diff options
author | dim <dim@FreeBSD.org> | 2012-08-15 19:34:23 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2012-08-15 19:34:23 +0000 |
commit | 721c201bd55ffb73cb2ba8d39e0570fa38c44e15 (patch) | |
tree | eacfc83d988e4b9d11114387ae7dc41243f2a363 /lib/Transforms/Scalar/ScalarReplAggregates.cpp | |
parent | 2b2816e083a455f7a656ae88b0fd059d1688bb36 (diff) | |
download | FreeBSD-src-721c201bd55ffb73cb2ba8d39e0570fa38c44e15.zip FreeBSD-src-721c201bd55ffb73cb2ba8d39e0570fa38c44e15.tar.gz |
Vendor import of llvm trunk r161861:
http://llvm.org/svn/llvm-project/llvm/trunk@161861
Diffstat (limited to 'lib/Transforms/Scalar/ScalarReplAggregates.cpp')
-rw-r--r-- | lib/Transforms/Scalar/ScalarReplAggregates.cpp | 467 |
1 files changed, 328 insertions, 139 deletions
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp index 026fea1..6637126 100644 --- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp +++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp @@ -22,33 +22,34 @@ #define DEBUG_TYPE "scalarrepl" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" +#include "llvm/DIBuilder.h" +#include "llvm/DebugInfo.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" +#include "llvm/IRBuilder.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" +#include "llvm/Operator.h" #include "llvm/Pass.h" -#include "llvm/Analysis/DebugInfo.h" -#include "llvm/Analysis/DIBuilder.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/ValueTracking.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Transforms/Utils/PromoteMemToReg.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/IRBuilder.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; STATISTIC(NumReplaced, "Number of allocas broken up"); @@ -59,12 +60,25 @@ STATISTIC(NumGlobals, "Number of allocas copied from constant global"); namespace { struct SROA : public FunctionPass { - SROA(int T, bool hasDT, char &ID) + SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT) : FunctionPass(ID), HasDomTree(hasDT) { if (T == -1) SRThreshold = 128; else SRThreshold = T; + if (ST == -1) + StructMemberThreshold = 32; + else + StructMemberThreshold = ST; + if (AT == -1) + ArrayElementThreshold = 8; + else + ArrayElementThreshold = AT; + if (SLT == -1) + // Do not limit the scalar integer load size if no threshold is given. + ScalarLoadThreshold = -1; + else + ScalarLoadThreshold = SLT; } bool runOnFunction(Function &F); @@ -86,11 +100,11 @@ namespace { struct AllocaInfo { /// The alloca to promote. AllocaInst *AI; - + /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite /// looping and avoid redundant work. SmallPtrSet<PHINode*, 8> CheckedPHIs; - + /// isUnsafe - This is set to true if the alloca cannot be SROA'd. bool isUnsafe : 1; @@ -104,19 +118,32 @@ namespace { /// ever accessed, or false if the alloca is only accessed with mem /// intrinsics or load/store that only access the entire alloca at once. bool hasSubelementAccess : 1; - + /// hasALoadOrStore - This is true if there are any loads or stores to it. /// The alloca may just be accessed with memcpy, for example, which would /// not set this. bool hasALoadOrStore : 1; - + explicit AllocaInfo(AllocaInst *ai) : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false), hasSubelementAccess(false), hasALoadOrStore(false) {} }; + /// SRThreshold - The maximum alloca size to considered for SROA. unsigned SRThreshold; + /// StructMemberThreshold - The maximum number of members a struct can + /// contain to be considered for SROA. + unsigned StructMemberThreshold; + + /// ArrayElementThreshold - The maximum number of elements an array can + /// have to be considered for SROA. + unsigned ArrayElementThreshold; + + /// ScalarLoadThreshold - The maximum size in bits of scalars to load when + /// converting to scalar + unsigned ScalarLoadThreshold; + void MarkUnsafe(AllocaInfo &I, Instruction *User) { I.isUnsafe = true; DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n'); @@ -155,19 +182,21 @@ namespace { SmallVector<AllocaInst*, 32> &NewElts); void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, SmallVector<AllocaInst*, 32> &NewElts); + bool ShouldAttemptScalarRepl(AllocaInst *AI); static MemTransferInst *isOnlyCopiedFromConstantGlobal( AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete); }; - + // SROA_DT - SROA that uses DominatorTree. struct SROA_DT : public SROA { static char ID; public: - SROA_DT(int T = -1) : SROA(T, true, ID) { + SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) : + SROA(T, true, ID, ST, AT, SLT) { initializeSROA_DTPass(*PassRegistry::getPassRegistry()); } - + // getAnalysisUsage - This pass does not require any passes, but we know it // will not alter the CFG, so say so. virtual void getAnalysisUsage(AnalysisUsage &AU) const { @@ -175,22 +204,23 @@ namespace { AU.setPreservesCFG(); } }; - + // SROA_SSAUp - SROA that uses SSAUpdater. struct SROA_SSAUp : public SROA { static char ID; public: - SROA_SSAUp(int T = -1) : SROA(T, false, ID) { + SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) : + SROA(T, false, ID, ST, AT, SLT) { initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry()); } - + // getAnalysisUsage - This pass does not require any passes, but we know it // will not alter the CFG, so say so. virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); } }; - + } char SROA_DT::ID = 0; @@ -209,10 +239,15 @@ INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa", // Public interface to the ScalarReplAggregates pass FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold, - bool UseDomTree) { + bool UseDomTree, + int StructMemberThreshold, + int ArrayElementThreshold, + int ScalarLoadThreshold) { if (UseDomTree) - return new SROA_DT(Threshold); - return new SROA_SSAUp(Threshold); + return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold, + ScalarLoadThreshold); + return new SROA_SSAUp(Threshold, StructMemberThreshold, + ArrayElementThreshold, ScalarLoadThreshold); } @@ -228,6 +263,7 @@ class ConvertToScalarInfo { /// AllocaSize - The size of the alloca being considered in bytes. unsigned AllocaSize; const TargetData &TD; + unsigned ScalarLoadThreshold; /// IsNotTrivial - This is set to true if there is some access to the object /// which means that mem2reg can't promote it. @@ -258,28 +294,38 @@ class ConvertToScalarInfo { /// isn't possible to turn into a vector type, it gets set to VoidTy. VectorType *VectorTy; - /// HadNonMemTransferAccess - True if there is at least one access to the + /// HadNonMemTransferAccess - True if there is at least one access to the /// alloca that is not a MemTransferInst. We don't want to turn structs into /// large integers unless there is some potential for optimization. bool HadNonMemTransferAccess; + /// HadDynamicAccess - True if some element of this alloca was dynamic. + /// We don't yet have support for turning a dynamic access into a large + /// integer. + bool HadDynamicAccess; + public: - explicit ConvertToScalarInfo(unsigned Size, const TargetData &td) - : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown), - VectorTy(0), HadNonMemTransferAccess(false) { } + explicit ConvertToScalarInfo(unsigned Size, const TargetData &td, + unsigned SLT) + : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false), + ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false), + HadDynamicAccess(false) { } AllocaInst *TryConvert(AllocaInst *AI); private: - bool CanConvertToScalar(Value *V, uint64_t Offset); + bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx); void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset); bool MergeInVectorType(VectorType *VInTy, uint64_t Offset); - void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset); + void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset, + Value *NonConstantIdx); Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType, - uint64_t Offset, IRBuilder<> &Builder); + uint64_t Offset, Value* NonConstantIdx, + IRBuilder<> &Builder); Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal, - uint64_t Offset, IRBuilder<> &Builder); + uint64_t Offset, Value* NonConstantIdx, + IRBuilder<> &Builder); }; } // end anonymous namespace. @@ -290,7 +336,7 @@ private: AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) { // If we can't convert this scalar, or if mem2reg can trivially do it, bail // out. - if (!CanConvertToScalar(AI, 0) || !IsNotTrivial) + if (!CanConvertToScalar(AI, 0, 0) || !IsNotTrivial) return 0; // If an alloca has only memset / memcpy uses, it may still have an Unknown @@ -315,16 +361,27 @@ AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) { NewTy = VectorTy; // Use the vector type. } else { unsigned BitWidth = AllocaSize * 8; + + // Do not convert to scalar integer if the alloca size exceeds the + // scalar load threshold. + if (BitWidth > ScalarLoadThreshold) + return 0; + if ((ScalarKind == ImplicitVector || ScalarKind == Integer) && !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth)) return 0; + // Dynamic accesses on integers aren't yet supported. They need us to shift + // by a dynamic amount which could be difficult to work out as we might not + // know whether to use a left or right shift. + if (ScalarKind == Integer && HadDynamicAccess) + return 0; DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n"); // Create and insert the integer alloca. NewTy = IntegerType::get(AI->getContext(), BitWidth); } AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin()); - ConvertUsesToScalar(AI, NewAI, 0); + ConvertUsesToScalar(AI, NewAI, 0, 0); return NewAI; } @@ -411,7 +468,8 @@ bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy, /// /// If we see at least one access to the value that is as a vector type, set the /// SawVec flag. -bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) { +bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset, + Value* NonConstantIdx) { for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { Instruction *User = cast<Instruction>(*UI); @@ -441,24 +499,35 @@ bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) { if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { if (!onlyUsedByLifetimeMarkers(BCI)) IsNotTrivial = true; // Can't be mem2reg'd. - if (!CanConvertToScalar(BCI, Offset)) + if (!CanConvertToScalar(BCI, Offset, NonConstantIdx)) return false; continue; } if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { // If this is a GEP with a variable indices, we can't handle it. - if (!GEP->hasAllConstantIndices()) + PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType()); + if (!PtrTy) return false; // Compute the offset that this GEP adds to the pointer. SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); - if (!GEP->getPointerOperandType()->isPointerTy()) - return false; - uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(), + Value *GEPNonConstantIdx = 0; + if (!GEP->hasAllConstantIndices()) { + if (!isa<VectorType>(PtrTy->getElementType())) + return false; + if (NonConstantIdx) + return false; + GEPNonConstantIdx = Indices.pop_back_val(); + if (!GEPNonConstantIdx->getType()->isIntegerTy(32)) + return false; + HadDynamicAccess = true; + } else + GEPNonConstantIdx = NonConstantIdx; + uint64_t GEPOffset = TD.getIndexedOffset(PtrTy, Indices); // See if all uses can be converted. - if (!CanConvertToScalar(GEP, Offset+GEPOffset)) + if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx)) return false; IsNotTrivial = true; // Can't be mem2reg'd. HadNonMemTransferAccess = true; @@ -468,6 +537,9 @@ bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) { // If this is a constant sized memset of a constant value (e.g. 0) we can // handle it. if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { + // Store to dynamic index. + if (NonConstantIdx) + return false; // Store of constant value. if (!isa<ConstantInt>(MSI->getValue())) return false; @@ -492,6 +564,9 @@ bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) { // If this is a memcpy or memmove into or out of the whole allocation, we // can handle it like a load or store of the scalar type. if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { + // Store to dynamic index. + if (NonConstantIdx) + return false; ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()); if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0) return false; @@ -523,12 +598,13 @@ bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) { /// Offset is an offset from the original alloca, in bits that need to be /// shifted to the right. By the end of this, there should be no uses of Ptr. void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, - uint64_t Offset) { + uint64_t Offset, + Value* NonConstantIdx) { while (!Ptr->use_empty()) { Instruction *User = cast<Instruction>(Ptr->use_back()); if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { - ConvertUsesToScalar(CI, NewAI, Offset); + ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx); CI->eraseFromParent(); continue; } @@ -536,9 +612,16 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { // Compute the offset that this GEP adds to the pointer. SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); + Value* GEPNonConstantIdx = 0; + if (!GEP->hasAllConstantIndices()) { + assert(!NonConstantIdx && + "Dynamic GEP reading from dynamic GEP unsupported"); + GEPNonConstantIdx = Indices.pop_back_val(); + } else + GEPNonConstantIdx = NonConstantIdx; uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(), Indices); - ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8); + ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx); GEP->eraseFromParent(); continue; } @@ -549,7 +632,8 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, // The load is a bit extract from NewAI shifted right by Offset bits. Value *LoadedVal = Builder.CreateLoad(NewAI); Value *NewLoadVal - = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder); + = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, + NonConstantIdx, Builder); LI->replaceAllUsesWith(NewLoadVal); LI->eraseFromParent(); continue; @@ -559,7 +643,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, assert(SI->getOperand(0) != Ptr && "Consistency error!"); Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset, - Builder); + NonConstantIdx, Builder); Builder.CreateStore(New, NewAI); SI->eraseFromParent(); @@ -574,6 +658,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, // transform it into a store of the expanded constant value. if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { assert(MSI->getRawDest() == Ptr && "Consistency error!"); + assert(!NonConstantIdx && "Cannot replace dynamic memset with insert"); int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue(); if (SNumBytes > 0 && (SNumBytes >> 32) == 0) { unsigned NumBytes = static_cast<unsigned>(SNumBytes); @@ -590,7 +675,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); Value *New = ConvertScalar_InsertValue( ConstantInt::get(User->getContext(), APVal), - Old, Offset, Builder); + Old, Offset, 0, Builder); Builder.CreateStore(New, NewAI); // If the load we just inserted is now dead, then the memset overwrote @@ -606,6 +691,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, // can handle it like a load or store of the scalar type. if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { assert(Offset == 0 && "must be store to start of alloca"); + assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert"); // If the source and destination are both to the same alloca, then this is // a noop copy-to-self, just delete it. Otherwise, emit a load and store @@ -678,7 +764,8 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, /// shifted to the right. Value *ConvertToScalarInfo:: ConvertScalar_ExtractValue(Value *FromVal, Type *ToType, - uint64_t Offset, IRBuilder<> &Builder) { + uint64_t Offset, Value* NonConstantIdx, + IRBuilder<> &Builder) { // If the load is of the whole new alloca, no conversion is needed. Type *FromType = FromVal->getType(); if (FromType == ToType && Offset == 0) @@ -700,7 +787,17 @@ ConvertScalar_ExtractValue(Value *FromVal, Type *ToType, assert(EltSize*Elt == Offset && "Invalid modulus in validity checking"); } // Return the element extracted out of it. - Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt)); + Value *Idx; + if (NonConstantIdx) { + if (Elt) + Idx = Builder.CreateAdd(NonConstantIdx, + Builder.getInt32(Elt), + "dyn.offset"); + else + Idx = NonConstantIdx; + } else + Idx = Builder.getInt32(Elt); + Value *V = Builder.CreateExtractElement(FromVal, Idx); if (V->getType() != ToType) V = Builder.CreateBitCast(V, ToType); return V; @@ -709,23 +806,27 @@ ConvertScalar_ExtractValue(Value *FromVal, Type *ToType, // If ToType is a first class aggregate, extract out each of the pieces and // use insertvalue's to form the FCA. if (StructType *ST = dyn_cast<StructType>(ToType)) { + assert(!NonConstantIdx && + "Dynamic indexing into struct types not supported"); const StructLayout &Layout = *TD.getStructLayout(ST); Value *Res = UndefValue::get(ST); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i), Offset+Layout.getElementOffsetInBits(i), - Builder); + 0, Builder); Res = Builder.CreateInsertValue(Res, Elt, i); } return Res; } if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) { + assert(!NonConstantIdx && + "Dynamic indexing into array types not supported"); uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType()); Value *Res = UndefValue::get(AT); for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(), - Offset+i*EltSize, Builder); + Offset+i*EltSize, 0, Builder); Res = Builder.CreateInsertValue(Res, Elt, i); } return Res; @@ -791,9 +892,14 @@ ConvertScalar_ExtractValue(Value *FromVal, Type *ToType, /// /// Offset is an offset from the original alloca, in bits that need to be /// shifted to the right. +/// +/// NonConstantIdx is an index value if there was a GEP with a non-constant +/// index value. If this is 0 then all GEPs used to find this insert address +/// are constant. Value *ConvertToScalarInfo:: ConvertScalar_InsertValue(Value *SV, Value *Old, - uint64_t Offset, IRBuilder<> &Builder) { + uint64_t Offset, Value* NonConstantIdx, + IRBuilder<> &Builder) { // Convert the stored type to the actual type, shift it left to insert // then 'or' into place. Type *AllocaType = Old->getType(); @@ -814,26 +920,40 @@ ConvertScalar_InsertValue(Value *SV, Value *Old, SV = Builder.CreateBitCast(SV, EltTy); uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy); unsigned Elt = Offset/EltSize; - return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt)); + Value *Idx; + if (NonConstantIdx) { + if (Elt) + Idx = Builder.CreateAdd(NonConstantIdx, + Builder.getInt32(Elt), + "dyn.offset"); + else + Idx = NonConstantIdx; + } else + Idx = Builder.getInt32(Elt); + return Builder.CreateInsertElement(Old, SV, Idx); } // If SV is a first-class aggregate value, insert each value recursively. if (StructType *ST = dyn_cast<StructType>(SV->getType())) { + assert(!NonConstantIdx && + "Dynamic indexing into struct types not supported"); const StructLayout &Layout = *TD.getStructLayout(ST); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { Value *Elt = Builder.CreateExtractValue(SV, i); Old = ConvertScalar_InsertValue(Elt, Old, Offset+Layout.getElementOffsetInBits(i), - Builder); + 0, Builder); } return Old; } if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) { + assert(!NonConstantIdx && + "Dynamic indexing into array types not supported"); uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType()); for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { Value *Elt = Builder.CreateExtractValue(SV, i); - Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder); + Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder); } return Old; } @@ -935,7 +1055,7 @@ public: AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, DIBuilder *DB) : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {} - + void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) { // Remember which alloca we're promoting (for isInstInList). this->AI = AI; @@ -950,18 +1070,18 @@ public: LoadAndStorePromoter::run(Insts); AI->eraseFromParent(); - for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(), + for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(), E = DDIs.end(); I != E; ++I) { DbgDeclareInst *DDI = *I; DDI->eraseFromParent(); } - for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(), + for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(), E = DVIs.end(); I != E; ++I) { DbgValueInst *DVI = *I; DVI->eraseFromParent(); } } - + virtual bool isInstInList(Instruction *I, const SmallVectorImpl<Instruction*> &Insts) const { if (LoadInst *LI = dyn_cast<LoadInst>(I)) @@ -970,7 +1090,7 @@ public: } virtual void updateDebugInfo(Instruction *Inst) const { - for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(), + for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(), E = DDIs.end(); I != E; ++I) { DbgDeclareInst *DDI = *I; if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) @@ -978,7 +1098,7 @@ public: else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) ConvertDebugDeclareToDebugValue(DDI, LI, *DIB); } - for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), + for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), E = DVIs.end(); I != E; ++I) { DbgValueInst *DVI = *I; Value *Arg = NULL; @@ -1021,12 +1141,12 @@ public: static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) { bool TDerefable = SI->getTrueValue()->isDereferenceablePointer(); bool FDerefable = SI->getFalseValue()->isDereferenceablePointer(); - + for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end(); UI != UE; ++UI) { LoadInst *LI = dyn_cast<LoadInst>(*UI); if (LI == 0 || !LI->isSimple()) return false; - + // Both operands to the select need to be dereferencable, either absolutely // (e.g. allocas) or at this point because we can see other accesses to it. if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI, @@ -1036,7 +1156,7 @@ static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) { LI->getAlignment(), TD)) return false; } - + return true; } @@ -1067,20 +1187,20 @@ static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) { UI != UE; ++UI) { LoadInst *LI = dyn_cast<LoadInst>(*UI); if (LI == 0 || !LI->isSimple()) return false; - + // For now we only allow loads in the same block as the PHI. This is a // common case that happens when instcombine merges two loads through a PHI. if (LI->getParent() != BB) return false; - + // Ensure that there are no instructions between the PHI and the load that // could store. for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI) if (BBI->mayWriteToMemory()) return false; - + MaxAlign = std::max(MaxAlign, LI->getAlignment()); } - + // Okay, we know that we have one or more loads in the same block as the PHI. // We can transform this if it is safe to push the loads into the predecessor // blocks. The only thing to watch out for is that we can't put a possibly @@ -1108,10 +1228,10 @@ static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) { if (InVal->isDereferenceablePointer() || isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD)) continue; - + return false; } - + return true; } @@ -1123,7 +1243,7 @@ static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) { static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { SetVector<Instruction*, SmallVector<Instruction*, 4>, SmallPtrSet<Instruction*, 4> > InstsToRewrite; - + for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) { User *U = *UI; @@ -1132,7 +1252,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { return false; continue; } - + if (StoreInst *SI = dyn_cast<StoreInst>(U)) { if (SI->getOperand(0) == AI || !SI->isSimple()) return false; // Don't allow a store OF the AI, only INTO the AI. @@ -1146,7 +1266,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { Value *Result = SI->getOperand(1+CI->isZero()); SI->replaceAllUsesWith(Result); SI->eraseFromParent(); - + // This is very rare and we just scrambled the use list of AI, start // over completely. return tryToMakeAllocaBePromotable(AI, TD); @@ -1156,33 +1276,33 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { // loads, then we can transform this by rewriting the select. if (!isSafeSelectToSpeculate(SI, TD)) return false; - + InstsToRewrite.insert(SI); continue; } - + if (PHINode *PN = dyn_cast<PHINode>(U)) { if (PN->use_empty()) { // Dead PHIs can be stripped. InstsToRewrite.insert(PN); continue; } - + // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads // in the pred blocks, then we can transform this by rewriting the PHI. if (!isSafePHIToSpeculate(PN, TD)) return false; - + InstsToRewrite.insert(PN); continue; } - + if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { if (onlyUsedByLifetimeMarkers(BCI)) { InstsToRewrite.insert(BCI); continue; } } - + return false; } @@ -1190,7 +1310,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { // we're done! if (InstsToRewrite.empty()) return true; - + // If we have instructions that need to be rewritten for this to be promotable // take care of it now. for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) { @@ -1211,13 +1331,13 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { // loads with a new select. while (!SI->use_empty()) { LoadInst *LI = cast<LoadInst>(SI->use_back()); - + IRBuilder<> Builder(LI); - LoadInst *TrueLoad = + LoadInst *TrueLoad = Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t"); - LoadInst *FalseLoad = + LoadInst *FalseLoad = Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f"); - + // Transfer alignment and TBAA info if present. TrueLoad->setAlignment(LI->getAlignment()); FalseLoad->setAlignment(LI->getAlignment()); @@ -1225,18 +1345,18 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag); FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag); } - + Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad); V->takeName(LI); LI->replaceAllUsesWith(V); LI->eraseFromParent(); } - + // Now that all the loads are gone, the select is gone too. SI->eraseFromParent(); continue; } - + // Otherwise, we have a PHI node which allows us to push the loads into the // predecessors. PHINode *PN = cast<PHINode>(InstsToRewrite[i]); @@ -1244,7 +1364,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { PN->eraseFromParent(); continue; } - + Type *LoadTy = cast<PointerType>(PN->getType())->getElementType(); PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(), PN->getName()+".ld", PN); @@ -1254,18 +1374,18 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { LoadInst *SomeLoad = cast<LoadInst>(PN->use_back()); MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); unsigned Align = SomeLoad->getAlignment(); - + // Rewrite all loads of the PN to use the new PHI. while (!PN->use_empty()) { LoadInst *LI = cast<LoadInst>(PN->use_back()); LI->replaceAllUsesWith(NewPN); LI->eraseFromParent(); } - + // Inject loads into all of the pred blocks. Keep track of which blocks we // insert them into in case we have multiple edges from the same block. DenseMap<BasicBlock*, LoadInst*> InsertedLoads; - + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = PN->getIncomingBlock(i); LoadInst *&Load = InsertedLoads[Pred]; @@ -1276,13 +1396,13 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { Load->setAlignment(Align); if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); } - + NewPN->addIncoming(Load, Pred); } - + PN->eraseFromParent(); } - + ++NumAdjusted; return true; } @@ -1315,7 +1435,7 @@ bool SROA::performPromotion(Function &F) { SSAUpdater SSA; for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { AllocaInst *AI = Allocas[i]; - + // Build list of instructions to promote. for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ++UI) @@ -1334,18 +1454,36 @@ bool SROA::performPromotion(Function &F) { /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for /// SROA. It must be a struct or array type with a small number of elements. -static bool ShouldAttemptScalarRepl(AllocaInst *AI) { +bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) { Type *T = AI->getAllocatedType(); - // Do not promote any struct into more than 32 separate vars. + // Do not promote any struct that has too many members. if (StructType *ST = dyn_cast<StructType>(T)) - return ST->getNumElements() <= 32; - // Arrays are much less likely to be safe for SROA; only consider - // them if they are very small. + return ST->getNumElements() <= StructMemberThreshold; + // Do not promote any array that has too many elements. if (ArrayType *AT = dyn_cast<ArrayType>(T)) - return AT->getNumElements() <= 8; + return AT->getNumElements() <= ArrayElementThreshold; return false; } +/// getPointeeAlignment - Compute the minimum alignment of the value pointed +/// to by the given pointer. +static unsigned getPointeeAlignment(Value *V, const TargetData &TD) { + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + if (CE->getOpcode() == Instruction::BitCast || + (CE->getOpcode() == Instruction::GetElementPtr && + cast<GEPOperator>(CE)->hasAllZeroIndices())) + return getPointeeAlignment(CE->getOperand(0), TD); + + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + if (!GV->isDeclaration()) + return TD.getPreferredAlignment(GV); + + if (PointerType *PT = dyn_cast<PointerType>(V->getType())) + return TD.getABITypeAlignment(PT->getElementType()); + + return 0; +} + // performScalarRepl - This algorithm is a simple worklist driven algorithm, // which runs on all of the alloca instructions in the function, removing them @@ -1379,23 +1517,26 @@ bool SROA::performScalarRepl(Function &F) { continue; // Check to see if this allocation is only modified by a memcpy/memmove from - // a constant global. If this is the case, we can change all users to use + // a constant global whose alignment is equal to or exceeds that of the + // allocation. If this is the case, we can change all users to use // the constant global instead. This is commonly produced by the CFE by // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' // is only subsequently read. SmallVector<Instruction *, 4> ToDelete; if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) { - DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n'); - DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); - for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) - ToDelete[i]->eraseFromParent(); - Constant *TheSrc = cast<Constant>(Copy->getSource()); - AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType())); - Copy->eraseFromParent(); // Don't mutate the global. - AI->eraseFromParent(); - ++NumGlobals; - Changed = true; - continue; + if (AI->getAlignment() <= getPointeeAlignment(Copy->getSource(), *TD)) { + DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n'); + DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); + for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) + ToDelete[i]->eraseFromParent(); + Constant *TheSrc = cast<Constant>(Copy->getSource()); + AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType())); + Copy->eraseFromParent(); // Don't mutate the global. + AI->eraseFromParent(); + ++NumGlobals; + Changed = true; + continue; + } } // Check to see if we can perform the core SROA transformation. We cannot @@ -1425,8 +1566,8 @@ bool SROA::performScalarRepl(Function &F) { // promoted itself. If so, we don't want to transform it needlessly. Note // that we can't just check based on the type: the alloca may be of an i32 // but that has pointer arithmetic to set byte 3 of it or something. - if (AllocaInst *NewAI = - ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) { + if (AllocaInst *NewAI = ConvertToScalarInfo( + (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) { NewAI->takeName(AI); AI->eraseFromParent(); ++NumConverted; @@ -1531,12 +1672,12 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset, isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType), LIType, false, Info, LI, true /*AllowWholeAccess*/); Info.hasALoadOrStore = true; - + } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { // Store is ok if storing INTO the pointer, not storing the pointer if (!SI->isSimple() || SI->getOperand(0) == I) return MarkUnsafe(Info, User); - + Type *SIType = SI->getOperand(0)->getType(); isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType), SIType, true, Info, SI, true /*AllowWholeAccess*/); @@ -1553,7 +1694,7 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset, if (Info.isUnsafe) return; } } - + /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer /// derived from the alloca, we can often still split the alloca into elements. @@ -1570,10 +1711,10 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset, if (PHINode *PN = dyn_cast<PHINode>(I)) if (!Info.CheckedPHIs.insert(PN)) return; - + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) { Instruction *User = cast<Instruction>(*UI); - + if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { isSafePHISelectUseForScalarRepl(BC, Offset, Info); } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { @@ -1590,12 +1731,12 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset, isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType), LIType, false, Info, LI, false /*AllowWholeAccess*/); Info.hasALoadOrStore = true; - + } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { // Store is ok if storing INTO the pointer, not storing the pointer if (!SI->isSimple() || SI->getOperand(0) == I) return MarkUnsafe(Info, User); - + Type *SIType = SI->getOperand(0)->getType(); isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType), SIType, true, Info, SI, false /*AllowWholeAccess*/); @@ -1619,6 +1760,8 @@ void SROA::isSafeGEP(GetElementPtrInst *GEPI, gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI); if (GEPIt == E) return; + bool NonConstant = false; + unsigned NonConstantIdxSize = 0; // Walk through the GEP type indices, checking the types that this indexes // into. @@ -1628,15 +1771,30 @@ void SROA::isSafeGEP(GetElementPtrInst *GEPI, continue; ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand()); - if (!IdxVal) - return MarkUnsafe(Info, GEPI); + if (!IdxVal) { + // Non constant GEPs are only a problem on arrays, structs, and pointers + // Vectors can be dynamically indexed. + // FIXME: Add support for dynamic indexing on arrays. This should be + // ok on any subarrays of the alloca array, eg, a[0][i] is ok, but a[i][0] + // isn't. + if (!(*GEPIt)->isVectorTy()) + return MarkUnsafe(Info, GEPI); + NonConstant = true; + NonConstantIdxSize = TD->getTypeAllocSize(*GEPIt); + } } // Compute the offset due to this GEP and check if the alloca has a // component element at that offset. SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); + // If this GEP is non constant then the last operand must have been a + // dynamic index into a vector. Pop this now as it has no impact on the + // constant part of the offset. + if (NonConstant) + Indices.pop_back(); Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices); - if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0)) + if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, + NonConstantIdxSize)) MarkUnsafe(Info, GEPI); } @@ -1741,6 +1899,12 @@ bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) { if (Offset >= AT->getNumElements() * EltSize) return false; Offset %= EltSize; + } else if (VectorType *VT = dyn_cast<VectorType>(T)) { + EltTy = VT->getElementType(); + EltSize = TD->getTypeAllocSize(EltTy); + if (Offset >= VT->getNumElements() * EltSize) + return false; + Offset %= EltSize; } else { return false; } @@ -1766,12 +1930,12 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, RewriteBitCast(BC, AI, Offset, NewElts); continue; } - + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { RewriteGEP(GEPI, AI, Offset, NewElts); continue; } - + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); uint64_t MemSize = Length->getZExtValue(); @@ -1790,10 +1954,10 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, } continue; } - + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { Type *LIType = LI->getType(); - + if (isCompatibleAggregate(LIType, AI->getAllocatedType())) { // Replace: // %res = load { i32, i32 }* %alloc @@ -1819,7 +1983,7 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, } continue; } - + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { Value *Val = SI->getOperand(0); Type *SIType = Val->getType(); @@ -1846,16 +2010,16 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, } continue; } - + if (isa<SelectInst>(User) || isa<PHINode>(User)) { - // If we have a PHI user of the alloca itself (as opposed to a GEP or + // If we have a PHI user of the alloca itself (as opposed to a GEP or // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to // the new pointer. if (!isa<AllocaInst>(I)) continue; - + assert(Offset == 0 && NewElts[0] && "Direct alloca use should have a zero offset"); - + // If we have a use of the alloca, we know the derived uses will be // utilizing just the first element of the scalarized result. Insert a // bitcast of the first alloca before the user as required. @@ -1908,9 +2072,16 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Offset -= Layout->getElementOffset(Idx); IdxTy = Type::getInt32Ty(T->getContext()); return Idx; + } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) { + T = AT->getElementType(); + uint64_t EltSize = TD->getTypeAllocSize(T); + Idx = Offset / EltSize; + Offset -= Idx * EltSize; + IdxTy = Type::getInt64Ty(T->getContext()); + return Idx; } - ArrayType *AT = cast<ArrayType>(T); - T = AT->getElementType(); + VectorType *VT = cast<VectorType>(T); + T = VT->getElementType(); uint64_t EltSize = TD->getTypeAllocSize(T); Idx = Offset / EltSize; Offset -= Idx * EltSize; @@ -1925,6 +2096,13 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, SmallVector<AllocaInst*, 32> &NewElts) { uint64_t OldOffset = Offset; SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); + // If the GEP was dynamic then it must have been a dynamic vector lookup. + // In this case, it must be the last GEP operand which is dynamic so keep that + // aside until we've found the constant GEP offset then add it back in at the + // end. + Value* NonConstantIdx = 0; + if (!GEPI->hasAllConstantIndices()) + NonConstantIdx = Indices.pop_back_val(); Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices); RewriteForScalarRepl(GEPI, AI, Offset, NewElts); @@ -1951,6 +2129,17 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy); NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx)); } + if (NonConstantIdx) { + Type* GepTy = T; + // This GEP has a dynamic index. We need to add "i32 0" to index through + // any structs or arrays in the original type until we get to the vector + // to index. + while (!isa<VectorType>(GepTy)) { + NewArgs.push_back(Constant::getNullValue(i32Ty)); + GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U); + } + NewArgs.push_back(NonConstantIdx); + } Instruction *Val = NewElts[Idx]; if (NewArgs.size() > 1) { Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI); @@ -2202,7 +2391,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy); IRBuilder<> Builder(SI); - + // Handle tail padding by extending the operand if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits) SrcVal = Builder.CreateZExt(SrcVal, @@ -2464,7 +2653,7 @@ bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) { return false; } } - + return true; } |