recursively
+ // propagate the updates until we get to the real value.
+ if (!User->use_empty()) {
+ Value *NewVal = ReplacedLoads[User];
+ assert(NewVal && "not a replaced load?");
+
+ // Propagate down to the ultimate replacee. The intermediately loads
+ // could theoretically already have been deleted, so we don't want to
+ // dereference the Value*'s.
+ DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
+ while (RLI != ReplacedLoads.end()) {
+ NewVal = RLI->second;
+ RLI = ReplacedLoads.find(NewVal);
+ }
+
+ replaceLoadWithValue(cast<LoadInst>(User), NewVal);
+ User->replaceAllUsesWith(NewVal);
+ }
+
+ instructionDeleted(User);
+ User->eraseFromParent();
+ }
+}
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
index 28d7afb..fb660db 100644
--- a/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -19,33 +19,34 @@
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
-#include <functional>
#include <set>
#include <map>
using namespace llvm;
+static cl::opt<bool>
+DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
+ cl::desc("Duplicate return instructions into unconditional branches"));
+
STATISTIC(NumSpeculations, "Number of speculative executed instructions");
namespace {
class SimplifyCFGOpt {
const TargetData *const TD;
- ConstantInt *GetConstantInt(Value *V);
- Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values);
- Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values);
- bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
- std::vector<ConstantInt*> &Values);
Value *isValueEqualityComparison(TerminatorInst *TI);
BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
@@ -53,6 +54,14 @@ class SimplifyCFGOpt {
BasicBlock *Pred);
bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI);
+ bool SimplifyReturn(ReturnInst *RI);
+ bool SimplifyUnwind(UnwindInst *UI);
+ bool SimplifyUnreachable(UnreachableInst *UI);
+ bool SimplifySwitch(SwitchInst *SI);
+ bool SimplifyIndirectBr(IndirectBrInst *IBI);
+ bool SimplifyUncondBranch(BranchInst *BI);
+ bool SimplifyCondBranch(BranchInst *BI);
+
public:
explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
bool run(BasicBlock *BB);
@@ -91,8 +100,6 @@ static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
/// ExistPred, an existing predecessor of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
BasicBlock *ExistPred) {
- assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
- succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
PHINode *PN;
@@ -102,28 +109,29 @@ static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
}
-/// GetIfCondition - Given a basic block (BB) with two predecessors (and
-/// presumably PHI nodes in it), check to see if the merge at this block is due
+/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
+/// least one PHI node in it), check to see if the merge at this block is due
/// to an "if condition". If so, return the boolean condition that determines
/// which entry into BB will be taken. Also, return by references the block
/// that will be entered from if the condition is true, and the block that will
/// be entered if the condition is false.
///
-///
-static Value *GetIfCondition(BasicBlock *BB,
- BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
- assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
+/// This does no checking to see if the true/false blocks have large or unsavory
+/// instructions in them.
+static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
+ BasicBlock *&IfFalse) {
+ PHINode *SomePHI = cast<PHINode>(BB->begin());
+ assert(SomePHI->getNumIncomingValues() == 2 &&
"Function can only handle blocks with 2 predecessors!");
- BasicBlock *Pred1 = *pred_begin(BB);
- BasicBlock *Pred2 = *++pred_begin(BB);
+ BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
+ BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
// We can only handle branches. Other control flow will be lowered to
// branches if possible anyway.
- if (!isa<BranchInst>(Pred1->getTerminator()) ||
- !isa<BranchInst>(Pred2->getTerminator()))
+ BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
+ BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
+ if (Pred1Br == 0 || Pred2Br == 0)
return 0;
- BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
- BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
// Eliminate code duplication by ensuring that Pred1Br is conditional if
// either are.
@@ -140,6 +148,12 @@ static Value *GetIfCondition(BasicBlock *BB,
}
if (Pred1Br->isConditional()) {
+ // The only thing we have to watch out for here is to make sure that Pred2
+ // doesn't have incoming edges from other blocks. If it does, the condition
+ // doesn't dominate BB.
+ if (Pred2->getSinglePredecessor() == 0)
+ return 0;
+
// If we found a conditional branch predecessor, make sure that it branches
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
if (Pred1Br->getSuccessor(0) == BB &&
@@ -156,39 +170,29 @@ static Value *GetIfCondition(BasicBlock *BB,
return 0;
}
- // The only thing we have to watch out for here is to make sure that Pred2
- // doesn't have incoming edges from other blocks. If it does, the condition
- // doesn't dominate BB.
- if (++pred_begin(Pred2) != pred_end(Pred2))
- return 0;
-
return Pred1Br->getCondition();
}
// Ok, if we got here, both predecessors end with an unconditional branch to
// BB. Don't panic! If both blocks only have a single (identical)
// predecessor, and THAT is a conditional branch, then we're all ok!
- if (pred_begin(Pred1) == pred_end(Pred1) ||
- ++pred_begin(Pred1) != pred_end(Pred1) ||
- pred_begin(Pred2) == pred_end(Pred2) ||
- ++pred_begin(Pred2) != pred_end(Pred2) ||
- *pred_begin(Pred1) != *pred_begin(Pred2))
+ BasicBlock *CommonPred = Pred1->getSinglePredecessor();
+ if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
return 0;
// Otherwise, if this is a conditional branch, then we can use it!
- BasicBlock *CommonPred = *pred_begin(Pred1);
- if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
- assert(BI->isConditional() && "Two successors but not conditional?");
- if (BI->getSuccessor(0) == Pred1) {
- IfTrue = Pred1;
- IfFalse = Pred2;
- } else {
- IfTrue = Pred2;
- IfFalse = Pred1;
- }
- return BI->getCondition();
+ BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
+ if (BI == 0) return 0;
+
+ assert(BI->isConditional() && "Two successors but not conditional?");
+ if (BI->getSuccessor(0) == Pred1) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
}
- return 0;
+ return BI->getCondition();
}
/// DominatesMergePoint - If we have a merge point of an "if condition" as
@@ -201,7 +205,7 @@ static Value *GetIfCondition(BasicBlock *BB,
/// non-trapping. If both are true, the instruction is inserted into the set
/// and true is returned.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
- std::set<Instruction*> *AggressiveInsts) {
+ SmallPtrSet<Instruction*, 4> *AggressiveInsts) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
// Non-instructions all dominate instructions, but not all constantexprs
@@ -219,56 +223,55 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
// If this instruction is defined in a block that contains an unconditional
// branch to BB, then it must be in the 'conditional' part of the "if
- // statement".
- if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
- if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
- if (!AggressiveInsts) return false;
- // Okay, it looks like the instruction IS in the "condition". Check to
- // see if it's a cheap instruction to unconditionally compute, and if it
- // only uses stuff defined outside of the condition. If so, hoist it out.
- if (!I->isSafeToSpeculativelyExecute())
- return false;
+ // statement". If not, it definitely dominates the region.
+ BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
+ if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
+ return true;
- switch (I->getOpcode()) {
- default: return false; // Cannot hoist this out safely.
- case Instruction::Load: {
- // We have to check to make sure there are no instructions before the
- // load in its basic block, as we are going to hoist the loop out to
- // its predecessor.
- BasicBlock::iterator IP = PBB->begin();
- while (isa<DbgInfoIntrinsic>(IP))
- IP++;
- if (IP != BasicBlock::iterator(I))
- return false;
- break;
- }
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::ICmp:
- break; // These are all cheap and non-trapping instructions.
- }
+ // If we aren't allowing aggressive promotion anymore, then don't consider
+ // instructions in the 'if region'.
+ if (AggressiveInsts == 0) return false;
+
+ // Okay, it looks like the instruction IS in the "condition". Check to
+ // see if it's a cheap instruction to unconditionally compute, and if it
+ // only uses stuff defined outside of the condition. If so, hoist it out.
+ if (!I->isSafeToSpeculativelyExecute())
+ return false;
- // Okay, we can only really hoist these out if their operands are not
- // defined in the conditional region.
- for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
- if (!DominatesMergePoint(*i, BB, 0))
- return false;
- // Okay, it's safe to do this! Remember this instruction.
- AggressiveInsts->insert(I);
- }
+ switch (I->getOpcode()) {
+ default: return false; // Cannot hoist this out safely.
+ case Instruction::Load:
+ // We have to check to make sure there are no instructions before the
+ // load in its basic block, as we are going to hoist the load out to its
+ // predecessor.
+ if (PBB->getFirstNonPHIOrDbg() != I)
+ return false;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::ICmp:
+ break; // These are all cheap and non-trapping instructions.
+ }
+ // Okay, we can only really hoist these out if their operands are not
+ // defined in the conditional region.
+ for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
+ if (!DominatesMergePoint(*i, BB, 0))
+ return false;
+ // Okay, it's safe to do this! Remember this instruction.
+ AggressiveInsts->insert(I);
return true;
}
/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
/// and PointerNullValue. Return NULL if value is not a constant int.
-ConstantInt *SimplifyCFGOpt::GetConstantInt(Value *V) {
+static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
// Normal constant int.
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
@@ -296,77 +299,94 @@ ConstantInt *SimplifyCFGOpt::GetConstantInt(Value *V) {
return 0;
}
-/// GatherConstantSetEQs - Given a potentially 'or'd together collection of
-/// icmp_eq instructions that compare a value against a constant, return the
-/// value being compared, and stick the constant into the Values vector.
-Value *SimplifyCFGOpt::
-GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values) {
- if (Instruction *Inst = dyn_cast<Instruction>(V)) {
- if (Inst->getOpcode() == Instruction::ICmp &&
- cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
- if (ConstantInt *C = GetConstantInt(Inst->getOperand(1))) {
- Values.push_back(C);
- return Inst->getOperand(0);
- } else if (ConstantInt *C = GetConstantInt(Inst->getOperand(0))) {
- Values.push_back(C);
- return Inst->getOperand(1);
+/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
+/// collection of icmp eq/ne instructions that compare a value against a
+/// constant, return the value being compared, and stick the constant into the
+/// Values vector.
+static Value *
+GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
+ const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (I == 0) return 0;
+
+ // If this is an icmp against a constant, handle this as one of the cases.
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
+ if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
+ if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
+ UsedICmps++;
+ Vals.push_back(C);
+ return I->getOperand(0);
}
- } else if (Inst->getOpcode() == Instruction::Or) {
- if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
- if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
- if (LHS == RHS)
- return LHS;
+
+ // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
+ // the set.
+ ConstantRange Span =
+ ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
+
+ // If this is an and/!= check then we want to optimize "x ugt 2" into
+ // x != 0 && x != 1.
+ if (!isEQ)
+ Span = Span.inverse();
+
+ // If there are a ton of values, we don't want to make a ginormous switch.
+ if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
+ // We don't handle wrapped sets yet.
+ Span.isWrappedSet())
+ return 0;
+
+ for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
+ Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
+ UsedICmps++;
+ return I->getOperand(0);
}
+ return 0;
}
- return 0;
-}
+
+ // Otherwise, we can only handle an | or &, depending on isEQ.
+ if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
+ return 0;
+
+ unsigned NumValsBeforeLHS = Vals.size();
+ unsigned UsedICmpsBeforeLHS = UsedICmps;
+ if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
+ isEQ, UsedICmps)) {
+ unsigned NumVals = Vals.size();
+ unsigned UsedICmpsBeforeRHS = UsedICmps;
+ if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
+ isEQ, UsedICmps)) {
+ if (LHS == RHS)
+ return LHS;
+ Vals.resize(NumVals);
+ UsedICmps = UsedICmpsBeforeRHS;
+ }
-/// GatherConstantSetNEs - Given a potentially 'and'd together collection of
-/// setne instructions that compare a value against a constant, return the value
-/// being compared, and stick the constant into the Values vector.
-Value *SimplifyCFGOpt::
-GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values) {
- if (Instruction *Inst = dyn_cast<Instruction>(V)) {
- if (Inst->getOpcode() == Instruction::ICmp &&
- cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
- if (ConstantInt *C = GetConstantInt(Inst->getOperand(1))) {
- Values.push_back(C);
- return Inst->getOperand(0);
- } else if (ConstantInt *C = GetConstantInt(Inst->getOperand(0))) {
- Values.push_back(C);
- return Inst->getOperand(1);
- }
- } else if (Inst->getOpcode() == Instruction::And) {
- if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
- if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
- if (LHS == RHS)
- return LHS;
+ // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
+ // set it and return success.
+ if (Extra == 0 || Extra == I->getOperand(1)) {
+ Extra = I->getOperand(1);
+ return LHS;
}
+
+ Vals.resize(NumValsBeforeLHS);
+ UsedICmps = UsedICmpsBeforeLHS;
+ return 0;
}
- return 0;
-}
-
-/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
-/// bunch of comparisons of one value against constants, return the value and
-/// the constants being compared.
-bool SimplifyCFGOpt::GatherValueComparisons(Instruction *Cond, Value *&CompVal,
- std::vector<ConstantInt*> &Values) {
- if (Cond->getOpcode() == Instruction::Or) {
- CompVal = GatherConstantSetEQs(Cond, Values);
-
- // Return true to indicate that the condition is true if the CompVal is
- // equal to one of the constants.
- return true;
- } else if (Cond->getOpcode() == Instruction::And) {
- CompVal = GatherConstantSetNEs(Cond, Values);
-
- // Return false to indicate that the condition is false if the CompVal is
- // equal to one of the constants.
- return false;
+
+ // If the LHS can't be folded in, but Extra is available and RHS can, try to
+ // use LHS as Extra.
+ if (Extra == 0 || Extra == I->getOperand(0)) {
+ Value *OldExtra = Extra;
+ Extra = I->getOperand(0);
+ if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
+ isEQ, UsedICmps))
+ return RHS;
+ assert(Vals.size() == NumValsBeforeLHS);
+ Extra = OldExtra;
}
- return false;
+
+ return 0;
}
-
+
static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
Instruction* Cond = 0;
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
@@ -374,6 +394,8 @@ static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional())
Cond = dyn_cast<Instruction>(BI->getCondition());
+ } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
+ Cond = dyn_cast<Instruction>(IBI->getAddress());
}
TI->eraseFromParent();
@@ -395,7 +417,7 @@ Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
ICI->getPredicate() == ICmpInst::ICMP_NE) &&
- GetConstantInt(ICI->getOperand(1)))
+ GetConstantInt(ICI->getOperand(1), TD))
CV = ICI->getOperand(0);
// Unwrap any lossless ptrtoint cast.
@@ -420,7 +442,7 @@ GetValueEqualityComparisonCases(TerminatorInst *TI,
BranchInst *BI = cast<BranchInst>(TI);
ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
- Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1)),
+ Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
BI->getSuccessor(ICI->getPredicate() ==
ICmpInst::ICMP_NE)));
return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
@@ -459,8 +481,8 @@ ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
}
// Otherwise, just sort both lists and compare element by element.
- std::sort(V1->begin(), V1->end());
- std::sort(V2->begin(), V2->end());
+ array_pod_sort(V1->begin(), V1->end());
+ array_pod_sort(V2->begin(), V2->end());
unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
while (i1 != e1 && i2 != e2) {
if ((*V1)[i1].first == (*V2)[i2].first)
@@ -506,90 +528,87 @@ SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
// If we are here, we know that the value is none of those cases listed in
// PredCases. If there are any cases in ThisCases that are in PredCases, we
// can simplify TI.
- if (ValuesOverlap(PredCases, ThisCases)) {
- if (isa<BranchInst>(TI)) {
- // Okay, one of the successors of this condbr is dead. Convert it to a
- // uncond br.
- assert(ThisCases.size() == 1 && "Branch can only have one case!");
- // Insert the new branch.
- Instruction *NI = BranchInst::Create(ThisDef, TI);
- (void) NI;
-
- // Remove PHI node entries for the dead edge.
- ThisCases[0].second->removePredecessor(TI->getParent());
-
- DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
-
- EraseTerminatorInstAndDCECond(TI);
- return true;
-
- } else {
- SwitchInst *SI = cast<SwitchInst>(TI);
- // Okay, TI has cases that are statically dead, prune them away.
- SmallPtrSet<Constant*, 16> DeadCases;
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- DeadCases.insert(PredCases[i].first);
+ if (!ValuesOverlap(PredCases, ThisCases))
+ return false;
+
+ if (isa<BranchInst>(TI)) {
+ // Okay, one of the successors of this condbr is dead. Convert it to a
+ // uncond br.
+ assert(ThisCases.size() == 1 && "Branch can only have one case!");
+ // Insert the new branch.
+ Instruction *NI = BranchInst::Create(ThisDef, TI);
+ (void) NI;
- DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI);
+ // Remove PHI node entries for the dead edge.
+ ThisCases[0].second->removePredecessor(TI->getParent());
- for (unsigned i = SI->getNumCases()-1; i != 0; --i)
- if (DeadCases.count(SI->getCaseValue(i))) {
- SI->getSuccessor(i)->removePredecessor(TI->getParent());
- SI->removeCase(i);
- }
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
- DEBUG(dbgs() << "Leaving: " << *TI << "\n");
- return true;
- }
+ EraseTerminatorInstAndDCECond(TI);
+ return true;
}
-
- } else {
- // Otherwise, TI's block must correspond to some matched value. Find out
- // which value (or set of values) this is.
- ConstantInt *TIV = 0;
- BasicBlock *TIBB = TI->getParent();
+
+ SwitchInst *SI = cast<SwitchInst>(TI);
+ // Okay, TI has cases that are statically dead, prune them away.
+ SmallPtrSet<Constant*, 16> DeadCases;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- if (PredCases[i].second == TIBB) {
- if (TIV == 0)
- TIV = PredCases[i].first;
- else
- return false; // Cannot handle multiple values coming to this block.
- }
- assert(TIV && "No edge from pred to succ?");
-
- // Okay, we found the one constant that our value can be if we get into TI's
- // BB. Find out which successor will unconditionally be branched to.
- BasicBlock *TheRealDest = 0;
- for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
- if (ThisCases[i].first == TIV) {
- TheRealDest = ThisCases[i].second;
- break;
+ DeadCases.insert(PredCases[i].first);
+
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI);
+
+ for (unsigned i = SI->getNumCases()-1; i != 0; --i)
+ if (DeadCases.count(SI->getCaseValue(i))) {
+ SI->getSuccessor(i)->removePredecessor(TI->getParent());
+ SI->removeCase(i);
}
- // If not handled by any explicit cases, it is handled by the default case.
- if (TheRealDest == 0) TheRealDest = ThisDef;
+ DEBUG(dbgs() << "Leaving: " << *TI << "\n");
+ return true;
+ }
+
+ // Otherwise, TI's block must correspond to some matched value. Find out
+ // which value (or set of values) this is.
+ ConstantInt *TIV = 0;
+ BasicBlock *TIBB = TI->getParent();
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].second == TIBB) {
+ if (TIV != 0)
+ return false; // Cannot handle multiple values coming to this block.
+ TIV = PredCases[i].first;
+ }
+ assert(TIV && "No edge from pred to succ?");
+
+ // Okay, we found the one constant that our value can be if we get into TI's
+ // BB. Find out which successor will unconditionally be branched to.
+ BasicBlock *TheRealDest = 0;
+ for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
+ if (ThisCases[i].first == TIV) {
+ TheRealDest = ThisCases[i].second;
+ break;
+ }
- // Remove PHI node entries for dead edges.
- BasicBlock *CheckEdge = TheRealDest;
- for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
- if (*SI != CheckEdge)
- (*SI)->removePredecessor(TIBB);
- else
- CheckEdge = 0;
+ // If not handled by any explicit cases, it is handled by the default case.
+ if (TheRealDest == 0) TheRealDest = ThisDef;
- // Insert the new branch.
- Instruction *NI = BranchInst::Create(TheRealDest, TI);
- (void) NI;
+ // Remove PHI node entries for dead edges.
+ BasicBlock *CheckEdge = TheRealDest;
+ for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
+ if (*SI != CheckEdge)
+ (*SI)->removePredecessor(TIBB);
+ else
+ CheckEdge = 0;
- DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
+ // Insert the new branch.
+ Instruction *NI = BranchInst::Create(TheRealDest, TI);
+ (void) NI;
- EraseTerminatorInstAndDCECond(TI);
- return true;
- }
- return false;
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
+
+ EraseTerminatorInstAndDCECond(TI);
+ return true;
}
namespace {
@@ -603,6 +622,16 @@ namespace {
};
}
+static int ConstantIntSortPredicate(const void *P1, const void *P2) {
+ const ConstantInt *LHS = *(const ConstantInt**)P1;
+ const ConstantInt *RHS = *(const ConstantInt**)P2;
+ if (LHS->getValue().ult(RHS->getValue()))
+ return 1;
+ if (LHS->getValue() == RHS->getValue())
+ return 0;
+ return -1;
+}
+
/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
/// equality comparison instruction (either a switch or a branch on "X == c").
/// See if any of the predecessors of the terminator block are value comparisons
@@ -798,7 +827,7 @@ static bool HoistThenElseCodeToIf(BranchInst *BI) {
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
I1->intersectOptionalDataWith(I2);
- BB2->getInstList().erase(I2);
+ I2->eraseFromParent();
I1 = BB1_Itr++;
while (isa<DbgInfoIntrinsic>(I1))
@@ -836,18 +865,18 @@ HoistTerminator:
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
- if (BB1V != BB2V) {
- // These values do not agree. Insert a select instruction before NT
- // that determines the right value.
- SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
- if (SI == 0)
- SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
- BB1V->getName()+"."+BB2V->getName(), NT);
- // Make the PHI node use the select for all incoming values for BB1/BB2
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
- PN->setIncomingValue(i, SI);
- }
+ if (BB1V == BB2V) continue;
+
+ // These values do not agree. Insert a select instruction before NT
+ // that determines the right value.
+ SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
+ if (SI == 0)
+ SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
+ BB1V->getName()+"."+BB2V->getName(), NT);
+ // Make the PHI node use the select for all incoming values for BB1/BB2
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
+ PN->setIncomingValue(i, SI);
}
}
@@ -872,21 +901,19 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
BBI != BBE; ++BBI) {
Instruction *I = BBI;
// Skip debug info.
- if (isa<DbgInfoIntrinsic>(I)) continue;
- if (I == Term) break;
+ if (isa<DbgInfoIntrinsic>(I)) continue;
+ if (I == Term) break;
- if (!HInst)
- HInst = I;
- else
+ if (HInst)
return false;
+ HInst = I;
}
if (!HInst)
return false;
// Be conservative for now. FP select instruction can often be expensive.
Value *BrCond = BI->getCondition();
- if (isa<Instruction>(BrCond) &&
- cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
+ if (isa<FCmpInst>(BrCond))
return false;
// If BB1 is actually on the false edge of the conditional branch, remember
@@ -990,12 +1017,12 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
UI != UE; ++UI) {
Instruction *Use = cast<Instruction>(*UI);
- if (BB1Insns.count(Use)) {
- // If BrCond uses the instruction that place it just before
- // branch instruction.
- InsertPos = BI;
- break;
- }
+ if (!BB1Insns.count(Use)) continue;
+
+ // If BrCond uses the instruction that place it just before
+ // branch instruction.
+ InsertPos = BI;
+ break;
}
} else
InsertPos = BI;
@@ -1016,8 +1043,7 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
PHINode *PN = PHIUses[i];
for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
- if (PN->getIncomingBlock(j) == BB1 ||
- PN->getIncomingBlock(j) == BIParent)
+ if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
PN->setIncomingValue(j, SI);
}
@@ -1055,7 +1081,7 @@ static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
-static bool FoldCondBranchOnPHI(BranchInst *BI) {
+static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
BasicBlock *BB = BI->getParent();
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
// NOTE: we currently cannot transform this case if the PHI node is used
@@ -1075,78 +1101,73 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
// Okay, this is a simple enough basic block. See if any phi values are
// constants.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- ConstantInt *CB;
- if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
- CB->getType()->isIntegerTy(1)) {
- // Okay, we now know that all edges from PredBB should be revectored to
- // branch to RealDest.
- BasicBlock *PredBB = PN->getIncomingBlock(i);
- BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
+ ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
+ if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
+
+ // Okay, we now know that all edges from PredBB should be revectored to
+ // branch to RealDest.
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
+
+ if (RealDest == BB) continue; // Skip self loops.
+
+ // The dest block might have PHI nodes, other predecessors and other
+ // difficult cases. Instead of being smart about this, just insert a new
+ // block that jumps to the destination block, effectively splitting
+ // the edge we are about to create.
+ BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
+ RealDest->getName()+".critedge",
+ RealDest->getParent(), RealDest);
+ BranchInst::Create(RealDest, EdgeBB);
+
+ // Update PHI nodes.
+ AddPredecessorToBlock(RealDest, EdgeBB, BB);
+
+ // BB may have instructions that are being threaded over. Clone these
+ // instructions into EdgeBB. We know that there will be no uses of the
+ // cloned instructions outside of EdgeBB.
+ BasicBlock::iterator InsertPt = EdgeBB->begin();
+ DenseMap<Value*, Value*> TranslateMap; // Track translated values.
+ for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
+ TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
+ continue;
+ }
+ // Clone the instruction.
+ Instruction *N = BBI->clone();
+ if (BBI->hasName()) N->setName(BBI->getName()+".c");
- if (RealDest == BB) continue; // Skip self loops.
+ // Update operands due to translation.
+ for (User::op_iterator i = N->op_begin(), e = N->op_end();
+ i != e; ++i) {
+ DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
+ if (PI != TranslateMap.end())
+ *i = PI->second;
+ }
- // The dest block might have PHI nodes, other predecessors and other
- // difficult cases. Instead of being smart about this, just insert a new
- // block that jumps to the destination block, effectively splitting
- // the edge we are about to create.
- BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
- RealDest->getName()+".critedge",
- RealDest->getParent(), RealDest);
- BranchInst::Create(RealDest, EdgeBB);
- PHINode *PN;
- for (BasicBlock::iterator BBI = RealDest->begin();
- (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
- Value *V = PN->getIncomingValueForBlock(BB);
- PN->addIncoming(V, EdgeBB);
+ // Check for trivial simplification.
+ if (Value *V = SimplifyInstruction(N, TD)) {
+ TranslateMap[BBI] = V;
+ delete N; // Instruction folded away, don't need actual inst
+ } else {
+ // Insert the new instruction into its new home.
+ EdgeBB->getInstList().insert(InsertPt, N);
+ if (!BBI->use_empty())
+ TranslateMap[BBI] = N;
}
+ }
- // BB may have instructions that are being threaded over. Clone these
- // instructions into EdgeBB. We know that there will be no uses of the
- // cloned instructions outside of EdgeBB.
- BasicBlock::iterator InsertPt = EdgeBB->begin();
- std::map<Value*, Value*> TranslateMap; // Track translated values.
- for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
- if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
- TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
- } else {
- // Clone the instruction.
- Instruction *N = BBI->clone();
- if (BBI->hasName()) N->setName(BBI->getName()+".c");
-
- // Update operands due to translation.
- for (User::op_iterator i = N->op_begin(), e = N->op_end();
- i != e; ++i) {
- std::map<Value*, Value*>::iterator PI =
- TranslateMap.find(*i);
- if (PI != TranslateMap.end())
- *i = PI->second;
- }
-
- // Check for trivial simplification.
- if (Constant *C = ConstantFoldInstruction(N)) {
- TranslateMap[BBI] = C;
- delete N; // Constant folded away, don't need actual inst
- } else {
- // Insert the new instruction into its new home.
- EdgeBB->getInstList().insert(InsertPt, N);
- if (!BBI->use_empty())
- TranslateMap[BBI] = N;
- }
- }
+ // Loop over all of the edges from PredBB to BB, changing them to branch
+ // to EdgeBB instead.
+ TerminatorInst *PredBBTI = PredBB->getTerminator();
+ for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
+ if (PredBBTI->getSuccessor(i) == BB) {
+ BB->removePredecessor(PredBB);
+ PredBBTI->setSuccessor(i, EdgeBB);
}
-
- // Loop over all of the edges from PredBB to BB, changing them to branch
- // to EdgeBB instead.
- TerminatorInst *PredBBTI = PredBB->getTerminator();
- for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
- if (PredBBTI->getSuccessor(i) == BB) {
- BB->removePredecessor(PredBB);
- PredBBTI->setSuccessor(i, EdgeBB);
- }
-
- // Recurse, simplifying any other constants.
- return FoldCondBranchOnPHI(BI) | true;
- }
+
+ // Recurse, simplifying any other constants.
+ return FoldCondBranchOnPHI(BI, TD) | true;
}
return false;
@@ -1154,18 +1175,20 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
-static bool FoldTwoEntryPHINode(PHINode *PN) {
+static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
// Ok, this is a two entry PHI node. Check to see if this is a simple "if
// statement", which has a very simple dominance structure. Basically, we
// are trying to find the condition that is being branched on, which
// subsequently causes this merge to happen. We really want control
// dependence information for this check, but simplifycfg can't keep it up
// to date, and this catches most of the cases we care about anyway.
- //
BasicBlock *BB = PN->getParent();
BasicBlock *IfTrue, *IfFalse;
Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
- if (!IfCond) return false;
+ if (!IfCond ||
+ // Don't bother if the branch will be constant folded trivially.
+ isa<ConstantInt>(IfCond))
+ return false;
// Okay, we found that we can merge this two-entry phi node into a select.
// Doing so would require us to fold *all* two entry phi nodes in this block.
@@ -1177,42 +1200,49 @@ static bool FoldTwoEntryPHINode(PHINode *PN) {
if (NumPhis > 2)
return false;
- DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
- << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
-
// Loop over the PHI's seeing if we can promote them all to select
// instructions. While we are at it, keep track of the instructions
// that need to be moved to the dominating block.
- std::set<Instruction*> AggressiveInsts;
-
- BasicBlock::iterator AfterPHIIt = BB->begin();
- while (isa<PHINode>(AfterPHIIt)) {
- PHINode *PN = cast<PHINode>(AfterPHIIt++);
- if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
- if (PN->getIncomingValue(0) != PN)
- PN->replaceAllUsesWith(PN->getIncomingValue(0));
- else
- PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
- } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
- &AggressiveInsts) ||
- !DominatesMergePoint(PN->getIncomingValue(1), BB,
- &AggressiveInsts)) {
- return false;
+ SmallPtrSet<Instruction*, 4> AggressiveInsts;
+
+ for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
+ PHINode *PN = cast<PHINode>(II++);
+ if (Value *V = SimplifyInstruction(PN, TD)) {
+ PN->replaceAllUsesWith(V);
+ PN->eraseFromParent();
+ continue;
}
+
+ if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts) ||
+ !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts))
+ return false;
}
+ // If we folded the the first phi, PN dangles at this point. Refresh it. If
+ // we ran out of PHIs then we simplified them all.
+ PN = dyn_cast<PHINode>(BB->begin());
+ if (PN == 0) return true;
+
+ // Don't fold i1 branches on PHIs which contain binary operators. These can
+ // often be turned into switches and other things.
+ if (PN->getType()->isIntegerTy(1) &&
+ (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
+ isa<BinaryOperator>(PN->getIncomingValue(1)) ||
+ isa<BinaryOperator>(IfCond)))
+ return false;
+
// If we all PHI nodes are promotable, check to make sure that all
// instructions in the predecessor blocks can be promoted as well. If
// not, we won't be able to get rid of the control flow, so it's not
// worth promoting to select instructions.
- BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
- PN = cast<PHINode>(BB->begin());
- BasicBlock *Pred = PN->getIncomingBlock(0);
- if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
- IfBlock1 = Pred;
- DomBlock = *pred_begin(Pred);
- for (BasicBlock::iterator I = Pred->begin();
- !isa<TerminatorInst>(I); ++I)
+ BasicBlock *DomBlock = 0;
+ BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
+ BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
+ if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
+ IfBlock1 = 0;
+ } else {
+ DomBlock = *pred_begin(IfBlock1);
+ for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
// This is not an aggressive instruction that we can promote.
// Because of this, we won't be able to get rid of the control
@@ -1221,12 +1251,11 @@ static bool FoldTwoEntryPHINode(PHINode *PN) {
}
}
- Pred = PN->getIncomingBlock(1);
- if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
- IfBlock2 = Pred;
- DomBlock = *pred_begin(Pred);
- for (BasicBlock::iterator I = Pred->begin();
- !isa<TerminatorInst>(I); ++I)
+ if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
+ IfBlock2 = 0;
+ } else {
+ DomBlock = *pred_begin(IfBlock2);
+ for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
// This is not an aggressive instruction that we can promote.
// Because of this, we won't be able to get rid of the control
@@ -1234,56 +1263,45 @@ static bool FoldTwoEntryPHINode(PHINode *PN) {
return false;
}
}
+
+ DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
+ << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
// If we can still promote the PHI nodes after this gauntlet of tests,
// do all of the PHI's now.
-
+ Instruction *InsertPt = DomBlock->getTerminator();
+
// Move all 'aggressive' instructions, which are defined in the
// conditional parts of the if's up to the dominating block.
- if (IfBlock1) {
- DomBlock->getInstList().splice(DomBlock->getTerminator(),
- IfBlock1->getInstList(),
- IfBlock1->begin(),
+ if (IfBlock1)
+ DomBlock->getInstList().splice(InsertPt,
+ IfBlock1->getInstList(), IfBlock1->begin(),
IfBlock1->getTerminator());
- }
- if (IfBlock2) {
- DomBlock->getInstList().splice(DomBlock->getTerminator(),
- IfBlock2->getInstList(),
- IfBlock2->begin(),
+ if (IfBlock2)
+ DomBlock->getInstList().splice(InsertPt,
+ IfBlock2->getInstList(), IfBlock2->begin(),
IfBlock2->getTerminator());
- }
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
// Change the PHI node into a select instruction.
- Value *TrueVal =
- PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
- Value *FalseVal =
- PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
+ Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
+ Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
- Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
+ Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", InsertPt);
PN->replaceAllUsesWith(NV);
NV->takeName(PN);
-
- BB->getInstList().erase(PN);
+ PN->eraseFromParent();
}
+
+ // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
+ // has been flattened. Change DomBlock to jump directly to our new block to
+ // avoid other simplifycfg's kicking in on the diamond.
+ TerminatorInst *OldTI = DomBlock->getTerminator();
+ BranchInst::Create(BB, OldTI);
+ OldTI->eraseFromParent();
return true;
}
-/// isTerminatorFirstRelevantInsn - Return true if Term is very first
-/// instruction ignoring Phi nodes and dbg intrinsics.
-static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
- BasicBlock::iterator BBI = Term;
- while (BBI != BB->begin()) {
- --BBI;
- if (!isa<DbgInfoIntrinsic>(BBI))
- break;
- }
-
- if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
- return true;
- return false;
-}
-
/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
/// to two returning blocks, try to merge them together into one return,
/// introducing a select if the return values disagree.
@@ -1297,9 +1315,9 @@ static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
// Check to ensure both blocks are empty (just a return) or optionally empty
// with PHI nodes. If there are other instructions, merging would cause extra
// computation on one path or the other.
- if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
+ if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
return false;
- if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
+ if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
return false;
// Okay, we found a branch that is going to two return nodes. If
@@ -1386,7 +1404,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
// must be at the front of the block.
BasicBlock::iterator FrontIt = BB->front();
// Ignore dbg intrinsics.
- while(isa<DbgInfoIntrinsic>(FrontIt))
+ while (isa<DbgInfoIntrinsic>(FrontIt))
++FrontIt;
// Allow a single instruction to be hoisted in addition to the compare
@@ -1470,7 +1488,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
UsedValues.erase(Pair.first);
if (UsedValues.empty()) break;
- if (Instruction* I = dyn_cast<Instruction>(Pair.first)) {
+ if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
OI != OE; ++OI)
Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
@@ -1498,9 +1516,16 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
// If we need to invert the condition in the pred block to match, do so now.
if (InvertPredCond) {
- Value *NewCond =
- BinaryOperator::CreateNot(PBI->getCondition(),
+ Value *NewCond = PBI->getCondition();
+
+ if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
+ CmpInst *CI = cast<CmpInst>(NewCond);
+ CI->setPredicate(CI->getInversePredicate());
+ } else {
+ NewCond = BinaryOperator::CreateNot(NewCond,
PBI->getCondition()->getName()+".not", PBI);
+ }
+
PBI->setCondition(NewCond);
BasicBlock *OldTrue = PBI->getSuccessor(0);
BasicBlock *OldFalse = PBI->getSuccessor(1);
@@ -1686,17 +1711,13 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
// OtherDest may have phi nodes. If so, add an entry from PBI's
// block that are identical to the entries for BI's block.
- PHINode *PN;
- for (BasicBlock::iterator II = OtherDest->begin();
- (PN = dyn_cast<PHINode>(II)); ++II) {
- Value *V = PN->getIncomingValueForBlock(BB);
- PN->addIncoming(V, PBI->getParent());
- }
+ AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
// We know that the CommonDest already had an edge from PBI to
// it. If it has PHIs though, the PHIs may have different
// entries for BB and PBI's BB. If so, insert a select to make
// them agree.
+ PHINode *PN;
for (BasicBlock::iterator II = CommonDest->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
Value *BIV = PN->getIncomingValueForBlock(BB);
@@ -1718,481 +1739,789 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
return true;
}
-bool SimplifyCFGOpt::run(BasicBlock *BB) {
- bool Changed = false;
- Function *M = BB->getParent();
-
- assert(BB && BB->getParent() && "Block not embedded in function!");
- assert(BB->getTerminator() && "Degenerate basic block encountered!");
+// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
+// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
+// Takes care of updating the successors and removing the old terminator.
+// Also makes sure not to introduce new successors by assuming that edges to
+// non-successor TrueBBs and FalseBBs aren't reachable.
+static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
+ BasicBlock *TrueBB, BasicBlock *FalseBB){
+ // Remove any superfluous successor edges from the CFG.
+ // First, figure out which successors to preserve.
+ // If TrueBB and FalseBB are equal, only try to preserve one copy of that
+ // successor.
+ BasicBlock *KeepEdge1 = TrueBB;
+ BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
+
+ // Then remove the rest.
+ for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
+ BasicBlock *Succ = OldTerm->getSuccessor(I);
+ // Make sure only to keep exactly one copy of each edge.
+ if (Succ == KeepEdge1)
+ KeepEdge1 = 0;
+ else if (Succ == KeepEdge2)
+ KeepEdge2 = 0;
+ else
+ Succ->removePredecessor(OldTerm->getParent());
+ }
- // Remove basic blocks that have no predecessors (except the entry block)...
- // or that just have themself as a predecessor. These are unreachable.
- if ((pred_begin(BB) == pred_end(BB) &&
- &BB->getParent()->getEntryBlock() != BB) ||
- BB->getSinglePredecessor() == BB) {
- DEBUG(dbgs() << "Removing BB: \n" << *BB);
- DeleteDeadBlock(BB);
- return true;
+ // Insert an appropriate new terminator.
+ if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
+ if (TrueBB == FalseBB)
+ // We were only looking for one successor, and it was present.
+ // Create an unconditional branch to it.
+ BranchInst::Create(TrueBB, OldTerm);
+ else
+ // We found both of the successors we were looking for.
+ // Create a conditional branch sharing the condition of the select.
+ BranchInst::Create(TrueBB, FalseBB, Cond, OldTerm);
+ } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
+ // Neither of the selected blocks were successors, so this
+ // terminator must be unreachable.
+ new UnreachableInst(OldTerm->getContext(), OldTerm);
+ } else {
+ // One of the selected values was a successor, but the other wasn't.
+ // Insert an unconditional branch to the one that was found;
+ // the edge to the one that wasn't must be unreachable.
+ if (KeepEdge1 == 0)
+ // Only TrueBB was found.
+ BranchInst::Create(TrueBB, OldTerm);
+ else
+ // Only FalseBB was found.
+ BranchInst::Create(FalseBB, OldTerm);
}
- // Check to see if we can constant propagate this terminator instruction
- // away...
- Changed |= ConstantFoldTerminator(BB);
+ EraseTerminatorInstAndDCECond(OldTerm);
+ return true;
+}
- // Check for and eliminate duplicate PHI nodes in this block.
- Changed |= EliminateDuplicatePHINodes(BB);
+// SimplifyIndirectBrOnSelect - Replaces
+// (indirectbr (select cond, blockaddress(@fn, BlockA),
+// blockaddress(@fn, BlockB)))
+// with
+// (br cond, BlockA, BlockB).
+static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
+ // Check that both operands of the select are block addresses.
+ BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
+ BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
+ if (!TBA || !FBA)
+ return false;
- // If there is a trivial two-entry PHI node in this basic block, and we can
- // eliminate it, do so now.
- if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
- if (PN->getNumIncomingValues() == 2)
- Changed |= FoldTwoEntryPHINode(PN);
+ // Extract the actual blocks.
+ BasicBlock *TrueBB = TBA->getBasicBlock();
+ BasicBlock *FalseBB = FBA->getBasicBlock();
- // If this is a returning block with only PHI nodes in it, fold the return
- // instruction into any unconditional branch predecessors.
- //
- // If any predecessor is a conditional branch that just selects among
- // different return values, fold the replace the branch/return with a select
- // and return.
- if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
- if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
- // Find predecessors that end with branches.
- SmallVector<BasicBlock*, 8> UncondBranchPreds;
- SmallVector<BranchInst*, 8> CondBranchPreds;
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *P = *PI;
- TerminatorInst *PTI = P->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
- if (BI->isUnconditional())
- UncondBranchPreds.push_back(P);
- else
- CondBranchPreds.push_back(BI);
- }
- }
+ // Perform the actual simplification.
+ return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
+}
- // If we found some, do the transformation!
- if (!UncondBranchPreds.empty()) {
- while (!UncondBranchPreds.empty()) {
- BasicBlock *Pred = UncondBranchPreds.pop_back_val();
- DEBUG(dbgs() << "FOLDING: " << *BB
- << "INTO UNCOND BRANCH PRED: " << *Pred);
- Instruction *UncondBranch = Pred->getTerminator();
- // Clone the return and add it to the end of the predecessor.
- Instruction *NewRet = RI->clone();
- Pred->getInstList().push_back(NewRet);
-
- // If the return instruction returns a value, and if the value was a
- // PHI node in "BB", propagate the right value into the return.
- for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
- i != e; ++i)
- if (PHINode *PN = dyn_cast<PHINode>(*i))
- if (PN->getParent() == BB)
- *i = PN->getIncomingValueForBlock(Pred);
-
- // Update any PHI nodes in the returning block to realize that we no
- // longer branch to them.
- BB->removePredecessor(Pred);
- Pred->getInstList().erase(UncondBranch);
- }
+/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
+/// instruction (a seteq/setne with a constant) as the only instruction in a
+/// block that ends with an uncond branch. We are looking for a very specific
+/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
+/// this case, we merge the first two "or's of icmp" into a switch, but then the
+/// default value goes to an uncond block with a seteq in it, we get something
+/// like:
+///
+/// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
+/// DEFAULT:
+/// %tmp = icmp eq i8 %A, 92
+/// br label %end
+/// end:
+/// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
+///
+/// We prefer to split the edge to 'end' so that there is a true/false entry to
+/// the PHI, merging the third icmp into the switch.
+static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
+ const TargetData *TD) {
+ BasicBlock *BB = ICI->getParent();
+ // If the block has any PHIs in it or the icmp has multiple uses, it is too
+ // complex.
+ if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
+
+ Value *V = ICI->getOperand(0);
+ ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
+
+ // The pattern we're looking for is where our only predecessor is a switch on
+ // 'V' and this block is the default case for the switch. In this case we can
+ // fold the compared value into the switch to simplify things.
+ BasicBlock *Pred = BB->getSinglePredecessor();
+ if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
+
+ SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
+ if (SI->getCondition() != V)
+ return false;
+
+ // If BB is reachable on a non-default case, then we simply know the value of
+ // V in this block. Substitute it and constant fold the icmp instruction
+ // away.
+ if (SI->getDefaultDest() != BB) {
+ ConstantInt *VVal = SI->findCaseDest(BB);
+ assert(VVal && "Should have a unique destination value");
+ ICI->setOperand(0, VVal);
+
+ if (Value *V = SimplifyInstruction(ICI, TD)) {
+ ICI->replaceAllUsesWith(V);
+ ICI->eraseFromParent();
+ }
+ // BB is now empty, so it is likely to simplify away.
+ return SimplifyCFG(BB) | true;
+ }
+
+ // Ok, the block is reachable from the default dest. If the constant we're
+ // comparing exists in one of the other edges, then we can constant fold ICI
+ // and zap it.
+ if (SI->findCaseValue(Cst) != 0) {
+ Value *V;
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ V = ConstantInt::getFalse(BB->getContext());
+ else
+ V = ConstantInt::getTrue(BB->getContext());
+
+ ICI->replaceAllUsesWith(V);
+ ICI->eraseFromParent();
+ // BB is now empty, so it is likely to simplify away.
+ return SimplifyCFG(BB) | true;
+ }
+
+ // The use of the icmp has to be in the 'end' block, by the only PHI node in
+ // the block.
+ BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
+ PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
+ if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
+ isa<PHINode>(++BasicBlock::iterator(PHIUse)))
+ return false;
- // If we eliminated all predecessors of the block, delete the block now.
- if (pred_begin(BB) == pred_end(BB))
- // We know there are no successors, so just nuke the block.
- M->getBasicBlockList().erase(BB);
+ // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
+ // true in the PHI.
+ Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
+ Constant *NewCst = ConstantInt::getFalse(BB->getContext());
- return true;
- }
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ std::swap(DefaultCst, NewCst);
- // Check out all of the conditional branches going to this return
- // instruction. If any of them just select between returns, change the
- // branch itself into a select/return pair.
- while (!CondBranchPreds.empty()) {
- BranchInst *BI = CondBranchPreds.pop_back_val();
-
- // Check to see if the non-BB successor is also a return block.
- if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
- isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
- SimplifyCondBranchToTwoReturns(BI))
- return true;
- }
- }
- } else if (isa<UnwindInst>(BB->begin())) {
- // Check to see if the first instruction in this block is just an unwind.
- // If so, replace any invoke instructions which use this as an exception
- // destination with call instructions.
- //
- SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
- while (!Preds.empty()) {
- BasicBlock *Pred = Preds.back();
- if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
- if (II->getUnwindDest() == BB) {
- // Insert a new branch instruction before the invoke, because this
- // is now a fall through.
- BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
- Pred->getInstList().remove(II); // Take out of symbol table
-
- // Insert the call now.
- SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
- CallInst *CI = CallInst::Create(II->getCalledValue(),
- Args.begin(), Args.end(),
- II->getName(), BI);
- CI->setCallingConv(II->getCallingConv());
- CI->setAttributes(II->getAttributes());
- // If the invoke produced a value, the Call now does instead.
- II->replaceAllUsesWith(CI);
- delete II;
- Changed = true;
- }
+ // Replace ICI (which is used by the PHI for the default value) with true or
+ // false depending on if it is EQ or NE.
+ ICI->replaceAllUsesWith(DefaultCst);
+ ICI->eraseFromParent();
- Preds.pop_back();
- }
+ // Okay, the switch goes to this block on a default value. Add an edge from
+ // the switch to the merge point on the compared value.
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
+ BB->getParent(), BB);
+ SI->addCase(Cst, NewBB);
+
+ // NewBB branches to the phi block, add the uncond branch and the phi entry.
+ BranchInst::Create(SuccBlock, NewBB);
+ PHIUse->addIncoming(NewCst, NewBB);
+ return true;
+}
- // If this block is now dead, remove it.
- if (pred_begin(BB) == pred_end(BB)) {
- // We know there are no successors, so just nuke the block.
- M->getBasicBlockList().erase(BB);
- return true;
- }
+/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
+/// Check to see if it is branching on an or/and chain of icmp instructions, and
+/// fold it into a switch instruction if so.
+static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD) {
+ Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
+ if (Cond == 0) return false;
+
+
+ // Change br (X == 0 | X == 1), T, F into a switch instruction.
+ // If this is a bunch of seteq's or'd together, or if it's a bunch of
+ // 'setne's and'ed together, collect them.
+ Value *CompVal = 0;
+ std::vector<ConstantInt*> Values;
+ bool TrueWhenEqual = true;
+ Value *ExtraCase = 0;
+ unsigned UsedICmps = 0;
+
+ if (Cond->getOpcode() == Instruction::Or) {
+ CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
+ UsedICmps);
+ } else if (Cond->getOpcode() == Instruction::And) {
+ CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
+ UsedICmps);
+ TrueWhenEqual = false;
+ }
+
+ // If we didn't have a multiply compared value, fail.
+ if (CompVal == 0) return false;
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
- if (isValueEqualityComparison(SI)) {
- // If we only have one predecessor, and if it is a branch on this value,
- // see if that predecessor totally determines the outcome of this switch.
- if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
- if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
- return SimplifyCFG(BB) || 1;
-
- // If the block only contains the switch, see if we can fold the block
- // away into any preds.
- BasicBlock::iterator BBI = BB->begin();
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(BBI))
- ++BBI;
- if (SI == &*BBI)
- if (FoldValueComparisonIntoPredecessors(SI))
- return SimplifyCFG(BB) || 1;
- }
- } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
- if (BI->isUnconditional()) {
- BasicBlock::iterator BBI = BB->getFirstNonPHI();
+ // Avoid turning single icmps into a switch.
+ if (UsedICmps <= 1)
+ return false;
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(BBI))
- ++BBI;
- if (BBI->isTerminator()) // Terminator is the only non-phi instruction!
- if (BB != &BB->getParent()->getEntryBlock())
- if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
- return true;
+ // There might be duplicate constants in the list, which the switch
+ // instruction can't handle, remove them now.
+ array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
+ Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
+
+ // If Extra was used, we require at least two switch values to do the
+ // transformation. A switch with one value is just an cond branch.
+ if (ExtraCase && Values.size() < 2) return false;
+
+ // Figure out which block is which destination.
+ BasicBlock *DefaultBB = BI->getSuccessor(1);
+ BasicBlock *EdgeBB = BI->getSuccessor(0);
+ if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
+
+ BasicBlock *BB = BI->getParent();
+
+ DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
+ << " cases into SWITCH. BB is:\n" << *BB);
+
+ // If there are any extra values that couldn't be folded into the switch
+ // then we evaluate them with an explicit branch first. Split the block
+ // right before the condbr to handle it.
+ if (ExtraCase) {
+ BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
+ // Remove the uncond branch added to the old block.
+ TerminatorInst *OldTI = BB->getTerminator();
+
+ if (TrueWhenEqual)
+ BranchInst::Create(EdgeBB, NewBB, ExtraCase, OldTI);
+ else
+ BranchInst::Create(NewBB, EdgeBB, ExtraCase, OldTI);
- } else { // Conditional branch
- if (isValueEqualityComparison(BI)) {
- // If we only have one predecessor, and if it is a branch on this value,
- // see if that predecessor totally determines the outcome of this
- // switch.
- if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
- if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
- return SimplifyCFG(BB) | true;
-
- // This block must be empty, except for the setcond inst, if it exists.
- // Ignore dbg intrinsics.
- BasicBlock::iterator I = BB->begin();
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(I))
- ++I;
- if (&*I == BI) {
- if (FoldValueComparisonIntoPredecessors(BI))
- return SimplifyCFG(BB) | true;
- } else if (&*I == cast<Instruction>(BI->getCondition())){
- ++I;
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(I))
- ++I;
- if(&*I == BI) {
- if (FoldValueComparisonIntoPredecessors(BI))
- return SimplifyCFG(BB) | true;
- }
- }
- }
+ OldTI->eraseFromParent();
+
+ // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
+ // for the edge we just added.
+ AddPredecessorToBlock(EdgeBB, BB, NewBB);
+
+ DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
+ << "\nEXTRABB = " << *BB);
+ BB = NewBB;
+ }
+
+ // Convert pointer to int before we switch.
+ if (CompVal->getType()->isPointerTy()) {
+ assert(TD && "Cannot switch on pointer without TargetData");
+ CompVal = new PtrToIntInst(CompVal,
+ TD->getIntPtrType(CompVal->getContext()),
+ "magicptr", BI);
+ }
+
+ // Create the new switch instruction now.
+ SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB, Values.size(), BI);
+
+ // Add all of the 'cases' to the switch instruction.
+ for (unsigned i = 0, e = Values.size(); i != e; ++i)
+ New->addCase(Values[i], EdgeBB);
+
+ // We added edges from PI to the EdgeBB. As such, if there were any
+ // PHI nodes in EdgeBB, they need entries to be added corresponding to
+ // the number of edges added.
+ for (BasicBlock::iterator BBI = EdgeBB->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ Value *InVal = PN->getIncomingValueForBlock(BB);
+ for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
+ PN->addIncoming(InVal, BB);
+ }
+
+ // Erase the old branch instruction.
+ EraseTerminatorInstAndDCECond(BI);
+
+ DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
+ return true;
+}
- // If this is a branch on a phi node in the current block, thread control
- // through this block if any PHI node entries are constants.
- if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
- if (PN->getParent() == BI->getParent())
- if (FoldCondBranchOnPHI(BI))
- return SimplifyCFG(BB) | true;
-
- // If this basic block is ONLY a setcc and a branch, and if a predecessor
- // branches to us and one of our successors, fold the setcc into the
- // predecessor and use logical operations to pick the right destination.
- if (FoldBranchToCommonDest(BI))
- return SimplifyCFG(BB) | true;
+bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI) {
+ BasicBlock *BB = RI->getParent();
+ if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
+
+ // Find predecessors that end with branches.
+ SmallVector<BasicBlock*, 8> UncondBranchPreds;
+ SmallVector<BranchInst*, 8> CondBranchPreds;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *P = *PI;
+ TerminatorInst *PTI = P->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
+ if (BI->isUnconditional())
+ UncondBranchPreds.push_back(P);
+ else
+ CondBranchPreds.push_back(BI);
+ }
+ }
+
+ // If we found some, do the transformation!
+ if (!UncondBranchPreds.empty() && DupRet) {
+ while (!UncondBranchPreds.empty()) {
+ BasicBlock *Pred = UncondBranchPreds.pop_back_val();
+ DEBUG(dbgs() << "FOLDING: " << *BB
+ << "INTO UNCOND BRANCH PRED: " << *Pred);
+ (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
+ }
+
+ // If we eliminated all predecessors of the block, delete the block now.
+ if (pred_begin(BB) == pred_end(BB))
+ // We know there are no successors, so just nuke the block.
+ BB->eraseFromParent();
+
+ return true;
+ }
+
+ // Check out all of the conditional branches going to this return
+ // instruction. If any of them just select between returns, change the
+ // branch itself into a select/return pair.
+ while (!CondBranchPreds.empty()) {
+ BranchInst *BI = CondBranchPreds.pop_back_val();
+
+ // Check to see if the non-BB successor is also a return block.
+ if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
+ isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
+ SimplifyCondBranchToTwoReturns(BI))
+ return true;
+ }
+ return false;
+}
+bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI) {
+ // Check to see if the first instruction in this block is just an unwind.
+ // If so, replace any invoke instructions which use this as an exception
+ // destination with call instructions.
+ BasicBlock *BB = UI->getParent();
+ if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
- // Scan predecessor blocks for conditional branches.
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
- if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
- if (PBI != BI && PBI->isConditional())
- if (SimplifyCondBranchToCondBranch(PBI, BI))
- return SimplifyCFG(BB) | true;
- }
- } else if (isa<UnreachableInst>(BB->getTerminator())) {
- // If there are any instructions immediately before the unreachable that can
- // be removed, do so.
- Instruction *Unreachable = BB->getTerminator();
- while (Unreachable != BB->begin()) {
- BasicBlock::iterator BBI = Unreachable;
- --BBI;
- // Do not delete instructions that can have side effects, like calls
- // (which may never return) and volatile loads and stores.
- if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
-
- if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
- if (SI->isVolatile())
- break;
-
- if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
- if (LI->isVolatile())
- break;
-
- // Delete this instruction
- BB->getInstList().erase(BBI);
+ bool Changed = false;
+ SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
+ while (!Preds.empty()) {
+ BasicBlock *Pred = Preds.back();
+ InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
+ if (II && II->getUnwindDest() == BB) {
+ // Insert a new branch instruction before the invoke, because this
+ // is now a fall through.
+ BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
+ Pred->getInstList().remove(II); // Take out of symbol table
+
+ // Insert the call now.
+ SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
+ CallInst *CI = CallInst::Create(II->getCalledValue(),
+ Args.begin(), Args.end(),
+ II->getName(), BI);
+ CI->setCallingConv(II->getCallingConv());
+ CI->setAttributes(II->getAttributes());
+ // If the invoke produced a value, the Call now does instead.
+ II->replaceAllUsesWith(CI);
+ delete II;
Changed = true;
}
+
+ Preds.pop_back();
+ }
+
+ // If this block is now dead (and isn't the entry block), remove it.
+ if (pred_begin(BB) == pred_end(BB) &&
+ BB != &BB->getParent()->getEntryBlock()) {
+ // We know there are no successors, so just nuke the block.
+ BB->eraseFromParent();
+ return true;
+ }
+
+ return Changed;
+}
- // If the unreachable instruction is the first in the block, take a gander
- // at all of the predecessors of this instruction, and simplify them.
- if (&BB->front() == Unreachable) {
- SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
- for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
- TerminatorInst *TI = Preds[i]->getTerminator();
-
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isUnconditional()) {
- if (BI->getSuccessor(0) == BB) {
- new UnreachableInst(TI->getContext(), TI);
- TI->eraseFromParent();
- Changed = true;
- }
- } else {
- if (BI->getSuccessor(0) == BB) {
- BranchInst::Create(BI->getSuccessor(1), BI);
- EraseTerminatorInstAndDCECond(BI);
- } else if (BI->getSuccessor(1) == BB) {
- BranchInst::Create(BI->getSuccessor(0), BI);
- EraseTerminatorInstAndDCECond(BI);
- Changed = true;
- }
+bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
+ BasicBlock *BB = UI->getParent();
+
+ bool Changed = false;
+
+ // If there are any instructions immediately before the unreachable that can
+ // be removed, do so.
+ while (UI != BB->begin()) {
+ BasicBlock::iterator BBI = UI;
+ --BBI;
+ // Do not delete instructions that can have side effects, like calls
+ // (which may never return) and volatile loads and stores.
+ if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
+ if (SI->isVolatile())
+ break;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
+ if (LI->isVolatile())
+ break;
+
+ // Delete this instruction
+ BBI->eraseFromParent();
+ Changed = true;
+ }
+
+ // If the unreachable instruction is the first in the block, take a gander
+ // at all of the predecessors of this instruction, and simplify them.
+ if (&BB->front() != UI) return Changed;
+
+ SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ TerminatorInst *TI = Preds[i]->getTerminator();
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isUnconditional()) {
+ if (BI->getSuccessor(0) == BB) {
+ new UnreachableInst(TI->getContext(), TI);
+ TI->eraseFromParent();
+ Changed = true;
+ }
+ } else {
+ if (BI->getSuccessor(0) == BB) {
+ BranchInst::Create(BI->getSuccessor(1), BI);
+ EraseTerminatorInstAndDCECond(BI);
+ } else if (BI->getSuccessor(1) == BB) {
+ BranchInst::Create(BI->getSuccessor(0), BI);
+ EraseTerminatorInstAndDCECond(BI);
+ Changed = true;
+ }
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ if (SI->getSuccessor(i) == BB) {
+ BB->removePredecessor(SI->getParent());
+ SI->removeCase(i);
+ --i; --e;
+ Changed = true;
+ }
+ // If the default value is unreachable, figure out the most popular
+ // destination and make it the default.
+ if (SI->getSuccessor(0) == BB) {
+ std::map<BasicBlock*, unsigned> Popularity;
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ Popularity[SI->getSuccessor(i)]++;
+
+ // Find the most popular block.
+ unsigned MaxPop = 0;
+ BasicBlock *MaxBlock = 0;
+ for (std::map<BasicBlock*, unsigned>::iterator
+ I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
+ if (I->second > MaxPop) {
+ MaxPop = I->second;
+ MaxBlock = I->first;
}
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ }
+ if (MaxBlock) {
+ // Make this the new default, allowing us to delete any explicit
+ // edges to it.
+ SI->setSuccessor(0, MaxBlock);
+ Changed = true;
+
+ // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
+ // it.
+ if (isa<PHINode>(MaxBlock->begin()))
+ for (unsigned i = 0; i != MaxPop-1; ++i)
+ MaxBlock->removePredecessor(SI->getParent());
+
for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
- if (SI->getSuccessor(i) == BB) {
- BB->removePredecessor(SI->getParent());
+ if (SI->getSuccessor(i) == MaxBlock) {
SI->removeCase(i);
--i; --e;
- Changed = true;
- }
- // If the default value is unreachable, figure out the most popular
- // destination and make it the default.
- if (SI->getSuccessor(0) == BB) {
- std::map<BasicBlock*, unsigned> Popularity;
- for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
- Popularity[SI->getSuccessor(i)]++;
-
- // Find the most popular block.
- unsigned MaxPop = 0;
- BasicBlock *MaxBlock = 0;
- for (std::map<BasicBlock*, unsigned>::iterator
- I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
- if (I->second > MaxPop) {
- MaxPop = I->second;
- MaxBlock = I->first;
- }
- }
- if (MaxBlock) {
- // Make this the new default, allowing us to delete any explicit
- // edges to it.
- SI->setSuccessor(0, MaxBlock);
- Changed = true;
-
- // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
- // it.
- if (isa<PHINode>(MaxBlock->begin()))
- for (unsigned i = 0; i != MaxPop-1; ++i)
- MaxBlock->removePredecessor(SI->getParent());
-
- for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
- if (SI->getSuccessor(i) == MaxBlock) {
- SI->removeCase(i);
- --i; --e;
- }
}
- }
- } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
- if (II->getUnwindDest() == BB) {
- // Convert the invoke to a call instruction. This would be a good
- // place to note that the call does not throw though.
- BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
- II->removeFromParent(); // Take out of symbol table
-
- // Insert the call now...
- SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
- CallInst *CI = CallInst::Create(II->getCalledValue(),
- Args.begin(), Args.end(),
- II->getName(), BI);
- CI->setCallingConv(II->getCallingConv());
- CI->setAttributes(II->getAttributes());
- // If the invoke produced a value, the call does now instead.
- II->replaceAllUsesWith(CI);
- delete II;
- Changed = true;
- }
}
}
-
- // If this block is now dead, remove it.
- if (pred_begin(BB) == pred_end(BB) &&
- BB != &BB->getParent()->getEntryBlock()) {
- // We know there are no successors, so just nuke the block.
- M->getBasicBlockList().erase(BB);
- return true;
- }
- }
- } else if (IndirectBrInst *IBI =
- dyn_cast<IndirectBrInst>(BB->getTerminator())) {
- // Eliminate redundant destinations.
- SmallPtrSet<Value *, 8> Succs;
- for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
- BasicBlock *Dest = IBI->getDestination(i);
- if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
- Dest->removePredecessor(BB);
- IBI->removeDestination(i);
- --i; --e;
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
+ if (II->getUnwindDest() == BB) {
+ // Convert the invoke to a call instruction. This would be a good
+ // place to note that the call does not throw though.
+ BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
+ II->removeFromParent(); // Take out of symbol table
+
+ // Insert the call now...
+ SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
+ CallInst *CI = CallInst::Create(II->getCalledValue(),
+ Args.begin(), Args.end(),
+ II->getName(), BI);
+ CI->setCallingConv(II->getCallingConv());
+ CI->setAttributes(II->getAttributes());
+ // If the invoke produced a value, the call does now instead.
+ II->replaceAllUsesWith(CI);
+ delete II;
Changed = true;
}
- }
+ }
+ }
+
+ // If this block is now dead, remove it.
+ if (pred_begin(BB) == pred_end(BB) &&
+ BB != &BB->getParent()->getEntryBlock()) {
+ // We know there are no successors, so just nuke the block.
+ BB->eraseFromParent();
+ return true;
+ }
- if (IBI->getNumDestinations() == 0) {
- // If the indirectbr has no successors, change it to unreachable.
- new UnreachableInst(IBI->getContext(), IBI);
- IBI->eraseFromParent();
- Changed = true;
- } else if (IBI->getNumDestinations() == 1) {
- // If the indirectbr has one successor, change it to a direct branch.
- BranchInst::Create(IBI->getDestination(0), IBI);
- IBI->eraseFromParent();
+ return Changed;
+}
+
+/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
+/// integer range comparison into a sub, an icmp and a branch.
+static bool TurnSwitchRangeIntoICmp(SwitchInst *SI) {
+ assert(SI->getNumCases() > 2 && "Degenerate switch?");
+
+ // Make sure all cases point to the same destination and gather the values.
+ SmallVector<ConstantInt *, 16> Cases;
+ Cases.push_back(SI->getCaseValue(1));
+ for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
+ if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
+ return false;
+ Cases.push_back(SI->getCaseValue(I));
+ }
+ assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
+
+ // Sort the case values, then check if they form a range we can transform.
+ array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
+ for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
+ if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
+ return false;
+ }
+
+ Constant *Offset = ConstantExpr::getNeg(Cases.back());
+ Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
+
+ Value *Sub = SI->getCondition();
+ if (!Offset->isNullValue())
+ Sub = BinaryOperator::CreateAdd(Sub, Offset, Sub->getName()+".off", SI);
+ Value *Cmp = new ICmpInst(SI, ICmpInst::ICMP_ULT, Sub, NumCases, "switch");
+ BranchInst::Create(SI->getSuccessor(1), SI->getDefaultDest(), Cmp, SI);
+
+ // Prune obsolete incoming values off the successor's PHI nodes.
+ for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
+ cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
+ }
+ SI->eraseFromParent();
+
+ return true;
+}
+
+bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI) {
+ // If this switch is too complex to want to look at, ignore it.
+ if (!isValueEqualityComparison(SI))
+ return false;
+
+ BasicBlock *BB = SI->getParent();
+
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
+ return SimplifyCFG(BB) | true;
+
+ // If the block only contains the switch, see if we can fold the block
+ // away into any preds.
+ BasicBlock::iterator BBI = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(BBI))
+ ++BBI;
+ if (SI == &*BBI)
+ if (FoldValueComparisonIntoPredecessors(SI))
+ return SimplifyCFG(BB) | true;
+
+ // Try to transform the switch into an icmp and a branch.
+ if (TurnSwitchRangeIntoICmp(SI))
+ return SimplifyCFG(BB) | true;
+
+ return false;
+}
+
+bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
+ BasicBlock *BB = IBI->getParent();
+ bool Changed = false;
+
+ // Eliminate redundant destinations.
+ SmallPtrSet<Value *, 8> Succs;
+ for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
+ BasicBlock *Dest = IBI->getDestination(i);
+ if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
+ Dest->removePredecessor(BB);
+ IBI->removeDestination(i);
+ --i; --e;
Changed = true;
}
+ }
+
+ if (IBI->getNumDestinations() == 0) {
+ // If the indirectbr has no successors, change it to unreachable.
+ new UnreachableInst(IBI->getContext(), IBI);
+ EraseTerminatorInstAndDCECond(IBI);
+ return true;
+ }
+
+ if (IBI->getNumDestinations() == 1) {
+ // If the indirectbr has one successor, change it to a direct branch.
+ BranchInst::Create(IBI->getDestination(0), IBI);
+ EraseTerminatorInstAndDCECond(IBI);
+ return true;
}
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
+ if (SimplifyIndirectBrOnSelect(IBI, SI))
+ return SimplifyCFG(BB) | true;
+ }
+ return Changed;
+}
- // Merge basic blocks into their predecessor if there is only one distinct
- // pred, and if there is only one distinct successor of the predecessor, and
- // if there are no PHI nodes.
- //
- if (MergeBlockIntoPredecessor(BB))
+bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI) {
+ BasicBlock *BB = BI->getParent();
+
+ // If the Terminator is the only non-phi instruction, simplify the block.
+ BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
+ if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
+ TryToSimplifyUncondBranchFromEmptyBlock(BB))
return true;
+
+ // If the only instruction in the block is a seteq/setne comparison
+ // against a constant, try to simplify the block.
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
+ if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I)
+ ;
+ if (I->isTerminator() && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD))
+ return true;
+ }
+
+ return false;
+}
- // Otherwise, if this block only has a single predecessor, and if that block
- // is a conditional branch, see if we can hoist any code from this block up
- // into our predecessor.
- pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
- BasicBlock *OnlyPred = 0;
- for (; PI != PE; ++PI) { // Search all predecessors, see if they are all same
- if (!OnlyPred)
- OnlyPred = *PI;
- else if (*PI != OnlyPred) {
- OnlyPred = 0; // There are multiple different predecessors...
- break;
+
+bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI) {
+ BasicBlock *BB = BI->getParent();
+
+ // Conditional branch
+ if (isValueEqualityComparison(BI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this
+ // switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
+ return SimplifyCFG(BB) | true;
+
+ // This block must be empty, except for the setcond inst, if it exists.
+ // Ignore dbg intrinsics.
+ BasicBlock::iterator I = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(I))
+ ++I;
+ if (&*I == BI) {
+ if (FoldValueComparisonIntoPredecessors(BI))
+ return SimplifyCFG(BB) | true;
+ } else if (&*I == cast<Instruction>(BI->getCondition())){
+ ++I;
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(I))
+ ++I;
+ if (&*I == BI && FoldValueComparisonIntoPredecessors(BI))
+ return SimplifyCFG(BB) | true;
}
}
- if (OnlyPred)
- if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
- if (BI->isConditional()) {
- // Get the other block.
- BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
- PI = pred_begin(OtherBB);
- ++PI;
-
- if (PI == pred_end(OtherBB)) {
- // We have a conditional branch to two blocks that are only reachable
- // from the condbr. We know that the condbr dominates the two blocks,
- // so see if there is any identical code in the "then" and "else"
- // blocks. If so, we can hoist it up to the branching block.
- Changed |= HoistThenElseCodeToIf(BI);
- } else {
- BasicBlock* OnlySucc = NULL;
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
- SI != SE; ++SI) {
- if (!OnlySucc)
- OnlySucc = *SI;
- else if (*SI != OnlySucc) {
- OnlySucc = 0; // There are multiple distinct successors!
- break;
- }
- }
+ // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
+ if (SimplifyBranchOnICmpChain(BI, TD))
+ return true;
+
+ // We have a conditional branch to two blocks that are only reachable
+ // from BI. We know that the condbr dominates the two blocks, so see if
+ // there is any identical code in the "then" and "else" blocks. If so, we
+ // can hoist it up to the branching block.
+ if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
+ if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
+ if (HoistThenElseCodeToIf(BI))
+ return SimplifyCFG(BB) | true;
+ } else {
+ // If Successor #1 has multiple preds, we may be able to conditionally
+ // execute Successor #0 if it branches to successor #1.
+ TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
+ if (Succ0TI->getNumSuccessors() == 1 &&
+ Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
+ return SimplifyCFG(BB) | true;
+ }
+ } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
+ // If Successor #0 has multiple preds, we may be able to conditionally
+ // execute Successor #1 if it branches to successor #0.
+ TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
+ if (Succ1TI->getNumSuccessors() == 1 &&
+ Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
+ return SimplifyCFG(BB) | true;
+ }
+
+ // If this is a branch on a phi node in the current block, thread control
+ // through this block if any PHI node entries are constants.
+ if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
+ if (PN->getParent() == BI->getParent())
+ if (FoldCondBranchOnPHI(BI, TD))
+ return SimplifyCFG(BB) | true;
+
+ // If this basic block is ONLY a setcc and a branch, and if a predecessor
+ // branches to us and one of our successors, fold the setcc into the
+ // predecessor and use logical operations to pick the right destination.
+ if (FoldBranchToCommonDest(BI))
+ return SimplifyCFG(BB) | true;
+
+ // Scan predecessor blocks for conditional branches.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+ if (PBI != BI && PBI->isConditional())
+ if (SimplifyCondBranchToCondBranch(PBI, BI))
+ return SimplifyCFG(BB) | true;
- if (OnlySucc == OtherBB) {
- // If BB's only successor is the other successor of the predecessor,
- // i.e. a triangle, see if we can hoist any code from this block up
- // to the "if" block.
- Changed |= SpeculativelyExecuteBB(BI, BB);
- }
- }
- }
+ return false;
+}
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
- if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
- // Change br (X == 0 | X == 1), T, F into a switch instruction.
- if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
- Instruction *Cond = cast<Instruction>(BI->getCondition());
- // If this is a bunch of seteq's or'd together, or if it's a bunch of
- // 'setne's and'ed together, collect them.
- Value *CompVal = 0;
- std::vector<ConstantInt*> Values;
- bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
- if (CompVal) {
- // There might be duplicate constants in the list, which the switch
- // instruction can't handle, remove them now.
- std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
- Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
-
- // Figure out which block is which destination.
- BasicBlock *DefaultBB = BI->getSuccessor(1);
- BasicBlock *EdgeBB = BI->getSuccessor(0);
- if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
-
- // Convert pointer to int before we switch.
- if (CompVal->getType()->isPointerTy()) {
- assert(TD && "Cannot switch on pointer without TargetData");
- CompVal = new PtrToIntInst(CompVal,
- TD->getIntPtrType(CompVal->getContext()),
- "magicptr", BI);
- }
+bool SimplifyCFGOpt::run(BasicBlock *BB) {
+ bool Changed = false;
- // Create the new switch instruction now.
- SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
- Values.size(), BI);
-
- // Add all of the 'cases' to the switch instruction.
- for (unsigned i = 0, e = Values.size(); i != e; ++i)
- New->addCase(Values[i], EdgeBB);
-
- // We added edges from PI to the EdgeBB. As such, if there were any
- // PHI nodes in EdgeBB, they need entries to be added corresponding to
- // the number of edges added.
- for (BasicBlock::iterator BBI = EdgeBB->begin();
- isa<PHINode>(BBI); ++BBI) {
- PHINode *PN = cast<PHINode>(BBI);
- Value *InVal = PN->getIncomingValueForBlock(*PI);
- for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
- PN->addIncoming(InVal, *PI);
- }
+ assert(BB && BB->getParent() && "Block not embedded in function!");
+ assert(BB->getTerminator() && "Degenerate basic block encountered!");
- // Erase the old branch instruction.
- EraseTerminatorInstAndDCECond(BI);
- return true;
- }
- }
+ // Remove basic blocks that have no predecessors (except the entry block)...
+ // or that just have themself as a predecessor. These are unreachable.
+ if ((pred_begin(BB) == pred_end(BB) &&
+ BB != &BB->getParent()->getEntryBlock()) ||
+ BB->getSinglePredecessor() == BB) {
+ DEBUG(dbgs() << "Removing BB: \n" << *BB);
+ DeleteDeadBlock(BB);
+ return true;
+ }
+
+ // Check to see if we can constant propagate this terminator instruction
+ // away...
+ Changed |= ConstantFoldTerminator(BB);
+
+ // Check for and eliminate duplicate PHI nodes in this block.
+ Changed |= EliminateDuplicatePHINodes(BB);
+
+ // Merge basic blocks into their predecessor if there is only one distinct
+ // pred, and if there is only one distinct successor of the predecessor, and
+ // if there are no PHI nodes.
+ //
+ if (MergeBlockIntoPredecessor(BB))
+ return true;
+
+ // If there is a trivial two-entry PHI node in this basic block, and we can
+ // eliminate it, do so now.
+ if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
+ if (PN->getNumIncomingValues() == 2)
+ Changed |= FoldTwoEntryPHINode(PN, TD);
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+ if (BI->isUnconditional()) {
+ if (SimplifyUncondBranch(BI)) return true;
+ } else {
+ if (SimplifyCondBranch(BI)) return true;
+ }
+ } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+ if (SimplifyReturn(RI)) return true;
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+ if (SimplifySwitch(SI)) return true;
+ } else if (UnreachableInst *UI =
+ dyn_cast<UnreachableInst>(BB->getTerminator())) {
+ if (SimplifyUnreachable(UI)) return true;
+ } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
+ if (SimplifyUnwind(UI)) return true;
+ } else if (IndirectBrInst *IBI =
+ dyn_cast<IndirectBrInst>(BB->getTerminator())) {
+ if (SimplifyIndirectBr(IBI)) return true;
+ }
return Changed;
}
diff --git a/lib/Transforms/Utils/SimplifyInstructions.cpp b/lib/Transforms/Utils/SimplifyInstructions.cpp
new file mode 100644
index 0000000..ac005f9
--- /dev/null
+++ b/lib/Transforms/Utils/SimplifyInstructions.cpp
@@ -0,0 +1,94 @@
+//===------ SimplifyInstructions.cpp - Remove redundant instructions ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a utility pass used for testing the InstructionSimplify analysis.
+// The analysis is applied to every instruction, and if it simplifies then the
+// instruction is replaced by the simplification. If you are looking for a pass
+// that performs serious instruction folding, use the instcombine pass instead.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "instsimplify"
+#include "llvm/Function.h"
+#include "llvm/Pass.h"
+#include "llvm/Type.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+using namespace llvm;
+
+STATISTIC(NumSimplified, "Number of redundant instructions removed");
+
+namespace {
+ struct InstSimplifier : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ InstSimplifier() : FunctionPass(ID) {
+ initializeInstSimplifierPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ }
+
+ /// runOnFunction - Remove instructions that simplify.
+ bool runOnFunction(Function &F) {
+ const DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>();
+ const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ SmallPtrSet<const Instruction*, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;
+ bool Changed = false;
+
+ do {
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI)
+ for (BasicBlock::iterator BI = DI->begin(), BE = DI->end(); BI != BE;) {
+ Instruction *I = BI++;
+ // The first time through the loop ToSimplify is empty and we try to
+ // simplify all instructions. On later iterations ToSimplify is not
+ // empty and we only bother simplifying instructions that are in it.
+ if (!ToSimplify->empty() && !ToSimplify->count(I))
+ continue;
+ // Don't waste time simplifying unused instructions.
+ if (!I->use_empty())
+ if (Value *V = SimplifyInstruction(I, TD, DT)) {
+ // Mark all uses for resimplification next time round the loop.
+ for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
+ UI != UE; ++UI)
+ Next->insert(cast<Instruction>(*UI));
+ I->replaceAllUsesWith(V);
+ ++NumSimplified;
+ Changed = true;
+ }
+ Changed |= RecursivelyDeleteTriviallyDeadInstructions(I);
+ }
+
+ // Place the list of instructions to simplify on the next loop iteration
+ // into ToSimplify.
+ std::swap(ToSimplify, Next);
+ Next->clear();
+ } while (!ToSimplify->empty());
+
+ return Changed;
+ }
+ };
+}
+
+char InstSimplifier::ID = 0;
+INITIALIZE_PASS(InstSimplifier, "instsimplify", "Remove redundant instructions",
+ false, false)
+char &llvm::InstructionSimplifierID = InstSimplifier::ID;
+
+// Public interface to the simplify instructions pass.
+FunctionPass *llvm::createInstructionSimplifierPass() {
+ return new InstSimplifier();
+}
diff --git a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
index a51f1e1..ccb8287 100644
--- a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
+++ b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
@@ -25,7 +25,7 @@ using namespace llvm;
char UnifyFunctionExitNodes::ID = 0;
INITIALIZE_PASS(UnifyFunctionExitNodes, "mergereturn",
- "Unify function exit nodes", false, false);
+ "Unify function exit nodes", false, false)
Pass *llvm::createUnifyFunctionExitNodesPass() {
return new UnifyFunctionExitNodes();
diff --git a/lib/Transforms/Utils/Utils.cpp b/lib/Transforms/Utils/Utils.cpp
new file mode 100644
index 0000000..24e8c8f
--- /dev/null
+++ b/lib/Transforms/Utils/Utils.cpp
@@ -0,0 +1,37 @@
+//===-- Utils.cpp - TransformUtils Infrastructure -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the common initialization infrastructure for the
+// TransformUtils library.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/InitializePasses.h"
+#include "llvm-c/Initialization.h"
+
+using namespace llvm;
+
+/// initializeTransformUtils - Initialize all passes in the TransformUtils
+/// library.
+void llvm::initializeTransformUtils(PassRegistry &Registry) {
+ initializeBreakCriticalEdgesPass(Registry);
+ initializeInstNamerPass(Registry);
+ initializeLCSSAPass(Registry);
+ initializeLoopSimplifyPass(Registry);
+ initializeLowerInvokePass(Registry);
+ initializeLowerSwitchPass(Registry);
+ initializePromotePassPass(Registry);
+ initializeUnifyFunctionExitNodesPass(Registry);
+ initializeInstSimplifierPass(Registry);
+}
+
+/// LLVMInitializeTransformUtils - C binding for initializeTransformUtilsPasses.
+void LLVMInitializeTransformUtils(LLVMPassRegistryRef R) {
+ initializeTransformUtils(*unwrap(R));
+}
diff --git a/lib/Transforms/Utils/ValueMapper.cpp b/lib/Transforms/Utils/ValueMapper.cpp
index fc4bde7..f5481d3 100644
--- a/lib/Transforms/Utils/ValueMapper.cpp
+++ b/lib/Transforms/Utils/ValueMapper.cpp
@@ -21,147 +21,111 @@
using namespace llvm;
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM,
- bool ModuleLevelChanges) {
- Value *&VMSlot = VM[V];
- if (VMSlot) return VMSlot; // Does it exist in the map yet?
+ RemapFlags Flags) {
+ ValueToValueMapTy::iterator I = VM.find(V);
+
+ // If the value already exists in the map, use it.
+ if (I != VM.end() && I->second) return I->second;
- // NOTE: VMSlot can be invalidated by any reference to VM, which can grow the
- // DenseMap. This includes any recursive calls to MapValue.
-
// Global values do not need to be seeded into the VM if they
// are using the identity mapping.
- if (isa<GlobalValue>(V) || isa<InlineAsm>(V) || isa<MDString>(V) ||
- (isa<MDNode>(V) && !cast<MDNode>(V)->isFunctionLocal() &&
- !ModuleLevelChanges))
- return VMSlot = const_cast<Value*>(V);
+ if (isa<GlobalValue>(V) || isa<InlineAsm>(V) || isa<MDString>(V))
+ return VM[V] = const_cast<Value*>(V);
if (const MDNode *MD = dyn_cast<MDNode>(V)) {
- // Start by assuming that we'll use the identity mapping.
- VMSlot = const_cast<Value*>(V);
-
+ // If this is a module-level metadata and we know that nothing at the module
+ // level is changing, then use an identity mapping.
+ if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges))
+ return VM[V] = const_cast<Value*>(V);
+
+ // Create a dummy node in case we have a metadata cycle.
+ MDNode *Dummy = MDNode::getTemporary(V->getContext(), 0, 0);
+ VM[V] = Dummy;
+
// Check all operands to see if any need to be remapped.
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
Value *OP = MD->getOperand(i);
- if (!OP || MapValue(OP, VM, ModuleLevelChanges) == OP) continue;
+ if (OP == 0 || MapValue(OP, VM, Flags) == OP) continue;
- // Ok, at least one operand needs remapping.
- MDNode *Dummy = MDNode::getTemporary(V->getContext(), 0, 0);
- VM[V] = Dummy;
+ // Ok, at least one operand needs remapping.
SmallVector<Value*, 4> Elts;
Elts.reserve(MD->getNumOperands());
- for (i = 0; i != e; ++i)
- Elts.push_back(MD->getOperand(i) ?
- MapValue(MD->getOperand(i), VM, ModuleLevelChanges) : 0);
+ for (i = 0; i != e; ++i) {
+ Value *Op = MD->getOperand(i);
+ Elts.push_back(Op ? MapValue(Op, VM, Flags) : 0);
+ }
MDNode *NewMD = MDNode::get(V->getContext(), Elts.data(), Elts.size());
Dummy->replaceAllUsesWith(NewMD);
+ VM[V] = NewMD;
MDNode::deleteTemporary(Dummy);
- return VM[V] = NewMD;
+ return NewMD;
}
- // No operands needed remapping; keep the identity map.
+ VM[V] = const_cast<Value*>(V);
+ MDNode::deleteTemporary(Dummy);
+
+ // No operands needed remapping. Use an identity mapping.
return const_cast<Value*>(V);
}
+ // Okay, this either must be a constant (which may or may not be mappable) or
+ // is something that is not in the mapping table.
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
if (C == 0)
return 0;
- if (isa<ConstantInt>(C) || isa<ConstantFP>(C) ||
- isa<ConstantPointerNull>(C) || isa<ConstantAggregateZero>(C) ||
- isa<UndefValue>(C))
- return VMSlot = C; // Primitive constants map directly
-
- if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
- for (User::op_iterator b = CA->op_begin(), i = b, e = CA->op_end();
- i != e; ++i) {
- Value *MV = MapValue(*i, VM, ModuleLevelChanges);
- if (MV != *i) {
- // This array must contain a reference to a global, make a new array
- // and return it.
- //
- std::vector<Constant*> Values;
- Values.reserve(CA->getNumOperands());
- for (User::op_iterator j = b; j != i; ++j)
- Values.push_back(cast<Constant>(*j));
- Values.push_back(cast<Constant>(MV));
- for (++i; i != e; ++i)
- Values.push_back(cast<Constant>(MapValue(*i, VM,
- ModuleLevelChanges)));
- return VM[V] = ConstantArray::get(CA->getType(), Values);
- }
- }
- return VM[V] = C;
- }
-
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
- for (User::op_iterator b = CS->op_begin(), i = b, e = CS->op_end();
- i != e; ++i) {
- Value *MV = MapValue(*i, VM, ModuleLevelChanges);
- if (MV != *i) {
- // This struct must contain a reference to a global, make a new struct
- // and return it.
- //
- std::vector<Constant*> Values;
- Values.reserve(CS->getNumOperands());
- for (User::op_iterator j = b; j != i; ++j)
- Values.push_back(cast<Constant>(*j));
- Values.push_back(cast<Constant>(MV));
- for (++i; i != e; ++i)
- Values.push_back(cast<Constant>(MapValue(*i, VM,
- ModuleLevelChanges)));
- return VM[V] = ConstantStruct::get(CS->getType(), Values);
- }
- }
- return VM[V] = C;
+ if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
+ Function *F = cast<Function>(MapValue(BA->getFunction(), VM, Flags));
+ BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
+ Flags));
+ return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
}
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
+ Value *Op = C->getOperand(i);
+ Value *Mapped = MapValue(Op, VM, Flags);
+ if (Mapped == C) continue;
+
+ // Okay, the operands don't all match. We've already processed some or all
+ // of the operands, set them up now.
std::vector<Constant*> Ops;
- for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
- Ops.push_back(cast<Constant>(MapValue(*i, VM, ModuleLevelChanges)));
- return VM[V] = CE->getWithOperands(Ops);
+ Ops.reserve(C->getNumOperands());
+ for (unsigned j = 0; j != i; ++j)
+ Ops.push_back(cast<Constant>(C->getOperand(i)));
+ Ops.push_back(cast<Constant>(Mapped));
+
+ // Map the rest of the operands that aren't processed yet.
+ for (++i; i != e; ++i)
+ Ops.push_back(cast<Constant>(MapValue(C->getOperand(i), VM, Flags)));
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ return VM[V] = CE->getWithOperands(Ops);
+ if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
+ return VM[V] = ConstantArray::get(CA->getType(), Ops);
+ if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C))
+ return VM[V] = ConstantStruct::get(CS->getType(), Ops);
+ assert(isa<ConstantVector>(C) && "Unknown mapped constant type");
+ return VM[V] = ConstantVector::get(Ops);
}
-
- if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
- for (User::op_iterator b = CV->op_begin(), i = b, e = CV->op_end();
- i != e; ++i) {
- Value *MV = MapValue(*i, VM, ModuleLevelChanges);
- if (MV != *i) {
- // This vector value must contain a reference to a global, make a new
- // vector constant and return it.
- //
- std::vector<Constant*> Values;
- Values.reserve(CV->getNumOperands());
- for (User::op_iterator j = b; j != i; ++j)
- Values.push_back(cast<Constant>(*j));
- Values.push_back(cast<Constant>(MV));
- for (++i; i != e; ++i)
- Values.push_back(cast<Constant>(MapValue(*i, VM,
- ModuleLevelChanges)));
- return VM[V] = ConstantVector::get(Values);
- }
- }
- return VM[V] = C;
- }
-
- BlockAddress *BA = cast<BlockAddress>(C);
- Function *F = cast<Function>(MapValue(BA->getFunction(), VM,
- ModuleLevelChanges));
- BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(),VM,
- ModuleLevelChanges));
- return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
+
+ // If we reach here, all of the operands of the constant match.
+ return VM[V] = C;
}
/// RemapInstruction - Convert the instruction operands from referencing the
/// current values into those specified by VMap.
///
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
- bool ModuleLevelChanges) {
+ RemapFlags Flags) {
// Remap operands.
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
- Value *V = MapValue(*op, VMap, ModuleLevelChanges);
- assert(V && "Referenced value not in value map!");
- *op = V;
+ Value *V = MapValue(*op, VMap, Flags);
+ // If we aren't ignoring missing entries, assert that something happened.
+ if (V != 0)
+ *op = V;
+ else
+ assert((Flags & RF_IgnoreMissingEntries) &&
+ "Referenced value not in value map!");
}
// Remap attached metadata.
@@ -170,7 +134,7 @@ void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
Value *Old = MI->second;
- Value *New = MapValue(Old, VMap, ModuleLevelChanges);
+ Value *New = MapValue(Old, VMap, Flags);
if (New != Old)
I->setMetadata(MI->first, cast<MDNode>(New));
}
OpenPOWER on IntegriCloud