summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/LoopDeletion.cpp
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /lib/Transforms/Scalar/LoopDeletion.cpp
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'lib/Transforms/Scalar/LoopDeletion.cpp')
-rw-r--r--lib/Transforms/Scalar/LoopDeletion.cpp280
1 files changed, 280 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/LoopDeletion.cpp b/lib/Transforms/Scalar/LoopDeletion.cpp
new file mode 100644
index 0000000..6512672
--- /dev/null
+++ b/lib/Transforms/Scalar/LoopDeletion.cpp
@@ -0,0 +1,280 @@
+//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Dead Loop Deletion Pass. This pass is responsible
+// for eliminating loops with non-infinite computable trip counts that have no
+// side effects or volatile instructions, and do not contribute to the
+// computation of the function's return value.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-delete"
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SmallVector.h"
+
+using namespace llvm;
+
+STATISTIC(NumDeleted, "Number of loops deleted");
+
+namespace {
+ class VISIBILITY_HIDDEN LoopDeletion : public LoopPass {
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ LoopDeletion() : LoopPass(&ID) {}
+
+ // Possibly eliminate loop L if it is dead.
+ bool runOnLoop(Loop* L, LPPassManager& LPM);
+
+ bool SingleDominatingExit(Loop* L,
+ SmallVector<BasicBlock*, 4>& exitingBlocks);
+ bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
+ SmallVector<BasicBlock*, 4>& exitBlocks);
+ bool IsLoopInvariantInst(Instruction *I, Loop* L);
+
+ virtual void getAnalysisUsage(AnalysisUsage& AU) const {
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<LoopInfo>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+
+ AU.addPreserved<ScalarEvolution>();
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<LoopInfo>();
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addPreservedID(LCSSAID);
+ AU.addPreserved<DominanceFrontier>();
+ }
+ };
+}
+
+char LoopDeletion::ID = 0;
+static RegisterPass<LoopDeletion> X("loop-deletion", "Delete dead loops");
+
+Pass* llvm::createLoopDeletionPass() {
+ return new LoopDeletion();
+}
+
+/// SingleDominatingExit - Checks that there is only a single blocks that
+/// branches out of the loop, and that it also g the latch block. Loops
+/// with multiple or non-latch-dominating exiting blocks could be dead, but we'd
+/// have to do more extensive analysis to make sure, for instance, that the
+/// control flow logic involved was or could be made loop-invariant.
+bool LoopDeletion::SingleDominatingExit(Loop* L,
+ SmallVector<BasicBlock*, 4>& exitingBlocks) {
+
+ if (exitingBlocks.size() != 1)
+ return false;
+
+ BasicBlock* latch = L->getLoopLatch();
+ if (!latch)
+ return false;
+
+ DominatorTree& DT = getAnalysis<DominatorTree>();
+ return DT.dominates(exitingBlocks[0], latch);
+}
+
+/// IsLoopInvariantInst - Checks if an instruction is invariant with respect to
+/// a loop, which is defined as being true if all of its operands are defined
+/// outside of the loop. These instructions can be hoisted out of the loop
+/// if their results are needed. This could be made more aggressive by
+/// recursively checking the operands for invariance, but it's not clear that
+/// it's worth it.
+bool LoopDeletion::IsLoopInvariantInst(Instruction *I, Loop* L) {
+ // PHI nodes are not loop invariant if defined in the loop.
+ if (isa<PHINode>(I) && L->contains(I->getParent()))
+ return false;
+
+ // The instruction is loop invariant if all of its operands are loop-invariant
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (!L->isLoopInvariant(I->getOperand(i)))
+ return false;
+
+ // If we got this far, the instruction is loop invariant!
+ return true;
+}
+
+/// IsLoopDead - Determined if a loop is dead. This assumes that we've already
+/// checked for unique exit and exiting blocks, and that the code is in LCSSA
+/// form.
+bool LoopDeletion::IsLoopDead(Loop* L,
+ SmallVector<BasicBlock*, 4>& exitingBlocks,
+ SmallVector<BasicBlock*, 4>& exitBlocks) {
+ BasicBlock* exitingBlock = exitingBlocks[0];
+ BasicBlock* exitBlock = exitBlocks[0];
+
+ // Make sure that all PHI entries coming from the loop are loop invariant.
+ // Because the code is in LCSSA form, any values used outside of the loop
+ // must pass through a PHI in the exit block, meaning that this check is
+ // sufficient to guarantee that no loop-variant values are used outside
+ // of the loop.
+ BasicBlock::iterator BI = exitBlock->begin();
+ while (PHINode* P = dyn_cast<PHINode>(BI)) {
+ Value* incoming = P->getIncomingValueForBlock(exitingBlock);
+ if (Instruction* I = dyn_cast<Instruction>(incoming))
+ if (!IsLoopInvariantInst(I, L))
+ return false;
+
+ BI++;
+ }
+
+ // Make sure that no instructions in the block have potential side-effects.
+ // This includes instructions that could write to memory, and loads that are
+ // marked volatile. This could be made more aggressive by using aliasing
+ // information to identify readonly and readnone calls.
+ for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
+ LI != LE; ++LI) {
+ for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
+ BI != BE; ++BI) {
+ if (BI->mayHaveSideEffects())
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
+/// observable behavior of the program other than finite running time. Note
+/// we do ensure that this never remove a loop that might be infinite, as doing
+/// so could change the halting/non-halting nature of a program.
+/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
+/// in order to make various safety checks work.
+bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
+ // We can only remove the loop if there is a preheader that we can
+ // branch from after removing it.
+ BasicBlock* preheader = L->getLoopPreheader();
+ if (!preheader)
+ return false;
+
+ // We can't remove loops that contain subloops. If the subloops were dead,
+ // they would already have been removed in earlier executions of this pass.
+ if (L->begin() != L->end())
+ return false;
+
+ SmallVector<BasicBlock*, 4> exitingBlocks;
+ L->getExitingBlocks(exitingBlocks);
+
+ SmallVector<BasicBlock*, 4> exitBlocks;
+ L->getUniqueExitBlocks(exitBlocks);
+
+ // We require that the loop only have a single exit block. Otherwise, we'd
+ // be in the situation of needing to be able to solve statically which exit
+ // block will be branched to, or trying to preserve the branching logic in
+ // a loop invariant manner.
+ if (exitBlocks.size() != 1)
+ return false;
+
+ // Loops with multiple exits or exits that don't dominate the latch
+ // are too complicated to handle correctly.
+ if (!SingleDominatingExit(L, exitingBlocks))
+ return false;
+
+ // Finally, we have to check that the loop really is dead.
+ if (!IsLoopDead(L, exitingBlocks, exitBlocks))
+ return false;
+
+ // Don't remove loops for which we can't solve the trip count.
+ // They could be infinite, in which case we'd be changing program behavior.
+ ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
+ SCEVHandle S = SE.getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(S))
+ return false;
+
+ // Now that we know the removal is safe, remove the loop by changing the
+ // branch from the preheader to go to the single exit block.
+ BasicBlock* exitBlock = exitBlocks[0];
+ BasicBlock* exitingBlock = exitingBlocks[0];
+
+ // Because we're deleting a large chunk of code at once, the sequence in which
+ // we remove things is very important to avoid invalidation issues. Don't
+ // mess with this unless you have good reason and know what you're doing.
+
+ // Move simple loop-invariant expressions out of the loop, since they
+ // might be needed by the exit phis.
+ for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
+ LI != LE; ++LI)
+ for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
+ BI != BE; ) {
+ Instruction* I = BI++;
+ if (!I->use_empty() && IsLoopInvariantInst(I, L))
+ I->moveBefore(preheader->getTerminator());
+ }
+
+ // Connect the preheader directly to the exit block.
+ TerminatorInst* TI = preheader->getTerminator();
+ TI->replaceUsesOfWith(L->getHeader(), exitBlock);
+
+ // Rewrite phis in the exit block to get their inputs from
+ // the preheader instead of the exiting block.
+ BasicBlock::iterator BI = exitBlock->begin();
+ while (PHINode* P = dyn_cast<PHINode>(BI)) {
+ P->replaceUsesOfWith(exitingBlock, preheader);
+ BI++;
+ }
+
+ // Update the dominator tree and remove the instructions and blocks that will
+ // be deleted from the reference counting scheme.
+ DominatorTree& DT = getAnalysis<DominatorTree>();
+ DominanceFrontier* DF = getAnalysisIfAvailable<DominanceFrontier>();
+ SmallPtrSet<DomTreeNode*, 8> ChildNodes;
+ for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
+ LI != LE; ++LI) {
+ // Move all of the block's children to be children of the preheader, which
+ // allows us to remove the domtree entry for the block.
+ ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
+ for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
+ DE = ChildNodes.end(); DI != DE; ++DI) {
+ DT.changeImmediateDominator(*DI, DT[preheader]);
+ if (DF) DF->changeImmediateDominator((*DI)->getBlock(), preheader, &DT);
+ }
+
+ ChildNodes.clear();
+ DT.eraseNode(*LI);
+ if (DF) DF->removeBlock(*LI);
+
+ // Remove the block from the reference counting scheme, so that we can
+ // delete it freely later.
+ (*LI)->dropAllReferences();
+ }
+
+ // Tell ScalarEvolution that the loop is deleted. Do this before
+ // deleting the loop so that ScalarEvolution can look at the loop
+ // to determine what it needs to clean up.
+ SE.forgetLoopBackedgeTakenCount(L);
+
+ // Erase the instructions and the blocks without having to worry
+ // about ordering because we already dropped the references.
+ // NOTE: This iteration is safe because erasing the block does not remove its
+ // entry from the loop's block list. We do that in the next section.
+ for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
+ LI != LE; ++LI)
+ (*LI)->eraseFromParent();
+
+ // Finally, the blocks from loopinfo. This has to happen late because
+ // otherwise our loop iterators won't work.
+ LoopInfo& loopInfo = getAnalysis<LoopInfo>();
+ SmallPtrSet<BasicBlock*, 8> blocks;
+ blocks.insert(L->block_begin(), L->block_end());
+ for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
+ E = blocks.end(); I != E; ++I)
+ loopInfo.removeBlock(*I);
+
+ // The last step is to inform the loop pass manager that we've
+ // eliminated this loop.
+ LPM.deleteLoopFromQueue(L);
+
+ NumDeleted++;
+
+ return true;
+}
OpenPOWER on IntegriCloud