diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /lib/Transforms/Scalar/ScalarReplAggregates.cpp | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'lib/Transforms/Scalar/ScalarReplAggregates.cpp')
-rw-r--r-- | lib/Transforms/Scalar/ScalarReplAggregates.cpp | 1820 |
1 files changed, 1820 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp new file mode 100644 index 0000000..9935f12 --- /dev/null +++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp @@ -0,0 +1,1820 @@ +//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This transformation implements the well known scalar replacement of +// aggregates transformation. This xform breaks up alloca instructions of +// aggregate type (structure or array) into individual alloca instructions for +// each member (if possible). Then, if possible, it transforms the individual +// alloca instructions into nice clean scalar SSA form. +// +// This combines a simple SRoA algorithm with the Mem2Reg algorithm because +// often interact, especially for C++ programs. As such, iterating between +// SRoA, then Mem2Reg until we run out of things to promote works well. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "scalarrepl" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Pass.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/IRBuilder.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Compiler.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +using namespace llvm; + +STATISTIC(NumReplaced, "Number of allocas broken up"); +STATISTIC(NumPromoted, "Number of allocas promoted"); +STATISTIC(NumConverted, "Number of aggregates converted to scalar"); +STATISTIC(NumGlobals, "Number of allocas copied from constant global"); + +namespace { + struct VISIBILITY_HIDDEN SROA : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + explicit SROA(signed T = -1) : FunctionPass(&ID) { + if (T == -1) + SRThreshold = 128; + else + SRThreshold = T; + } + + bool runOnFunction(Function &F); + + bool performScalarRepl(Function &F); + bool performPromotion(Function &F); + + // getAnalysisUsage - This pass does not require any passes, but we know it + // will not alter the CFG, so say so. + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<DominatorTree>(); + AU.addRequired<DominanceFrontier>(); + AU.addRequired<TargetData>(); + AU.setPreservesCFG(); + } + + private: + TargetData *TD; + + /// AllocaInfo - When analyzing uses of an alloca instruction, this captures + /// information about the uses. All these fields are initialized to false + /// and set to true when something is learned. + struct AllocaInfo { + /// isUnsafe - This is set to true if the alloca cannot be SROA'd. + bool isUnsafe : 1; + + /// needsCleanup - This is set to true if there is some use of the alloca + /// that requires cleanup. + bool needsCleanup : 1; + + /// isMemCpySrc - This is true if this aggregate is memcpy'd from. + bool isMemCpySrc : 1; + + /// isMemCpyDst - This is true if this aggregate is memcpy'd into. + bool isMemCpyDst : 1; + + AllocaInfo() + : isUnsafe(false), needsCleanup(false), + isMemCpySrc(false), isMemCpyDst(false) {} + }; + + unsigned SRThreshold; + + void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; } + + int isSafeAllocaToScalarRepl(AllocationInst *AI); + + void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI, + AllocaInfo &Info); + void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI, + AllocaInfo &Info); + void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI, + unsigned OpNo, AllocaInfo &Info); + void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI, + AllocaInfo &Info); + + void DoScalarReplacement(AllocationInst *AI, + std::vector<AllocationInst*> &WorkList); + void CleanupGEP(GetElementPtrInst *GEP); + void CleanupAllocaUsers(AllocationInst *AI); + AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base); + + void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI, + SmallVector<AllocaInst*, 32> &NewElts); + + void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, + AllocationInst *AI, + SmallVector<AllocaInst*, 32> &NewElts); + void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI, + SmallVector<AllocaInst*, 32> &NewElts); + void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI, + SmallVector<AllocaInst*, 32> &NewElts); + + bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy, + bool &SawVec, uint64_t Offset, unsigned AllocaSize); + void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset); + Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType, + uint64_t Offset, IRBuilder<> &Builder); + Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal, + uint64_t Offset, IRBuilder<> &Builder); + static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI); + }; +} + +char SROA::ID = 0; +static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates"); + +// Public interface to the ScalarReplAggregates pass +FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) { + return new SROA(Threshold); +} + + +bool SROA::runOnFunction(Function &F) { + TD = &getAnalysis<TargetData>(); + + bool Changed = performPromotion(F); + while (1) { + bool LocalChange = performScalarRepl(F); + if (!LocalChange) break; // No need to repromote if no scalarrepl + Changed = true; + LocalChange = performPromotion(F); + if (!LocalChange) break; // No need to re-scalarrepl if no promotion + } + + return Changed; +} + + +bool SROA::performPromotion(Function &F) { + std::vector<AllocaInst*> Allocas; + DominatorTree &DT = getAnalysis<DominatorTree>(); + DominanceFrontier &DF = getAnalysis<DominanceFrontier>(); + + BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function + + bool Changed = false; + + while (1) { + Allocas.clear(); + + // Find allocas that are safe to promote, by looking at all instructions in + // the entry node + for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) + if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca? + if (isAllocaPromotable(AI)) + Allocas.push_back(AI); + + if (Allocas.empty()) break; + + PromoteMemToReg(Allocas, DT, DF); + NumPromoted += Allocas.size(); + Changed = true; + } + + return Changed; +} + +/// getNumSAElements - Return the number of elements in the specific struct or +/// array. +static uint64_t getNumSAElements(const Type *T) { + if (const StructType *ST = dyn_cast<StructType>(T)) + return ST->getNumElements(); + return cast<ArrayType>(T)->getNumElements(); +} + +// performScalarRepl - This algorithm is a simple worklist driven algorithm, +// which runs on all of the malloc/alloca instructions in the function, removing +// them if they are only used by getelementptr instructions. +// +bool SROA::performScalarRepl(Function &F) { + std::vector<AllocationInst*> WorkList; + + // Scan the entry basic block, adding any alloca's and mallocs to the worklist + BasicBlock &BB = F.getEntryBlock(); + for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) + if (AllocationInst *A = dyn_cast<AllocationInst>(I)) + WorkList.push_back(A); + + // Process the worklist + bool Changed = false; + while (!WorkList.empty()) { + AllocationInst *AI = WorkList.back(); + WorkList.pop_back(); + + // Handle dead allocas trivially. These can be formed by SROA'ing arrays + // with unused elements. + if (AI->use_empty()) { + AI->eraseFromParent(); + continue; + } + + // If this alloca is impossible for us to promote, reject it early. + if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized()) + continue; + + // Check to see if this allocation is only modified by a memcpy/memmove from + // a constant global. If this is the case, we can change all users to use + // the constant global instead. This is commonly produced by the CFE by + // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' + // is only subsequently read. + if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) { + DOUT << "Found alloca equal to global: " << *AI; + DOUT << " memcpy = " << *TheCopy; + Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2)); + AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType())); + TheCopy->eraseFromParent(); // Don't mutate the global. + AI->eraseFromParent(); + ++NumGlobals; + Changed = true; + continue; + } + + // Check to see if we can perform the core SROA transformation. We cannot + // transform the allocation instruction if it is an array allocation + // (allocations OF arrays are ok though), and an allocation of a scalar + // value cannot be decomposed at all. + uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType()); + + // Do not promote any struct whose size is too big. + if (AllocaSize > SRThreshold) continue; + + if ((isa<StructType>(AI->getAllocatedType()) || + isa<ArrayType>(AI->getAllocatedType())) && + // Do not promote any struct into more than "32" separate vars. + getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) { + // Check that all of the users of the allocation are capable of being + // transformed. + switch (isSafeAllocaToScalarRepl(AI)) { + default: assert(0 && "Unexpected value!"); + case 0: // Not safe to scalar replace. + break; + case 1: // Safe, but requires cleanup/canonicalizations first + CleanupAllocaUsers(AI); + // FALL THROUGH. + case 3: // Safe to scalar replace. + DoScalarReplacement(AI, WorkList); + Changed = true; + continue; + } + } + + // If we can turn this aggregate value (potentially with casts) into a + // simple scalar value that can be mem2reg'd into a register value. + // IsNotTrivial tracks whether this is something that mem2reg could have + // promoted itself. If so, we don't want to transform it needlessly. Note + // that we can't just check based on the type: the alloca may be of an i32 + // but that has pointer arithmetic to set byte 3 of it or something. + bool IsNotTrivial = false; + const Type *VectorTy = 0; + bool HadAVector = false; + if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector, + 0, unsigned(AllocaSize)) && IsNotTrivial) { + AllocaInst *NewAI; + // If we were able to find a vector type that can handle this with + // insert/extract elements, and if there was at least one use that had + // a vector type, promote this to a vector. We don't want to promote + // random stuff that doesn't use vectors (e.g. <9 x double>) because then + // we just get a lot of insert/extracts. If at least one vector is + // involved, then we probably really do have a union of vector/array. + if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) { + DOUT << "CONVERT TO VECTOR: " << *AI << " TYPE = " << *VectorTy <<"\n"; + + // Create and insert the vector alloca. + NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin()); + ConvertUsesToScalar(AI, NewAI, 0); + } else { + DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n"; + + // Create and insert the integer alloca. + const Type *NewTy = IntegerType::get(AllocaSize*8); + NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin()); + ConvertUsesToScalar(AI, NewAI, 0); + } + NewAI->takeName(AI); + AI->eraseFromParent(); + ++NumConverted; + Changed = true; + continue; + } + + // Otherwise, couldn't process this alloca. + } + + return Changed; +} + +/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl +/// predicate, do SROA now. +void SROA::DoScalarReplacement(AllocationInst *AI, + std::vector<AllocationInst*> &WorkList) { + DOUT << "Found inst to SROA: " << *AI; + SmallVector<AllocaInst*, 32> ElementAllocas; + if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { + ElementAllocas.reserve(ST->getNumContainedTypes()); + for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) { + AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, + AI->getAlignment(), + AI->getName() + "." + utostr(i), AI); + ElementAllocas.push_back(NA); + WorkList.push_back(NA); // Add to worklist for recursive processing + } + } else { + const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType()); + ElementAllocas.reserve(AT->getNumElements()); + const Type *ElTy = AT->getElementType(); + for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { + AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(), + AI->getName() + "." + utostr(i), AI); + ElementAllocas.push_back(NA); + WorkList.push_back(NA); // Add to worklist for recursive processing + } + } + + // Now that we have created the alloca instructions that we want to use, + // expand the getelementptr instructions to use them. + // + while (!AI->use_empty()) { + Instruction *User = cast<Instruction>(AI->use_back()); + if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) { + RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas); + BCInst->eraseFromParent(); + continue; + } + + // Replace: + // %res = load { i32, i32 }* %alloc + // with: + // %load.0 = load i32* %alloc.0 + // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 + // %load.1 = load i32* %alloc.1 + // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 + // (Also works for arrays instead of structs) + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + Value *Insert = UndefValue::get(LI->getType()); + for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) { + Value *Load = new LoadInst(ElementAllocas[i], "load", LI); + Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI); + } + LI->replaceAllUsesWith(Insert); + LI->eraseFromParent(); + continue; + } + + // Replace: + // store { i32, i32 } %val, { i32, i32 }* %alloc + // with: + // %val.0 = extractvalue { i32, i32 } %val, 0 + // store i32 %val.0, i32* %alloc.0 + // %val.1 = extractvalue { i32, i32 } %val, 1 + // store i32 %val.1, i32* %alloc.1 + // (Also works for arrays instead of structs) + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + Value *Val = SI->getOperand(0); + for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) { + Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI); + new StoreInst(Extract, ElementAllocas[i], SI); + } + SI->eraseFromParent(); + continue; + } + + GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User); + // We now know that the GEP is of the form: GEP <ptr>, 0, <cst> + unsigned Idx = + (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); + + assert(Idx < ElementAllocas.size() && "Index out of range?"); + AllocaInst *AllocaToUse = ElementAllocas[Idx]; + + Value *RepValue; + if (GEPI->getNumOperands() == 3) { + // Do not insert a new getelementptr instruction with zero indices, only + // to have it optimized out later. + RepValue = AllocaToUse; + } else { + // We are indexing deeply into the structure, so we still need a + // getelement ptr instruction to finish the indexing. This may be + // expanded itself once the worklist is rerun. + // + SmallVector<Value*, 8> NewArgs; + NewArgs.push_back(Constant::getNullValue(Type::Int32Ty)); + NewArgs.append(GEPI->op_begin()+3, GEPI->op_end()); + RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(), + NewArgs.end(), "", GEPI); + RepValue->takeName(GEPI); + } + + // If this GEP is to the start of the aggregate, check for memcpys. + if (Idx == 0 && GEPI->hasAllZeroIndices()) + RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas); + + // Move all of the users over to the new GEP. + GEPI->replaceAllUsesWith(RepValue); + // Delete the old GEP + GEPI->eraseFromParent(); + } + + // Finally, delete the Alloca instruction + AI->eraseFromParent(); + NumReplaced++; +} + + +/// isSafeElementUse - Check to see if this use is an allowed use for a +/// getelementptr instruction of an array aggregate allocation. isFirstElt +/// indicates whether Ptr is known to the start of the aggregate. +/// +void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI, + AllocaInfo &Info) { + for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end(); + I != E; ++I) { + Instruction *User = cast<Instruction>(*I); + switch (User->getOpcode()) { + case Instruction::Load: break; + case Instruction::Store: + // Store is ok if storing INTO the pointer, not storing the pointer + if (User->getOperand(0) == Ptr) return MarkUnsafe(Info); + break; + case Instruction::GetElementPtr: { + GetElementPtrInst *GEP = cast<GetElementPtrInst>(User); + bool AreAllZeroIndices = isFirstElt; + if (GEP->getNumOperands() > 1) { + if (!isa<ConstantInt>(GEP->getOperand(1)) || + !cast<ConstantInt>(GEP->getOperand(1))->isZero()) + // Using pointer arithmetic to navigate the array. + return MarkUnsafe(Info); + + if (AreAllZeroIndices) + AreAllZeroIndices = GEP->hasAllZeroIndices(); + } + isSafeElementUse(GEP, AreAllZeroIndices, AI, Info); + if (Info.isUnsafe) return; + break; + } + case Instruction::BitCast: + if (isFirstElt) { + isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info); + if (Info.isUnsafe) return; + break; + } + DOUT << " Transformation preventing inst: " << *User; + return MarkUnsafe(Info); + case Instruction::Call: + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { + if (isFirstElt) { + isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info); + if (Info.isUnsafe) return; + break; + } + } + DOUT << " Transformation preventing inst: " << *User; + return MarkUnsafe(Info); + default: + DOUT << " Transformation preventing inst: " << *User; + return MarkUnsafe(Info); + } + } + return; // All users look ok :) +} + +/// AllUsersAreLoads - Return true if all users of this value are loads. +static bool AllUsersAreLoads(Value *Ptr) { + for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end(); + I != E; ++I) + if (cast<Instruction>(*I)->getOpcode() != Instruction::Load) + return false; + return true; +} + +/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an +/// aggregate allocation. +/// +void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI, + AllocaInfo &Info) { + if (BitCastInst *C = dyn_cast<BitCastInst>(User)) + return isSafeUseOfBitCastedAllocation(C, AI, Info); + + if (LoadInst *LI = dyn_cast<LoadInst>(User)) + if (!LI->isVolatile()) + return;// Loads (returning a first class aggregrate) are always rewritable + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) + if (!SI->isVolatile() && SI->getOperand(0) != AI) + return;// Store is ok if storing INTO the pointer, not storing the pointer + + GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User); + if (GEPI == 0) + return MarkUnsafe(Info); + + gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI); + + // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>". + if (I == E || + I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) { + return MarkUnsafe(Info); + } + + ++I; + if (I == E) return MarkUnsafe(Info); // ran out of GEP indices?? + + bool IsAllZeroIndices = true; + + // If the first index is a non-constant index into an array, see if we can + // handle it as a special case. + if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) { + if (!isa<ConstantInt>(I.getOperand())) { + IsAllZeroIndices = 0; + uint64_t NumElements = AT->getNumElements(); + + // If this is an array index and the index is not constant, we cannot + // promote... that is unless the array has exactly one or two elements in + // it, in which case we CAN promote it, but we have to canonicalize this + // out if this is the only problem. + if ((NumElements == 1 || NumElements == 2) && + AllUsersAreLoads(GEPI)) { + Info.needsCleanup = true; + return; // Canonicalization required! + } + return MarkUnsafe(Info); + } + } + + // Walk through the GEP type indices, checking the types that this indexes + // into. + for (; I != E; ++I) { + // Ignore struct elements, no extra checking needed for these. + if (isa<StructType>(*I)) + continue; + + ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand()); + if (!IdxVal) return MarkUnsafe(Info); + + // Are all indices still zero? + IsAllZeroIndices &= IdxVal->isZero(); + + if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) { + // This GEP indexes an array. Verify that this is an in-range constant + // integer. Specifically, consider A[0][i]. We cannot know that the user + // isn't doing invalid things like allowing i to index an out-of-range + // subscript that accesses A[1]. Because of this, we have to reject SROA + // of any accesses into structs where any of the components are variables. + if (IdxVal->getZExtValue() >= AT->getNumElements()) + return MarkUnsafe(Info); + } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) { + if (IdxVal->getZExtValue() >= VT->getNumElements()) + return MarkUnsafe(Info); + } + } + + // If there are any non-simple uses of this getelementptr, make sure to reject + // them. + return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info); +} + +/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory +/// intrinsic can be promoted by SROA. At this point, we know that the operand +/// of the memintrinsic is a pointer to the beginning of the allocation. +void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI, + unsigned OpNo, AllocaInfo &Info) { + // If not constant length, give up. + ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); + if (!Length) return MarkUnsafe(Info); + + // If not the whole aggregate, give up. + if (Length->getZExtValue() != + TD->getTypeAllocSize(AI->getType()->getElementType())) + return MarkUnsafe(Info); + + // We only know about memcpy/memset/memmove. + if (!isa<MemIntrinsic>(MI)) + return MarkUnsafe(Info); + + // Otherwise, we can transform it. Determine whether this is a memcpy/set + // into or out of the aggregate. + if (OpNo == 1) + Info.isMemCpyDst = true; + else { + assert(OpNo == 2); + Info.isMemCpySrc = true; + } +} + +/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast +/// are +void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI, + AllocaInfo &Info) { + for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end(); + UI != E; ++UI) { + if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) { + isSafeUseOfBitCastedAllocation(BCU, AI, Info); + } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) { + isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info); + } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { + if (SI->isVolatile()) + return MarkUnsafe(Info); + + // If storing the entire alloca in one chunk through a bitcasted pointer + // to integer, we can transform it. This happens (for example) when you + // cast a {i32,i32}* to i64* and store through it. This is similar to the + // memcpy case and occurs in various "byval" cases and emulated memcpys. + if (isa<IntegerType>(SI->getOperand(0)->getType()) && + TD->getTypeAllocSize(SI->getOperand(0)->getType()) == + TD->getTypeAllocSize(AI->getType()->getElementType())) { + Info.isMemCpyDst = true; + continue; + } + return MarkUnsafe(Info); + } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { + if (LI->isVolatile()) + return MarkUnsafe(Info); + + // If loading the entire alloca in one chunk through a bitcasted pointer + // to integer, we can transform it. This happens (for example) when you + // cast a {i32,i32}* to i64* and load through it. This is similar to the + // memcpy case and occurs in various "byval" cases and emulated memcpys. + if (isa<IntegerType>(LI->getType()) && + TD->getTypeAllocSize(LI->getType()) == + TD->getTypeAllocSize(AI->getType()->getElementType())) { + Info.isMemCpySrc = true; + continue; + } + return MarkUnsafe(Info); + } else if (isa<DbgInfoIntrinsic>(UI)) { + // If one user is DbgInfoIntrinsic then check if all users are + // DbgInfoIntrinsics. + if (OnlyUsedByDbgInfoIntrinsics(BC)) { + Info.needsCleanup = true; + return; + } + else + MarkUnsafe(Info); + } + else { + return MarkUnsafe(Info); + } + if (Info.isUnsafe) return; + } +} + +/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes +/// to its first element. Transform users of the cast to use the new values +/// instead. +void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI, + SmallVector<AllocaInst*, 32> &NewElts) { + Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end(); + while (UI != UE) { + Instruction *User = cast<Instruction>(*UI++); + if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) { + RewriteBitCastUserOfAlloca(BCU, AI, NewElts); + if (BCU->use_empty()) BCU->eraseFromParent(); + continue; + } + + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { + // This must be memcpy/memmove/memset of the entire aggregate. + // Split into one per element. + RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + // If this is a store of the entire alloca from an integer, rewrite it. + RewriteStoreUserOfWholeAlloca(SI, AI, NewElts); + continue; + } + + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + // If this is a load of the entire alloca to an integer, rewrite it. + RewriteLoadUserOfWholeAlloca(LI, AI, NewElts); + continue; + } + + // Otherwise it must be some other user of a gep of the first pointer. Just + // leave these alone. + continue; + } +} + +/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI. +/// Rewrite it to copy or set the elements of the scalarized memory. +void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, + AllocationInst *AI, + SmallVector<AllocaInst*, 32> &NewElts) { + + // If this is a memcpy/memmove, construct the other pointer as the + // appropriate type. The "Other" pointer is the pointer that goes to memory + // that doesn't have anything to do with the alloca that we are promoting. For + // memset, this Value* stays null. + Value *OtherPtr = 0; + unsigned MemAlignment = MI->getAlignment(); + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy + if (BCInst == MTI->getRawDest()) + OtherPtr = MTI->getRawSource(); + else { + assert(BCInst == MTI->getRawSource()); + OtherPtr = MTI->getRawDest(); + } + } + + // If there is an other pointer, we want to convert it to the same pointer + // type as AI has, so we can GEP through it safely. + if (OtherPtr) { + // It is likely that OtherPtr is a bitcast, if so, remove it. + if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) + OtherPtr = BC->getOperand(0); + // All zero GEPs are effectively bitcasts. + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) + if (GEP->hasAllZeroIndices()) + OtherPtr = GEP->getOperand(0); + + if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr)) + if (BCE->getOpcode() == Instruction::BitCast) + OtherPtr = BCE->getOperand(0); + + // If the pointer is not the right type, insert a bitcast to the right + // type. + if (OtherPtr->getType() != AI->getType()) + OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(), + MI); + } + + // Process each element of the aggregate. + Value *TheFn = MI->getOperand(0); + const Type *BytePtrTy = MI->getRawDest()->getType(); + bool SROADest = MI->getRawDest() == BCInst; + + Constant *Zero = Constant::getNullValue(Type::Int32Ty); + + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + // If this is a memcpy/memmove, emit a GEP of the other element address. + Value *OtherElt = 0; + unsigned OtherEltAlign = MemAlignment; + + if (OtherPtr) { + Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) }; + OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2, + OtherPtr->getNameStr()+"."+utostr(i), + MI); + uint64_t EltOffset; + const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType()); + if (const StructType *ST = + dyn_cast<StructType>(OtherPtrTy->getElementType())) { + EltOffset = TD->getStructLayout(ST)->getElementOffset(i); + } else { + const Type *EltTy = + cast<SequentialType>(OtherPtr->getType())->getElementType(); + EltOffset = TD->getTypeAllocSize(EltTy)*i; + } + + // The alignment of the other pointer is the guaranteed alignment of the + // element, which is affected by both the known alignment of the whole + // mem intrinsic and the alignment of the element. If the alignment of + // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the + // known alignment is just 4 bytes. + OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset); + } + + Value *EltPtr = NewElts[i]; + const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType(); + + // If we got down to a scalar, insert a load or store as appropriate. + if (EltTy->isSingleValueType()) { + if (isa<MemTransferInst>(MI)) { + if (SROADest) { + // From Other to Alloca. + Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI); + new StoreInst(Elt, EltPtr, MI); + } else { + // From Alloca to Other. + Value *Elt = new LoadInst(EltPtr, "tmp", MI); + new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI); + } + continue; + } + assert(isa<MemSetInst>(MI)); + + // If the stored element is zero (common case), just store a null + // constant. + Constant *StoreVal; + if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) { + if (CI->isZero()) { + StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0> + } else { + // If EltTy is a vector type, get the element type. + const Type *ValTy = EltTy; + if (const VectorType *VTy = dyn_cast<VectorType>(ValTy)) + ValTy = VTy->getElementType(); + + // Construct an integer with the right value. + unsigned EltSize = TD->getTypeSizeInBits(ValTy); + APInt OneVal(EltSize, CI->getZExtValue()); + APInt TotalVal(OneVal); + // Set each byte. + for (unsigned i = 0; 8*i < EltSize; ++i) { + TotalVal = TotalVal.shl(8); + TotalVal |= OneVal; + } + + // Convert the integer value to the appropriate type. + StoreVal = ConstantInt::get(TotalVal); + if (isa<PointerType>(ValTy)) + StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy); + else if (ValTy->isFloatingPoint()) + StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy); + assert(StoreVal->getType() == ValTy && "Type mismatch!"); + + // If the requested value was a vector constant, create it. + if (EltTy != ValTy) { + unsigned NumElts = cast<VectorType>(ValTy)->getNumElements(); + SmallVector<Constant*, 16> Elts(NumElts, StoreVal); + StoreVal = ConstantVector::get(&Elts[0], NumElts); + } + } + new StoreInst(StoreVal, EltPtr, MI); + continue; + } + // Otherwise, if we're storing a byte variable, use a memset call for + // this element. + } + + // Cast the element pointer to BytePtrTy. + if (EltPtr->getType() != BytePtrTy) + EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI); + + // Cast the other pointer (if we have one) to BytePtrTy. + if (OtherElt && OtherElt->getType() != BytePtrTy) + OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(), + MI); + + unsigned EltSize = TD->getTypeAllocSize(EltTy); + + // Finally, insert the meminst for this element. + if (isa<MemTransferInst>(MI)) { + Value *Ops[] = { + SROADest ? EltPtr : OtherElt, // Dest ptr + SROADest ? OtherElt : EltPtr, // Src ptr + ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size + ConstantInt::get(Type::Int32Ty, OtherEltAlign) // Align + }; + CallInst::Create(TheFn, Ops, Ops + 4, "", MI); + } else { + assert(isa<MemSetInst>(MI)); + Value *Ops[] = { + EltPtr, MI->getOperand(2), // Dest, Value, + ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size + Zero // Align + }; + CallInst::Create(TheFn, Ops, Ops + 4, "", MI); + } + } + MI->eraseFromParent(); +} + +/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that +/// overwrites the entire allocation. Extract out the pieces of the stored +/// integer and store them individually. +void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, + AllocationInst *AI, + SmallVector<AllocaInst*, 32> &NewElts){ + // Extract each element out of the integer according to its structure offset + // and store the element value to the individual alloca. + Value *SrcVal = SI->getOperand(0); + const Type *AllocaEltTy = AI->getType()->getElementType(); + uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy); + + // If this isn't a store of an integer to the whole alloca, it may be a store + // to the first element. Just ignore the store in this case and normal SROA + // will handle it. + if (!isa<IntegerType>(SrcVal->getType()) || + TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits) + return; + // Handle tail padding by extending the operand + if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits) + SrcVal = new ZExtInst(SrcVal, IntegerType::get(AllocaSizeBits), "", SI); + + DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI; + + // There are two forms here: AI could be an array or struct. Both cases + // have different ways to compute the element offset. + if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { + const StructLayout *Layout = TD->getStructLayout(EltSTy); + + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + // Get the number of bits to shift SrcVal to get the value. + const Type *FieldTy = EltSTy->getElementType(i); + uint64_t Shift = Layout->getElementOffsetInBits(i); + + if (TD->isBigEndian()) + Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy); + + Value *EltVal = SrcVal; + if (Shift) { + Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); + EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal, + "sroa.store.elt", SI); + } + + // Truncate down to an integer of the right size. + uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy); + + // Ignore zero sized fields like {}, they obviously contain no data. + if (FieldSizeBits == 0) continue; + + if (FieldSizeBits != AllocaSizeBits) + EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI); + Value *DestField = NewElts[i]; + if (EltVal->getType() == FieldTy) { + // Storing to an integer field of this size, just do it. + } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) { + // Bitcast to the right element type (for fp/vector values). + EltVal = new BitCastInst(EltVal, FieldTy, "", SI); + } else { + // Otherwise, bitcast the dest pointer (for aggregates). + DestField = new BitCastInst(DestField, + PointerType::getUnqual(EltVal->getType()), + "", SI); + } + new StoreInst(EltVal, DestField, SI); + } + + } else { + const ArrayType *ATy = cast<ArrayType>(AllocaEltTy); + const Type *ArrayEltTy = ATy->getElementType(); + uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy); + uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy); + + uint64_t Shift; + + if (TD->isBigEndian()) + Shift = AllocaSizeBits-ElementOffset; + else + Shift = 0; + + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + // Ignore zero sized fields like {}, they obviously contain no data. + if (ElementSizeBits == 0) continue; + + Value *EltVal = SrcVal; + if (Shift) { + Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); + EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal, + "sroa.store.elt", SI); + } + + // Truncate down to an integer of the right size. + if (ElementSizeBits != AllocaSizeBits) + EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI); + Value *DestField = NewElts[i]; + if (EltVal->getType() == ArrayEltTy) { + // Storing to an integer field of this size, just do it. + } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) { + // Bitcast to the right element type (for fp/vector values). + EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI); + } else { + // Otherwise, bitcast the dest pointer (for aggregates). + DestField = new BitCastInst(DestField, + PointerType::getUnqual(EltVal->getType()), + "", SI); + } + new StoreInst(EltVal, DestField, SI); + + if (TD->isBigEndian()) + Shift -= ElementOffset; + else + Shift += ElementOffset; + } + } + + SI->eraseFromParent(); +} + +/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to +/// an integer. Load the individual pieces to form the aggregate value. +void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI, + SmallVector<AllocaInst*, 32> &NewElts) { + // Extract each element out of the NewElts according to its structure offset + // and form the result value. + const Type *AllocaEltTy = AI->getType()->getElementType(); + uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy); + + // If this isn't a load of the whole alloca to an integer, it may be a load + // of the first element. Just ignore the load in this case and normal SROA + // will handle it. + if (!isa<IntegerType>(LI->getType()) || + TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits) + return; + + DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI; + + // There are two forms here: AI could be an array or struct. Both cases + // have different ways to compute the element offset. + const StructLayout *Layout = 0; + uint64_t ArrayEltBitOffset = 0; + if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { + Layout = TD->getStructLayout(EltSTy); + } else { + const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType(); + ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy); + } + + Value *ResultVal = Constant::getNullValue(IntegerType::get(AllocaSizeBits)); + + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + // Load the value from the alloca. If the NewElt is an aggregate, cast + // the pointer to an integer of the same size before doing the load. + Value *SrcField = NewElts[i]; + const Type *FieldTy = + cast<PointerType>(SrcField->getType())->getElementType(); + uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy); + + // Ignore zero sized fields like {}, they obviously contain no data. + if (FieldSizeBits == 0) continue; + + const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits); + if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() && + !isa<VectorType>(FieldTy)) + SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy), + "", LI); + SrcField = new LoadInst(SrcField, "sroa.load.elt", LI); + + // If SrcField is a fp or vector of the right size but that isn't an + // integer type, bitcast to an integer so we can shift it. + if (SrcField->getType() != FieldIntTy) + SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI); + + // Zero extend the field to be the same size as the final alloca so that + // we can shift and insert it. + if (SrcField->getType() != ResultVal->getType()) + SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI); + + // Determine the number of bits to shift SrcField. + uint64_t Shift; + if (Layout) // Struct case. + Shift = Layout->getElementOffsetInBits(i); + else // Array case. + Shift = i*ArrayEltBitOffset; + + if (TD->isBigEndian()) + Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth(); + + if (Shift) { + Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift); + SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI); + } + + ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI); + } + + // Handle tail padding by truncating the result + if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits) + ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI); + + LI->replaceAllUsesWith(ResultVal); + LI->eraseFromParent(); +} + + +/// HasPadding - Return true if the specified type has any structure or +/// alignment padding, false otherwise. +static bool HasPadding(const Type *Ty, const TargetData &TD) { + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + const StructLayout *SL = TD.getStructLayout(STy); + unsigned PrevFieldBitOffset = 0; + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + unsigned FieldBitOffset = SL->getElementOffsetInBits(i); + + // Padding in sub-elements? + if (HasPadding(STy->getElementType(i), TD)) + return true; + + // Check to see if there is any padding between this element and the + // previous one. + if (i) { + unsigned PrevFieldEnd = + PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1)); + if (PrevFieldEnd < FieldBitOffset) + return true; + } + + PrevFieldBitOffset = FieldBitOffset; + } + + // Check for tail padding. + if (unsigned EltCount = STy->getNumElements()) { + unsigned PrevFieldEnd = PrevFieldBitOffset + + TD.getTypeSizeInBits(STy->getElementType(EltCount-1)); + if (PrevFieldEnd < SL->getSizeInBits()) + return true; + } + + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + return HasPadding(ATy->getElementType(), TD); + } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { + return HasPadding(VTy->getElementType(), TD); + } + return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty); +} + +/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of +/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe, +/// or 1 if safe after canonicalization has been performed. +/// +int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) { + // Loop over the use list of the alloca. We can only transform it if all of + // the users are safe to transform. + AllocaInfo Info; + + for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); + I != E; ++I) { + isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info); + if (Info.isUnsafe) { + DOUT << "Cannot transform: " << *AI << " due to user: " << **I; + return 0; + } + } + + // Okay, we know all the users are promotable. If the aggregate is a memcpy + // source and destination, we have to be careful. In particular, the memcpy + // could be moving around elements that live in structure padding of the LLVM + // types, but may actually be used. In these cases, we refuse to promote the + // struct. + if (Info.isMemCpySrc && Info.isMemCpyDst && + HasPadding(AI->getType()->getElementType(), *TD)) + return 0; + + // If we require cleanup, return 1, otherwise return 3. + return Info.needsCleanup ? 1 : 3; +} + +/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP +/// is canonicalized here. +void SROA::CleanupGEP(GetElementPtrInst *GEPI) { + gep_type_iterator I = gep_type_begin(GEPI); + ++I; + + const ArrayType *AT = dyn_cast<ArrayType>(*I); + if (!AT) + return; + + uint64_t NumElements = AT->getNumElements(); + + if (isa<ConstantInt>(I.getOperand())) + return; + + if (NumElements == 1) { + GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty)); + return; + } + + assert(NumElements == 2 && "Unhandled case!"); + // All users of the GEP must be loads. At each use of the GEP, insert + // two loads of the appropriate indexed GEP and select between them. + Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(), + Constant::getNullValue(I.getOperand()->getType()), + "isone", GEPI); + // Insert the new GEP instructions, which are properly indexed. + SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end()); + Indices[1] = Constant::getNullValue(Type::Int32Ty); + Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0), + Indices.begin(), + Indices.end(), + GEPI->getName()+".0", GEPI); + Indices[1] = ConstantInt::get(Type::Int32Ty, 1); + Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0), + Indices.begin(), + Indices.end(), + GEPI->getName()+".1", GEPI); + // Replace all loads of the variable index GEP with loads from both + // indexes and a select. + while (!GEPI->use_empty()) { + LoadInst *LI = cast<LoadInst>(GEPI->use_back()); + Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI); + Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI); + Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI); + LI->replaceAllUsesWith(R); + LI->eraseFromParent(); + } + GEPI->eraseFromParent(); +} + + +/// CleanupAllocaUsers - If SROA reported that it can promote the specified +/// allocation, but only if cleaned up, perform the cleanups required. +void SROA::CleanupAllocaUsers(AllocationInst *AI) { + // At this point, we know that the end result will be SROA'd and promoted, so + // we can insert ugly code if required so long as sroa+mem2reg will clean it + // up. + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); + UI != E; ) { + User *U = *UI++; + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) + CleanupGEP(GEPI); + else if (Instruction *I = dyn_cast<Instruction>(U)) { + SmallVector<DbgInfoIntrinsic *, 2> DbgInUses; + if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) { + // Safe to remove debug info uses. + while (!DbgInUses.empty()) { + DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back(); + DI->eraseFromParent(); + } + I->eraseFromParent(); + } + } + } +} + +/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at +/// the offset specified by Offset (which is specified in bytes). +/// +/// There are two cases we handle here: +/// 1) A union of vector types of the same size and potentially its elements. +/// Here we turn element accesses into insert/extract element operations. +/// This promotes a <4 x float> with a store of float to the third element +/// into a <4 x float> that uses insert element. +/// 2) A fully general blob of memory, which we turn into some (potentially +/// large) integer type with extract and insert operations where the loads +/// and stores would mutate the memory. +static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy, + unsigned AllocaSize, const TargetData &TD) { + // If this could be contributing to a vector, analyze it. + if (VecTy != Type::VoidTy) { // either null or a vector type. + + // If the In type is a vector that is the same size as the alloca, see if it + // matches the existing VecTy. + if (const VectorType *VInTy = dyn_cast<VectorType>(In)) { + if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) { + // If we're storing/loading a vector of the right size, allow it as a + // vector. If this the first vector we see, remember the type so that + // we know the element size. + if (VecTy == 0) + VecTy = VInTy; + return; + } + } else if (In == Type::FloatTy || In == Type::DoubleTy || + (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 && + isPowerOf2_32(In->getPrimitiveSizeInBits()))) { + // If we're accessing something that could be an element of a vector, see + // if the implied vector agrees with what we already have and if Offset is + // compatible with it. + unsigned EltSize = In->getPrimitiveSizeInBits()/8; + if (Offset % EltSize == 0 && + AllocaSize % EltSize == 0 && + (VecTy == 0 || + cast<VectorType>(VecTy)->getElementType() + ->getPrimitiveSizeInBits()/8 == EltSize)) { + if (VecTy == 0) + VecTy = VectorType::get(In, AllocaSize/EltSize); + return; + } + } + } + + // Otherwise, we have a case that we can't handle with an optimized vector + // form. We can still turn this into a large integer. + VecTy = Type::VoidTy; +} + +/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all +/// its accesses to use a to single vector type, return true, and set VecTy to +/// the new type. If we could convert the alloca into a single promotable +/// integer, return true but set VecTy to VoidTy. Further, if the use is not a +/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset +/// is the current offset from the base of the alloca being analyzed. +/// +/// If we see at least one access to the value that is as a vector type, set the +/// SawVec flag. +/// +bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy, + bool &SawVec, uint64_t Offset, + unsigned AllocaSize) { + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { + Instruction *User = cast<Instruction>(*UI); + + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + // Don't break volatile loads. + if (LI->isVolatile()) + return false; + MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD); + SawVec |= isa<VectorType>(LI->getType()); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + // Storing the pointer, not into the value? + if (SI->getOperand(0) == V || SI->isVolatile()) return 0; + MergeInType(SI->getOperand(0)->getType(), Offset, VecTy, AllocaSize, *TD); + SawVec |= isa<VectorType>(SI->getOperand(0)->getType()); + continue; + } + + if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { + if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset, + AllocaSize)) + return false; + IsNotTrivial = true; + continue; + } + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { + // If this is a GEP with a variable indices, we can't handle it. + if (!GEP->hasAllConstantIndices()) + return false; + + // Compute the offset that this GEP adds to the pointer. + SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); + uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(), + &Indices[0], Indices.size()); + // See if all uses can be converted. + if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset, + AllocaSize)) + return false; + IsNotTrivial = true; + continue; + } + + // If this is a constant sized memset of a constant value (e.g. 0) we can + // handle it. + if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { + // Store of constant value and constant size. + if (isa<ConstantInt>(MSI->getValue()) && + isa<ConstantInt>(MSI->getLength())) { + IsNotTrivial = true; + continue; + } + } + + // If this is a memcpy or memmove into or out of the whole allocation, we + // can handle it like a load or store of the scalar type. + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { + if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength())) + if (Len->getZExtValue() == AllocaSize && Offset == 0) { + IsNotTrivial = true; + continue; + } + } + + // Ignore dbg intrinsic. + if (isa<DbgInfoIntrinsic>(User)) + continue; + + // Otherwise, we cannot handle this! + return false; + } + + return true; +} + + +/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca +/// directly. This happens when we are converting an "integer union" to a +/// single integer scalar, or when we are converting a "vector union" to a +/// vector with insert/extractelement instructions. +/// +/// Offset is an offset from the original alloca, in bits that need to be +/// shifted to the right. By the end of this, there should be no uses of Ptr. +void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) { + while (!Ptr->use_empty()) { + Instruction *User = cast<Instruction>(Ptr->use_back()); + + if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { + ConvertUsesToScalar(CI, NewAI, Offset); + CI->eraseFromParent(); + continue; + } + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { + // Compute the offset that this GEP adds to the pointer. + SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); + uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(), + &Indices[0], Indices.size()); + ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8); + GEP->eraseFromParent(); + continue; + } + + IRBuilder<> Builder(User->getParent(), User); + + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + // The load is a bit extract from NewAI shifted right by Offset bits. + Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp"); + Value *NewLoadVal + = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder); + LI->replaceAllUsesWith(NewLoadVal); + LI->eraseFromParent(); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + assert(SI->getOperand(0) != Ptr && "Consistency error!"); + Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str()); + Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset, + Builder); + Builder.CreateStore(New, NewAI); + SI->eraseFromParent(); + continue; + } + + // If this is a constant sized memset of a constant value (e.g. 0) we can + // transform it into a store of the expanded constant value. + if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { + assert(MSI->getRawDest() == Ptr && "Consistency error!"); + unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); + if (NumBytes != 0) { + unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue(); + + // Compute the value replicated the right number of times. + APInt APVal(NumBytes*8, Val); + + // Splat the value if non-zero. + if (Val) + for (unsigned i = 1; i != NumBytes; ++i) + APVal |= APVal << 8; + + Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str()); + Value *New = ConvertScalar_InsertValue(ConstantInt::get(APVal), Old, + Offset, Builder); + Builder.CreateStore(New, NewAI); + } + MSI->eraseFromParent(); + continue; + } + + // If this is a memcpy or memmove into or out of the whole allocation, we + // can handle it like a load or store of the scalar type. + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { + assert(Offset == 0 && "must be store to start of alloca"); + + // If the source and destination are both to the same alloca, then this is + // a noop copy-to-self, just delete it. Otherwise, emit a load and store + // as appropriate. + AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject()); + + if (MTI->getSource()->getUnderlyingObject() != OrigAI) { + // Dest must be OrigAI, change this to be a load from the original + // pointer (bitcasted), then a store to our new alloca. + assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?"); + Value *SrcPtr = MTI->getSource(); + SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType()); + + LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval"); + SrcVal->setAlignment(MTI->getAlignment()); + Builder.CreateStore(SrcVal, NewAI); + } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) { + // Src must be OrigAI, change this to be a load from NewAI then a store + // through the original dest pointer (bitcasted). + assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?"); + LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval"); + + Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType()); + StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr); + NewStore->setAlignment(MTI->getAlignment()); + } else { + // Noop transfer. Src == Dst + } + + + MTI->eraseFromParent(); + continue; + } + + // If user is a dbg info intrinsic then it is safe to remove it. + if (isa<DbgInfoIntrinsic>(User)) { + User->eraseFromParent(); + continue; + } + + assert(0 && "Unsupported operation!"); + abort(); + } +} + +/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer +/// or vector value FromVal, extracting the bits from the offset specified by +/// Offset. This returns the value, which is of type ToType. +/// +/// This happens when we are converting an "integer union" to a single +/// integer scalar, or when we are converting a "vector union" to a vector with +/// insert/extractelement instructions. +/// +/// Offset is an offset from the original alloca, in bits that need to be +/// shifted to the right. +Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType, + uint64_t Offset, IRBuilder<> &Builder) { + // If the load is of the whole new alloca, no conversion is needed. + if (FromVal->getType() == ToType && Offset == 0) + return FromVal; + + // If the result alloca is a vector type, this is either an element + // access or a bitcast to another vector type of the same size. + if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) { + if (isa<VectorType>(ToType)) + return Builder.CreateBitCast(FromVal, ToType, "tmp"); + + // Otherwise it must be an element access. + unsigned Elt = 0; + if (Offset) { + unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType()); + Elt = Offset/EltSize; + assert(EltSize*Elt == Offset && "Invalid modulus in validity checking"); + } + // Return the element extracted out of it. + Value *V = Builder.CreateExtractElement(FromVal, + ConstantInt::get(Type::Int32Ty,Elt), + "tmp"); + if (V->getType() != ToType) + V = Builder.CreateBitCast(V, ToType, "tmp"); + return V; + } + + // If ToType is a first class aggregate, extract out each of the pieces and + // use insertvalue's to form the FCA. + if (const StructType *ST = dyn_cast<StructType>(ToType)) { + const StructLayout &Layout = *TD->getStructLayout(ST); + Value *Res = UndefValue::get(ST); + for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { + Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i), + Offset+Layout.getElementOffsetInBits(i), + Builder); + Res = Builder.CreateInsertValue(Res, Elt, i, "tmp"); + } + return Res; + } + + if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) { + uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType()); + Value *Res = UndefValue::get(AT); + for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { + Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(), + Offset+i*EltSize, Builder); + Res = Builder.CreateInsertValue(Res, Elt, i, "tmp"); + } + return Res; + } + + // Otherwise, this must be a union that was converted to an integer value. + const IntegerType *NTy = cast<IntegerType>(FromVal->getType()); + + // If this is a big-endian system and the load is narrower than the + // full alloca type, we need to do a shift to get the right bits. + int ShAmt = 0; + if (TD->isBigEndian()) { + // On big-endian machines, the lowest bit is stored at the bit offset + // from the pointer given by getTypeStoreSizeInBits. This matters for + // integers with a bitwidth that is not a multiple of 8. + ShAmt = TD->getTypeStoreSizeInBits(NTy) - + TD->getTypeStoreSizeInBits(ToType) - Offset; + } else { + ShAmt = Offset; + } + + // Note: we support negative bitwidths (with shl) which are not defined. + // We do this to support (f.e.) loads off the end of a structure where + // only some bits are used. + if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth()) + FromVal = Builder.CreateLShr(FromVal, ConstantInt::get(FromVal->getType(), + ShAmt), "tmp"); + else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth()) + FromVal = Builder.CreateShl(FromVal, ConstantInt::get(FromVal->getType(), + -ShAmt), "tmp"); + + // Finally, unconditionally truncate the integer to the right width. + unsigned LIBitWidth = TD->getTypeSizeInBits(ToType); + if (LIBitWidth < NTy->getBitWidth()) + FromVal = Builder.CreateTrunc(FromVal, IntegerType::get(LIBitWidth), "tmp"); + else if (LIBitWidth > NTy->getBitWidth()) + FromVal = Builder.CreateZExt(FromVal, IntegerType::get(LIBitWidth), "tmp"); + + // If the result is an integer, this is a trunc or bitcast. + if (isa<IntegerType>(ToType)) { + // Should be done. + } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) { + // Just do a bitcast, we know the sizes match up. + FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp"); + } else { + // Otherwise must be a pointer. + FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp"); + } + assert(FromVal->getType() == ToType && "Didn't convert right?"); + return FromVal; +} + + +/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer +/// or vector value "Old" at the offset specified by Offset. +/// +/// This happens when we are converting an "integer union" to a +/// single integer scalar, or when we are converting a "vector union" to a +/// vector with insert/extractelement instructions. +/// +/// Offset is an offset from the original alloca, in bits that need to be +/// shifted to the right. +Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old, + uint64_t Offset, IRBuilder<> &Builder) { + + // Convert the stored type to the actual type, shift it left to insert + // then 'or' into place. + const Type *AllocaType = Old->getType(); + + if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) { + uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy); + uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType()); + + // Changing the whole vector with memset or with an access of a different + // vector type? + if (ValSize == VecSize) + return Builder.CreateBitCast(SV, AllocaType, "tmp"); + + uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType()); + + // Must be an element insertion. + unsigned Elt = Offset/EltSize; + + if (SV->getType() != VTy->getElementType()) + SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp"); + + SV = Builder.CreateInsertElement(Old, SV, + ConstantInt::get(Type::Int32Ty, Elt), + "tmp"); + return SV; + } + + // If SV is a first-class aggregate value, insert each value recursively. + if (const StructType *ST = dyn_cast<StructType>(SV->getType())) { + const StructLayout &Layout = *TD->getStructLayout(ST); + for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { + Value *Elt = Builder.CreateExtractValue(SV, i, "tmp"); + Old = ConvertScalar_InsertValue(Elt, Old, + Offset+Layout.getElementOffsetInBits(i), + Builder); + } + return Old; + } + + if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) { + uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType()); + for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { + Value *Elt = Builder.CreateExtractValue(SV, i, "tmp"); + Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder); + } + return Old; + } + + // If SV is a float, convert it to the appropriate integer type. + // If it is a pointer, do the same. + unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType()); + unsigned DestWidth = TD->getTypeSizeInBits(AllocaType); + unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType()); + unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType); + if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType())) + SV = Builder.CreateBitCast(SV, IntegerType::get(SrcWidth), "tmp"); + else if (isa<PointerType>(SV->getType())) + SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp"); + + // Zero extend or truncate the value if needed. + if (SV->getType() != AllocaType) { + if (SV->getType()->getPrimitiveSizeInBits() < + AllocaType->getPrimitiveSizeInBits()) + SV = Builder.CreateZExt(SV, AllocaType, "tmp"); + else { + // Truncation may be needed if storing more than the alloca can hold + // (undefined behavior). + SV = Builder.CreateTrunc(SV, AllocaType, "tmp"); + SrcWidth = DestWidth; + SrcStoreWidth = DestStoreWidth; + } + } + + // If this is a big-endian system and the store is narrower than the + // full alloca type, we need to do a shift to get the right bits. + int ShAmt = 0; + if (TD->isBigEndian()) { + // On big-endian machines, the lowest bit is stored at the bit offset + // from the pointer given by getTypeStoreSizeInBits. This matters for + // integers with a bitwidth that is not a multiple of 8. + ShAmt = DestStoreWidth - SrcStoreWidth - Offset; + } else { + ShAmt = Offset; + } + + // Note: we support negative bitwidths (with shr) which are not defined. + // We do this to support (f.e.) stores off the end of a structure where + // only some bits in the structure are set. + APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth)); + if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) { + SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt), "tmp"); + Mask <<= ShAmt; + } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) { + SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt), "tmp"); + Mask = Mask.lshr(-ShAmt); + } + + // Mask out the bits we are about to insert from the old value, and or + // in the new bits. + if (SrcWidth != DestWidth) { + assert(DestWidth > SrcWidth); + Old = Builder.CreateAnd(Old, ConstantInt::get(~Mask), "mask"); + SV = Builder.CreateOr(Old, SV, "ins"); + } + return SV; +} + + + +/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to +/// some part of a constant global variable. This intentionally only accepts +/// constant expressions because we don't can't rewrite arbitrary instructions. +static bool PointsToConstantGlobal(Value *V) { + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + return GV->isConstant(); + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + if (CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) + return PointsToConstantGlobal(CE->getOperand(0)); + return false; +} + +/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) +/// pointer to an alloca. Ignore any reads of the pointer, return false if we +/// see any stores or other unknown uses. If we see pointer arithmetic, keep +/// track of whether it moves the pointer (with isOffset) but otherwise traverse +/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to +/// the alloca, and if the source pointer is a pointer to a constant global, we +/// can optimize this. +static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy, + bool isOffset) { + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { + if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) + // Ignore non-volatile loads, they are always ok. + if (!LI->isVolatile()) + continue; + + if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) { + // If uses of the bitcast are ok, we are ok. + if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset)) + return false; + continue; + } + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) { + // If the GEP has all zero indices, it doesn't offset the pointer. If it + // doesn't, it does. + if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy, + isOffset || !GEP->hasAllZeroIndices())) + return false; + continue; + } + + // If this is isn't our memcpy/memmove, reject it as something we can't + // handle. + if (!isa<MemTransferInst>(*UI)) + return false; + + // If we already have seen a copy, reject the second one. + if (TheCopy) return false; + + // If the pointer has been offset from the start of the alloca, we can't + // safely handle this. + if (isOffset) return false; + + // If the memintrinsic isn't using the alloca as the dest, reject it. + if (UI.getOperandNo() != 1) return false; + + MemIntrinsic *MI = cast<MemIntrinsic>(*UI); + + // If the source of the memcpy/move is not a constant global, reject it. + if (!PointsToConstantGlobal(MI->getOperand(2))) + return false; + + // Otherwise, the transform is safe. Remember the copy instruction. + TheCopy = MI; + } + return true; +} + +/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only +/// modified by a copy from a constant global. If we can prove this, we can +/// replace any uses of the alloca with uses of the global directly. +Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) { + Instruction *TheCopy = 0; + if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false)) + return TheCopy; + return 0; +} |