diff options
author | rdivacky <rdivacky@FreeBSD.org> | 2009-12-01 11:07:05 +0000 |
---|---|---|
committer | rdivacky <rdivacky@FreeBSD.org> | 2009-12-01 11:07:05 +0000 |
commit | e7908924d847e63b02bc82bfaa1709ab9c774dcd (patch) | |
tree | ffe0478472eaa0686f11cb02c6df7d257b8719b0 /lib/Transforms/Scalar/InstructionCombining.cpp | |
parent | bf68f1ea49e39c4194f339ddd4421b0c3a31988b (diff) | |
download | FreeBSD-src-e7908924d847e63b02bc82bfaa1709ab9c774dcd.zip FreeBSD-src-e7908924d847e63b02bc82bfaa1709ab9c774dcd.tar.gz |
Update LLVM to r90226.
Diffstat (limited to 'lib/Transforms/Scalar/InstructionCombining.cpp')
-rw-r--r-- | lib/Transforms/Scalar/InstructionCombining.cpp | 259 |
1 files changed, 221 insertions, 38 deletions
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp index 1c48366..d12ad81 100644 --- a/lib/Transforms/Scalar/InstructionCombining.cpp +++ b/lib/Transforms/Scalar/InstructionCombining.cpp @@ -2163,8 +2163,8 @@ bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { // Add has the property that adding any two 2's complement numbers can only // have one carry bit which can change a sign. As such, if LHS and RHS each - // have at least two sign bits, we know that the addition of the two values will - // sign extend fine. + // have at least two sign bits, we know that the addition of the two values + // will sign extend fine. if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) return true; @@ -2184,15 +2184,12 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); - if (Constant *RHSC = dyn_cast<Constant>(RHS)) { - // X + undef -> undef - if (isa<UndefValue>(RHS)) - return ReplaceInstUsesWith(I, RHS); - - // X + 0 --> X - if (RHSC->isNullValue()) - return ReplaceInstUsesWith(I, LHS); + if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), + I.hasNoUnsignedWrap(), TD)) + return ReplaceInstUsesWith(I, V); + + if (Constant *RHSC = dyn_cast<Constant>(RHS)) { if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) { // X + (signbit) --> X ^ signbit const APInt& Val = CI->getValue(); @@ -4070,6 +4067,21 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible. Instruction *InstCombiner::FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS) { + // (icmp eq A, null) & (icmp eq B, null) --> + // (icmp eq (ptrtoint(A)|ptrtoint(B)), 0) + if (TD && + LHS->getPredicate() == ICmpInst::ICMP_EQ && + RHS->getPredicate() == ICmpInst::ICMP_EQ && + isa<ConstantPointerNull>(LHS->getOperand(1)) && + isa<ConstantPointerNull>(RHS->getOperand(1))) { + const Type *IntPtrTy = TD->getIntPtrType(I.getContext()); + Value *A = Builder->CreatePtrToInt(LHS->getOperand(0), IntPtrTy); + Value *B = Builder->CreatePtrToInt(RHS->getOperand(0), IntPtrTy); + Value *NewOr = Builder->CreateOr(A, B); + return new ICmpInst(ICmpInst::ICMP_EQ, NewOr, + Constant::getNullValue(IntPtrTy)); + } + Value *Val, *Val2; ConstantInt *LHSCst, *RHSCst; ICmpInst::Predicate LHSCC, RHSCC; @@ -4081,12 +4093,20 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I, m_ConstantInt(RHSCst)))) return 0; - // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) - // where C is a power of 2 - if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT && - LHSCst->getValue().isPowerOf2()) { - Value *NewOr = Builder->CreateOr(Val, Val2); - return new ICmpInst(LHSCC, NewOr, LHSCst); + if (LHSCst == RHSCst && LHSCC == RHSCC) { + // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) + // where C is a power of 2 + if (LHSCC == ICmpInst::ICMP_ULT && + LHSCst->getValue().isPowerOf2()) { + Value *NewOr = Builder->CreateOr(Val, Val2); + return new ICmpInst(LHSCC, NewOr, LHSCst); + } + + // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) + if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) { + Value *NewOr = Builder->CreateOr(Val, Val2); + return new ICmpInst(LHSCC, NewOr, LHSCst); + } } // From here on, we only handle: @@ -4322,7 +4342,6 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) { if (Value *V = SimplifyAndInst(Op0, Op1, TD)) return ReplaceInstUsesWith(I, V); - // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. @@ -4743,16 +4762,37 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B, /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible. Instruction *InstCombiner::FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS) { + // (icmp ne A, null) | (icmp ne B, null) --> + // (icmp ne (ptrtoint(A)|ptrtoint(B)), 0) + if (TD && + LHS->getPredicate() == ICmpInst::ICMP_NE && + RHS->getPredicate() == ICmpInst::ICMP_NE && + isa<ConstantPointerNull>(LHS->getOperand(1)) && + isa<ConstantPointerNull>(RHS->getOperand(1))) { + const Type *IntPtrTy = TD->getIntPtrType(I.getContext()); + Value *A = Builder->CreatePtrToInt(LHS->getOperand(0), IntPtrTy); + Value *B = Builder->CreatePtrToInt(RHS->getOperand(0), IntPtrTy); + Value *NewOr = Builder->CreateOr(A, B); + return new ICmpInst(ICmpInst::ICMP_NE, NewOr, + Constant::getNullValue(IntPtrTy)); + } + Value *Val, *Val2; ConstantInt *LHSCst, *RHSCst; ICmpInst::Predicate LHSCC, RHSCC; // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). - if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), - m_ConstantInt(LHSCst))) || - !match(RHS, m_ICmp(RHSCC, m_Value(Val2), - m_ConstantInt(RHSCst)))) + if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) || + !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst)))) return 0; + + + // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) + if (LHSCst == RHSCst && LHSCC == RHSCC && + LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) { + Value *NewOr = Builder->CreateOr(Val, Val2); + return new ICmpInst(LHSCC, NewOr, LHSCst); + } // From here on, we only handle: // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. @@ -8539,6 +8579,36 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, } } + // icmp ne A, B is equal to xor A, B when A and B only really have one bit. + // It is also profitable to transform icmp eq into not(xor(A, B)) because that + // may lead to additional simplifications. + if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { + if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { + uint32_t BitWidth = ITy->getBitWidth(); + if (BitWidth > 1) { + Value *LHS = ICI->getOperand(0); + Value *RHS = ICI->getOperand(1); + + APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); + APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); + APInt TypeMask(APInt::getHighBitsSet(BitWidth, BitWidth-1)); + ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS); + ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS); + + if (KnownZeroLHS.countLeadingOnes() == BitWidth-1 && + KnownZeroRHS.countLeadingOnes() == BitWidth-1) { + if (!DoXform) return ICI; + + Value *Xor = Builder->CreateXor(LHS, RHS); + if (ICI->getPredicate() == ICmpInst::ICMP_EQ) + Xor = Builder->CreateXor(Xor, ConstantInt::get(ITy, 1)); + Xor->takeName(ICI); + return ReplaceInstUsesWith(CI, Xor); + } + } + } + } + return 0; } @@ -9842,6 +9912,126 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) { if (Operand->getIntrinsicID() == Intrinsic::bswap) return ReplaceInstUsesWith(CI, Operand->getOperand(1)); break; + case Intrinsic::uadd_with_overflow: { + Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); + const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); + uint32_t BitWidth = IT->getBitWidth(); + APInt Mask = APInt::getSignBit(BitWidth); + APInt LHSKnownZero(BitWidth, 0); + APInt LHSKnownOne(BitWidth, 0); + ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); + bool LHSKnownNegative = LHSKnownOne[BitWidth - 1]; + bool LHSKnownPositive = LHSKnownZero[BitWidth - 1]; + + if (LHSKnownNegative || LHSKnownPositive) { + APInt RHSKnownZero(BitWidth, 0); + APInt RHSKnownOne(BitWidth, 0); + ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); + bool RHSKnownNegative = RHSKnownOne[BitWidth - 1]; + bool RHSKnownPositive = RHSKnownZero[BitWidth - 1]; + if (LHSKnownNegative && RHSKnownNegative) { + // The sign bit is set in both cases: this MUST overflow. + // Create a simple add instruction, and insert it into the struct. + Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI); + Worklist.Add(Add); + Constant *V[] = { + UndefValue::get(LHS->getType()), ConstantInt::getTrue(*Context) + }; + Constant *Struct = ConstantStruct::get(*Context, V, 2, false); + return InsertValueInst::Create(Struct, Add, 0); + } + + if (LHSKnownPositive && RHSKnownPositive) { + // The sign bit is clear in both cases: this CANNOT overflow. + // Create a simple add instruction, and insert it into the struct. + Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI); + Worklist.Add(Add); + Constant *V[] = { + UndefValue::get(LHS->getType()), ConstantInt::getFalse(*Context) + }; + Constant *Struct = ConstantStruct::get(*Context, V, 2, false); + return InsertValueInst::Create(Struct, Add, 0); + } + } + } + // FALL THROUGH uadd into sadd + case Intrinsic::sadd_with_overflow: + // Canonicalize constants into the RHS. + if (isa<Constant>(II->getOperand(1)) && + !isa<Constant>(II->getOperand(2))) { + Value *LHS = II->getOperand(1); + II->setOperand(1, II->getOperand(2)); + II->setOperand(2, LHS); + return II; + } + + // X + undef -> undef + if (isa<UndefValue>(II->getOperand(2))) + return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { + // X + 0 -> {X, false} + if (RHS->isZero()) { + Constant *V[] = { + UndefValue::get(II->getOperand(0)->getType()), + ConstantInt::getFalse(*Context) + }; + Constant *Struct = ConstantStruct::get(*Context, V, 2, false); + return InsertValueInst::Create(Struct, II->getOperand(1), 0); + } + } + break; + case Intrinsic::usub_with_overflow: + case Intrinsic::ssub_with_overflow: + // undef - X -> undef + // X - undef -> undef + if (isa<UndefValue>(II->getOperand(1)) || + isa<UndefValue>(II->getOperand(2))) + return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { + // X - 0 -> {X, false} + if (RHS->isZero()) { + Constant *V[] = { + UndefValue::get(II->getOperand(1)->getType()), + ConstantInt::getFalse(*Context) + }; + Constant *Struct = ConstantStruct::get(*Context, V, 2, false); + return InsertValueInst::Create(Struct, II->getOperand(1), 0); + } + } + break; + case Intrinsic::umul_with_overflow: + case Intrinsic::smul_with_overflow: + // Canonicalize constants into the RHS. + if (isa<Constant>(II->getOperand(1)) && + !isa<Constant>(II->getOperand(2))) { + Value *LHS = II->getOperand(1); + II->setOperand(1, II->getOperand(2)); + II->setOperand(2, LHS); + return II; + } + + // X * undef -> undef + if (isa<UndefValue>(II->getOperand(2))) + return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); + + if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) { + // X*0 -> {0, false} + if (RHSI->isZero()) + return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType())); + + // X * 1 -> {X, false} + if (RHSI->equalsInt(1)) { + Constant *V[] = { + UndefValue::get(II->getOperand(1)->getType()), + ConstantInt::getFalse(*Context) + }; + Constant *Struct = ConstantStruct::get(*Context, V, 2, false); + return InsertValueInst::Create(Struct, II->getOperand(1), 0); + } + } + break; case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: case Intrinsic::x86_sse_loadu_ps: @@ -11282,21 +11472,16 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) { } Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { + SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); + + if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD)) + return ReplaceInstUsesWith(GEP, V); + Value *PtrOp = GEP.getOperand(0); - // Eliminate 'getelementptr %P, i32 0' and 'getelementptr %P', they are noops. - if (GEP.getNumOperands() == 1) - return ReplaceInstUsesWith(GEP, PtrOp); if (isa<UndefValue>(GEP.getOperand(0))) return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); - bool HasZeroPointerIndex = false; - if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1))) - HasZeroPointerIndex = C->isNullValue(); - - if (GEP.getNumOperands() == 2 && HasZeroPointerIndex) - return ReplaceInstUsesWith(GEP, PtrOp); - // Eliminate unneeded casts for indices. if (TD) { bool MadeChange = false; @@ -11401,6 +11586,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { return 0; } + bool HasZeroPointerIndex = false; + if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) + HasZeroPointerIndex = C->isZero(); + // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... // into : GEP [10 x i8]* X, i32 0, ... // @@ -11952,12 +12141,6 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { Value *Val = SI.getOperand(0); Value *Ptr = SI.getOperand(1); - if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile) - EraseInstFromFunction(SI); - ++NumCombined; - return 0; - } - // If the RHS is an alloca with a single use, zapify the store, making the // alloca dead. // If the RHS is an alloca with a two uses, the other one being a @@ -12920,7 +13103,7 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { if (LHSMask.size() == Mask.size()) { std::vector<unsigned> NewMask; for (unsigned i = 0, e = Mask.size(); i != e; ++i) - if (Mask[i] >= 2*e) + if (Mask[i] >= e) NewMask.push_back(2*e); else NewMask.push_back(LHSMask[Mask[i]]); |