diff options
author | dim <dim@FreeBSD.org> | 2012-12-02 13:10:19 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2012-12-02 13:10:19 +0000 |
commit | 6de2c08bc400b4aca9fb46684e8bdb56eed9b09f (patch) | |
tree | 32b4679ab4b8f28e5228daafc65e9dc436935353 /lib/Transforms/Utils/SimplifyLibCalls.cpp | |
parent | 4dc93743c9d40c29c0a3bec2aae328cac0d289e8 (diff) | |
download | FreeBSD-src-6de2c08bc400b4aca9fb46684e8bdb56eed9b09f.zip FreeBSD-src-6de2c08bc400b4aca9fb46684e8bdb56eed9b09f.tar.gz |
Vendor import of llvm release_32 branch r168974 (effectively, 3.2 RC2):
http://llvm.org/svn/llvm-project/llvm/branches/release_32@168974
Diffstat (limited to 'lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r-- | lib/Transforms/Utils/SimplifyLibCalls.cpp | 1149 |
1 files changed, 1149 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/SimplifyLibCalls.cpp b/lib/Transforms/Utils/SimplifyLibCalls.cpp new file mode 100644 index 0000000..c3ea638 --- /dev/null +++ b/lib/Transforms/Utils/SimplifyLibCalls.cpp @@ -0,0 +1,1149 @@ +//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is a utility pass used for testing the InstructionSimplify analysis. +// The analysis is applied to every instruction, and if it simplifies then the +// instruction is replaced by the simplification. If you are looking for a pass +// that performs serious instruction folding, use the instcombine pass instead. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +#include "llvm/DataLayout.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Function.h" +#include "llvm/IRBuilder.h" +#include "llvm/LLVMContext.h" +#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/BuildLibCalls.h" + +using namespace llvm; + +/// This class is the abstract base class for the set of optimizations that +/// corresponds to one library call. +namespace { +class LibCallOptimization { +protected: + Function *Caller; + const DataLayout *TD; + const TargetLibraryInfo *TLI; + const LibCallSimplifier *LCS; + LLVMContext* Context; +public: + LibCallOptimization() { } + virtual ~LibCallOptimization() {} + + /// callOptimizer - This pure virtual method is implemented by base classes to + /// do various optimizations. If this returns null then no transformation was + /// performed. If it returns CI, then it transformed the call and CI is to be + /// deleted. If it returns something else, replace CI with the new value and + /// delete CI. + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) + =0; + + Value *optimizeCall(CallInst *CI, const DataLayout *TD, + const TargetLibraryInfo *TLI, + const LibCallSimplifier *LCS, IRBuilder<> &B) { + Caller = CI->getParent()->getParent(); + this->TD = TD; + this->TLI = TLI; + this->LCS = LCS; + if (CI->getCalledFunction()) + Context = &CI->getCalledFunction()->getContext(); + + // We never change the calling convention. + if (CI->getCallingConv() != llvm::CallingConv::C) + return NULL; + + return callOptimizer(CI->getCalledFunction(), CI, B); + } +}; + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the +/// value is equal or not-equal to zero. +static bool isOnlyUsedInZeroEqualityComparison(Value *V) { + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); + UI != E; ++UI) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) + if (IC->isEquality()) + if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) + if (C->isNullValue()) + continue; + // Unknown instruction. + return false; + } + return true; +} + +/// isOnlyUsedInEqualityComparison - Return true if it is only used in equality +/// comparisons with With. +static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); + UI != E; ++UI) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) + if (IC->isEquality() && IC->getOperand(1) == With) + continue; + // Unknown instruction. + return false; + } + return true; +} + +//===----------------------------------------------------------------------===// +// Fortified Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct FortifiedLibCallOptimization : public LibCallOptimization { +protected: + virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, + bool isString) const = 0; +}; + +struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization { + CallInst *CI; + + bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const { + if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) + return true; + if (ConstantInt *SizeCI = + dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { + if (SizeCI->isAllOnesValue()) + return true; + if (isString) { + uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); + // If the length is 0 we don't know how long it is and so we can't + // remove the check. + if (Len == 0) return false; + return SizeCI->getZExtValue() >= Len; + } + if (ConstantInt *Arg = dyn_cast<ConstantInt>( + CI->getArgOperand(SizeArgOp))) + return SizeCI->getZExtValue() >= Arg->getZExtValue(); + } + return false; + } +}; + +struct MemCpyChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != TD->getIntPtrType(Context) || + FT->getParamType(3) != TD->getIntPtrType(Context)) + return 0; + + if (isFoldable(3, 2, false)) { + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return 0; + } +}; + +struct MemMoveChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != TD->getIntPtrType(Context) || + FT->getParamType(3) != TD->getIntPtrType(Context)) + return 0; + + if (isFoldable(3, 2, false)) { + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return 0; + } +}; + +struct MemSetChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + FT->getParamType(2) != TD->getIntPtrType(Context) || + FT->getParamType(3) != TD->getIntPtrType(Context)) + return 0; + + if (isFoldable(3, 2, false)) { + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), + false); + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return 0; + } +}; + +struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 3 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + FT->getParamType(2) != TD->getIntPtrType(Context)) + return 0; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // __strcpy_chk(x,x) -> x + return Src; + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain strcpy. Otherwise we'll keep our + // strcpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFoldable(2, 1, true)) { + Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6)); + return Ret; + } else { + // Maybe we can stil fold __strcpy_chk to __memcpy_chk. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + + // This optimization require DataLayout. + if (!TD) return 0; + + Value *Ret = + EmitMemCpyChk(Dst, Src, + ConstantInt::get(TD->getIntPtrType(Context), Len), + CI->getArgOperand(2), B, TD, TLI); + return Ret; + } + return 0; + } +}; + +struct StpCpyChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 3 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0))) + return 0; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = EmitStrLen(Src, B, TD, TLI); + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0; + } + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain stpcpy. Otherwise we'll keep our + // stpcpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFoldable(2, 1, true)) { + Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6)); + return Ret; + } else { + // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + + // This optimization require DataLayout. + if (!TD) return 0; + + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); + Value *DstEnd = B.CreateGEP(Dst, + ConstantInt::get(TD->getIntPtrType(PT), + Len - 1)); + if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI)) + return 0; + return DstEnd; + } + return 0; + } +}; + +struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + !FT->getParamType(2)->isIntegerTy() || + FT->getParamType(3) != TD->getIntPtrType(Context)) + return 0; + + if (isFoldable(3, 2, false)) { + Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, TD, TLI, + Name.substr(2, 7)); + return Ret; + } + return 0; + } +}; + +//===----------------------------------------------------------------------===// +// String and Memory Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct StrCatOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strcat" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + FT->getParamType(1) != FT->getReturnType()) + return 0; + + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + --Len; // Unbias length. + + // Handle the simple, do-nothing case: strcat(x, "") -> x + if (Len == 0) + return Dst; + + // These optimizations require DataLayout. + if (!TD) return 0; + + return emitStrLenMemCpy(Src, Dst, Len, B); + } + + Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, + IRBuilder<> &B) { + // We need to find the end of the destination string. That's where the + // memory is to be moved to. We just generate a call to strlen. + Value *DstLen = EmitStrLen(Dst, B, TD, TLI); + if (!DstLen) + return 0; + + // Now that we have the destination's length, we must index into the + // destination's pointer to get the actual memcpy destination (end of + // the string .. we're concatenating). + Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); + + // We have enough information to now generate the memcpy call to do the + // concatenation for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(CpyDst, Src, + ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1); + return Dst; + } +}; + +struct StrNCatOpt : public StrCatOpt { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strncat" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + FT->getParamType(1) != FT->getReturnType() || + !FT->getParamType(2)->isIntegerTy()) + return 0; + + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + uint64_t Len; + + // We don't do anything if length is not constant + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) + Len = LengthArg->getZExtValue(); + else + return 0; + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen == 0) return 0; + --SrcLen; // Unbias length. + + // Handle the simple, do-nothing cases: + // strncat(x, "", c) -> x + // strncat(x, c, 0) -> x + if (SrcLen == 0 || Len == 0) return Dst; + + // These optimizations require DataLayout. + if (!TD) return 0; + + // We don't optimize this case + if (Len < SrcLen) return 0; + + // strncat(x, s, c) -> strcat(x, s) + // s is constant so the strcat can be optimized further + return emitStrLenMemCpy(Src, Dst, SrcLen, B); + } +}; + +struct StrChrOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strchr" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + !FT->getParamType(1)->isIntegerTy(32)) + return 0; + + Value *SrcStr = CI->getArgOperand(0); + + // If the second operand is non-constant, see if we can compute the length + // of the input string and turn this into memchr. + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + if (CharC == 0) { + // These optimizations require DataLayout. + if (!TD) return 0; + + uint64_t Len = GetStringLength(SrcStr); + if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. + return 0; + + return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. + ConstantInt::get(TD->getIntPtrType(*Context), Len), + B, TD, TLI); + } + + // Otherwise, the character is a constant, see if the first argument is + // a string literal. If so, we can constant fold. + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) + return 0; + + // Compute the offset, make sure to handle the case when we're searching for + // zero (a weird way to spell strlen). + size_t I = CharC->getSExtValue() == 0 ? + Str.size() : Str.find(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. strchr returns null. + return Constant::getNullValue(CI->getType()); + + // strchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); + } +}; + +struct StrRChrOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strrchr" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + !FT->getParamType(1)->isIntegerTy(32)) + return 0; + + Value *SrcStr = CI->getArgOperand(0); + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + + // Cannot fold anything if we're not looking for a constant. + if (!CharC) + return 0; + + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { + // strrchr(s, 0) -> strchr(s, 0) + if (TD && CharC->isZero()) + return EmitStrChr(SrcStr, '\0', B, TD, TLI); + return 0; + } + + // Compute the offset. + size_t I = CharC->getSExtValue() == 0 ? + Str.size() : Str.rfind(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. Return null. + return Constant::getNullValue(CI->getType()); + + // strrchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); + } +}; + +struct StrCmpOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strcmp" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + !FT->getReturnType()->isIntegerTy(32) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return 0; + + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strcmp(x,x) -> 0 + return ConstantInt::get(CI->getType(), 0); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strcmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) + return ConstantInt::get(CI->getType(), Str1.compare(Str2)); + + if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x + return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), + CI->getType())); + + if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); + + // strcmp(P, "x") -> memcmp(P, "x", 2) + uint64_t Len1 = GetStringLength(Str1P); + uint64_t Len2 = GetStringLength(Str2P); + if (Len1 && Len2) { + // These optimizations require DataLayout. + if (!TD) return 0; + + return EmitMemCmp(Str1P, Str2P, + ConstantInt::get(TD->getIntPtrType(*Context), + std::min(Len1, Len2)), B, TD, TLI); + } + + return 0; + } +}; + +struct StrNCmpOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strncmp" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || + !FT->getReturnType()->isIntegerTy(32) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getParamType(2)->isIntegerTy()) + return 0; + + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strncmp(x,x,n) -> 0 + return ConstantInt::get(CI->getType(), 0); + + // Get the length argument if it is constant. + uint64_t Length; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) + Length = LengthArg->getZExtValue(); + else + return 0; + + if (Length == 0) // strncmp(x,y,0) -> 0 + return ConstantInt::get(CI->getType(), 0); + + if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) + return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strncmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) { + StringRef SubStr1 = Str1.substr(0, Length); + StringRef SubStr2 = Str2.substr(0, Length); + return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); + } + + if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x + return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), + CI->getType())); + + if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); + + return 0; + } +}; + +struct StrCpyOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "strcpy" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return 0; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // strcpy(x,x) -> x + return Src; + + // These optimizations require DataLayout. + if (!TD) return 0; + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(Dst, Src, + ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); + return Dst; + } +}; + +struct StpCpyOpt: public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // Verify the "stpcpy" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return 0; + + // These optimizations require DataLayout. + if (!TD) return 0; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = EmitStrLen(Src, B, TD, TLI); + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0; + } + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return 0; + + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); + Value *DstEnd = B.CreateGEP(Dst, + ConstantInt::get(TD->getIntPtrType(PT), + Len - 1)); + + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(Dst, Src, LenV, 1); + return DstEnd; + } +}; + +struct StrNCpyOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getParamType(2)->isIntegerTy()) + return 0; + + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + Value *LenOp = CI->getArgOperand(2); + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen == 0) return 0; + --SrcLen; + + if (SrcLen == 0) { + // strncpy(x, "", y) -> memset(x, '\0', y, 1) + B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); + return Dst; + } + + uint64_t Len; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) + Len = LengthArg->getZExtValue(); + else + return 0; + + if (Len == 0) return Dst; // strncpy(x, y, 0) -> x + + // These optimizations require DataLayout. + if (!TD) return 0; + + // Let strncpy handle the zero padding + if (Len > SrcLen+1) return 0; + + Type *PT = FT->getParamType(0); + // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] + B.CreateMemCpy(Dst, Src, + ConstantInt::get(TD->getIntPtrType(PT), Len), 1); + + return Dst; + } +}; + +struct StrLenOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 1 || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getReturnType()->isIntegerTy()) + return 0; + + Value *Src = CI->getArgOperand(0); + + // Constant folding: strlen("xyz") -> 3 + if (uint64_t Len = GetStringLength(Src)) + return ConstantInt::get(CI->getType(), Len-1); + + // strlen(x) != 0 --> *x != 0 + // strlen(x) == 0 --> *x == 0 + if (isOnlyUsedInZeroEqualityComparison(CI)) + return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); + return 0; + } +}; + +struct StrPBrkOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + FT->getReturnType() != FT->getParamType(0)) + return 0; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strpbrk(s, "") -> NULL + // strpbrk("", s) -> NULL + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t I = S1.find_first_of(S2); + if (I == std::string::npos) // No match. + return Constant::getNullValue(CI->getType()); + + return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); + } + + // strpbrk(s, "a") -> strchr(s, 'a') + if (TD && HasS2 && S2.size() == 1) + return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI); + + return 0; + } +}; + +struct StrToOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy()) + return 0; + + Value *EndPtr = CI->getArgOperand(1); + if (isa<ConstantPointerNull>(EndPtr)) { + // With a null EndPtr, this function won't capture the main argument. + // It would be readonly too, except that it still may write to errno. + CI->addAttribute(1, Attributes::get(Callee->getContext(), + Attributes::NoCapture)); + } + + return 0; + } +}; + +struct StrSpnOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + !FT->getReturnType()->isIntegerTy()) + return 0; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strspn(s, "") -> 0 + // strspn("", s) -> 0 + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_not_of(S2); + if (Pos == StringRef::npos) Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + return 0; + } +}; + +struct StrCSpnOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + !FT->getReturnType()->isIntegerTy()) + return 0; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strcspn("", s) -> 0 + if (HasS1 && S1.empty()) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_of(S2); + if (Pos == StringRef::npos) Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + // strcspn(s, "") -> strlen(s) + if (TD && HasS2 && S2.empty()) + return EmitStrLen(CI->getArgOperand(0), B, TD, TLI); + + return 0; + } +}; + +struct StrStrOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isPointerTy()) + return 0; + + // fold strstr(x, x) -> x. + if (CI->getArgOperand(0) == CI->getArgOperand(1)) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 + if (TD && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { + Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI); + if (!StrLen) + return 0; + Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), + StrLen, B, TD, TLI); + if (!StrNCmp) + return 0; + for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end(); + UI != UE; ) { + ICmpInst *Old = cast<ICmpInst>(*UI++); + Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, + ConstantInt::getNullValue(StrNCmp->getType()), + "cmp"); + LCS->replaceAllUsesWith(Old, Cmp); + } + return CI; + } + + // See if either input string is a constant string. + StringRef SearchStr, ToFindStr; + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); + + // fold strstr(x, "") -> x. + if (HasStr2 && ToFindStr.empty()) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // If both strings are known, constant fold it. + if (HasStr1 && HasStr2) { + std::string::size_type Offset = SearchStr.find(ToFindStr); + + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null + return Constant::getNullValue(CI->getType()); + + // strstr("abcd", "bc") -> gep((char*)"abcd", 1) + Value *Result = CastToCStr(CI->getArgOperand(0), B); + Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); + return B.CreateBitCast(Result, CI->getType()); + } + + // fold strstr(x, "y") -> strchr(x, 'y'). + if (HasStr2 && ToFindStr.size() == 1) { + Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI); + return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0; + } + return 0; + } +}; + +struct MemCmpOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy(32)) + return 0; + + Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); + + if (LHS == RHS) // memcmp(s,s,x) -> 0 + return Constant::getNullValue(CI->getType()); + + // Make sure we have a constant length. + ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); + if (!LenC) return 0; + uint64_t Len = LenC->getZExtValue(); + + if (Len == 0) // memcmp(s1,s2,0) -> 0 + return Constant::getNullValue(CI->getType()); + + // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS + if (Len == 1) { + Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), + CI->getType(), "lhsv"); + Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), + CI->getType(), "rhsv"); + return B.CreateSub(LHSV, RHSV, "chardiff"); + } + + // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) + StringRef LHSStr, RHSStr; + if (getConstantStringInfo(LHS, LHSStr) && + getConstantStringInfo(RHS, RHSStr)) { + // Make sure we're not reading out-of-bounds memory. + if (Len > LHSStr.size() || Len > RHSStr.size()) + return 0; + uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len); + return ConstantInt::get(CI->getType(), Ret); + } + + return 0; + } +}; + +struct MemCpyOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // These optimizations require DataLayout. + if (!TD) return 0; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != TD->getIntPtrType(*Context)) + return 0; + + // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +struct MemMoveOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // These optimizations require DataLayout. + if (!TD) return 0; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != TD->getIntPtrType(*Context)) + return 0; + + // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +struct MemSetOpt : public LibCallOptimization { + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + // These optimizations require DataLayout. + if (!TD) return 0; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + FT->getParamType(2) != TD->getIntPtrType(*Context)) + return 0; + + // memset(p, v, n) -> llvm.memset(p, v, n, 1) + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +} // End anonymous namespace. + +namespace llvm { + +class LibCallSimplifierImpl { + const DataLayout *TD; + const TargetLibraryInfo *TLI; + const LibCallSimplifier *LCS; + StringMap<LibCallOptimization*> Optimizations; + + // Fortified library call optimizations. + MemCpyChkOpt MemCpyChk; + MemMoveChkOpt MemMoveChk; + MemSetChkOpt MemSetChk; + StrCpyChkOpt StrCpyChk; + StpCpyChkOpt StpCpyChk; + StrNCpyChkOpt StrNCpyChk; + + // String library call optimizations. + StrCatOpt StrCat; + StrNCatOpt StrNCat; + StrChrOpt StrChr; + StrRChrOpt StrRChr; + StrCmpOpt StrCmp; + StrNCmpOpt StrNCmp; + StrCpyOpt StrCpy; + StpCpyOpt StpCpy; + StrNCpyOpt StrNCpy; + StrLenOpt StrLen; + StrPBrkOpt StrPBrk; + StrToOpt StrTo; + StrSpnOpt StrSpn; + StrCSpnOpt StrCSpn; + StrStrOpt StrStr; + + // Memory library call optimizations. + MemCmpOpt MemCmp; + MemCpyOpt MemCpy; + MemMoveOpt MemMove; + MemSetOpt MemSet; + + void initOptimizations(); + void addOpt(LibFunc::Func F, LibCallOptimization* Opt); +public: + LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI, + const LibCallSimplifier *LCS) { + this->TD = TD; + this->TLI = TLI; + this->LCS = LCS; + } + + Value *optimizeCall(CallInst *CI); +}; + +void LibCallSimplifierImpl::initOptimizations() { + // Fortified library call optimizations. + Optimizations["__memcpy_chk"] = &MemCpyChk; + Optimizations["__memmove_chk"] = &MemMoveChk; + Optimizations["__memset_chk"] = &MemSetChk; + Optimizations["__strcpy_chk"] = &StrCpyChk; + Optimizations["__stpcpy_chk"] = &StpCpyChk; + Optimizations["__strncpy_chk"] = &StrNCpyChk; + Optimizations["__stpncpy_chk"] = &StrNCpyChk; + + // String library call optimizations. + addOpt(LibFunc::strcat, &StrCat); + addOpt(LibFunc::strncat, &StrNCat); + addOpt(LibFunc::strchr, &StrChr); + addOpt(LibFunc::strrchr, &StrRChr); + addOpt(LibFunc::strcmp, &StrCmp); + addOpt(LibFunc::strncmp, &StrNCmp); + addOpt(LibFunc::strcpy, &StrCpy); + addOpt(LibFunc::stpcpy, &StpCpy); + addOpt(LibFunc::strncpy, &StrNCpy); + addOpt(LibFunc::strlen, &StrLen); + addOpt(LibFunc::strpbrk, &StrPBrk); + addOpt(LibFunc::strtol, &StrTo); + addOpt(LibFunc::strtod, &StrTo); + addOpt(LibFunc::strtof, &StrTo); + addOpt(LibFunc::strtoul, &StrTo); + addOpt(LibFunc::strtoll, &StrTo); + addOpt(LibFunc::strtold, &StrTo); + addOpt(LibFunc::strtoull, &StrTo); + addOpt(LibFunc::strspn, &StrSpn); + addOpt(LibFunc::strcspn, &StrCSpn); + addOpt(LibFunc::strstr, &StrStr); + + // Memory library call optimizations. + addOpt(LibFunc::memcmp, &MemCmp); + addOpt(LibFunc::memcpy, &MemCpy); + addOpt(LibFunc::memmove, &MemMove); + addOpt(LibFunc::memset, &MemSet); +} + +Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) { + if (Optimizations.empty()) + initOptimizations(); + + Function *Callee = CI->getCalledFunction(); + LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); + if (LCO) { + IRBuilder<> Builder(CI); + return LCO->optimizeCall(CI, TD, TLI, LCS, Builder); + } + return 0; +} + +void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) { + if (TLI->has(F)) + Optimizations[TLI->getName(F)] = Opt; +} + +LibCallSimplifier::LibCallSimplifier(const DataLayout *TD, + const TargetLibraryInfo *TLI) { + Impl = new LibCallSimplifierImpl(TD, TLI, this); +} + +LibCallSimplifier::~LibCallSimplifier() { + delete Impl; +} + +Value *LibCallSimplifier::optimizeCall(CallInst *CI) { + return Impl->optimizeCall(CI); +} + +void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { + I->replaceAllUsesWith(With); + I->eraseFromParent(); +} + +} |