summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/InstructionCombining.cpp
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2009-12-01 11:07:05 +0000
committerrdivacky <rdivacky@FreeBSD.org>2009-12-01 11:07:05 +0000
commite7908924d847e63b02bc82bfaa1709ab9c774dcd (patch)
treeffe0478472eaa0686f11cb02c6df7d257b8719b0 /lib/Transforms/Scalar/InstructionCombining.cpp
parentbf68f1ea49e39c4194f339ddd4421b0c3a31988b (diff)
downloadFreeBSD-src-e7908924d847e63b02bc82bfaa1709ab9c774dcd.zip
FreeBSD-src-e7908924d847e63b02bc82bfaa1709ab9c774dcd.tar.gz
Update LLVM to r90226.
Diffstat (limited to 'lib/Transforms/Scalar/InstructionCombining.cpp')
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp259
1 files changed, 221 insertions, 38 deletions
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
index 1c48366..d12ad81 100644
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ b/lib/Transforms/Scalar/InstructionCombining.cpp
@@ -2163,8 +2163,8 @@ bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
// Add has the property that adding any two 2's complement numbers can only
// have one carry bit which can change a sign. As such, if LHS and RHS each
- // have at least two sign bits, we know that the addition of the two values will
- // sign extend fine.
+ // have at least two sign bits, we know that the addition of the two values
+ // will sign extend fine.
if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
return true;
@@ -2184,15 +2184,12 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- // X + undef -> undef
- if (isa<UndefValue>(RHS))
- return ReplaceInstUsesWith(I, RHS);
-
- // X + 0 --> X
- if (RHSC->isNullValue())
- return ReplaceInstUsesWith(I, LHS);
+ if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
+ I.hasNoUnsignedWrap(), TD))
+ return ReplaceInstUsesWith(I, V);
+
+ if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
// X + (signbit) --> X ^ signbit
const APInt& Val = CI->getValue();
@@ -4070,6 +4067,21 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
ICmpInst *LHS, ICmpInst *RHS) {
+ // (icmp eq A, null) & (icmp eq B, null) -->
+ // (icmp eq (ptrtoint(A)|ptrtoint(B)), 0)
+ if (TD &&
+ LHS->getPredicate() == ICmpInst::ICMP_EQ &&
+ RHS->getPredicate() == ICmpInst::ICMP_EQ &&
+ isa<ConstantPointerNull>(LHS->getOperand(1)) &&
+ isa<ConstantPointerNull>(RHS->getOperand(1))) {
+ const Type *IntPtrTy = TD->getIntPtrType(I.getContext());
+ Value *A = Builder->CreatePtrToInt(LHS->getOperand(0), IntPtrTy);
+ Value *B = Builder->CreatePtrToInt(RHS->getOperand(0), IntPtrTy);
+ Value *NewOr = Builder->CreateOr(A, B);
+ return new ICmpInst(ICmpInst::ICMP_EQ, NewOr,
+ Constant::getNullValue(IntPtrTy));
+ }
+
Value *Val, *Val2;
ConstantInt *LHSCst, *RHSCst;
ICmpInst::Predicate LHSCC, RHSCC;
@@ -4081,12 +4093,20 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
m_ConstantInt(RHSCst))))
return 0;
- // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
- // where C is a power of 2
- if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
- LHSCst->getValue().isPowerOf2()) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return new ICmpInst(LHSCC, NewOr, LHSCst);
+ if (LHSCst == RHSCst && LHSCC == RHSCC) {
+ // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
+ // where C is a power of 2
+ if (LHSCC == ICmpInst::ICMP_ULT &&
+ LHSCst->getValue().isPowerOf2()) {
+ Value *NewOr = Builder->CreateOr(Val, Val2);
+ return new ICmpInst(LHSCC, NewOr, LHSCst);
+ }
+
+ // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
+ if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
+ Value *NewOr = Builder->CreateOr(Val, Val2);
+ return new ICmpInst(LHSCC, NewOr, LHSCst);
+ }
}
// From here on, we only handle:
@@ -4322,7 +4342,6 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyAndInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
-
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
@@ -4743,16 +4762,37 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
ICmpInst *LHS, ICmpInst *RHS) {
+ // (icmp ne A, null) | (icmp ne B, null) -->
+ // (icmp ne (ptrtoint(A)|ptrtoint(B)), 0)
+ if (TD &&
+ LHS->getPredicate() == ICmpInst::ICMP_NE &&
+ RHS->getPredicate() == ICmpInst::ICMP_NE &&
+ isa<ConstantPointerNull>(LHS->getOperand(1)) &&
+ isa<ConstantPointerNull>(RHS->getOperand(1))) {
+ const Type *IntPtrTy = TD->getIntPtrType(I.getContext());
+ Value *A = Builder->CreatePtrToInt(LHS->getOperand(0), IntPtrTy);
+ Value *B = Builder->CreatePtrToInt(RHS->getOperand(0), IntPtrTy);
+ Value *NewOr = Builder->CreateOr(A, B);
+ return new ICmpInst(ICmpInst::ICMP_NE, NewOr,
+ Constant::getNullValue(IntPtrTy));
+ }
+
Value *Val, *Val2;
ConstantInt *LHSCst, *RHSCst;
ICmpInst::Predicate LHSCC, RHSCC;
// This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
- if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
- m_ConstantInt(LHSCst))) ||
- !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
- m_ConstantInt(RHSCst))))
+ if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
+ !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
return 0;
+
+
+ // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
+ if (LHSCst == RHSCst && LHSCC == RHSCC &&
+ LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
+ Value *NewOr = Builder->CreateOr(Val, Val2);
+ return new ICmpInst(LHSCC, NewOr, LHSCst);
+ }
// From here on, we only handle:
// (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
@@ -8539,6 +8579,36 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
}
}
+ // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
+ // It is also profitable to transform icmp eq into not(xor(A, B)) because that
+ // may lead to additional simplifications.
+ if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
+ if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
+ uint32_t BitWidth = ITy->getBitWidth();
+ if (BitWidth > 1) {
+ Value *LHS = ICI->getOperand(0);
+ Value *RHS = ICI->getOperand(1);
+
+ APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
+ APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
+ APInt TypeMask(APInt::getHighBitsSet(BitWidth, BitWidth-1));
+ ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
+ ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
+
+ if (KnownZeroLHS.countLeadingOnes() == BitWidth-1 &&
+ KnownZeroRHS.countLeadingOnes() == BitWidth-1) {
+ if (!DoXform) return ICI;
+
+ Value *Xor = Builder->CreateXor(LHS, RHS);
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ Xor = Builder->CreateXor(Xor, ConstantInt::get(ITy, 1));
+ Xor->takeName(ICI);
+ return ReplaceInstUsesWith(CI, Xor);
+ }
+ }
+ }
+ }
+
return 0;
}
@@ -9842,6 +9912,126 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (Operand->getIntrinsicID() == Intrinsic::bswap)
return ReplaceInstUsesWith(CI, Operand->getOperand(1));
break;
+ case Intrinsic::uadd_with_overflow: {
+ Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+ const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt Mask = APInt::getSignBit(BitWidth);
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+ bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
+ bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
+
+ if (LHSKnownNegative || LHSKnownPositive) {
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+ bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
+ bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
+ if (LHSKnownNegative && RHSKnownNegative) {
+ // The sign bit is set in both cases: this MUST overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
+ Worklist.Add(Add);
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()), ConstantInt::getTrue(*Context)
+ };
+ Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
+ return InsertValueInst::Create(Struct, Add, 0);
+ }
+
+ if (LHSKnownPositive && RHSKnownPositive) {
+ // The sign bit is clear in both cases: this CANNOT overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
+ Worklist.Add(Add);
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()), ConstantInt::getFalse(*Context)
+ };
+ Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
+ return InsertValueInst::Create(Struct, Add, 0);
+ }
+ }
+ }
+ // FALL THROUGH uadd into sadd
+ case Intrinsic::sadd_with_overflow:
+ // Canonicalize constants into the RHS.
+ if (isa<Constant>(II->getOperand(1)) &&
+ !isa<Constant>(II->getOperand(2))) {
+ Value *LHS = II->getOperand(1);
+ II->setOperand(1, II->getOperand(2));
+ II->setOperand(2, LHS);
+ return II;
+ }
+
+ // X + undef -> undef
+ if (isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X + 0 -> {X, false}
+ if (RHS->isZero()) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(0)->getType()),
+ ConstantInt::getFalse(*Context)
+ };
+ Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ // undef - X -> undef
+ // X - undef -> undef
+ if (isa<UndefValue>(II->getOperand(1)) ||
+ isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X - 0 -> {X, false}
+ if (RHS->isZero()) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(1)->getType()),
+ ConstantInt::getFalse(*Context)
+ };
+ Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ // Canonicalize constants into the RHS.
+ if (isa<Constant>(II->getOperand(1)) &&
+ !isa<Constant>(II->getOperand(2))) {
+ Value *LHS = II->getOperand(1);
+ II->setOperand(1, II->getOperand(2));
+ II->setOperand(2, LHS);
+ return II;
+ }
+
+ // X * undef -> undef
+ if (isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X*0 -> {0, false}
+ if (RHSI->isZero())
+ return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
+
+ // X * 1 -> {X, false}
+ if (RHSI->equalsInt(1)) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(1)->getType()),
+ ConstantInt::getFalse(*Context)
+ };
+ Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
case Intrinsic::x86_sse_loadu_ps:
@@ -11282,21 +11472,16 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) {
}
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
+
+ if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
+ return ReplaceInstUsesWith(GEP, V);
+
Value *PtrOp = GEP.getOperand(0);
- // Eliminate 'getelementptr %P, i32 0' and 'getelementptr %P', they are noops.
- if (GEP.getNumOperands() == 1)
- return ReplaceInstUsesWith(GEP, PtrOp);
if (isa<UndefValue>(GEP.getOperand(0)))
return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
- bool HasZeroPointerIndex = false;
- if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
- HasZeroPointerIndex = C->isNullValue();
-
- if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
- return ReplaceInstUsesWith(GEP, PtrOp);
-
// Eliminate unneeded casts for indices.
if (TD) {
bool MadeChange = false;
@@ -11401,6 +11586,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
return 0;
}
+ bool HasZeroPointerIndex = false;
+ if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
+ HasZeroPointerIndex = C->isZero();
+
// Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
// into : GEP [10 x i8]* X, i32 0, ...
//
@@ -11952,12 +12141,6 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
Value *Val = SI.getOperand(0);
Value *Ptr = SI.getOperand(1);
- if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
- EraseInstFromFunction(SI);
- ++NumCombined;
- return 0;
- }
-
// If the RHS is an alloca with a single use, zapify the store, making the
// alloca dead.
// If the RHS is an alloca with a two uses, the other one being a
@@ -12920,7 +13103,7 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
if (LHSMask.size() == Mask.size()) {
std::vector<unsigned> NewMask;
for (unsigned i = 0, e = Mask.size(); i != e; ++i)
- if (Mask[i] >= 2*e)
+ if (Mask[i] >= e)
NewMask.push_back(2*e);
else
NewMask.push_back(LHSMask[Mask[i]]);
OpenPOWER on IntegriCloud