diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /lib/Transforms/Scalar/InstructionCombining.cpp | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'lib/Transforms/Scalar/InstructionCombining.cpp')
-rw-r--r-- | lib/Transforms/Scalar/InstructionCombining.cpp | 12919 |
1 files changed, 12919 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp new file mode 100644 index 0000000..e6f854f --- /dev/null +++ b/lib/Transforms/Scalar/InstructionCombining.cpp @@ -0,0 +1,12919 @@ +//===- InstructionCombining.cpp - Combine multiple instructions -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// InstructionCombining - Combine instructions to form fewer, simple +// instructions. This pass does not modify the CFG. This pass is where +// algebraic simplification happens. +// +// This pass combines things like: +// %Y = add i32 %X, 1 +// %Z = add i32 %Y, 1 +// into: +// %Z = add i32 %X, 2 +// +// This is a simple worklist driven algorithm. +// +// This pass guarantees that the following canonicalizations are performed on +// the program: +// 1. If a binary operator has a constant operand, it is moved to the RHS +// 2. Bitwise operators with constant operands are always grouped so that +// shifts are performed first, then or's, then and's, then xor's. +// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible +// 4. All cmp instructions on boolean values are replaced with logical ops +// 5. add X, X is represented as (X*2) => (X << 1) +// 6. Multiplies with a power-of-two constant argument are transformed into +// shifts. +// ... etc. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "instcombine" +#include "llvm/Transforms/Scalar.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Pass.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/ConstantRange.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/PatternMatch.h" +#include "llvm/Support/Compiler.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +#include <climits> +#include <sstream> +using namespace llvm; +using namespace llvm::PatternMatch; + +STATISTIC(NumCombined , "Number of insts combined"); +STATISTIC(NumConstProp, "Number of constant folds"); +STATISTIC(NumDeadInst , "Number of dead inst eliminated"); +STATISTIC(NumDeadStore, "Number of dead stores eliminated"); +STATISTIC(NumSunkInst , "Number of instructions sunk"); + +namespace { + class VISIBILITY_HIDDEN InstCombiner + : public FunctionPass, + public InstVisitor<InstCombiner, Instruction*> { + // Worklist of all of the instructions that need to be simplified. + SmallVector<Instruction*, 256> Worklist; + DenseMap<Instruction*, unsigned> WorklistMap; + TargetData *TD; + bool MustPreserveLCSSA; + public: + static char ID; // Pass identification, replacement for typeid + InstCombiner() : FunctionPass(&ID) {} + + /// AddToWorkList - Add the specified instruction to the worklist if it + /// isn't already in it. + void AddToWorkList(Instruction *I) { + if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second) + Worklist.push_back(I); + } + + // RemoveFromWorkList - remove I from the worklist if it exists. + void RemoveFromWorkList(Instruction *I) { + DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I); + if (It == WorklistMap.end()) return; // Not in worklist. + + // Don't bother moving everything down, just null out the slot. + Worklist[It->second] = 0; + + WorklistMap.erase(It); + } + + Instruction *RemoveOneFromWorkList() { + Instruction *I = Worklist.back(); + Worklist.pop_back(); + WorklistMap.erase(I); + return I; + } + + + /// AddUsersToWorkList - When an instruction is simplified, add all users of + /// the instruction to the work lists because they might get more simplified + /// now. + /// + void AddUsersToWorkList(Value &I) { + for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); + UI != UE; ++UI) + AddToWorkList(cast<Instruction>(*UI)); + } + + /// AddUsesToWorkList - When an instruction is simplified, add operands to + /// the work lists because they might get more simplified now. + /// + void AddUsesToWorkList(Instruction &I) { + for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i) + if (Instruction *Op = dyn_cast<Instruction>(*i)) + AddToWorkList(Op); + } + + /// AddSoonDeadInstToWorklist - The specified instruction is about to become + /// dead. Add all of its operands to the worklist, turning them into + /// undef's to reduce the number of uses of those instructions. + /// + /// Return the specified operand before it is turned into an undef. + /// + Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) { + Value *R = I.getOperand(op); + + for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i) + if (Instruction *Op = dyn_cast<Instruction>(*i)) { + AddToWorkList(Op); + // Set the operand to undef to drop the use. + *i = UndefValue::get(Op->getType()); + } + + return R; + } + + public: + virtual bool runOnFunction(Function &F); + + bool DoOneIteration(Function &F, unsigned ItNum); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<TargetData>(); + AU.addPreservedID(LCSSAID); + AU.setPreservesCFG(); + } + + TargetData &getTargetData() const { return *TD; } + + // Visitation implementation - Implement instruction combining for different + // instruction types. The semantics are as follows: + // Return Value: + // null - No change was made + // I - Change was made, I is still valid, I may be dead though + // otherwise - Change was made, replace I with returned instruction + // + Instruction *visitAdd(BinaryOperator &I); + Instruction *visitSub(BinaryOperator &I); + Instruction *visitMul(BinaryOperator &I); + Instruction *visitURem(BinaryOperator &I); + Instruction *visitSRem(BinaryOperator &I); + Instruction *visitFRem(BinaryOperator &I); + bool SimplifyDivRemOfSelect(BinaryOperator &I); + Instruction *commonRemTransforms(BinaryOperator &I); + Instruction *commonIRemTransforms(BinaryOperator &I); + Instruction *commonDivTransforms(BinaryOperator &I); + Instruction *commonIDivTransforms(BinaryOperator &I); + Instruction *visitUDiv(BinaryOperator &I); + Instruction *visitSDiv(BinaryOperator &I); + Instruction *visitFDiv(BinaryOperator &I); + Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS); + Instruction *visitAnd(BinaryOperator &I); + Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS); + Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, + Value *A, Value *B, Value *C); + Instruction *visitOr (BinaryOperator &I); + Instruction *visitXor(BinaryOperator &I); + Instruction *visitShl(BinaryOperator &I); + Instruction *visitAShr(BinaryOperator &I); + Instruction *visitLShr(BinaryOperator &I); + Instruction *commonShiftTransforms(BinaryOperator &I); + Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, + Constant *RHSC); + Instruction *visitFCmpInst(FCmpInst &I); + Instruction *visitICmpInst(ICmpInst &I); + Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); + Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, + Instruction *LHS, + ConstantInt *RHS); + Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, + ConstantInt *DivRHS); + + Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS, + ICmpInst::Predicate Cond, Instruction &I); + Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1, + BinaryOperator &I); + Instruction *commonCastTransforms(CastInst &CI); + Instruction *commonIntCastTransforms(CastInst &CI); + Instruction *commonPointerCastTransforms(CastInst &CI); + Instruction *visitTrunc(TruncInst &CI); + Instruction *visitZExt(ZExtInst &CI); + Instruction *visitSExt(SExtInst &CI); + Instruction *visitFPTrunc(FPTruncInst &CI); + Instruction *visitFPExt(CastInst &CI); + Instruction *visitFPToUI(FPToUIInst &FI); + Instruction *visitFPToSI(FPToSIInst &FI); + Instruction *visitUIToFP(CastInst &CI); + Instruction *visitSIToFP(CastInst &CI); + Instruction *visitPtrToInt(PtrToIntInst &CI); + Instruction *visitIntToPtr(IntToPtrInst &CI); + Instruction *visitBitCast(BitCastInst &CI); + Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, + Instruction *FI); + Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*); + Instruction *visitSelectInst(SelectInst &SI); + Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); + Instruction *visitCallInst(CallInst &CI); + Instruction *visitInvokeInst(InvokeInst &II); + Instruction *visitPHINode(PHINode &PN); + Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); + Instruction *visitAllocationInst(AllocationInst &AI); + Instruction *visitFreeInst(FreeInst &FI); + Instruction *visitLoadInst(LoadInst &LI); + Instruction *visitStoreInst(StoreInst &SI); + Instruction *visitBranchInst(BranchInst &BI); + Instruction *visitSwitchInst(SwitchInst &SI); + Instruction *visitInsertElementInst(InsertElementInst &IE); + Instruction *visitExtractElementInst(ExtractElementInst &EI); + Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); + Instruction *visitExtractValueInst(ExtractValueInst &EV); + + // visitInstruction - Specify what to return for unhandled instructions... + Instruction *visitInstruction(Instruction &I) { return 0; } + + private: + Instruction *visitCallSite(CallSite CS); + bool transformConstExprCastCall(CallSite CS); + Instruction *transformCallThroughTrampoline(CallSite CS); + Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI, + bool DoXform = true); + bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS); + DbgDeclareInst *hasOneUsePlusDeclare(Value *V); + + + public: + // InsertNewInstBefore - insert an instruction New before instruction Old + // in the program. Add the new instruction to the worklist. + // + Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { + assert(New && New->getParent() == 0 && + "New instruction already inserted into a basic block!"); + BasicBlock *BB = Old.getParent(); + BB->getInstList().insert(&Old, New); // Insert inst + AddToWorkList(New); + return New; + } + + /// InsertCastBefore - Insert a cast of V to TY before the instruction POS. + /// This also adds the cast to the worklist. Finally, this returns the + /// cast. + Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty, + Instruction &Pos) { + if (V->getType() == Ty) return V; + + if (Constant *CV = dyn_cast<Constant>(V)) + return ConstantExpr::getCast(opc, CV, Ty); + + Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos); + AddToWorkList(C); + return C; + } + + Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) { + return InsertCastBefore(Instruction::BitCast, V, Ty, Pos); + } + + + // ReplaceInstUsesWith - This method is to be used when an instruction is + // found to be dead, replacable with another preexisting expression. Here + // we add all uses of I to the worklist, replace all uses of I with the new + // value, then return I, so that the inst combiner will know that I was + // modified. + // + Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { + AddUsersToWorkList(I); // Add all modified instrs to worklist + if (&I != V) { + I.replaceAllUsesWith(V); + return &I; + } else { + // If we are replacing the instruction with itself, this must be in a + // segment of unreachable code, so just clobber the instruction. + I.replaceAllUsesWith(UndefValue::get(I.getType())); + return &I; + } + } + + // EraseInstFromFunction - When dealing with an instruction that has side + // effects or produces a void value, we can't rely on DCE to delete the + // instruction. Instead, visit methods should return the value returned by + // this function. + Instruction *EraseInstFromFunction(Instruction &I) { + assert(I.use_empty() && "Cannot erase instruction that is used!"); + AddUsesToWorkList(I); + RemoveFromWorkList(&I); + I.eraseFromParent(); + return 0; // Don't do anything with FI + } + + void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero, + APInt &KnownOne, unsigned Depth = 0) const { + return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); + } + + bool MaskedValueIsZero(Value *V, const APInt &Mask, + unsigned Depth = 0) const { + return llvm::MaskedValueIsZero(V, Mask, TD, Depth); + } + unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const { + return llvm::ComputeNumSignBits(Op, TD, Depth); + } + + private: + + /// SimplifyCommutative - This performs a few simplifications for + /// commutative operators. + bool SimplifyCommutative(BinaryOperator &I); + + /// SimplifyCompare - This reorders the operands of a CmpInst to get them in + /// most-complex to least-complex order. + bool SimplifyCompare(CmpInst &I); + + /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value + /// based on the demanded bits. + Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, + APInt& KnownZero, APInt& KnownOne, + unsigned Depth); + bool SimplifyDemandedBits(Use &U, APInt DemandedMask, + APInt& KnownZero, APInt& KnownOne, + unsigned Depth=0); + + /// SimplifyDemandedInstructionBits - Inst is an integer instruction that + /// SimplifyDemandedBits knows about. See if the instruction has any + /// properties that allow us to simplify its operands. + bool SimplifyDemandedInstructionBits(Instruction &Inst); + + Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, + APInt& UndefElts, unsigned Depth = 0); + + // FoldOpIntoPhi - Given a binary operator or cast instruction which has a + // PHI node as operand #0, see if we can fold the instruction into the PHI + // (which is only possible if all operands to the PHI are constants). + Instruction *FoldOpIntoPhi(Instruction &I); + + // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" + // operator and they all are only used by the PHI, PHI together their + // inputs, and do the operation once, to the result of the PHI. + Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); + Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); + Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); + + + Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, + ConstantInt *AndRHS, BinaryOperator &TheAnd); + + Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, + bool isSub, Instruction &I); + Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, + bool isSigned, bool Inside, Instruction &IB); + Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI); + Instruction *MatchBSwap(BinaryOperator &I); + bool SimplifyStoreAtEndOfBlock(StoreInst &SI); + Instruction *SimplifyMemTransfer(MemIntrinsic *MI); + Instruction *SimplifyMemSet(MemSetInst *MI); + + + Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned); + + bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, + unsigned CastOpc, int &NumCastsRemoved); + unsigned GetOrEnforceKnownAlignment(Value *V, + unsigned PrefAlign = 0); + + }; +} + +char InstCombiner::ID = 0; +static RegisterPass<InstCombiner> +X("instcombine", "Combine redundant instructions"); + +// getComplexity: Assign a complexity or rank value to LLVM Values... +// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst +static unsigned getComplexity(Value *V) { + if (isa<Instruction>(V)) { + if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V)) + return 3; + return 4; + } + if (isa<Argument>(V)) return 3; + return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; +} + +// isOnlyUse - Return true if this instruction will be deleted if we stop using +// it. +static bool isOnlyUse(Value *V) { + return V->hasOneUse() || isa<Constant>(V); +} + +// getPromotedType - Return the specified type promoted as it would be to pass +// though a va_arg area... +static const Type *getPromotedType(const Type *Ty) { + if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { + if (ITy->getBitWidth() < 32) + return Type::Int32Ty; + } + return Ty; +} + +/// getBitCastOperand - If the specified operand is a CastInst, a constant +/// expression bitcast, or a GetElementPtrInst with all zero indices, return the +/// operand value, otherwise return null. +static Value *getBitCastOperand(Value *V) { + if (BitCastInst *I = dyn_cast<BitCastInst>(V)) + // BitCastInst? + return I->getOperand(0); + else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { + // GetElementPtrInst? + if (GEP->hasAllZeroIndices()) + return GEP->getOperand(0); + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + if (CE->getOpcode() == Instruction::BitCast) + // BitCast ConstantExp? + return CE->getOperand(0); + else if (CE->getOpcode() == Instruction::GetElementPtr) { + // GetElementPtr ConstantExp? + for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end(); + I != E; ++I) { + ConstantInt *CI = dyn_cast<ConstantInt>(I); + if (!CI || !CI->isZero()) + // Any non-zero indices? Not cast-like. + return 0; + } + // All-zero indices? This is just like casting. + return CE->getOperand(0); + } + } + return 0; +} + +/// This function is a wrapper around CastInst::isEliminableCastPair. It +/// simply extracts arguments and returns what that function returns. +static Instruction::CastOps +isEliminableCastPair( + const CastInst *CI, ///< The first cast instruction + unsigned opcode, ///< The opcode of the second cast instruction + const Type *DstTy, ///< The target type for the second cast instruction + TargetData *TD ///< The target data for pointer size +) { + + const Type *SrcTy = CI->getOperand(0)->getType(); // A from above + const Type *MidTy = CI->getType(); // B from above + + // Get the opcodes of the two Cast instructions + Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); + Instruction::CastOps secondOp = Instruction::CastOps(opcode); + + unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, + DstTy, TD->getIntPtrType()); + + // We don't want to form an inttoptr or ptrtoint that converts to an integer + // type that differs from the pointer size. + if ((Res == Instruction::IntToPtr && SrcTy != TD->getIntPtrType()) || + (Res == Instruction::PtrToInt && DstTy != TD->getIntPtrType())) + Res = 0; + + return Instruction::CastOps(Res); +} + +/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results +/// in any code being generated. It does not require codegen if V is simple +/// enough or if the cast can be folded into other casts. +static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V, + const Type *Ty, TargetData *TD) { + if (V->getType() == Ty || isa<Constant>(V)) return false; + + // If this is another cast that can be eliminated, it isn't codegen either. + if (const CastInst *CI = dyn_cast<CastInst>(V)) + if (isEliminableCastPair(CI, opcode, Ty, TD)) + return false; + return true; +} + +// SimplifyCommutative - This performs a few simplifications for commutative +// operators: +// +// 1. Order operands such that they are listed from right (least complex) to +// left (most complex). This puts constants before unary operators before +// binary operators. +// +// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) +// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) +// +bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { + bool Changed = false; + if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) + Changed = !I.swapOperands(); + + if (!I.isAssociative()) return Changed; + Instruction::BinaryOps Opcode = I.getOpcode(); + if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0))) + if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) { + if (isa<Constant>(I.getOperand(1))) { + Constant *Folded = ConstantExpr::get(I.getOpcode(), + cast<Constant>(I.getOperand(1)), + cast<Constant>(Op->getOperand(1))); + I.setOperand(0, Op->getOperand(0)); + I.setOperand(1, Folded); + return true; + } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1))) + if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) && + isOnlyUse(Op) && isOnlyUse(Op1)) { + Constant *C1 = cast<Constant>(Op->getOperand(1)); + Constant *C2 = cast<Constant>(Op1->getOperand(1)); + + // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) + Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); + Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0), + Op1->getOperand(0), + Op1->getName(), &I); + AddToWorkList(New); + I.setOperand(0, New); + I.setOperand(1, Folded); + return true; + } + } + return Changed; +} + +/// SimplifyCompare - For a CmpInst this function just orders the operands +/// so that theyare listed from right (least complex) to left (most complex). +/// This puts constants before unary operators before binary operators. +bool InstCombiner::SimplifyCompare(CmpInst &I) { + if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1))) + return false; + I.swapOperands(); + // Compare instructions are not associative so there's nothing else we can do. + return true; +} + +// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction +// if the LHS is a constant zero (which is the 'negate' form). +// +static inline Value *dyn_castNegVal(Value *V) { + if (BinaryOperator::isNeg(V)) + return BinaryOperator::getNegArgument(V); + + // Constants can be considered to be negated values if they can be folded. + if (ConstantInt *C = dyn_cast<ConstantInt>(V)) + return ConstantExpr::getNeg(C); + + if (ConstantVector *C = dyn_cast<ConstantVector>(V)) + if (C->getType()->getElementType()->isInteger()) + return ConstantExpr::getNeg(C); + + return 0; +} + +static inline Value *dyn_castNotVal(Value *V) { + if (BinaryOperator::isNot(V)) + return BinaryOperator::getNotArgument(V); + + // Constants can be considered to be not'ed values... + if (ConstantInt *C = dyn_cast<ConstantInt>(V)) + return ConstantInt::get(~C->getValue()); + return 0; +} + +// dyn_castFoldableMul - If this value is a multiply that can be folded into +// other computations (because it has a constant operand), return the +// non-constant operand of the multiply, and set CST to point to the multiplier. +// Otherwise, return null. +// +static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { + if (V->hasOneUse() && V->getType()->isInteger()) + if (Instruction *I = dyn_cast<Instruction>(V)) { + if (I->getOpcode() == Instruction::Mul) + if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) + return I->getOperand(0); + if (I->getOpcode() == Instruction::Shl) + if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { + // The multiplier is really 1 << CST. + uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); + uint32_t CSTVal = CST->getLimitedValue(BitWidth); + CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal)); + return I->getOperand(0); + } + } + return 0; +} + +/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant +/// expression, return it. +static User *dyn_castGetElementPtr(Value *V) { + if (isa<GetElementPtrInst>(V)) return cast<User>(V); + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + if (CE->getOpcode() == Instruction::GetElementPtr) + return cast<User>(V); + return false; +} + +/// getOpcode - If this is an Instruction or a ConstantExpr, return the +/// opcode value. Otherwise return UserOp1. +static unsigned getOpcode(const Value *V) { + if (const Instruction *I = dyn_cast<Instruction>(V)) + return I->getOpcode(); + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + return CE->getOpcode(); + // Use UserOp1 to mean there's no opcode. + return Instruction::UserOp1; +} + +/// AddOne - Add one to a ConstantInt +static ConstantInt *AddOne(ConstantInt *C) { + APInt Val(C->getValue()); + return ConstantInt::get(++Val); +} +/// SubOne - Subtract one from a ConstantInt +static ConstantInt *SubOne(ConstantInt *C) { + APInt Val(C->getValue()); + return ConstantInt::get(--Val); +} +/// Add - Add two ConstantInts together +static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) { + return ConstantInt::get(C1->getValue() + C2->getValue()); +} +/// And - Bitwise AND two ConstantInts together +static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) { + return ConstantInt::get(C1->getValue() & C2->getValue()); +} +/// Subtract - Subtract one ConstantInt from another +static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) { + return ConstantInt::get(C1->getValue() - C2->getValue()); +} +/// Multiply - Multiply two ConstantInts together +static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) { + return ConstantInt::get(C1->getValue() * C2->getValue()); +} +/// MultiplyOverflows - True if the multiply can not be expressed in an int +/// this size. +static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { + uint32_t W = C1->getBitWidth(); + APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); + if (sign) { + LHSExt.sext(W * 2); + RHSExt.sext(W * 2); + } else { + LHSExt.zext(W * 2); + RHSExt.zext(W * 2); + } + + APInt MulExt = LHSExt * RHSExt; + + if (sign) { + APInt Min = APInt::getSignedMinValue(W).sext(W * 2); + APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); + return MulExt.slt(Min) || MulExt.sgt(Max); + } else + return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); +} + + +/// ShrinkDemandedConstant - Check to see if the specified operand of the +/// specified instruction is a constant integer. If so, check to see if there +/// are any bits set in the constant that are not demanded. If so, shrink the +/// constant and return true. +static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, + APInt Demanded) { + assert(I && "No instruction?"); + assert(OpNo < I->getNumOperands() && "Operand index too large"); + + // If the operand is not a constant integer, nothing to do. + ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); + if (!OpC) return false; + + // If there are no bits set that aren't demanded, nothing to do. + Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); + if ((~Demanded & OpC->getValue()) == 0) + return false; + + // This instruction is producing bits that are not demanded. Shrink the RHS. + Demanded &= OpC->getValue(); + I->setOperand(OpNo, ConstantInt::get(Demanded)); + return true; +} + +// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a +// set of known zero and one bits, compute the maximum and minimum values that +// could have the specified known zero and known one bits, returning them in +// min/max. +static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, + const APInt& KnownOne, + APInt& Min, APInt& Max) { + assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && + KnownZero.getBitWidth() == Min.getBitWidth() && + KnownZero.getBitWidth() == Max.getBitWidth() && + "KnownZero, KnownOne and Min, Max must have equal bitwidth."); + APInt UnknownBits = ~(KnownZero|KnownOne); + + // The minimum value is when all unknown bits are zeros, EXCEPT for the sign + // bit if it is unknown. + Min = KnownOne; + Max = KnownOne|UnknownBits; + + if (UnknownBits.isNegative()) { // Sign bit is unknown + Min.set(Min.getBitWidth()-1); + Max.clear(Max.getBitWidth()-1); + } +} + +// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and +// a set of known zero and one bits, compute the maximum and minimum values that +// could have the specified known zero and known one bits, returning them in +// min/max. +static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, + const APInt &KnownOne, + APInt &Min, APInt &Max) { + assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && + KnownZero.getBitWidth() == Min.getBitWidth() && + KnownZero.getBitWidth() == Max.getBitWidth() && + "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); + APInt UnknownBits = ~(KnownZero|KnownOne); + + // The minimum value is when the unknown bits are all zeros. + Min = KnownOne; + // The maximum value is when the unknown bits are all ones. + Max = KnownOne|UnknownBits; +} + +/// SimplifyDemandedInstructionBits - Inst is an integer instruction that +/// SimplifyDemandedBits knows about. See if the instruction has any +/// properties that allow us to simplify its operands. +bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { + unsigned BitWidth = cast<IntegerType>(Inst.getType())->getBitWidth(); + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); + + Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, + KnownZero, KnownOne, 0); + if (V == 0) return false; + if (V == &Inst) return true; + ReplaceInstUsesWith(Inst, V); + return true; +} + +/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the +/// specified instruction operand if possible, updating it in place. It returns +/// true if it made any change and false otherwise. +bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, + APInt &KnownZero, APInt &KnownOne, + unsigned Depth) { + Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, + KnownZero, KnownOne, Depth); + if (NewVal == 0) return false; + U.set(NewVal); + return true; +} + + +/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler +/// value based on the demanded bits. When this function is called, it is known +/// that only the bits set in DemandedMask of the result of V are ever used +/// downstream. Consequently, depending on the mask and V, it may be possible +/// to replace V with a constant or one of its operands. In such cases, this +/// function does the replacement and returns true. In all other cases, it +/// returns false after analyzing the expression and setting KnownOne and known +/// to be one in the expression. KnownZero contains all the bits that are known +/// to be zero in the expression. These are provided to potentially allow the +/// caller (which might recursively be SimplifyDemandedBits itself) to simplify +/// the expression. KnownOne and KnownZero always follow the invariant that +/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that +/// the bits in KnownOne and KnownZero may only be accurate for those bits set +/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero +/// and KnownOne must all be the same. +/// +/// This returns null if it did not change anything and it permits no +/// simplification. This returns V itself if it did some simplification of V's +/// operands based on the information about what bits are demanded. This returns +/// some other non-null value if it found out that V is equal to another value +/// in the context where the specified bits are demanded, but not for all users. +Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, + APInt &KnownZero, APInt &KnownOne, + unsigned Depth) { + assert(V != 0 && "Null pointer of Value???"); + assert(Depth <= 6 && "Limit Search Depth"); + uint32_t BitWidth = DemandedMask.getBitWidth(); + const Type *VTy = V->getType(); + assert((TD || !isa<PointerType>(VTy)) && + "SimplifyDemandedBits needs to know bit widths!"); + assert((!TD || TD->getTypeSizeInBits(VTy) == BitWidth) && + (!isa<IntegerType>(VTy) || + VTy->getPrimitiveSizeInBits() == BitWidth) && + KnownZero.getBitWidth() == BitWidth && + KnownOne.getBitWidth() == BitWidth && + "Value *V, DemandedMask, KnownZero and KnownOne \ + must have same BitWidth"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + // We know all of the bits for a constant! + KnownOne = CI->getValue() & DemandedMask; + KnownZero = ~KnownOne & DemandedMask; + return 0; + } + if (isa<ConstantPointerNull>(V)) { + // We know all of the bits for a constant! + KnownOne.clear(); + KnownZero = DemandedMask; + return 0; + } + + KnownZero.clear(); + KnownOne.clear(); + if (DemandedMask == 0) { // Not demanding any bits from V. + if (isa<UndefValue>(V)) + return 0; + return UndefValue::get(VTy); + } + + if (Depth == 6) // Limit search depth. + return 0; + + APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); + APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne; + + Instruction *I = dyn_cast<Instruction>(V); + if (!I) { + ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); + return 0; // Only analyze instructions. + } + + // If there are multiple uses of this value and we aren't at the root, then + // we can't do any simplifications of the operands, because DemandedMask + // only reflects the bits demanded by *one* of the users. + if (Depth != 0 && !I->hasOneUse()) { + // Despite the fact that we can't simplify this instruction in all User's + // context, we can at least compute the knownzero/knownone bits, and we can + // do simplifications that apply to *just* the one user if we know that + // this instruction has a simpler value in that context. + if (I->getOpcode() == Instruction::And) { + // If either the LHS or the RHS are Zero, the result is zero. + ComputeMaskedBits(I->getOperand(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1); + ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero, + LHSKnownZero, LHSKnownOne, Depth+1); + + // If all of the demanded bits are known 1 on one side, return the other. + // These bits cannot contribute to the result of the 'and' in this + // context. + if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == + (DemandedMask & ~LHSKnownZero)) + return I->getOperand(0); + if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == + (DemandedMask & ~RHSKnownZero)) + return I->getOperand(1); + + // If all of the demanded bits in the inputs are known zeros, return zero. + if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) + return Constant::getNullValue(VTy); + + } else if (I->getOpcode() == Instruction::Or) { + // We can simplify (X|Y) -> X or Y in the user's context if we know that + // only bits from X or Y are demanded. + + // If either the LHS or the RHS are One, the result is One. + ComputeMaskedBits(I->getOperand(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1); + ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, + LHSKnownZero, LHSKnownOne, Depth+1); + + // If all of the demanded bits are known zero on one side, return the + // other. These bits cannot contribute to the result of the 'or' in this + // context. + if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == + (DemandedMask & ~LHSKnownOne)) + return I->getOperand(0); + if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == + (DemandedMask & ~RHSKnownOne)) + return I->getOperand(1); + + // If all of the potentially set bits on one side are known to be set on + // the other side, just use the 'other' side. + if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == + (DemandedMask & (~RHSKnownZero))) + return I->getOperand(0); + if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == + (DemandedMask & (~LHSKnownZero))) + return I->getOperand(1); + } + + // Compute the KnownZero/KnownOne bits to simplify things downstream. + ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); + return 0; + } + + // If this is the root being simplified, allow it to have multiple uses, + // just set the DemandedMask to all bits so that we can try to simplify the + // operands. This allows visitTruncInst (for example) to simplify the + // operand of a trunc without duplicating all the logic below. + if (Depth == 0 && !V->hasOneUse()) + DemandedMask = APInt::getAllOnesValue(BitWidth); + + switch (I->getOpcode()) { + default: + ComputeMaskedBits(I, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); + break; + case Instruction::And: + // If either the LHS or the RHS are Zero, the result is zero. + if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known 1 on one side, return the other. + // These bits cannot contribute to the result of the 'and'. + if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == + (DemandedMask & ~LHSKnownZero)) + return I->getOperand(0); + if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == + (DemandedMask & ~RHSKnownZero)) + return I->getOperand(1); + + // If all of the demanded bits in the inputs are known zeros, return zero. + if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) + return Constant::getNullValue(VTy); + + // If the RHS is a constant, see if we can simplify it. + if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) + return I; + + // Output known-1 bits are only known if set in both the LHS & RHS. + RHSKnownOne &= LHSKnownOne; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + RHSKnownZero |= LHSKnownZero; + break; + case Instruction::Or: + // If either the LHS or the RHS are One, the result is One. + if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'or'. + if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == + (DemandedMask & ~LHSKnownOne)) + return I->getOperand(0); + if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == + (DemandedMask & ~RHSKnownOne)) + return I->getOperand(1); + + // If all of the potentially set bits on one side are known to be set on + // the other side, just use the 'other' side. + if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == + (DemandedMask & (~RHSKnownZero))) + return I->getOperand(0); + if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == + (DemandedMask & (~LHSKnownZero))) + return I->getOperand(1); + + // If the RHS is a constant, see if we can simplify it. + if (ShrinkDemandedConstant(I, 1, DemandedMask)) + return I; + + // Output known-0 bits are only known if clear in both the LHS & RHS. + RHSKnownZero &= LHSKnownZero; + // Output known-1 are known to be set if set in either the LHS | RHS. + RHSKnownOne |= LHSKnownOne; + break; + case Instruction::Xor: { + if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'xor'. + if ((DemandedMask & RHSKnownZero) == DemandedMask) + return I->getOperand(0); + if ((DemandedMask & LHSKnownZero) == DemandedMask) + return I->getOperand(1); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) | + (RHSKnownOne & LHSKnownOne); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) | + (RHSKnownOne & LHSKnownZero); + + // If all of the demanded bits are known to be zero on one side or the + // other, turn this into an *inclusive* or. + // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 + if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { + Instruction *Or = + BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), + I->getName()); + return InsertNewInstBefore(Or, *I); + } + + // If all of the demanded bits on one side are known, and all of the set + // bits on that side are also known to be set on the other side, turn this + // into an AND, as we know the bits will be cleared. + // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 + if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { + // all known + if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { + Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask); + Instruction *And = + BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); + return InsertNewInstBefore(And, *I); + } + } + + // If the RHS is a constant, see if we can simplify it. + // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. + if (ShrinkDemandedConstant(I, 1, DemandedMask)) + return I; + + RHSKnownZero = KnownZeroOut; + RHSKnownOne = KnownOneOut; + break; + } + case Instruction::Select: + if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + + // If the operands are constants, see if we can simplify them. + if (ShrinkDemandedConstant(I, 1, DemandedMask) || + ShrinkDemandedConstant(I, 2, DemandedMask)) + return I; + + // Only known if known in both the LHS and RHS. + RHSKnownOne &= LHSKnownOne; + RHSKnownZero &= LHSKnownZero; + break; + case Instruction::Trunc: { + unsigned truncBf = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); + DemandedMask.zext(truncBf); + RHSKnownZero.zext(truncBf); + RHSKnownOne.zext(truncBf); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1)) + return I; + DemandedMask.trunc(BitWidth); + RHSKnownZero.trunc(BitWidth); + RHSKnownOne.trunc(BitWidth); + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + break; + } + case Instruction::BitCast: + if (!I->getOperand(0)->getType()->isInteger()) + return false; // vector->int or fp->int? + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + break; + case Instruction::ZExt: { + // Compute the bits in the result that are not present in the input. + unsigned SrcBitWidth =I->getOperand(0)->getType()->getPrimitiveSizeInBits(); + + DemandedMask.trunc(SrcBitWidth); + RHSKnownZero.trunc(SrcBitWidth); + RHSKnownOne.trunc(SrcBitWidth); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1)) + return I; + DemandedMask.zext(BitWidth); + RHSKnownZero.zext(BitWidth); + RHSKnownOne.zext(BitWidth); + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + // The top bits are known to be zero. + RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); + break; + } + case Instruction::SExt: { + // Compute the bits in the result that are not present in the input. + unsigned SrcBitWidth =I->getOperand(0)->getType()->getPrimitiveSizeInBits(); + + APInt InputDemandedBits = DemandedMask & + APInt::getLowBitsSet(BitWidth, SrcBitWidth); + + APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); + // If any of the sign extended bits are demanded, we know that the sign + // bit is demanded. + if ((NewBits & DemandedMask) != 0) + InputDemandedBits.set(SrcBitWidth-1); + + InputDemandedBits.trunc(SrcBitWidth); + RHSKnownZero.trunc(SrcBitWidth); + RHSKnownOne.trunc(SrcBitWidth); + if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, + RHSKnownZero, RHSKnownOne, Depth+1)) + return I; + InputDemandedBits.zext(BitWidth); + RHSKnownZero.zext(BitWidth); + RHSKnownOne.zext(BitWidth); + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + + // If the input sign bit is known zero, or if the NewBits are not demanded + // convert this into a zero extension. + if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { + // Convert to ZExt cast + CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); + return InsertNewInstBefore(NewCast, *I); + } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set + RHSKnownOne |= NewBits; + } + break; + } + case Instruction::Add: { + // Figure out what the input bits are. If the top bits of the and result + // are not demanded, then the add doesn't demand them from its input + // either. + unsigned NLZ = DemandedMask.countLeadingZeros(); + + // If there is a constant on the RHS, there are a variety of xformations + // we can do. + if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { + // If null, this should be simplified elsewhere. Some of the xforms here + // won't work if the RHS is zero. + if (RHS->isZero()) + break; + + // If the top bit of the output is demanded, demand everything from the + // input. Otherwise, we demand all the input bits except NLZ top bits. + APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); + + // Find information about known zero/one bits in the input. + if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + + // If the RHS of the add has bits set that can't affect the input, reduce + // the constant. + if (ShrinkDemandedConstant(I, 1, InDemandedBits)) + return I; + + // Avoid excess work. + if (LHSKnownZero == 0 && LHSKnownOne == 0) + break; + + // Turn it into OR if input bits are zero. + if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { + Instruction *Or = + BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), + I->getName()); + return InsertNewInstBefore(Or, *I); + } + + // We can say something about the output known-zero and known-one bits, + // depending on potential carries from the input constant and the + // unknowns. For example if the LHS is known to have at most the 0x0F0F0 + // bits set and the RHS constant is 0x01001, then we know we have a known + // one mask of 0x00001 and a known zero mask of 0xE0F0E. + + // To compute this, we first compute the potential carry bits. These are + // the bits which may be modified. I'm not aware of a better way to do + // this scan. + const APInt &RHSVal = RHS->getValue(); + APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); + + // Now that we know which bits have carries, compute the known-1/0 sets. + + // Bits are known one if they are known zero in one operand and one in the + // other, and there is no input carry. + RHSKnownOne = ((LHSKnownZero & RHSVal) | + (LHSKnownOne & ~RHSVal)) & ~CarryBits; + + // Bits are known zero if they are known zero in both operands and there + // is no input carry. + RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; + } else { + // If the high-bits of this ADD are not demanded, then it does not demand + // the high bits of its LHS or RHS. + if (DemandedMask[BitWidth-1] == 0) { + // Right fill the mask of bits for this ADD to demand the most + // significant bit and all those below it. + APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, + LHSKnownZero, LHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + } + } + break; + } + case Instruction::Sub: + // If the high-bits of this SUB are not demanded, then it does not demand + // the high bits of its LHS or RHS. + if (DemandedMask[BitWidth-1] == 0) { + // Right fill the mask of bits for this SUB to demand the most + // significant bit and all those below it. + uint32_t NLZ = DemandedMask.countLeadingZeros(); + APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, + LHSKnownZero, LHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + } + // Otherwise just hand the sub off to ComputeMaskedBits to fill in + // the known zeros and ones. + ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); + break; + case Instruction::Shl: + if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); + APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, + RHSKnownZero, RHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + RHSKnownZero <<= ShiftAmt; + RHSKnownOne <<= ShiftAmt; + // low bits known zero. + if (ShiftAmt) + RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); + } + break; + case Instruction::LShr: + // For a logical shift right + if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); + + // Unsigned shift right. + APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, + RHSKnownZero, RHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt); + RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt); + if (ShiftAmt) { + // Compute the new bits that are at the top now. + APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); + RHSKnownZero |= HighBits; // high bits known zero. + } + } + break; + case Instruction::AShr: + // If this is an arithmetic shift right and only the low-bit is set, we can + // always convert this into a logical shr, even if the shift amount is + // variable. The low bit of the shift cannot be an input sign bit unless + // the shift amount is >= the size of the datatype, which is undefined. + if (DemandedMask == 1) { + // Perform the logical shift right. + Instruction *NewVal = BinaryOperator::CreateLShr( + I->getOperand(0), I->getOperand(1), I->getName()); + return InsertNewInstBefore(NewVal, *I); + } + + // If the sign bit is the only bit demanded by this ashr, then there is no + // need to do it, the shift doesn't change the high bit. + if (DemandedMask.isSignBit()) + return I->getOperand(0); + + if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint32_t ShiftAmt = SA->getLimitedValue(BitWidth); + + // Signed shift right. + APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); + // If any of the "high bits" are demanded, we should set the sign bit as + // demanded. + if (DemandedMask.countLeadingZeros() <= ShiftAmt) + DemandedMaskIn.set(BitWidth-1); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, + RHSKnownZero, RHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + // Compute the new bits that are at the top now. + APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); + RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt); + RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt); + + // Handle the sign bits. + APInt SignBit(APInt::getSignBit(BitWidth)); + // Adjust to where it is now in the mask. + SignBit = APIntOps::lshr(SignBit, ShiftAmt); + + // If the input sign bit is known to be zero, or if none of the top bits + // are demanded, turn this into an unsigned shift right. + if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] || + (HighBits & ~DemandedMask) == HighBits) { + // Perform the logical shift right. + Instruction *NewVal = BinaryOperator::CreateLShr( + I->getOperand(0), SA, I->getName()); + return InsertNewInstBefore(NewVal, *I); + } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one. + RHSKnownOne |= HighBits; + } + } + break; + case Instruction::SRem: + if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { + APInt RA = Rem->getValue().abs(); + if (RA.isPowerOf2()) { + if (DemandedMask.ule(RA)) // srem won't affect demanded bits + return I->getOperand(0); + + APInt LowBits = RA - 1; + APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); + if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + + if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) + LHSKnownZero |= ~LowBits; + + KnownZero |= LHSKnownZero & DemandedMask; + + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + } + } + break; + case Instruction::URem: { + APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); + APInt AllOnes = APInt::getAllOnesValue(BitWidth); + if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, + KnownZero2, KnownOne2, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(1), AllOnes, + KnownZero2, KnownOne2, Depth+1)) + return I; + + unsigned Leaders = KnownZero2.countLeadingOnes(); + Leaders = std::max(Leaders, + KnownZero2.countLeadingOnes()); + KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; + break; + } + case Instruction::Call: + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::bswap: { + // If the only bits demanded come from one byte of the bswap result, + // just shift the input byte into position to eliminate the bswap. + unsigned NLZ = DemandedMask.countLeadingZeros(); + unsigned NTZ = DemandedMask.countTrailingZeros(); + + // Round NTZ down to the next byte. If we have 11 trailing zeros, then + // we need all the bits down to bit 8. Likewise, round NLZ. If we + // have 14 leading zeros, round to 8. + NLZ &= ~7; + NTZ &= ~7; + // If we need exactly one byte, we can do this transformation. + if (BitWidth-NLZ-NTZ == 8) { + unsigned ResultBit = NTZ; + unsigned InputBit = BitWidth-NTZ-8; + + // Replace this with either a left or right shift to get the byte into + // the right place. + Instruction *NewVal; + if (InputBit > ResultBit) + NewVal = BinaryOperator::CreateLShr(I->getOperand(1), + ConstantInt::get(I->getType(), InputBit-ResultBit)); + else + NewVal = BinaryOperator::CreateShl(I->getOperand(1), + ConstantInt::get(I->getType(), ResultBit-InputBit)); + NewVal->takeName(I); + return InsertNewInstBefore(NewVal, *I); + } + + // TODO: Could compute known zero/one bits based on the input. + break; + } + } + } + ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth); + break; + } + + // If the client is only demanding bits that we know, return the known + // constant. + if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { + Constant *C = ConstantInt::get(RHSKnownOne); + if (isa<PointerType>(V->getType())) + C = ConstantExpr::getIntToPtr(C, V->getType()); + return C; + } + return false; +} + + +/// SimplifyDemandedVectorElts - The specified value produces a vector with +/// any number of elements. DemandedElts contains the set of elements that are +/// actually used by the caller. This method analyzes which elements of the +/// operand are undef and returns that information in UndefElts. +/// +/// If the information about demanded elements can be used to simplify the +/// operation, the operation is simplified, then the resultant value is +/// returned. This returns null if no change was made. +Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, + APInt& UndefElts, + unsigned Depth) { + unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); + APInt EltMask(APInt::getAllOnesValue(VWidth)); + assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); + + if (isa<UndefValue>(V)) { + // If the entire vector is undefined, just return this info. + UndefElts = EltMask; + return 0; + } else if (DemandedElts == 0) { // If nothing is demanded, provide undef. + UndefElts = EltMask; + return UndefValue::get(V->getType()); + } + + UndefElts = 0; + if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) { + const Type *EltTy = cast<VectorType>(V->getType())->getElementType(); + Constant *Undef = UndefValue::get(EltTy); + + std::vector<Constant*> Elts; + for (unsigned i = 0; i != VWidth; ++i) + if (!DemandedElts[i]) { // If not demanded, set to undef. + Elts.push_back(Undef); + UndefElts.set(i); + } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef. + Elts.push_back(Undef); + UndefElts.set(i); + } else { // Otherwise, defined. + Elts.push_back(CP->getOperand(i)); + } + + // If we changed the constant, return it. + Constant *NewCP = ConstantVector::get(Elts); + return NewCP != CP ? NewCP : 0; + } else if (isa<ConstantAggregateZero>(V)) { + // Simplify the CAZ to a ConstantVector where the non-demanded elements are + // set to undef. + + // Check if this is identity. If so, return 0 since we are not simplifying + // anything. + if (DemandedElts == ((1ULL << VWidth) -1)) + return 0; + + const Type *EltTy = cast<VectorType>(V->getType())->getElementType(); + Constant *Zero = Constant::getNullValue(EltTy); + Constant *Undef = UndefValue::get(EltTy); + std::vector<Constant*> Elts; + for (unsigned i = 0; i != VWidth; ++i) { + Constant *Elt = DemandedElts[i] ? Zero : Undef; + Elts.push_back(Elt); + } + UndefElts = DemandedElts ^ EltMask; + return ConstantVector::get(Elts); + } + + // Limit search depth. + if (Depth == 10) + return 0; + + // If multiple users are using the root value, procede with + // simplification conservatively assuming that all elements + // are needed. + if (!V->hasOneUse()) { + // Quit if we find multiple users of a non-root value though. + // They'll be handled when it's their turn to be visited by + // the main instcombine process. + if (Depth != 0) + // TODO: Just compute the UndefElts information recursively. + return 0; + + // Conservatively assume that all elements are needed. + DemandedElts = EltMask; + } + + Instruction *I = dyn_cast<Instruction>(V); + if (!I) return 0; // Only analyze instructions. + + bool MadeChange = false; + APInt UndefElts2(VWidth, 0); + Value *TmpV; + switch (I->getOpcode()) { + default: break; + + case Instruction::InsertElement: { + // If this is a variable index, we don't know which element it overwrites. + // demand exactly the same input as we produce. + ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); + if (Idx == 0) { + // Note that we can't propagate undef elt info, because we don't know + // which elt is getting updated. + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, + UndefElts2, Depth+1); + if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } + break; + } + + // If this is inserting an element that isn't demanded, remove this + // insertelement. + unsigned IdxNo = Idx->getZExtValue(); + if (IdxNo >= VWidth || !DemandedElts[IdxNo]) + return AddSoonDeadInstToWorklist(*I, 0); + + // Otherwise, the element inserted overwrites whatever was there, so the + // input demanded set is simpler than the output set. + APInt DemandedElts2 = DemandedElts; + DemandedElts2.clear(IdxNo); + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, + UndefElts, Depth+1); + if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } + + // The inserted element is defined. + UndefElts.clear(IdxNo); + break; + } + case Instruction::ShuffleVector: { + ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); + uint64_t LHSVWidth = + cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); + APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); + for (unsigned i = 0; i < VWidth; i++) { + if (DemandedElts[i]) { + unsigned MaskVal = Shuffle->getMaskValue(i); + if (MaskVal != -1u) { + assert(MaskVal < LHSVWidth * 2 && + "shufflevector mask index out of range!"); + if (MaskVal < LHSVWidth) + LeftDemanded.set(MaskVal); + else + RightDemanded.set(MaskVal - LHSVWidth); + } + } + } + + APInt UndefElts4(LHSVWidth, 0); + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, + UndefElts4, Depth+1); + if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } + + APInt UndefElts3(LHSVWidth, 0); + TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, + UndefElts3, Depth+1); + if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } + + bool NewUndefElts = false; + for (unsigned i = 0; i < VWidth; i++) { + unsigned MaskVal = Shuffle->getMaskValue(i); + if (MaskVal == -1u) { + UndefElts.set(i); + } else if (MaskVal < LHSVWidth) { + if (UndefElts4[MaskVal]) { + NewUndefElts = true; + UndefElts.set(i); + } + } else { + if (UndefElts3[MaskVal - LHSVWidth]) { + NewUndefElts = true; + UndefElts.set(i); + } + } + } + + if (NewUndefElts) { + // Add additional discovered undefs. + std::vector<Constant*> Elts; + for (unsigned i = 0; i < VWidth; ++i) { + if (UndefElts[i]) + Elts.push_back(UndefValue::get(Type::Int32Ty)); + else + Elts.push_back(ConstantInt::get(Type::Int32Ty, + Shuffle->getMaskValue(i))); + } + I->setOperand(2, ConstantVector::get(Elts)); + MadeChange = true; + } + break; + } + case Instruction::BitCast: { + // Vector->vector casts only. + const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); + if (!VTy) break; + unsigned InVWidth = VTy->getNumElements(); + APInt InputDemandedElts(InVWidth, 0); + unsigned Ratio; + + if (VWidth == InVWidth) { + // If we are converting from <4 x i32> -> <4 x f32>, we demand the same + // elements as are demanded of us. + Ratio = 1; + InputDemandedElts = DemandedElts; + } else if (VWidth > InVWidth) { + // Untested so far. + break; + + // If there are more elements in the result than there are in the source, + // then an input element is live if any of the corresponding output + // elements are live. + Ratio = VWidth/InVWidth; + for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { + if (DemandedElts[OutIdx]) + InputDemandedElts.set(OutIdx/Ratio); + } + } else { + // Untested so far. + break; + + // If there are more elements in the source than there are in the result, + // then an input element is live if the corresponding output element is + // live. + Ratio = InVWidth/VWidth; + for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) + if (DemandedElts[InIdx/Ratio]) + InputDemandedElts.set(InIdx); + } + + // div/rem demand all inputs, because they don't want divide by zero. + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, + UndefElts2, Depth+1); + if (TmpV) { + I->setOperand(0, TmpV); + MadeChange = true; + } + + UndefElts = UndefElts2; + if (VWidth > InVWidth) { + assert(0 && "Unimp"); + // If there are more elements in the result than there are in the source, + // then an output element is undef if the corresponding input element is + // undef. + for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) + if (UndefElts2[OutIdx/Ratio]) + UndefElts.set(OutIdx); + } else if (VWidth < InVWidth) { + assert(0 && "Unimp"); + // If there are more elements in the source than there are in the result, + // then a result element is undef if all of the corresponding input + // elements are undef. + UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. + for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) + if (!UndefElts2[InIdx]) // Not undef? + UndefElts.clear(InIdx/Ratio); // Clear undef bit. + } + break; + } + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + // div/rem demand all inputs, because they don't want divide by zero. + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, + UndefElts, Depth+1); + if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } + TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, + UndefElts2, Depth+1); + if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } + + // Output elements are undefined if both are undefined. Consider things + // like undef&0. The result is known zero, not undef. + UndefElts &= UndefElts2; + break; + + case Instruction::Call: { + IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); + if (!II) break; + switch (II->getIntrinsicID()) { + default: break; + + // Binary vector operations that work column-wise. A dest element is a + // function of the corresponding input elements from the two inputs. + case Intrinsic::x86_sse_sub_ss: + case Intrinsic::x86_sse_mul_ss: + case Intrinsic::x86_sse_min_ss: + case Intrinsic::x86_sse_max_ss: + case Intrinsic::x86_sse2_sub_sd: + case Intrinsic::x86_sse2_mul_sd: + case Intrinsic::x86_sse2_min_sd: + case Intrinsic::x86_sse2_max_sd: + TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, + UndefElts, Depth+1); + if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; } + TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts, + UndefElts2, Depth+1); + if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; } + + // If only the low elt is demanded and this is a scalarizable intrinsic, + // scalarize it now. + if (DemandedElts == 1) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::x86_sse_sub_ss: + case Intrinsic::x86_sse_mul_ss: + case Intrinsic::x86_sse2_sub_sd: + case Intrinsic::x86_sse2_mul_sd: + // TODO: Lower MIN/MAX/ABS/etc + Value *LHS = II->getOperand(1); + Value *RHS = II->getOperand(2); + // Extract the element as scalars. + LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II); + RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II); + + switch (II->getIntrinsicID()) { + default: assert(0 && "Case stmts out of sync!"); + case Intrinsic::x86_sse_sub_ss: + case Intrinsic::x86_sse2_sub_sd: + TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS, + II->getName()), *II); + break; + case Intrinsic::x86_sse_mul_ss: + case Intrinsic::x86_sse2_mul_sd: + TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS, + II->getName()), *II); + break; + } + + Instruction *New = + InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U, + II->getName()); + InsertNewInstBefore(New, *II); + AddSoonDeadInstToWorklist(*II, 0); + return New; + } + } + + // Output elements are undefined if both are undefined. Consider things + // like undef&0. The result is known zero, not undef. + UndefElts &= UndefElts2; + break; + } + break; + } + } + return MadeChange ? I : 0; +} + + +/// AssociativeOpt - Perform an optimization on an associative operator. This +/// function is designed to check a chain of associative operators for a +/// potential to apply a certain optimization. Since the optimization may be +/// applicable if the expression was reassociated, this checks the chain, then +/// reassociates the expression as necessary to expose the optimization +/// opportunity. This makes use of a special Functor, which must define +/// 'shouldApply' and 'apply' methods. +/// +template<typename Functor> +static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) { + unsigned Opcode = Root.getOpcode(); + Value *LHS = Root.getOperand(0); + + // Quick check, see if the immediate LHS matches... + if (F.shouldApply(LHS)) + return F.apply(Root); + + // Otherwise, if the LHS is not of the same opcode as the root, return. + Instruction *LHSI = dyn_cast<Instruction>(LHS); + while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) { + // Should we apply this transform to the RHS? + bool ShouldApply = F.shouldApply(LHSI->getOperand(1)); + + // If not to the RHS, check to see if we should apply to the LHS... + if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) { + cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS + ShouldApply = true; + } + + // If the functor wants to apply the optimization to the RHS of LHSI, + // reassociate the expression from ((? op A) op B) to (? op (A op B)) + if (ShouldApply) { + // Now all of the instructions are in the current basic block, go ahead + // and perform the reassociation. + Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0)); + + // First move the selected RHS to the LHS of the root... + Root.setOperand(0, LHSI->getOperand(1)); + + // Make what used to be the LHS of the root be the user of the root... + Value *ExtraOperand = TmpLHSI->getOperand(1); + if (&Root == TmpLHSI) { + Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType())); + return 0; + } + Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI + TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root + BasicBlock::iterator ARI = &Root; ++ARI; + TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root + ARI = Root; + + // Now propagate the ExtraOperand down the chain of instructions until we + // get to LHSI. + while (TmpLHSI != LHSI) { + Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0)); + // Move the instruction to immediately before the chain we are + // constructing to avoid breaking dominance properties. + NextLHSI->moveBefore(ARI); + ARI = NextLHSI; + + Value *NextOp = NextLHSI->getOperand(1); + NextLHSI->setOperand(1, ExtraOperand); + TmpLHSI = NextLHSI; + ExtraOperand = NextOp; + } + + // Now that the instructions are reassociated, have the functor perform + // the transformation... + return F.apply(Root); + } + + LHSI = dyn_cast<Instruction>(LHSI->getOperand(0)); + } + return 0; +} + +namespace { + +// AddRHS - Implements: X + X --> X << 1 +struct AddRHS { + Value *RHS; + AddRHS(Value *rhs) : RHS(rhs) {} + bool shouldApply(Value *LHS) const { return LHS == RHS; } + Instruction *apply(BinaryOperator &Add) const { + return BinaryOperator::CreateShl(Add.getOperand(0), + ConstantInt::get(Add.getType(), 1)); + } +}; + +// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2) +// iff C1&C2 == 0 +struct AddMaskingAnd { + Constant *C2; + AddMaskingAnd(Constant *c) : C2(c) {} + bool shouldApply(Value *LHS) const { + ConstantInt *C1; + return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && + ConstantExpr::getAnd(C1, C2)->isNullValue(); + } + Instruction *apply(BinaryOperator &Add) const { + return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1)); + } +}; + +} + +static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, + InstCombiner *IC) { + if (CastInst *CI = dyn_cast<CastInst>(&I)) { + return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I); + } + + // Figure out if the constant is the left or the right argument. + bool ConstIsRHS = isa<Constant>(I.getOperand(1)); + Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); + + if (Constant *SOC = dyn_cast<Constant>(SO)) { + if (ConstIsRHS) + return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); + return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); + } + + Value *Op0 = SO, *Op1 = ConstOperand; + if (!ConstIsRHS) + std::swap(Op0, Op1); + Instruction *New; + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) + New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op"); + else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) + New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1, + SO->getName()+".cmp"); + else { + assert(0 && "Unknown binary instruction type!"); + abort(); + } + return IC->InsertNewInstBefore(New, I); +} + +// FoldOpIntoSelect - Given an instruction with a select as one operand and a +// constant as the other operand, try to fold the binary operator into the +// select arguments. This also works for Cast instructions, which obviously do +// not have a second operand. +static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI, + InstCombiner *IC) { + // Don't modify shared select instructions + if (!SI->hasOneUse()) return 0; + Value *TV = SI->getOperand(1); + Value *FV = SI->getOperand(2); + + if (isa<Constant>(TV) || isa<Constant>(FV)) { + // Bool selects with constant operands can be folded to logical ops. + if (SI->getType() == Type::Int1Ty) return 0; + + Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC); + Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC); + + return SelectInst::Create(SI->getCondition(), SelectTrueVal, + SelectFalseVal); + } + return 0; +} + + +/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI +/// node as operand #0, see if we can fold the instruction into the PHI (which +/// is only possible if all operands to the PHI are constants). +Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { + PHINode *PN = cast<PHINode>(I.getOperand(0)); + unsigned NumPHIValues = PN->getNumIncomingValues(); + if (!PN->hasOneUse() || NumPHIValues == 0) return 0; + + // Check to see if all of the operands of the PHI are constants. If there is + // one non-constant value, remember the BB it is. If there is more than one + // or if *it* is a PHI, bail out. + BasicBlock *NonConstBB = 0; + for (unsigned i = 0; i != NumPHIValues; ++i) + if (!isa<Constant>(PN->getIncomingValue(i))) { + if (NonConstBB) return 0; // More than one non-const value. + if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi. + NonConstBB = PN->getIncomingBlock(i); + + // If the incoming non-constant value is in I's block, we have an infinite + // loop. + if (NonConstBB == I.getParent()) + return 0; + } + + // If there is exactly one non-constant value, we can insert a copy of the + // operation in that block. However, if this is a critical edge, we would be + // inserting the computation one some other paths (e.g. inside a loop). Only + // do this if the pred block is unconditionally branching into the phi block. + if (NonConstBB) { + BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); + if (!BI || !BI->isUnconditional()) return 0; + } + + // Okay, we can do the transformation: create the new PHI node. + PHINode *NewPN = PHINode::Create(I.getType(), ""); + NewPN->reserveOperandSpace(PN->getNumOperands()/2); + InsertNewInstBefore(NewPN, *PN); + NewPN->takeName(PN); + + // Next, add all of the operands to the PHI. + if (I.getNumOperands() == 2) { + Constant *C = cast<Constant>(I.getOperand(1)); + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InV = 0; + if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { + if (CmpInst *CI = dyn_cast<CmpInst>(&I)) + InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); + else + InV = ConstantExpr::get(I.getOpcode(), InC, C); + } else { + assert(PN->getIncomingBlock(i) == NonConstBB); + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) + InV = BinaryOperator::Create(BO->getOpcode(), + PN->getIncomingValue(i), C, "phitmp", + NonConstBB->getTerminator()); + else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) + InV = CmpInst::Create(CI->getOpcode(), + CI->getPredicate(), + PN->getIncomingValue(i), C, "phitmp", + NonConstBB->getTerminator()); + else + assert(0 && "Unknown binop!"); + + AddToWorkList(cast<Instruction>(InV)); + } + NewPN->addIncoming(InV, PN->getIncomingBlock(i)); + } + } else { + CastInst *CI = cast<CastInst>(&I); + const Type *RetTy = CI->getType(); + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InV; + if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { + InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); + } else { + assert(PN->getIncomingBlock(i) == NonConstBB); + InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), + I.getType(), "phitmp", + NonConstBB->getTerminator()); + AddToWorkList(cast<Instruction>(InV)); + } + NewPN->addIncoming(InV, PN->getIncomingBlock(i)); + } + } + return ReplaceInstUsesWith(I, NewPN); +} + + +/// WillNotOverflowSignedAdd - Return true if we can prove that: +/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) +/// This basically requires proving that the add in the original type would not +/// overflow to change the sign bit or have a carry out. +bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { + // There are different heuristics we can use for this. Here are some simple + // ones. + + // Add has the property that adding any two 2's complement numbers can only + // have one carry bit which can change a sign. As such, if LHS and RHS each + // have at least two sign bits, we know that the addition of the two values will + // sign extend fine. + if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) + return true; + + + // If one of the operands only has one non-zero bit, and if the other operand + // has a known-zero bit in a more significant place than it (not including the + // sign bit) the ripple may go up to and fill the zero, but won't change the + // sign. For example, (X & ~4) + 1. + + // TODO: Implement. + + return false; +} + + +Instruction *InstCombiner::visitAdd(BinaryOperator &I) { + bool Changed = SimplifyCommutative(I); + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + + if (Constant *RHSC = dyn_cast<Constant>(RHS)) { + // X + undef -> undef + if (isa<UndefValue>(RHS)) + return ReplaceInstUsesWith(I, RHS); + + // X + 0 --> X + if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0. + if (RHSC->isNullValue()) + return ReplaceInstUsesWith(I, LHS); + } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { + if (CFP->isExactlyValue(ConstantFP::getNegativeZero + (I.getType())->getValueAPF())) + return ReplaceInstUsesWith(I, LHS); + } + + if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) { + // X + (signbit) --> X ^ signbit + const APInt& Val = CI->getValue(); + uint32_t BitWidth = Val.getBitWidth(); + if (Val == APInt::getSignBit(BitWidth)) + return BinaryOperator::CreateXor(LHS, RHS); + + // See if SimplifyDemandedBits can simplify this. This handles stuff like + // (X & 254)+1 -> (X&254)|1 + if (!isa<VectorType>(I.getType()) && SimplifyDemandedInstructionBits(I)) + return &I; + + // zext(i1) - 1 -> select i1, 0, -1 + if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) + if (CI->isAllOnesValue() && + ZI->getOperand(0)->getType() == Type::Int1Ty) + return SelectInst::Create(ZI->getOperand(0), + Constant::getNullValue(I.getType()), + ConstantInt::getAllOnesValue(I.getType())); + } + + if (isa<PHINode>(LHS)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + + ConstantInt *XorRHS = 0; + Value *XorLHS = 0; + if (isa<ConstantInt>(RHSC) && + match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { + uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits(); + const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue(); + + uint32_t Size = TySizeBits / 2; + APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1)); + APInt CFF80Val(-C0080Val); + do { + if (TySizeBits > Size) { + // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. + // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. + if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) || + (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) { + // This is a sign extend if the top bits are known zero. + if (!MaskedValueIsZero(XorLHS, + APInt::getHighBitsSet(TySizeBits, TySizeBits - Size))) + Size = 0; // Not a sign ext, but can't be any others either. + break; + } + } + Size >>= 1; + C0080Val = APIntOps::lshr(C0080Val, Size); + CFF80Val = APIntOps::ashr(CFF80Val, Size); + } while (Size >= 1); + + // FIXME: This shouldn't be necessary. When the backends can handle types + // with funny bit widths then this switch statement should be removed. It + // is just here to get the size of the "middle" type back up to something + // that the back ends can handle. + const Type *MiddleType = 0; + switch (Size) { + default: break; + case 32: MiddleType = Type::Int32Ty; break; + case 16: MiddleType = Type::Int16Ty; break; + case 8: MiddleType = Type::Int8Ty; break; + } + if (MiddleType) { + Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext"); + InsertNewInstBefore(NewTrunc, I); + return new SExtInst(NewTrunc, I.getType(), I.getName()); + } + } + } + + if (I.getType() == Type::Int1Ty) + return BinaryOperator::CreateXor(LHS, RHS); + + // X + X --> X << 1 + if (I.getType()->isInteger()) { + if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result; + + if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) { + if (RHSI->getOpcode() == Instruction::Sub) + if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B + return ReplaceInstUsesWith(I, RHSI->getOperand(0)); + } + if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) { + if (LHSI->getOpcode() == Instruction::Sub) + if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B + return ReplaceInstUsesWith(I, LHSI->getOperand(0)); + } + } + + // -A + B --> B - A + // -A + -B --> -(A + B) + if (Value *LHSV = dyn_castNegVal(LHS)) { + if (LHS->getType()->isIntOrIntVector()) { + if (Value *RHSV = dyn_castNegVal(RHS)) { + Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum"); + InsertNewInstBefore(NewAdd, I); + return BinaryOperator::CreateNeg(NewAdd); + } + } + + return BinaryOperator::CreateSub(RHS, LHSV); + } + + // A + -B --> A - B + if (!isa<Constant>(RHS)) + if (Value *V = dyn_castNegVal(RHS)) + return BinaryOperator::CreateSub(LHS, V); + + + ConstantInt *C2; + if (Value *X = dyn_castFoldableMul(LHS, C2)) { + if (X == RHS) // X*C + X --> X * (C+1) + return BinaryOperator::CreateMul(RHS, AddOne(C2)); + + // X*C1 + X*C2 --> X * (C1+C2) + ConstantInt *C1; + if (X == dyn_castFoldableMul(RHS, C1)) + return BinaryOperator::CreateMul(X, Add(C1, C2)); + } + + // X + X*C --> X * (C+1) + if (dyn_castFoldableMul(RHS, C2) == LHS) + return BinaryOperator::CreateMul(LHS, AddOne(C2)); + + // X + ~X --> -1 since ~X = -X-1 + if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS) + return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); + + + // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0 + if (match(RHS, m_And(m_Value(), m_ConstantInt(C2)))) + if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) + return R; + + // A+B --> A|B iff A and B have no bits set in common. + if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { + APInt Mask = APInt::getAllOnesValue(IT->getBitWidth()); + APInt LHSKnownOne(IT->getBitWidth(), 0); + APInt LHSKnownZero(IT->getBitWidth(), 0); + ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); + if (LHSKnownZero != 0) { + APInt RHSKnownOne(IT->getBitWidth(), 0); + APInt RHSKnownZero(IT->getBitWidth(), 0); + ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); + + // No bits in common -> bitwise or. + if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) + return BinaryOperator::CreateOr(LHS, RHS); + } + } + + // W*X + Y*Z --> W * (X+Z) iff W == Y + if (I.getType()->isIntOrIntVector()) { + Value *W, *X, *Y, *Z; + if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && + match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { + if (W != Y) { + if (W == Z) { + std::swap(Y, Z); + } else if (Y == X) { + std::swap(W, X); + } else if (X == Z) { + std::swap(Y, Z); + std::swap(W, X); + } + } + + if (W == Y) { + Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z, + LHS->getName()), I); + return BinaryOperator::CreateMul(W, NewAdd); + } + } + } + + if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { + Value *X = 0; + if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X + return BinaryOperator::CreateSub(SubOne(CRHS), X); + + // (X & FF00) + xx00 -> (X+xx00) & FF00 + if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { + Constant *Anded = And(CRHS, C2); + if (Anded == CRHS) { + // See if all bits from the first bit set in the Add RHS up are included + // in the mask. First, get the rightmost bit. + const APInt& AddRHSV = CRHS->getValue(); + + // Form a mask of all bits from the lowest bit added through the top. + APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); + + // See if the and mask includes all of these bits. + APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); + + if (AddRHSHighBits == AddRHSHighBitsAnd) { + // Okay, the xform is safe. Insert the new add pronto. + Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS, + LHS->getName()), I); + return BinaryOperator::CreateAnd(NewAdd, C2); + } + } + } + + // Try to fold constant add into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + } + + // add (cast *A to intptrtype) B -> + // cast (GEP (cast *A to sbyte*) B) --> intptrtype + { + CastInst *CI = dyn_cast<CastInst>(LHS); + Value *Other = RHS; + if (!CI) { + CI = dyn_cast<CastInst>(RHS); + Other = LHS; + } + if (CI && CI->getType()->isSized() && + (CI->getType()->getPrimitiveSizeInBits() == + TD->getIntPtrType()->getPrimitiveSizeInBits()) + && isa<PointerType>(CI->getOperand(0)->getType())) { + unsigned AS = + cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace(); + Value *I2 = InsertBitCastBefore(CI->getOperand(0), + PointerType::get(Type::Int8Ty, AS), I); + I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I); + return new PtrToIntInst(I2, CI->getType()); + } + } + + // add (select X 0 (sub n A)) A --> select X A n + { + SelectInst *SI = dyn_cast<SelectInst>(LHS); + Value *A = RHS; + if (!SI) { + SI = dyn_cast<SelectInst>(RHS); + A = LHS; + } + if (SI && SI->hasOneUse()) { + Value *TV = SI->getTrueValue(); + Value *FV = SI->getFalseValue(); + Value *N; + + // Can we fold the add into the argument of the select? + // We check both true and false select arguments for a matching subtract. + if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) + // Fold the add into the true select value. + return SelectInst::Create(SI->getCondition(), N, A); + if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) + // Fold the add into the false select value. + return SelectInst::Create(SI->getCondition(), A, N); + } + } + + // Check for X+0.0. Simplify it to X if we know X is not -0.0. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) + if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) + return ReplaceInstUsesWith(I, LHS); + + // Check for (add (sext x), y), see if we can merge this into an + // integer add followed by a sext. + if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { + // (add (sext x), cst) --> (sext (add x, cst')) + if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { + Constant *CI = + ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); + if (LHSConv->hasOneUse() && + ConstantExpr::getSExt(CI, I.getType()) == RHSC && + WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { + // Insert the new, smaller add. + Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0), + CI, "addconv"); + InsertNewInstBefore(NewAdd, I); + return new SExtInst(NewAdd, I.getType()); + } + } + + // (add (sext x), (sext y)) --> (sext (add int x, y)) + if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { + // Only do this if x/y have the same type, if at last one of them has a + // single use (so we don't increase the number of sexts), and if the + // integer add will not overflow. + if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& + (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && + WillNotOverflowSignedAdd(LHSConv->getOperand(0), + RHSConv->getOperand(0))) { + // Insert the new integer add. + Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0), + RHSConv->getOperand(0), + "addconv"); + InsertNewInstBefore(NewAdd, I); + return new SExtInst(NewAdd, I.getType()); + } + } + } + + // Check for (add double (sitofp x), y), see if we can merge this into an + // integer add followed by a promotion. + if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { + // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) + // ... if the constant fits in the integer value. This is useful for things + // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer + // requires a constant pool load, and generally allows the add to be better + // instcombined. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { + Constant *CI = + ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); + if (LHSConv->hasOneUse() && + ConstantExpr::getSIToFP(CI, I.getType()) == CFP && + WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { + // Insert the new integer add. + Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0), + CI, "addconv"); + InsertNewInstBefore(NewAdd, I); + return new SIToFPInst(NewAdd, I.getType()); + } + } + + // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) + if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { + // Only do this if x/y have the same type, if at last one of them has a + // single use (so we don't increase the number of int->fp conversions), + // and if the integer add will not overflow. + if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& + (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && + WillNotOverflowSignedAdd(LHSConv->getOperand(0), + RHSConv->getOperand(0))) { + // Insert the new integer add. + Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0), + RHSConv->getOperand(0), + "addconv"); + InsertNewInstBefore(NewAdd, I); + return new SIToFPInst(NewAdd, I.getType()); + } + } + } + + return Changed ? &I : 0; +} + +Instruction *InstCombiner::visitSub(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (Op0 == Op1 && // sub X, X -> 0 + !I.getType()->isFPOrFPVector()) + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + + // If this is a 'B = x-(-A)', change to B = x+A... + if (Value *V = dyn_castNegVal(Op1)) + return BinaryOperator::CreateAdd(Op0, V); + + if (isa<UndefValue>(Op0)) + return ReplaceInstUsesWith(I, Op0); // undef - X -> undef + if (isa<UndefValue>(Op1)) + return ReplaceInstUsesWith(I, Op1); // X - undef -> undef + + if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { + // Replace (-1 - A) with (~A)... + if (C->isAllOnesValue()) + return BinaryOperator::CreateNot(Op1); + + // C - ~X == X + (1+C) + Value *X = 0; + if (match(Op1, m_Not(m_Value(X)))) + return BinaryOperator::CreateAdd(X, AddOne(C)); + + // -(X >>u 31) -> (X >>s 31) + // -(X >>s 31) -> (X >>u 31) + if (C->isZero()) { + if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) { + if (SI->getOpcode() == Instruction::LShr) { + if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { + // Check to see if we are shifting out everything but the sign bit. + if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == + SI->getType()->getPrimitiveSizeInBits()-1) { + // Ok, the transformation is safe. Insert AShr. + return BinaryOperator::Create(Instruction::AShr, + SI->getOperand(0), CU, SI->getName()); + } + } + } + else if (SI->getOpcode() == Instruction::AShr) { + if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { + // Check to see if we are shifting out everything but the sign bit. + if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == + SI->getType()->getPrimitiveSizeInBits()-1) { + // Ok, the transformation is safe. Insert LShr. + return BinaryOperator::CreateLShr( + SI->getOperand(0), CU, SI->getName()); + } + } + } + } + } + + // Try to fold constant sub into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + } + + if (I.getType() == Type::Int1Ty) + return BinaryOperator::CreateXor(Op0, Op1); + + if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { + if (Op1I->getOpcode() == Instruction::Add && + !Op0->getType()->isFPOrFPVector()) { + if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y + return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName()); + else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y + return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName()); + else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) { + if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1))) + // C1-(X+C2) --> (C1-C2)-X + return BinaryOperator::CreateSub(Subtract(CI1, CI2), + Op1I->getOperand(0)); + } + } + + if (Op1I->hasOneUse()) { + // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression + // is not used by anyone else... + // + if (Op1I->getOpcode() == Instruction::Sub && + !Op1I->getType()->isFPOrFPVector()) { + // Swap the two operands of the subexpr... + Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); + Op1I->setOperand(0, IIOp1); + Op1I->setOperand(1, IIOp0); + + // Create the new top level add instruction... + return BinaryOperator::CreateAdd(Op0, Op1); + } + + // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... + // + if (Op1I->getOpcode() == Instruction::And && + (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { + Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); + + Value *NewNot = + InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I); + return BinaryOperator::CreateAnd(Op0, NewNot); + } + + // 0 - (X sdiv C) -> (X sdiv -C) + if (Op1I->getOpcode() == Instruction::SDiv) + if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) + if (CSI->isZero()) + if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1))) + return BinaryOperator::CreateSDiv(Op1I->getOperand(0), + ConstantExpr::getNeg(DivRHS)); + + // X - X*C --> X * (1-C) + ConstantInt *C2 = 0; + if (dyn_castFoldableMul(Op1I, C2) == Op0) { + Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2); + return BinaryOperator::CreateMul(Op0, CP1); + } + } + } + + if (!Op0->getType()->isFPOrFPVector()) + if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { + if (Op0I->getOpcode() == Instruction::Add) { + if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X + return ReplaceInstUsesWith(I, Op0I->getOperand(1)); + else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X + return ReplaceInstUsesWith(I, Op0I->getOperand(0)); + } else if (Op0I->getOpcode() == Instruction::Sub) { + if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y + return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName()); + } + } + + ConstantInt *C1; + if (Value *X = dyn_castFoldableMul(Op0, C1)) { + if (X == Op1) // X*C - X --> X * (C-1) + return BinaryOperator::CreateMul(Op1, SubOne(C1)); + + ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) + if (X == dyn_castFoldableMul(Op1, C2)) + return BinaryOperator::CreateMul(X, Subtract(C1, C2)); + } + return 0; +} + +/// isSignBitCheck - Given an exploded icmp instruction, return true if the +/// comparison only checks the sign bit. If it only checks the sign bit, set +/// TrueIfSigned if the result of the comparison is true when the input value is +/// signed. +static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, + bool &TrueIfSigned) { + switch (pred) { + case ICmpInst::ICMP_SLT: // True if LHS s< 0 + TrueIfSigned = true; + return RHS->isZero(); + case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 + TrueIfSigned = true; + return RHS->isAllOnesValue(); + case ICmpInst::ICMP_SGT: // True if LHS s> -1 + TrueIfSigned = false; + return RHS->isAllOnesValue(); + case ICmpInst::ICMP_UGT: + // True if LHS u> RHS and RHS == high-bit-mask - 1 + TrueIfSigned = true; + return RHS->getValue() == + APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits()); + case ICmpInst::ICMP_UGE: + // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) + TrueIfSigned = true; + return RHS->getValue().isSignBit(); + default: + return false; + } +} + +Instruction *InstCombiner::visitMul(BinaryOperator &I) { + bool Changed = SimplifyCommutative(I); + Value *Op0 = I.getOperand(0); + + if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0 + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + + // Simplify mul instructions with a constant RHS... + if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { + + // ((X << C1)*C2) == (X * (C2 << C1)) + if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0)) + if (SI->getOpcode() == Instruction::Shl) + if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1))) + return BinaryOperator::CreateMul(SI->getOperand(0), + ConstantExpr::getShl(CI, ShOp)); + + if (CI->isZero()) + return ReplaceInstUsesWith(I, Op1); // X * 0 == 0 + if (CI->equalsInt(1)) // X * 1 == X + return ReplaceInstUsesWith(I, Op0); + if (CI->isAllOnesValue()) // X * -1 == 0 - X + return BinaryOperator::CreateNeg(Op0, I.getName()); + + const APInt& Val = cast<ConstantInt>(CI)->getValue(); + if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C + return BinaryOperator::CreateShl(Op0, + ConstantInt::get(Op0->getType(), Val.logBase2())); + } + } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) { + if (Op1F->isNullValue()) + return ReplaceInstUsesWith(I, Op1); + + // "In IEEE floating point, x*1 is not equivalent to x for nans. However, + // ANSI says we can drop signals, so we can do this anyway." (from GCC) + if (Op1F->isExactlyValue(1.0)) + return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0' + } else if (isa<VectorType>(Op1->getType())) { + if (isa<ConstantAggregateZero>(Op1)) + return ReplaceInstUsesWith(I, Op1); + + if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) { + if (Op1V->isAllOnesValue()) // X * -1 == 0 - X + return BinaryOperator::CreateNeg(Op0, I.getName()); + + // As above, vector X*splat(1.0) -> X in all defined cases. + if (Constant *Splat = Op1V->getSplatValue()) { + if (ConstantFP *F = dyn_cast<ConstantFP>(Splat)) + if (F->isExactlyValue(1.0)) + return ReplaceInstUsesWith(I, Op0); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat)) + if (CI->equalsInt(1)) + return ReplaceInstUsesWith(I, Op0); + } + } + } + + if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) + if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() && + isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) { + // Canonicalize (X+C1)*C2 -> X*C2+C1*C2. + Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0), + Op1, "tmp"); + InsertNewInstBefore(Add, I); + Value *C1C2 = ConstantExpr::getMul(Op1, + cast<Constant>(Op0I->getOperand(1))); + return BinaryOperator::CreateAdd(Add, C1C2); + + } + + // Try to fold constant mul into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + + if (isa<PHINode>(Op0)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + } + + if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y + if (Value *Op1v = dyn_castNegVal(I.getOperand(1))) + return BinaryOperator::CreateMul(Op0v, Op1v); + + // (X / Y) * Y = X - (X % Y) + // (X / Y) * -Y = (X % Y) - X + { + Value *Op1 = I.getOperand(1); + BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); + if (!BO || + (BO->getOpcode() != Instruction::UDiv && + BO->getOpcode() != Instruction::SDiv)) { + Op1 = Op0; + BO = dyn_cast<BinaryOperator>(I.getOperand(1)); + } + Value *Neg = dyn_castNegVal(Op1); + if (BO && BO->hasOneUse() && + (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) && + (BO->getOpcode() == Instruction::UDiv || + BO->getOpcode() == Instruction::SDiv)) { + Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); + + Instruction *Rem; + if (BO->getOpcode() == Instruction::UDiv) + Rem = BinaryOperator::CreateURem(Op0BO, Op1BO); + else + Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO); + + InsertNewInstBefore(Rem, I); + Rem->takeName(BO); + + if (Op1BO == Op1) + return BinaryOperator::CreateSub(Op0BO, Rem); + else + return BinaryOperator::CreateSub(Rem, Op0BO); + } + } + + if (I.getType() == Type::Int1Ty) + return BinaryOperator::CreateAnd(Op0, I.getOperand(1)); + + // If one of the operands of the multiply is a cast from a boolean value, then + // we know the bool is either zero or one, so this is a 'masking' multiply. + // See if we can simplify things based on how the boolean was originally + // formed. + CastInst *BoolCast = 0; + if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0)) + if (CI->getOperand(0)->getType() == Type::Int1Ty) + BoolCast = CI; + if (!BoolCast) + if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1))) + if (CI->getOperand(0)->getType() == Type::Int1Ty) + BoolCast = CI; + if (BoolCast) { + if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) { + Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1); + const Type *SCOpTy = SCIOp0->getType(); + bool TIS = false; + + // If the icmp is true iff the sign bit of X is set, then convert this + // multiply into a shift/and combination. + if (isa<ConstantInt>(SCIOp1) && + isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) && + TIS) { + // Shift the X value right to turn it into "all signbits". + Constant *Amt = ConstantInt::get(SCIOp0->getType(), + SCOpTy->getPrimitiveSizeInBits()-1); + Value *V = + InsertNewInstBefore( + BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt, + BoolCast->getOperand(0)->getName()+ + ".mask"), I); + + // If the multiply type is not the same as the source type, sign extend + // or truncate to the multiply type. + if (I.getType() != V->getType()) { + uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits(); + uint32_t DstBits = I.getType()->getPrimitiveSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc)); + V = InsertCastBefore(opcode, V, I.getType(), I); + } + + Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0; + return BinaryOperator::CreateAnd(V, OtherOp); + } + } + } + + return Changed ? &I : 0; +} + +/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select +/// instruction. +bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { + SelectInst *SI = cast<SelectInst>(I.getOperand(1)); + + // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y + int NonNullOperand = -1; + if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) + if (ST->isNullValue()) + NonNullOperand = 2; + // div/rem X, (Cond ? Y : 0) -> div/rem X, Y + if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) + if (ST->isNullValue()) + NonNullOperand = 1; + + if (NonNullOperand == -1) + return false; + + Value *SelectCond = SI->getOperand(0); + + // Change the div/rem to use 'Y' instead of the select. + I.setOperand(1, SI->getOperand(NonNullOperand)); + + // Okay, we know we replace the operand of the div/rem with 'Y' with no + // problem. However, the select, or the condition of the select may have + // multiple uses. Based on our knowledge that the operand must be non-zero, + // propagate the known value for the select into other uses of it, and + // propagate a known value of the condition into its other users. + + // If the select and condition only have a single use, don't bother with this, + // early exit. + if (SI->use_empty() && SelectCond->hasOneUse()) + return true; + + // Scan the current block backward, looking for other uses of SI. + BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); + + while (BBI != BBFront) { + --BBI; + // If we found a call to a function, we can't assume it will return, so + // information from below it cannot be propagated above it. + if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) + break; + + // Replace uses of the select or its condition with the known values. + for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); + I != E; ++I) { + if (*I == SI) { + *I = SI->getOperand(NonNullOperand); + AddToWorkList(BBI); + } else if (*I == SelectCond) { + *I = NonNullOperand == 1 ? ConstantInt::getTrue() : + ConstantInt::getFalse(); + AddToWorkList(BBI); + } + } + + // If we past the instruction, quit looking for it. + if (&*BBI == SI) + SI = 0; + if (&*BBI == SelectCond) + SelectCond = 0; + + // If we ran out of things to eliminate, break out of the loop. + if (SelectCond == 0 && SI == 0) + break; + + } + return true; +} + + +/// This function implements the transforms on div instructions that work +/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is +/// used by the visitors to those instructions. +/// @brief Transforms common to all three div instructions +Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // undef / X -> 0 for integer. + // undef / X -> undef for FP (the undef could be a snan). + if (isa<UndefValue>(Op0)) { + if (Op0->getType()->isFPOrFPVector()) + return ReplaceInstUsesWith(I, Op0); + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + } + + // X / undef -> undef + if (isa<UndefValue>(Op1)) + return ReplaceInstUsesWith(I, Op1); + + return 0; +} + +/// This function implements the transforms common to both integer division +/// instructions (udiv and sdiv). It is called by the visitors to those integer +/// division instructions. +/// @brief Common integer divide transforms +Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // (sdiv X, X) --> 1 (udiv X, X) --> 1 + if (Op0 == Op1) { + if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) { + ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1); + std::vector<Constant*> Elts(Ty->getNumElements(), CI); + return ReplaceInstUsesWith(I, ConstantVector::get(Elts)); + } + + ConstantInt *CI = ConstantInt::get(I.getType(), 1); + return ReplaceInstUsesWith(I, CI); + } + + if (Instruction *Common = commonDivTransforms(I)) + return Common; + + // Handle cases involving: [su]div X, (select Cond, Y, Z) + // This does not apply for fdiv. + if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) + return &I; + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { + // div X, 1 == X + if (RHS->equalsInt(1)) + return ReplaceInstUsesWith(I, Op0); + + // (X / C1) / C2 -> X / (C1*C2) + if (Instruction *LHS = dyn_cast<Instruction>(Op0)) + if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) + if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { + if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv)) + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + else + return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), + Multiply(RHS, LHSRHS)); + } + + if (!RHS->isZero()) { // avoid X udiv 0 + if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + if (isa<PHINode>(Op0)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + } + } + + // 0 / X == 0, we don't need to preserve faults! + if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0)) + if (LHS->equalsInt(0)) + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + + // It can't be division by zero, hence it must be division by one. + if (I.getType() == Type::Int1Ty) + return ReplaceInstUsesWith(I, Op0); + + if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) { + if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue())) + // div X, 1 == X + if (X->isOne()) + return ReplaceInstUsesWith(I, Op0); + } + + return 0; +} + +Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // Handle the integer div common cases + if (Instruction *Common = commonIDivTransforms(I)) + return Common; + + if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { + // X udiv C^2 -> X >> C + // Check to see if this is an unsigned division with an exact power of 2, + // if so, convert to a right shift. + if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2 + return BinaryOperator::CreateLShr(Op0, + ConstantInt::get(Op0->getType(), C->getValue().logBase2())); + + // X udiv C, where C >= signbit + if (C->getValue().isNegative()) { + Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C), + I); + return SelectInst::Create(IC, Constant::getNullValue(I.getType()), + ConstantInt::get(I.getType(), 1)); + } + } + + // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) + if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) { + if (RHSI->getOpcode() == Instruction::Shl && + isa<ConstantInt>(RHSI->getOperand(0))) { + const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue(); + if (C1.isPowerOf2()) { + Value *N = RHSI->getOperand(1); + const Type *NTy = N->getType(); + if (uint32_t C2 = C1.logBase2()) { + Constant *C2V = ConstantInt::get(NTy, C2); + N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I); + } + return BinaryOperator::CreateLShr(Op0, N); + } + } + } + + // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) + // where C1&C2 are powers of two. + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1))) + if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) { + const APInt &TVA = STO->getValue(), &FVA = SFO->getValue(); + if (TVA.isPowerOf2() && FVA.isPowerOf2()) { + // Compute the shift amounts + uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2(); + // Construct the "on true" case of the select + Constant *TC = ConstantInt::get(Op0->getType(), TSA); + Instruction *TSI = BinaryOperator::CreateLShr( + Op0, TC, SI->getName()+".t"); + TSI = InsertNewInstBefore(TSI, I); + + // Construct the "on false" case of the select + Constant *FC = ConstantInt::get(Op0->getType(), FSA); + Instruction *FSI = BinaryOperator::CreateLShr( + Op0, FC, SI->getName()+".f"); + FSI = InsertNewInstBefore(FSI, I); + + // construct the select instruction and return it. + return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName()); + } + } + return 0; +} + +Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // Handle the integer div common cases + if (Instruction *Common = commonIDivTransforms(I)) + return Common; + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { + // sdiv X, -1 == -X + if (RHS->isAllOnesValue()) + return BinaryOperator::CreateNeg(Op0); + } + + // If the sign bits of both operands are zero (i.e. we can prove they are + // unsigned inputs), turn this into a udiv. + if (I.getType()->isInteger()) { + APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); + if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { + // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set + return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); + } + } + + return 0; +} + +Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { + return commonDivTransforms(I); +} + +/// This function implements the transforms on rem instructions that work +/// regardless of the kind of rem instruction it is (urem, srem, or frem). It +/// is used by the visitors to those instructions. +/// @brief Transforms common to all three rem instructions +Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (isa<UndefValue>(Op0)) { // undef % X -> 0 + if (I.getType()->isFPOrFPVector()) + return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN) + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + } + if (isa<UndefValue>(Op1)) + return ReplaceInstUsesWith(I, Op1); // X % undef -> undef + + // Handle cases involving: rem X, (select Cond, Y, Z) + if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) + return &I; + + return 0; +} + +/// This function implements the transforms common to both integer remainder +/// instructions (urem and srem). It is called by the visitors to those integer +/// remainder instructions. +/// @brief Common integer remainder transforms +Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (Instruction *common = commonRemTransforms(I)) + return common; + + // 0 % X == 0 for integer, we don't need to preserve faults! + if (Constant *LHS = dyn_cast<Constant>(Op0)) + if (LHS->isNullValue()) + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { + // X % 0 == undef, we don't need to preserve faults! + if (RHS->equalsInt(0)) + return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); + + if (RHS->equalsInt(1)) // X % 1 == 0 + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + + if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { + if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + } else if (isa<PHINode>(Op0I)) { + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + } + + // See if we can fold away this rem instruction. + if (SimplifyDemandedInstructionBits(I)) + return &I; + } + } + + return 0; +} + +Instruction *InstCombiner::visitURem(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (Instruction *common = commonIRemTransforms(I)) + return common; + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { + // X urem C^2 -> X and C + // Check to see if this is an unsigned remainder with an exact power of 2, + // if so, convert to a bitwise and. + if (ConstantInt *C = dyn_cast<ConstantInt>(RHS)) + if (C->getValue().isPowerOf2()) + return BinaryOperator::CreateAnd(Op0, SubOne(C)); + } + + if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) { + // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) + if (RHSI->getOpcode() == Instruction::Shl && + isa<ConstantInt>(RHSI->getOperand(0))) { + if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) { + Constant *N1 = ConstantInt::getAllOnesValue(I.getType()); + Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1, + "tmp"), I); + return BinaryOperator::CreateAnd(Op0, Add); + } + } + } + + // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2) + // where C1&C2 are powers of two. + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) { + if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1))) + if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) { + // STO == 0 and SFO == 0 handled above. + if ((STO->getValue().isPowerOf2()) && + (SFO->getValue().isPowerOf2())) { + Value *TrueAnd = InsertNewInstBefore( + BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I); + Value *FalseAnd = InsertNewInstBefore( + BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I); + return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd); + } + } + } + + return 0; +} + +Instruction *InstCombiner::visitSRem(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // Handle the integer rem common cases + if (Instruction *common = commonIRemTransforms(I)) + return common; + + if (Value *RHSNeg = dyn_castNegVal(Op1)) + if (!isa<Constant>(RHSNeg) || + (isa<ConstantInt>(RHSNeg) && + cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) { + // X % -Y -> X % Y + AddUsesToWorkList(I); + I.setOperand(1, RHSNeg); + return &I; + } + + // If the sign bits of both operands are zero (i.e. we can prove they are + // unsigned inputs), turn this into a urem. + if (I.getType()->isInteger()) { + APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); + if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { + // X srem Y -> X urem Y, iff X and Y don't have sign bit set + return BinaryOperator::CreateURem(Op0, Op1, I.getName()); + } + } + + // If it's a constant vector, flip any negative values positive. + if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) { + unsigned VWidth = RHSV->getNumOperands(); + + bool hasNegative = false; + for (unsigned i = 0; !hasNegative && i != VWidth; ++i) + if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) + if (RHS->getValue().isNegative()) + hasNegative = true; + + if (hasNegative) { + std::vector<Constant *> Elts(VWidth); + for (unsigned i = 0; i != VWidth; ++i) { + if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) { + if (RHS->getValue().isNegative()) + Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); + else + Elts[i] = RHS; + } + } + + Constant *NewRHSV = ConstantVector::get(Elts); + if (NewRHSV != RHSV) { + AddUsesToWorkList(I); + I.setOperand(1, NewRHSV); + return &I; + } + } + } + + return 0; +} + +Instruction *InstCombiner::visitFRem(BinaryOperator &I) { + return commonRemTransforms(I); +} + +// isOneBitSet - Return true if there is exactly one bit set in the specified +// constant. +static bool isOneBitSet(const ConstantInt *CI) { + return CI->getValue().isPowerOf2(); +} + +// isHighOnes - Return true if the constant is of the form 1+0+. +// This is the same as lowones(~X). +static bool isHighOnes(const ConstantInt *CI) { + return (~CI->getValue() + 1).isPowerOf2(); +} + +/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits +/// are carefully arranged to allow folding of expressions such as: +/// +/// (A < B) | (A > B) --> (A != B) +/// +/// Note that this is only valid if the first and second predicates have the +/// same sign. Is illegal to do: (A u< B) | (A s> B) +/// +/// Three bits are used to represent the condition, as follows: +/// 0 A > B +/// 1 A == B +/// 2 A < B +/// +/// <=> Value Definition +/// 000 0 Always false +/// 001 1 A > B +/// 010 2 A == B +/// 011 3 A >= B +/// 100 4 A < B +/// 101 5 A != B +/// 110 6 A <= B +/// 111 7 Always true +/// +static unsigned getICmpCode(const ICmpInst *ICI) { + switch (ICI->getPredicate()) { + // False -> 0 + case ICmpInst::ICMP_UGT: return 1; // 001 + case ICmpInst::ICMP_SGT: return 1; // 001 + case ICmpInst::ICMP_EQ: return 2; // 010 + case ICmpInst::ICMP_UGE: return 3; // 011 + case ICmpInst::ICMP_SGE: return 3; // 011 + case ICmpInst::ICMP_ULT: return 4; // 100 + case ICmpInst::ICMP_SLT: return 4; // 100 + case ICmpInst::ICMP_NE: return 5; // 101 + case ICmpInst::ICMP_ULE: return 6; // 110 + case ICmpInst::ICMP_SLE: return 6; // 110 + // True -> 7 + default: + assert(0 && "Invalid ICmp predicate!"); + return 0; + } +} + +/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp +/// predicate into a three bit mask. It also returns whether it is an ordered +/// predicate by reference. +static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) { + isOrdered = false; + switch (CC) { + case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000 + case FCmpInst::FCMP_UNO: return 0; // 000 + case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001 + case FCmpInst::FCMP_UGT: return 1; // 001 + case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010 + case FCmpInst::FCMP_UEQ: return 2; // 010 + case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011 + case FCmpInst::FCMP_UGE: return 3; // 011 + case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100 + case FCmpInst::FCMP_ULT: return 4; // 100 + case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101 + case FCmpInst::FCMP_UNE: return 5; // 101 + case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110 + case FCmpInst::FCMP_ULE: return 6; // 110 + // True -> 7 + default: + // Not expecting FCMP_FALSE and FCMP_TRUE; + assert(0 && "Unexpected FCmp predicate!"); + return 0; + } +} + +/// getICmpValue - This is the complement of getICmpCode, which turns an +/// opcode and two operands into either a constant true or false, or a brand +/// new ICmp instruction. The sign is passed in to determine which kind +/// of predicate to use in the new icmp instruction. +static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) { + switch (code) { + default: assert(0 && "Illegal ICmp code!"); + case 0: return ConstantInt::getFalse(); + case 1: + if (sign) + return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS); + else + return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS); + case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS); + case 3: + if (sign) + return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS); + else + return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS); + case 4: + if (sign) + return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS); + else + return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS); + case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS); + case 6: + if (sign) + return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS); + else + return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS); + case 7: return ConstantInt::getTrue(); + } +} + +/// getFCmpValue - This is the complement of getFCmpCode, which turns an +/// opcode and two operands into either a FCmp instruction. isordered is passed +/// in to determine which kind of predicate to use in the new fcmp instruction. +static Value *getFCmpValue(bool isordered, unsigned code, + Value *LHS, Value *RHS) { + switch (code) { + default: assert(0 && "Illegal FCmp code!"); + case 0: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS); + case 1: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS); + case 2: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS); + case 3: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS); + case 4: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS); + case 5: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS); + case 6: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS); + case 7: return ConstantInt::getTrue(); + } +} + +/// PredicatesFoldable - Return true if both predicates match sign or if at +/// least one of them is an equality comparison (which is signless). +static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) { + return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) || + (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) || + (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1)); +} + +namespace { +// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) +struct FoldICmpLogical { + InstCombiner &IC; + Value *LHS, *RHS; + ICmpInst::Predicate pred; + FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI) + : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)), + pred(ICI->getPredicate()) {} + bool shouldApply(Value *V) const { + if (ICmpInst *ICI = dyn_cast<ICmpInst>(V)) + if (PredicatesFoldable(pred, ICI->getPredicate())) + return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) || + (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS)); + return false; + } + Instruction *apply(Instruction &Log) const { + ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0)); + if (ICI->getOperand(0) != LHS) { + assert(ICI->getOperand(1) == LHS); + ICI->swapOperands(); // Swap the LHS and RHS of the ICmp + } + + ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1)); + unsigned LHSCode = getICmpCode(ICI); + unsigned RHSCode = getICmpCode(RHSICI); + unsigned Code; + switch (Log.getOpcode()) { + case Instruction::And: Code = LHSCode & RHSCode; break; + case Instruction::Or: Code = LHSCode | RHSCode; break; + case Instruction::Xor: Code = LHSCode ^ RHSCode; break; + default: assert(0 && "Illegal logical opcode!"); return 0; + } + + bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) || + ICmpInst::isSignedPredicate(ICI->getPredicate()); + + Value *RV = getICmpValue(isSigned, Code, LHS, RHS); + if (Instruction *I = dyn_cast<Instruction>(RV)) + return I; + // Otherwise, it's a constant boolean value... + return IC.ReplaceInstUsesWith(Log, RV); + } +}; +} // end anonymous namespace + +// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where +// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is +// guaranteed to be a binary operator. +Instruction *InstCombiner::OptAndOp(Instruction *Op, + ConstantInt *OpRHS, + ConstantInt *AndRHS, + BinaryOperator &TheAnd) { + Value *X = Op->getOperand(0); + Constant *Together = 0; + if (!Op->isShift()) + Together = And(AndRHS, OpRHS); + + switch (Op->getOpcode()) { + case Instruction::Xor: + if (Op->hasOneUse()) { + // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) + Instruction *And = BinaryOperator::CreateAnd(X, AndRHS); + InsertNewInstBefore(And, TheAnd); + And->takeName(Op); + return BinaryOperator::CreateXor(And, Together); + } + break; + case Instruction::Or: + if (Together == AndRHS) // (X | C) & C --> C + return ReplaceInstUsesWith(TheAnd, AndRHS); + + if (Op->hasOneUse() && Together != OpRHS) { + // (X | C1) & C2 --> (X | (C1&C2)) & C2 + Instruction *Or = BinaryOperator::CreateOr(X, Together); + InsertNewInstBefore(Or, TheAnd); + Or->takeName(Op); + return BinaryOperator::CreateAnd(Or, AndRHS); + } + break; + case Instruction::Add: + if (Op->hasOneUse()) { + // Adding a one to a single bit bit-field should be turned into an XOR + // of the bit. First thing to check is to see if this AND is with a + // single bit constant. + const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue(); + + // If there is only one bit set... + if (isOneBitSet(cast<ConstantInt>(AndRHS))) { + // Ok, at this point, we know that we are masking the result of the + // ADD down to exactly one bit. If the constant we are adding has + // no bits set below this bit, then we can eliminate the ADD. + const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue(); + + // Check to see if any bits below the one bit set in AndRHSV are set. + if ((AddRHS & (AndRHSV-1)) == 0) { + // If not, the only thing that can effect the output of the AND is + // the bit specified by AndRHSV. If that bit is set, the effect of + // the XOR is to toggle the bit. If it is clear, then the ADD has + // no effect. + if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop + TheAnd.setOperand(0, X); + return &TheAnd; + } else { + // Pull the XOR out of the AND. + Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS); + InsertNewInstBefore(NewAnd, TheAnd); + NewAnd->takeName(Op); + return BinaryOperator::CreateXor(NewAnd, AndRHS); + } + } + } + } + break; + + case Instruction::Shl: { + // We know that the AND will not produce any of the bits shifted in, so if + // the anded constant includes them, clear them now! + // + uint32_t BitWidth = AndRHS->getType()->getBitWidth(); + uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); + APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); + ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask); + + if (CI->getValue() == ShlMask) { + // Masking out bits that the shift already masks + return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. + } else if (CI != AndRHS) { // Reducing bits set in and. + TheAnd.setOperand(1, CI); + return &TheAnd; + } + break; + } + case Instruction::LShr: + { + // We know that the AND will not produce any of the bits shifted in, so if + // the anded constant includes them, clear them now! This only applies to + // unsigned shifts, because a signed shr may bring in set bits! + // + uint32_t BitWidth = AndRHS->getType()->getBitWidth(); + uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); + APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); + ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask); + + if (CI->getValue() == ShrMask) { + // Masking out bits that the shift already masks. + return ReplaceInstUsesWith(TheAnd, Op); + } else if (CI != AndRHS) { + TheAnd.setOperand(1, CI); // Reduce bits set in and cst. + return &TheAnd; + } + break; + } + case Instruction::AShr: + // Signed shr. + // See if this is shifting in some sign extension, then masking it out + // with an and. + if (Op->hasOneUse()) { + uint32_t BitWidth = AndRHS->getType()->getBitWidth(); + uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); + APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); + Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask); + if (C == AndRHS) { // Masking out bits shifted in. + // (Val ashr C1) & C2 -> (Val lshr C1) & C2 + // Make the argument unsigned. + Value *ShVal = Op->getOperand(0); + ShVal = InsertNewInstBefore( + BinaryOperator::CreateLShr(ShVal, OpRHS, + Op->getName()), TheAnd); + return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName()); + } + } + break; + } + return 0; +} + + +/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is +/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient +/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates +/// whether to treat the V, Lo and HI as signed or not. IB is the location to +/// insert new instructions. +Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, + bool isSigned, bool Inside, + Instruction &IB) { + assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? + ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && + "Lo is not <= Hi in range emission code!"); + + if (Inside) { + if (Lo == Hi) // Trivially false. + return new ICmpInst(ICmpInst::ICMP_NE, V, V); + + // V >= Min && V < Hi --> V < Hi + if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { + ICmpInst::Predicate pred = (isSigned ? + ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); + return new ICmpInst(pred, V, Hi); + } + + // Emit V-Lo <u Hi-Lo + Constant *NegLo = ConstantExpr::getNeg(Lo); + Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off"); + InsertNewInstBefore(Add, IB); + Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); + return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound); + } + + if (Lo == Hi) // Trivially true. + return new ICmpInst(ICmpInst::ICMP_EQ, V, V); + + // V < Min || V >= Hi -> V > Hi-1 + Hi = SubOne(cast<ConstantInt>(Hi)); + if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { + ICmpInst::Predicate pred = (isSigned ? + ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); + return new ICmpInst(pred, V, Hi); + } + + // Emit V-Lo >u Hi-1-Lo + // Note that Hi has already had one subtracted from it, above. + ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo)); + Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off"); + InsertNewInstBefore(Add, IB); + Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); + return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound); +} + +// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with +// any number of 0s on either side. The 1s are allowed to wrap from LSB to +// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is +// not, since all 1s are not contiguous. +static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { + const APInt& V = Val->getValue(); + uint32_t BitWidth = Val->getType()->getBitWidth(); + if (!APIntOps::isShiftedMask(BitWidth, V)) return false; + + // look for the first zero bit after the run of ones + MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); + // look for the first non-zero bit + ME = V.getActiveBits(); + return true; +} + +/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, +/// where isSub determines whether the operator is a sub. If we can fold one of +/// the following xforms: +/// +/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask +/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 +/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 +/// +/// return (A +/- B). +/// +Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, + ConstantInt *Mask, bool isSub, + Instruction &I) { + Instruction *LHSI = dyn_cast<Instruction>(LHS); + if (!LHSI || LHSI->getNumOperands() != 2 || + !isa<ConstantInt>(LHSI->getOperand(1))) return 0; + + ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1)); + + switch (LHSI->getOpcode()) { + default: return 0; + case Instruction::And: + if (And(N, Mask) == Mask) { + // If the AndRHS is a power of two minus one (0+1+), this is simple. + if ((Mask->getValue().countLeadingZeros() + + Mask->getValue().countPopulation()) == + Mask->getValue().getBitWidth()) + break; + + // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ + // part, we don't need any explicit masks to take them out of A. If that + // is all N is, ignore it. + uint32_t MB = 0, ME = 0; + if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive + uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth(); + APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); + if (MaskedValueIsZero(RHS, Mask)) + break; + } + } + return 0; + case Instruction::Or: + case Instruction::Xor: + // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 + if ((Mask->getValue().countLeadingZeros() + + Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() + && And(N, Mask)->isZero()) + break; + return 0; + } + + Instruction *New; + if (isSub) + New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold"); + else + New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold"); + return InsertNewInstBefore(New, I); +} + +/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible. +Instruction *InstCombiner::FoldAndOfICmps(Instruction &I, + ICmpInst *LHS, ICmpInst *RHS) { + Value *Val, *Val2; + ConstantInt *LHSCst, *RHSCst; + ICmpInst::Predicate LHSCC, RHSCC; + + // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). + if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) || + !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst)))) + return 0; + + // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) + // where C is a power of 2 + if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT && + LHSCst->getValue().isPowerOf2()) { + Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2); + InsertNewInstBefore(NewOr, I); + return new ICmpInst(LHSCC, NewOr, LHSCst); + } + + // From here on, we only handle: + // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. + if (Val != Val2) return 0; + + // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. + if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || + RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || + LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || + RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) + return 0; + + // We can't fold (ugt x, C) & (sgt x, C2). + if (!PredicatesFoldable(LHSCC, RHSCC)) + return 0; + + // Ensure that the larger constant is on the RHS. + bool ShouldSwap; + if (ICmpInst::isSignedPredicate(LHSCC) || + (ICmpInst::isEquality(LHSCC) && + ICmpInst::isSignedPredicate(RHSCC))) + ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); + else + ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); + + if (ShouldSwap) { + std::swap(LHS, RHS); + std::swap(LHSCst, RHSCst); + std::swap(LHSCC, RHSCC); + } + + // At this point, we know we have have two icmp instructions + // comparing a value against two constants and and'ing the result + // together. Because of the above check, we know that we only have + // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know + // (from the FoldICmpLogical check above), that the two constants + // are not equal and that the larger constant is on the RHS + assert(LHSCst != RHSCst && "Compares not folded above?"); + + switch (LHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false + case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false + case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13 + case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13 + case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13 + return ReplaceInstUsesWith(I, LHS); + } + case ICmpInst::ICMP_NE: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_ULT: + if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 + return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst); + break; // (X != 13 & X u< 15) -> no change + case ICmpInst::ICMP_SLT: + if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 + return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst); + break; // (X != 13 & X s< 15) -> no change + case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15 + case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15 + case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 + return ReplaceInstUsesWith(I, RHS); + case ICmpInst::ICMP_NE: + if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 + Constant *AddCST = ConstantExpr::getNeg(LHSCst); + Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST, + Val->getName()+".off"); + InsertNewInstBefore(Add, I); + return new ICmpInst(ICmpInst::ICMP_UGT, Add, + ConstantInt::get(Add->getType(), 1)); + } + break; // (X != 13 & X != 15) -> no change + } + break; + case ICmpInst::ICMP_ULT: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false + case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change + break; + case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13 + case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13 + return ReplaceInstUsesWith(I, LHS); + case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_SLT: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false + case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change + break; + case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13 + case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13 + return ReplaceInstUsesWith(I, LHS); + case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_UGT: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15 + case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15 + return ReplaceInstUsesWith(I, RHS); + case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change + break; + case ICmpInst::ICMP_NE: + if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 + return new ICmpInst(LHSCC, Val, RHSCst); + break; // (X u> 13 & X != 15) -> no change + case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1 + return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I); + case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_SGT: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15 + case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15 + return ReplaceInstUsesWith(I, RHS); + case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change + break; + case ICmpInst::ICMP_NE: + if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 + return new ICmpInst(LHSCC, Val, RHSCst); + break; // (X s> 13 & X != 15) -> no change + case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1 + return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I); + case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change + break; + } + break; + } + + return 0; +} + + +Instruction *InstCombiner::visitAnd(BinaryOperator &I) { + bool Changed = SimplifyCommutative(I); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (isa<UndefValue>(Op1)) // X & undef -> 0 + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + + // and X, X = X + if (Op0 == Op1) + return ReplaceInstUsesWith(I, Op1); + + // See if we can simplify any instructions used by the instruction whose sole + // purpose is to compute bits we don't care about. + if (!isa<VectorType>(I.getType())) { + if (SimplifyDemandedInstructionBits(I)) + return &I; + } else { + if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) { + if (CP->isAllOnesValue()) // X & <-1,-1> -> X + return ReplaceInstUsesWith(I, I.getOperand(0)); + } else if (isa<ConstantAggregateZero>(Op1)) { + return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0> + } + } + + if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { + const APInt& AndRHSMask = AndRHS->getValue(); + APInt NotAndRHS(~AndRHSMask); + + // Optimize a variety of ((val OP C1) & C2) combinations... + if (isa<BinaryOperator>(Op0)) { + Instruction *Op0I = cast<Instruction>(Op0); + Value *Op0LHS = Op0I->getOperand(0); + Value *Op0RHS = Op0I->getOperand(1); + switch (Op0I->getOpcode()) { + case Instruction::Xor: + case Instruction::Or: + // If the mask is only needed on one incoming arm, push it up. + if (Op0I->hasOneUse()) { + if (MaskedValueIsZero(Op0LHS, NotAndRHS)) { + // Not masking anything out for the LHS, move to RHS. + Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS, + Op0RHS->getName()+".masked"); + InsertNewInstBefore(NewRHS, I); + return BinaryOperator::Create( + cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS); + } + if (!isa<Constant>(Op0RHS) && + MaskedValueIsZero(Op0RHS, NotAndRHS)) { + // Not masking anything out for the RHS, move to LHS. + Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS, + Op0LHS->getName()+".masked"); + InsertNewInstBefore(NewLHS, I); + return BinaryOperator::Create( + cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS); + } + } + + break; + case Instruction::Add: + // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. + // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 + // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 + if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) + return BinaryOperator::CreateAnd(V, AndRHS); + if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) + return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes + break; + + case Instruction::Sub: + // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. + // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 + // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 + if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) + return BinaryOperator::CreateAnd(V, AndRHS); + + // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS + // has 1's for all bits that the subtraction with A might affect. + if (Op0I->hasOneUse()) { + uint32_t BitWidth = AndRHSMask.getBitWidth(); + uint32_t Zeros = AndRHSMask.countLeadingZeros(); + APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros); + + ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS); + if (!(A && A->isZero()) && // avoid infinite recursion. + MaskedValueIsZero(Op0LHS, Mask)) { + Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS); + InsertNewInstBefore(NewNeg, I); + return BinaryOperator::CreateAnd(NewNeg, AndRHS); + } + } + break; + + case Instruction::Shl: + case Instruction::LShr: + // (1 << x) & 1 --> zext(x == 0) + // (1 >> x) & 1 --> zext(x == 0) + if (AndRHSMask == 1 && Op0LHS == AndRHS) { + Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS, + Constant::getNullValue(I.getType())); + InsertNewInstBefore(NewICmp, I); + return new ZExtInst(NewICmp, I.getType()); + } + break; + } + + if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) + if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) + return Res; + } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) { + // If this is an integer truncation or change from signed-to-unsigned, and + // if the source is an and/or with immediate, transform it. This + // frequently occurs for bitfield accesses. + if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) { + if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) && + CastOp->getNumOperands() == 2) + if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) { + if (CastOp->getOpcode() == Instruction::And) { + // Change: and (cast (and X, C1) to T), C2 + // into : and (cast X to T), trunc_or_bitcast(C1)&C2 + // This will fold the two constants together, which may allow + // other simplifications. + Instruction *NewCast = CastInst::CreateTruncOrBitCast( + CastOp->getOperand(0), I.getType(), + CastOp->getName()+".shrunk"); + NewCast = InsertNewInstBefore(NewCast, I); + // trunc_or_bitcast(C1)&C2 + Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); + C3 = ConstantExpr::getAnd(C3, AndRHS); + return BinaryOperator::CreateAnd(NewCast, C3); + } else if (CastOp->getOpcode() == Instruction::Or) { + // Change: and (cast (or X, C1) to T), C2 + // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2 + Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); + if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2 + return ReplaceInstUsesWith(I, AndRHS); + } + } + } + } + + // Try to fold constant and into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + if (isa<PHINode>(Op0)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + } + + Value *Op0NotVal = dyn_castNotVal(Op0); + Value *Op1NotVal = dyn_castNotVal(Op1); + + if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0 + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + + // (~A & ~B) == (~(A | B)) - De Morgan's Law + if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { + Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal, + I.getName()+".demorgan"); + InsertNewInstBefore(Or, I); + return BinaryOperator::CreateNot(Or); + } + + { + Value *A = 0, *B = 0, *C = 0, *D = 0; + if (match(Op0, m_Or(m_Value(A), m_Value(B)))) { + if (A == Op1 || B == Op1) // (A | ?) & A --> A + return ReplaceInstUsesWith(I, Op1); + + // (A|B) & ~(A&B) -> A^B + if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) { + if ((A == C && B == D) || (A == D && B == C)) + return BinaryOperator::CreateXor(A, B); + } + } + + if (match(Op1, m_Or(m_Value(A), m_Value(B)))) { + if (A == Op0 || B == Op0) // A & (A | ?) --> A + return ReplaceInstUsesWith(I, Op0); + + // ~(A&B) & (A|B) -> A^B + if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) { + if ((A == C && B == D) || (A == D && B == C)) + return BinaryOperator::CreateXor(A, B); + } + } + + if (Op0->hasOneUse() && + match(Op0, m_Xor(m_Value(A), m_Value(B)))) { + if (A == Op1) { // (A^B)&A -> A&(A^B) + I.swapOperands(); // Simplify below + std::swap(Op0, Op1); + } else if (B == Op1) { // (A^B)&B -> B&(B^A) + cast<BinaryOperator>(Op0)->swapOperands(); + I.swapOperands(); // Simplify below + std::swap(Op0, Op1); + } + } + + if (Op1->hasOneUse() && + match(Op1, m_Xor(m_Value(A), m_Value(B)))) { + if (B == Op0) { // B&(A^B) -> B&(B^A) + cast<BinaryOperator>(Op1)->swapOperands(); + std::swap(A, B); + } + if (A == Op0) { // A&(A^B) -> A & ~B + Instruction *NotB = BinaryOperator::CreateNot(B, "tmp"); + InsertNewInstBefore(NotB, I); + return BinaryOperator::CreateAnd(A, NotB); + } + } + + // (A&((~A)|B)) -> A&B + if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) || + match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1))))) + return BinaryOperator::CreateAnd(A, Op1); + if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) || + match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0))))) + return BinaryOperator::CreateAnd(A, Op0); + } + + if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) { + // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) + if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) + return R; + + if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0)) + if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS)) + return Res; + } + + // fold (and (cast A), (cast B)) -> (cast (and A, B)) + if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) + if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) + if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ? + const Type *SrcTy = Op0C->getOperand(0)->getType(); + if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && + // Only do this if the casts both really cause code to be generated. + ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), + I.getType(), TD) && + ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), + I.getType(), TD)) { + Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0), + Op1C->getOperand(0), + I.getName()); + InsertNewInstBefore(NewOp, I); + return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); + } + } + + // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. + if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) { + if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0)) + if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && + SI0->getOperand(1) == SI1->getOperand(1) && + (SI0->hasOneUse() || SI1->hasOneUse())) { + Instruction *NewOp = + InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0), + SI1->getOperand(0), + SI0->getName()), I); + return BinaryOperator::Create(SI1->getOpcode(), NewOp, + SI1->getOperand(1)); + } + } + + // If and'ing two fcmp, try combine them into one. + if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) { + if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) { + if (LHS->getPredicate() == FCmpInst::FCMP_ORD && + RHS->getPredicate() == FCmpInst::FCMP_ORD) { + // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y) + if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) + if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { + // If either of the constants are nans, then the whole thing returns + // false. + if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0), + RHS->getOperand(0)); + } + } else { + Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS; + FCmpInst::Predicate Op0CC, Op1CC; + if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) && + match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) { + if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { + // Swap RHS operands to match LHS. + Op1CC = FCmpInst::getSwappedPredicate(Op1CC); + std::swap(Op1LHS, Op1RHS); + } + if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { + // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). + if (Op0CC == Op1CC) + return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); + else if (Op0CC == FCmpInst::FCMP_FALSE || + Op1CC == FCmpInst::FCMP_FALSE) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + else if (Op0CC == FCmpInst::FCMP_TRUE) + return ReplaceInstUsesWith(I, Op1); + else if (Op1CC == FCmpInst::FCMP_TRUE) + return ReplaceInstUsesWith(I, Op0); + bool Op0Ordered; + bool Op1Ordered; + unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); + unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); + if (Op1Pred == 0) { + std::swap(Op0, Op1); + std::swap(Op0Pred, Op1Pred); + std::swap(Op0Ordered, Op1Ordered); + } + if (Op0Pred == 0) { + // uno && ueq -> uno && (uno || eq) -> ueq + // ord && olt -> ord && (ord && lt) -> olt + if (Op0Ordered == Op1Ordered) + return ReplaceInstUsesWith(I, Op1); + // uno && oeq -> uno && (ord && eq) -> false + // uno && ord -> false + if (!Op0Ordered) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + // ord && ueq -> ord && (uno || eq) -> oeq + return cast<Instruction>(getFCmpValue(true, Op1Pred, + Op0LHS, Op0RHS)); + } + } + } + } + } + } + + return Changed ? &I : 0; +} + +/// CollectBSwapParts - Analyze the specified subexpression and see if it is +/// capable of providing pieces of a bswap. The subexpression provides pieces +/// of a bswap if it is proven that each of the non-zero bytes in the output of +/// the expression came from the corresponding "byte swapped" byte in some other +/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then +/// we know that the expression deposits the low byte of %X into the high byte +/// of the bswap result and that all other bytes are zero. This expression is +/// accepted, the high byte of ByteValues is set to X to indicate a correct +/// match. +/// +/// This function returns true if the match was unsuccessful and false if so. +/// On entry to the function the "OverallLeftShift" is a signed integer value +/// indicating the number of bytes that the subexpression is later shifted. For +/// example, if the expression is later right shifted by 16 bits, the +/// OverallLeftShift value would be -2 on entry. This is used to specify which +/// byte of ByteValues is actually being set. +/// +/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding +/// byte is masked to zero by a user. For example, in (X & 255), X will be +/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits +/// this function to working on up to 32-byte (256 bit) values. ByteMask is +/// always in the local (OverallLeftShift) coordinate space. +/// +static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask, + SmallVector<Value*, 8> &ByteValues) { + if (Instruction *I = dyn_cast<Instruction>(V)) { + // If this is an or instruction, it may be an inner node of the bswap. + if (I->getOpcode() == Instruction::Or) { + return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, + ByteValues) || + CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask, + ByteValues); + } + + // If this is a logical shift by a constant multiple of 8, recurse with + // OverallLeftShift and ByteMask adjusted. + if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { + unsigned ShAmt = + cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); + // Ensure the shift amount is defined and of a byte value. + if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size())) + return true; + + unsigned ByteShift = ShAmt >> 3; + if (I->getOpcode() == Instruction::Shl) { + // X << 2 -> collect(X, +2) + OverallLeftShift += ByteShift; + ByteMask >>= ByteShift; + } else { + // X >>u 2 -> collect(X, -2) + OverallLeftShift -= ByteShift; + ByteMask <<= ByteShift; + ByteMask &= (~0U >> (32-ByteValues.size())); + } + + if (OverallLeftShift >= (int)ByteValues.size()) return true; + if (OverallLeftShift <= -(int)ByteValues.size()) return true; + + return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, + ByteValues); + } + + // If this is a logical 'and' with a mask that clears bytes, clear the + // corresponding bytes in ByteMask. + if (I->getOpcode() == Instruction::And && + isa<ConstantInt>(I->getOperand(1))) { + // Scan every byte of the and mask, seeing if the byte is either 0 or 255. + unsigned NumBytes = ByteValues.size(); + APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255); + const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); + + for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) { + // If this byte is masked out by a later operation, we don't care what + // the and mask is. + if ((ByteMask & (1 << i)) == 0) + continue; + + // If the AndMask is all zeros for this byte, clear the bit. + APInt MaskB = AndMask & Byte; + if (MaskB == 0) { + ByteMask &= ~(1U << i); + continue; + } + + // If the AndMask is not all ones for this byte, it's not a bytezap. + if (MaskB != Byte) + return true; + + // Otherwise, this byte is kept. + } + + return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, + ByteValues); + } + } + + // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be + // the input value to the bswap. Some observations: 1) if more than one byte + // is demanded from this input, then it could not be successfully assembled + // into a byteswap. At least one of the two bytes would not be aligned with + // their ultimate destination. + if (!isPowerOf2_32(ByteMask)) return true; + unsigned InputByteNo = CountTrailingZeros_32(ByteMask); + + // 2) The input and ultimate destinations must line up: if byte 3 of an i32 + // is demanded, it needs to go into byte 0 of the result. This means that the + // byte needs to be shifted until it lands in the right byte bucket. The + // shift amount depends on the position: if the byte is coming from the high + // part of the value (e.g. byte 3) then it must be shifted right. If from the + // low part, it must be shifted left. + unsigned DestByteNo = InputByteNo + OverallLeftShift; + if (InputByteNo < ByteValues.size()/2) { + if (ByteValues.size()-1-DestByteNo != InputByteNo) + return true; + } else { + if (ByteValues.size()-1-DestByteNo != InputByteNo) + return true; + } + + // If the destination byte value is already defined, the values are or'd + // together, which isn't a bswap (unless it's an or of the same bits). + if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V) + return true; + ByteValues[DestByteNo] = V; + return false; +} + +/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom. +/// If so, insert the new bswap intrinsic and return it. +Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { + const IntegerType *ITy = dyn_cast<IntegerType>(I.getType()); + if (!ITy || ITy->getBitWidth() % 16 || + // ByteMask only allows up to 32-byte values. + ITy->getBitWidth() > 32*8) + return 0; // Can only bswap pairs of bytes. Can't do vectors. + + /// ByteValues - For each byte of the result, we keep track of which value + /// defines each byte. + SmallVector<Value*, 8> ByteValues; + ByteValues.resize(ITy->getBitWidth()/8); + + // Try to find all the pieces corresponding to the bswap. + uint32_t ByteMask = ~0U >> (32-ByteValues.size()); + if (CollectBSwapParts(&I, 0, ByteMask, ByteValues)) + return 0; + + // Check to see if all of the bytes come from the same value. + Value *V = ByteValues[0]; + if (V == 0) return 0; // Didn't find a byte? Must be zero. + + // Check to make sure that all of the bytes come from the same value. + for (unsigned i = 1, e = ByteValues.size(); i != e; ++i) + if (ByteValues[i] != V) + return 0; + const Type *Tys[] = { ITy }; + Module *M = I.getParent()->getParent()->getParent(); + Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); + return CallInst::Create(F, V); +} + +/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check +/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then +/// we can simplify this expression to "cond ? C : D or B". +static Instruction *MatchSelectFromAndOr(Value *A, Value *B, + Value *C, Value *D) { + // If A is not a select of -1/0, this cannot match. + Value *Cond = 0; + if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond)))) + return 0; + + // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B. + if (match(D, m_SelectCst<0, -1>(m_Specific(Cond)))) + return SelectInst::Create(Cond, C, B); + if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond))))) + return SelectInst::Create(Cond, C, B); + // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D. + if (match(B, m_SelectCst<0, -1>(m_Specific(Cond)))) + return SelectInst::Create(Cond, C, D); + if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond))))) + return SelectInst::Create(Cond, C, D); + return 0; +} + +/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible. +Instruction *InstCombiner::FoldOrOfICmps(Instruction &I, + ICmpInst *LHS, ICmpInst *RHS) { + Value *Val, *Val2; + ConstantInt *LHSCst, *RHSCst; + ICmpInst::Predicate LHSCC, RHSCC; + + // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). + if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) || + !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst)))) + return 0; + + // From here on, we only handle: + // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. + if (Val != Val2) return 0; + + // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. + if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || + RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || + LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || + RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) + return 0; + + // We can't fold (ugt x, C) | (sgt x, C2). + if (!PredicatesFoldable(LHSCC, RHSCC)) + return 0; + + // Ensure that the larger constant is on the RHS. + bool ShouldSwap; + if (ICmpInst::isSignedPredicate(LHSCC) || + (ICmpInst::isEquality(LHSCC) && + ICmpInst::isSignedPredicate(RHSCC))) + ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); + else + ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); + + if (ShouldSwap) { + std::swap(LHS, RHS); + std::swap(LHSCst, RHSCst); + std::swap(LHSCC, RHSCC); + } + + // At this point, we know we have have two icmp instructions + // comparing a value against two constants and or'ing the result + // together. Because of the above check, we know that we only have + // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the + // FoldICmpLogical check above), that the two constants are not + // equal. + assert(LHSCst != RHSCst && "Compares not folded above?"); + + switch (LHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: + if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2 + Constant *AddCST = ConstantExpr::getNeg(LHSCst); + Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST, + Val->getName()+".off"); + InsertNewInstBefore(Add, I); + AddCST = Subtract(AddOne(RHSCst), LHSCst); + return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST); + } + break; // (X == 13 | X == 15) -> no change + case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change + case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change + break; + case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15 + case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15 + case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15 + return ReplaceInstUsesWith(I, RHS); + } + break; + case ICmpInst::ICMP_NE: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13 + case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13 + case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13 + return ReplaceInstUsesWith(I, LHS); + case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true + case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true + case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + } + break; + case ICmpInst::ICMP_ULT: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change + break; + case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 + // If RHSCst is [us]MAXINT, it is always false. Not handling + // this can cause overflow. + if (RHSCst->isMaxValue(false)) + return ReplaceInstUsesWith(I, LHS); + return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I); + case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change + break; + case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15 + case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15 + return ReplaceInstUsesWith(I, RHS); + case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_SLT: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change + break; + case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2 + // If RHSCst is [us]MAXINT, it is always false. Not handling + // this can cause overflow. + if (RHSCst->isMaxValue(true)) + return ReplaceInstUsesWith(I, LHS); + return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I); + case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change + break; + case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15 + case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15 + return ReplaceInstUsesWith(I, RHS); + case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_UGT: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13 + case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13 + return ReplaceInstUsesWith(I, LHS); + case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change + break; + case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true + case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_SGT: + switch (RHSCC) { + default: assert(0 && "Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13 + case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13 + return ReplaceInstUsesWith(I, LHS); + case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change + break; + case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true + case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change + break; + } + break; + } + return 0; +} + +/// FoldOrWithConstants - This helper function folds: +/// +/// ((A | B) & C1) | (B & C2) +/// +/// into: +/// +/// (A & C1) | B +/// +/// when the XOR of the two constants is "all ones" (-1). +Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op, + Value *A, Value *B, Value *C) { + ConstantInt *CI1 = dyn_cast<ConstantInt>(C); + if (!CI1) return 0; + + Value *V1 = 0; + ConstantInt *CI2 = 0; + if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0; + + APInt Xor = CI1->getValue() ^ CI2->getValue(); + if (!Xor.isAllOnesValue()) return 0; + + if (V1 == A || V1 == B) { + Instruction *NewOp = + InsertNewInstBefore(BinaryOperator::CreateAnd((V1 == A) ? B : A, CI1), I); + return BinaryOperator::CreateOr(NewOp, V1); + } + + return 0; +} + +Instruction *InstCombiner::visitOr(BinaryOperator &I) { + bool Changed = SimplifyCommutative(I); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (isa<UndefValue>(Op1)) // X | undef -> -1 + return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); + + // or X, X = X + if (Op0 == Op1) + return ReplaceInstUsesWith(I, Op0); + + // See if we can simplify any instructions used by the instruction whose sole + // purpose is to compute bits we don't care about. + if (!isa<VectorType>(I.getType())) { + if (SimplifyDemandedInstructionBits(I)) + return &I; + } else if (isa<ConstantAggregateZero>(Op1)) { + return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X + } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) { + if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1> + return ReplaceInstUsesWith(I, I.getOperand(1)); + } + + + + // or X, -1 == -1 + if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { + ConstantInt *C1 = 0; Value *X = 0; + // (X & C1) | C2 --> (X | C2) & (C1|C2) + if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { + Instruction *Or = BinaryOperator::CreateOr(X, RHS); + InsertNewInstBefore(Or, I); + Or->takeName(Op0); + return BinaryOperator::CreateAnd(Or, + ConstantInt::get(RHS->getValue() | C1->getValue())); + } + + // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) + if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { + Instruction *Or = BinaryOperator::CreateOr(X, RHS); + InsertNewInstBefore(Or, I); + Or->takeName(Op0); + return BinaryOperator::CreateXor(Or, + ConstantInt::get(C1->getValue() & ~RHS->getValue())); + } + + // Try to fold constant and into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + if (isa<PHINode>(Op0)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + } + + Value *A = 0, *B = 0; + ConstantInt *C1 = 0, *C2 = 0; + + if (match(Op0, m_And(m_Value(A), m_Value(B)))) + if (A == Op1 || B == Op1) // (A & ?) | A --> A + return ReplaceInstUsesWith(I, Op1); + if (match(Op1, m_And(m_Value(A), m_Value(B)))) + if (A == Op0 || B == Op0) // A | (A & ?) --> A + return ReplaceInstUsesWith(I, Op0); + + // (A | B) | C and A | (B | C) -> bswap if possible. + // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. + if (match(Op0, m_Or(m_Value(), m_Value())) || + match(Op1, m_Or(m_Value(), m_Value())) || + (match(Op0, m_Shift(m_Value(), m_Value())) && + match(Op1, m_Shift(m_Value(), m_Value())))) { + if (Instruction *BSwap = MatchBSwap(I)) + return BSwap; + } + + // (X^C)|Y -> (X|Y)^C iff Y&C == 0 + if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && + MaskedValueIsZero(Op1, C1->getValue())) { + Instruction *NOr = BinaryOperator::CreateOr(A, Op1); + InsertNewInstBefore(NOr, I); + NOr->takeName(Op0); + return BinaryOperator::CreateXor(NOr, C1); + } + + // Y|(X^C) -> (X|Y)^C iff Y&C == 0 + if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && + MaskedValueIsZero(Op0, C1->getValue())) { + Instruction *NOr = BinaryOperator::CreateOr(A, Op0); + InsertNewInstBefore(NOr, I); + NOr->takeName(Op0); + return BinaryOperator::CreateXor(NOr, C1); + } + + // (A & C)|(B & D) + Value *C = 0, *D = 0; + if (match(Op0, m_And(m_Value(A), m_Value(C))) && + match(Op1, m_And(m_Value(B), m_Value(D)))) { + Value *V1 = 0, *V2 = 0, *V3 = 0; + C1 = dyn_cast<ConstantInt>(C); + C2 = dyn_cast<ConstantInt>(D); + if (C1 && C2) { // (A & C1)|(B & C2) + // If we have: ((V + N) & C1) | (V & C2) + // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 + // replace with V+N. + if (C1->getValue() == ~C2->getValue()) { + if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+ + match(A, m_Add(m_Value(V1), m_Value(V2)))) { + // Add commutes, try both ways. + if (V1 == B && MaskedValueIsZero(V2, C2->getValue())) + return ReplaceInstUsesWith(I, A); + if (V2 == B && MaskedValueIsZero(V1, C2->getValue())) + return ReplaceInstUsesWith(I, A); + } + // Or commutes, try both ways. + if ((C1->getValue() & (C1->getValue()+1)) == 0 && + match(B, m_Add(m_Value(V1), m_Value(V2)))) { + // Add commutes, try both ways. + if (V1 == A && MaskedValueIsZero(V2, C1->getValue())) + return ReplaceInstUsesWith(I, B); + if (V2 == A && MaskedValueIsZero(V1, C1->getValue())) + return ReplaceInstUsesWith(I, B); + } + } + V1 = 0; V2 = 0; V3 = 0; + } + + // Check to see if we have any common things being and'ed. If so, find the + // terms for V1 & (V2|V3). + if (isOnlyUse(Op0) || isOnlyUse(Op1)) { + if (A == B) // (A & C)|(A & D) == A & (C|D) + V1 = A, V2 = C, V3 = D; + else if (A == D) // (A & C)|(B & A) == A & (B|C) + V1 = A, V2 = B, V3 = C; + else if (C == B) // (A & C)|(C & D) == C & (A|D) + V1 = C, V2 = A, V3 = D; + else if (C == D) // (A & C)|(B & C) == C & (A|B) + V1 = C, V2 = A, V3 = B; + + if (V1) { + Value *Or = + InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I); + return BinaryOperator::CreateAnd(V1, Or); + } + } + + // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants + if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D)) + return Match; + if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C)) + return Match; + if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D)) + return Match; + if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C)) + return Match; + + // ((A&~B)|(~A&B)) -> A^B + if ((match(C, m_Not(m_Specific(D))) && + match(B, m_Not(m_Specific(A))))) + return BinaryOperator::CreateXor(A, D); + // ((~B&A)|(~A&B)) -> A^B + if ((match(A, m_Not(m_Specific(D))) && + match(B, m_Not(m_Specific(C))))) + return BinaryOperator::CreateXor(C, D); + // ((A&~B)|(B&~A)) -> A^B + if ((match(C, m_Not(m_Specific(B))) && + match(D, m_Not(m_Specific(A))))) + return BinaryOperator::CreateXor(A, B); + // ((~B&A)|(B&~A)) -> A^B + if ((match(A, m_Not(m_Specific(B))) && + match(D, m_Not(m_Specific(C))))) + return BinaryOperator::CreateXor(C, B); + } + + // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. + if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) { + if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0)) + if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && + SI0->getOperand(1) == SI1->getOperand(1) && + (SI0->hasOneUse() || SI1->hasOneUse())) { + Instruction *NewOp = + InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0), + SI1->getOperand(0), + SI0->getName()), I); + return BinaryOperator::Create(SI1->getOpcode(), NewOp, + SI1->getOperand(1)); + } + } + + // ((A|B)&1)|(B&-2) -> (A&1) | B + if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) || + match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) { + Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C); + if (Ret) return Ret; + } + // (B&-2)|((A|B)&1) -> (A&1) | B + if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) || + match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) { + Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C); + if (Ret) return Ret; + } + + if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1 + if (A == Op1) // ~A | A == -1 + return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); + } else { + A = 0; + } + // Note, A is still live here! + if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B + if (Op0 == B) + return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); + + // (~A | ~B) == (~(A & B)) - De Morgan's Law + if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) { + Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B, + I.getName()+".demorgan"), I); + return BinaryOperator::CreateNot(And); + } + } + + // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) + if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) { + if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) + return R; + + if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) + if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS)) + return Res; + } + + // fold (or (cast A), (cast B)) -> (cast (or A, B)) + if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { + if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) + if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ? + if (!isa<ICmpInst>(Op0C->getOperand(0)) || + !isa<ICmpInst>(Op1C->getOperand(0))) { + const Type *SrcTy = Op0C->getOperand(0)->getType(); + if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && + // Only do this if the casts both really cause code to be + // generated. + ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), + I.getType(), TD) && + ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), + I.getType(), TD)) { + Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0), + Op1C->getOperand(0), + I.getName()); + InsertNewInstBefore(NewOp, I); + return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); + } + } + } + } + + + // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y) + if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) { + if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) { + if (LHS->getPredicate() == FCmpInst::FCMP_UNO && + RHS->getPredicate() == FCmpInst::FCMP_UNO && + LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) { + if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) + if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { + // If either of the constants are nans, then the whole thing returns + // true. + if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + + // Otherwise, no need to compare the two constants, compare the + // rest. + return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0), + RHS->getOperand(0)); + } + } else { + Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS; + FCmpInst::Predicate Op0CC, Op1CC; + if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) && + match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) { + if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { + // Swap RHS operands to match LHS. + Op1CC = FCmpInst::getSwappedPredicate(Op1CC); + std::swap(Op1LHS, Op1RHS); + } + if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { + // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y). + if (Op0CC == Op1CC) + return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); + else if (Op0CC == FCmpInst::FCMP_TRUE || + Op1CC == FCmpInst::FCMP_TRUE) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + else if (Op0CC == FCmpInst::FCMP_FALSE) + return ReplaceInstUsesWith(I, Op1); + else if (Op1CC == FCmpInst::FCMP_FALSE) + return ReplaceInstUsesWith(I, Op0); + bool Op0Ordered; + bool Op1Ordered; + unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); + unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); + if (Op0Ordered == Op1Ordered) { + // If both are ordered or unordered, return a new fcmp with + // or'ed predicates. + Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, + Op0LHS, Op0RHS); + if (Instruction *I = dyn_cast<Instruction>(RV)) + return I; + // Otherwise, it's a constant boolean value... + return ReplaceInstUsesWith(I, RV); + } + } + } + } + } + } + + return Changed ? &I : 0; +} + +namespace { + +// XorSelf - Implements: X ^ X --> 0 +struct XorSelf { + Value *RHS; + XorSelf(Value *rhs) : RHS(rhs) {} + bool shouldApply(Value *LHS) const { return LHS == RHS; } + Instruction *apply(BinaryOperator &Xor) const { + return &Xor; + } +}; + +} + +Instruction *InstCombiner::visitXor(BinaryOperator &I) { + bool Changed = SimplifyCommutative(I); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (isa<UndefValue>(Op1)) { + if (isa<UndefValue>(Op0)) + // Handle undef ^ undef -> 0 special case. This is a common + // idiom (misuse). + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef + } + + // xor X, X = 0, even if X is nested in a sequence of Xor's. + if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) { + assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result; + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + } + + // See if we can simplify any instructions used by the instruction whose sole + // purpose is to compute bits we don't care about. + if (!isa<VectorType>(I.getType())) { + if (SimplifyDemandedInstructionBits(I)) + return &I; + } else if (isa<ConstantAggregateZero>(Op1)) { + return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X + } + + // Is this a ~ operation? + if (Value *NotOp = dyn_castNotVal(&I)) { + // ~(~X & Y) --> (X | ~Y) - De Morgan's Law + // ~(~X | Y) === (X & ~Y) - De Morgan's Law + if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) { + if (Op0I->getOpcode() == Instruction::And || + Op0I->getOpcode() == Instruction::Or) { + if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands(); + if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { + Instruction *NotY = + BinaryOperator::CreateNot(Op0I->getOperand(1), + Op0I->getOperand(1)->getName()+".not"); + InsertNewInstBefore(NotY, I); + if (Op0I->getOpcode() == Instruction::And) + return BinaryOperator::CreateOr(Op0NotVal, NotY); + else + return BinaryOperator::CreateAnd(Op0NotVal, NotY); + } + } + } + } + + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { + if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) { + // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B + if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0)) + return new ICmpInst(ICI->getInversePredicate(), + ICI->getOperand(0), ICI->getOperand(1)); + + if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0)) + return new FCmpInst(FCI->getInversePredicate(), + FCI->getOperand(0), FCI->getOperand(1)); + } + + // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp). + if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { + if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) { + if (CI->hasOneUse() && Op0C->hasOneUse()) { + Instruction::CastOps Opcode = Op0C->getOpcode(); + if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { + if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(), + Op0C->getDestTy())) { + Instruction *NewCI = InsertNewInstBefore(CmpInst::Create( + CI->getOpcode(), CI->getInversePredicate(), + CI->getOperand(0), CI->getOperand(1)), I); + NewCI->takeName(CI); + return CastInst::Create(Opcode, NewCI, Op0C->getType()); + } + } + } + } + } + + if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { + // ~(c-X) == X-c-1 == X+(-c-1) + if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) + if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) { + Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); + Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, + ConstantInt::get(I.getType(), 1)); + return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS); + } + + if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { + if (Op0I->getOpcode() == Instruction::Add) { + // ~(X-c) --> (-c-1)-X + if (RHS->isAllOnesValue()) { + Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); + return BinaryOperator::CreateSub( + ConstantExpr::getSub(NegOp0CI, + ConstantInt::get(I.getType(), 1)), + Op0I->getOperand(0)); + } else if (RHS->getValue().isSignBit()) { + // (X + C) ^ signbit -> (X + C + signbit) + Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue()); + return BinaryOperator::CreateAdd(Op0I->getOperand(0), C); + + } + } else if (Op0I->getOpcode() == Instruction::Or) { + // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 + if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) { + Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); + // Anything in both C1 and C2 is known to be zero, remove it from + // NewRHS. + Constant *CommonBits = And(Op0CI, RHS); + NewRHS = ConstantExpr::getAnd(NewRHS, + ConstantExpr::getNot(CommonBits)); + AddToWorkList(Op0I); + I.setOperand(0, Op0I->getOperand(0)); + I.setOperand(1, NewRHS); + return &I; + } + } + } + } + + // Try to fold constant and into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + if (isa<PHINode>(Op0)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + } + + if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1 + if (X == Op1) + return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); + + if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1 + if (X == Op0) + return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); + + + BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1); + if (Op1I) { + Value *A, *B; + if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) { + if (A == Op0) { // B^(B|A) == (A|B)^B + Op1I->swapOperands(); + I.swapOperands(); + std::swap(Op0, Op1); + } else if (B == Op0) { // B^(A|B) == (A|B)^B + I.swapOperands(); // Simplified below. + std::swap(Op0, Op1); + } + } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) { + return ReplaceInstUsesWith(I, B); // A^(A^B) == B + } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) { + return ReplaceInstUsesWith(I, A); // A^(B^A) == B + } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){ + if (A == Op0) { // A^(A&B) -> A^(B&A) + Op1I->swapOperands(); + std::swap(A, B); + } + if (B == Op0) { // A^(B&A) -> (B&A)^A + I.swapOperands(); // Simplified below. + std::swap(Op0, Op1); + } + } + } + + BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0); + if (Op0I) { + Value *A, *B; + if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) { + if (A == Op1) // (B|A)^B == (A|B)^B + std::swap(A, B); + if (B == Op1) { // (A|B)^B == A & ~B + Instruction *NotB = + InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I); + return BinaryOperator::CreateAnd(A, NotB); + } + } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) { + return ReplaceInstUsesWith(I, B); // (A^B)^A == B + } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) { + return ReplaceInstUsesWith(I, A); // (B^A)^A == B + } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){ + if (A == Op1) // (A&B)^A -> (B&A)^A + std::swap(A, B); + if (B == Op1 && // (B&A)^A == ~B & A + !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C + Instruction *N = + InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I); + return BinaryOperator::CreateAnd(N, Op1); + } + } + } + + // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. + if (Op0I && Op1I && Op0I->isShift() && + Op0I->getOpcode() == Op1I->getOpcode() && + Op0I->getOperand(1) == Op1I->getOperand(1) && + (Op1I->hasOneUse() || Op1I->hasOneUse())) { + Instruction *NewOp = + InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0), + Op1I->getOperand(0), + Op0I->getName()), I); + return BinaryOperator::Create(Op1I->getOpcode(), NewOp, + Op1I->getOperand(1)); + } + + if (Op0I && Op1I) { + Value *A, *B, *C, *D; + // (A & B)^(A | B) -> A ^ B + if (match(Op0I, m_And(m_Value(A), m_Value(B))) && + match(Op1I, m_Or(m_Value(C), m_Value(D)))) { + if ((A == C && B == D) || (A == D && B == C)) + return BinaryOperator::CreateXor(A, B); + } + // (A | B)^(A & B) -> A ^ B + if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && + match(Op1I, m_And(m_Value(C), m_Value(D)))) { + if ((A == C && B == D) || (A == D && B == C)) + return BinaryOperator::CreateXor(A, B); + } + + // (A & B)^(C & D) + if ((Op0I->hasOneUse() || Op1I->hasOneUse()) && + match(Op0I, m_And(m_Value(A), m_Value(B))) && + match(Op1I, m_And(m_Value(C), m_Value(D)))) { + // (X & Y)^(X & Y) -> (Y^Z) & X + Value *X = 0, *Y = 0, *Z = 0; + if (A == C) + X = A, Y = B, Z = D; + else if (A == D) + X = A, Y = B, Z = C; + else if (B == C) + X = B, Y = A, Z = D; + else if (B == D) + X = B, Y = A, Z = C; + + if (X) { + Instruction *NewOp = + InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I); + return BinaryOperator::CreateAnd(NewOp, X); + } + } + } + + // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) + if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) + if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) + return R; + + // fold (xor (cast A), (cast B)) -> (cast (xor A, B)) + if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { + if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) + if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind? + const Type *SrcTy = Op0C->getOperand(0)->getType(); + if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && + // Only do this if the casts both really cause code to be generated. + ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), + I.getType(), TD) && + ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), + I.getType(), TD)) { + Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0), + Op1C->getOperand(0), + I.getName()); + InsertNewInstBefore(NewOp, I); + return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); + } + } + } + + return Changed ? &I : 0; +} + +/// AddWithOverflow - Compute Result = In1+In2, returning true if the result +/// overflowed for this type. +static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1, + ConstantInt *In2, bool IsSigned = false) { + Result = cast<ConstantInt>(Add(In1, In2)); + + if (IsSigned) + if (In2->getValue().isNegative()) + return Result->getValue().sgt(In1->getValue()); + else + return Result->getValue().slt(In1->getValue()); + else + return Result->getValue().ult(In1->getValue()); +} + +/// SubWithOverflow - Compute Result = In1-In2, returning true if the result +/// overflowed for this type. +static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1, + ConstantInt *In2, bool IsSigned = false) { + Result = cast<ConstantInt>(Subtract(In1, In2)); + + if (IsSigned) + if (In2->getValue().isNegative()) + return Result->getValue().slt(In1->getValue()); + else + return Result->getValue().sgt(In1->getValue()); + else + return Result->getValue().ugt(In1->getValue()); +} + +/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the +/// code necessary to compute the offset from the base pointer (without adding +/// in the base pointer). Return the result as a signed integer of intptr size. +static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) { + TargetData &TD = IC.getTargetData(); + gep_type_iterator GTI = gep_type_begin(GEP); + const Type *IntPtrTy = TD.getIntPtrType(); + Value *Result = Constant::getNullValue(IntPtrTy); + + // Build a mask for high order bits. + unsigned IntPtrWidth = TD.getPointerSizeInBits(); + uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); + + for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; + ++i, ++GTI) { + Value *Op = *i; + uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask; + if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) { + if (OpC->isZero()) continue; + + // Handle a struct index, which adds its field offset to the pointer. + if (const StructType *STy = dyn_cast<StructType>(*GTI)) { + Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); + + if (ConstantInt *RC = dyn_cast<ConstantInt>(Result)) + Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size)); + else + Result = IC.InsertNewInstBefore( + BinaryOperator::CreateAdd(Result, + ConstantInt::get(IntPtrTy, Size), + GEP->getName()+".offs"), I); + continue; + } + + Constant *Scale = ConstantInt::get(IntPtrTy, Size); + Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); + Scale = ConstantExpr::getMul(OC, Scale); + if (Constant *RC = dyn_cast<Constant>(Result)) + Result = ConstantExpr::getAdd(RC, Scale); + else { + // Emit an add instruction. + Result = IC.InsertNewInstBefore( + BinaryOperator::CreateAdd(Result, Scale, + GEP->getName()+".offs"), I); + } + continue; + } + // Convert to correct type. + if (Op->getType() != IntPtrTy) { + if (Constant *OpC = dyn_cast<Constant>(Op)) + Op = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true); + else + Op = IC.InsertNewInstBefore(CastInst::CreateIntegerCast(Op, IntPtrTy, + true, + Op->getName()+".c"), I); + } + if (Size != 1) { + Constant *Scale = ConstantInt::get(IntPtrTy, Size); + if (Constant *OpC = dyn_cast<Constant>(Op)) + Op = ConstantExpr::getMul(OpC, Scale); + else // We'll let instcombine(mul) convert this to a shl if possible. + Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale, + GEP->getName()+".idx"), I); + } + + // Emit an add instruction. + if (isa<Constant>(Op) && isa<Constant>(Result)) + Result = ConstantExpr::getAdd(cast<Constant>(Op), + cast<Constant>(Result)); + else + Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result, + GEP->getName()+".offs"), I); + } + return Result; +} + + +/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of +/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want +/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be +/// complex, and scales are involved. The above expression would also be legal +/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This +/// later form is less amenable to optimization though, and we are allowed to +/// generate the first by knowing that pointer arithmetic doesn't overflow. +/// +/// If we can't emit an optimized form for this expression, this returns null. +/// +static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I, + InstCombiner &IC) { + TargetData &TD = IC.getTargetData(); + gep_type_iterator GTI = gep_type_begin(GEP); + + // Check to see if this gep only has a single variable index. If so, and if + // any constant indices are a multiple of its scale, then we can compute this + // in terms of the scale of the variable index. For example, if the GEP + // implies an offset of "12 + i*4", then we can codegen this as "3 + i", + // because the expression will cross zero at the same point. + unsigned i, e = GEP->getNumOperands(); + int64_t Offset = 0; + for (i = 1; i != e; ++i, ++GTI) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { + // Compute the aggregate offset of constant indices. + if (CI->isZero()) continue; + + // Handle a struct index, which adds its field offset to the pointer. + if (const StructType *STy = dyn_cast<StructType>(*GTI)) { + Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); + } else { + uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); + Offset += Size*CI->getSExtValue(); + } + } else { + // Found our variable index. + break; + } + } + + // If there are no variable indices, we must have a constant offset, just + // evaluate it the general way. + if (i == e) return 0; + + Value *VariableIdx = GEP->getOperand(i); + // Determine the scale factor of the variable element. For example, this is + // 4 if the variable index is into an array of i32. + uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType()); + + // Verify that there are no other variable indices. If so, emit the hard way. + for (++i, ++GTI; i != e; ++i, ++GTI) { + ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (!CI) return 0; + + // Compute the aggregate offset of constant indices. + if (CI->isZero()) continue; + + // Handle a struct index, which adds its field offset to the pointer. + if (const StructType *STy = dyn_cast<StructType>(*GTI)) { + Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); + } else { + uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); + Offset += Size*CI->getSExtValue(); + } + } + + // Okay, we know we have a single variable index, which must be a + // pointer/array/vector index. If there is no offset, life is simple, return + // the index. + unsigned IntPtrWidth = TD.getPointerSizeInBits(); + if (Offset == 0) { + // Cast to intptrty in case a truncation occurs. If an extension is needed, + // we don't need to bother extending: the extension won't affect where the + // computation crosses zero. + if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) + VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(), + VariableIdx->getNameStart(), &I); + return VariableIdx; + } + + // Otherwise, there is an index. The computation we will do will be modulo + // the pointer size, so get it. + uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); + + Offset &= PtrSizeMask; + VariableScale &= PtrSizeMask; + + // To do this transformation, any constant index must be a multiple of the + // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", + // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a + // multiple of the variable scale. + int64_t NewOffs = Offset / (int64_t)VariableScale; + if (Offset != NewOffs*(int64_t)VariableScale) + return 0; + + // Okay, we can do this evaluation. Start by converting the index to intptr. + const Type *IntPtrTy = TD.getIntPtrType(); + if (VariableIdx->getType() != IntPtrTy) + VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy, + true /*SExt*/, + VariableIdx->getNameStart(), &I); + Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); + return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I); +} + + +/// FoldGEPICmp - Fold comparisons between a GEP instruction and something +/// else. At this point we know that the GEP is on the LHS of the comparison. +Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS, + ICmpInst::Predicate Cond, + Instruction &I) { + assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!"); + + // Look through bitcasts. + if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS)) + RHS = BCI->getOperand(0); + + Value *PtrBase = GEPLHS->getOperand(0); + if (PtrBase == RHS) { + // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). + // This transformation (ignoring the base and scales) is valid because we + // know pointers can't overflow. See if we can output an optimized form. + Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this); + + // If not, synthesize the offset the hard way. + if (Offset == 0) + Offset = EmitGEPOffset(GEPLHS, I, *this); + return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, + Constant::getNullValue(Offset->getType())); + } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) { + // If the base pointers are different, but the indices are the same, just + // compare the base pointer. + if (PtrBase != GEPRHS->getOperand(0)) { + bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); + IndicesTheSame &= GEPLHS->getOperand(0)->getType() == + GEPRHS->getOperand(0)->getType(); + if (IndicesTheSame) + for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) + if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { + IndicesTheSame = false; + break; + } + + // If all indices are the same, just compare the base pointers. + if (IndicesTheSame) + return new ICmpInst(ICmpInst::getSignedPredicate(Cond), + GEPLHS->getOperand(0), GEPRHS->getOperand(0)); + + // Otherwise, the base pointers are different and the indices are + // different, bail out. + return 0; + } + + // If one of the GEPs has all zero indices, recurse. + bool AllZeros = true; + for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) + if (!isa<Constant>(GEPLHS->getOperand(i)) || + !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) { + AllZeros = false; + break; + } + if (AllZeros) + return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), + ICmpInst::getSwappedPredicate(Cond), I); + + // If the other GEP has all zero indices, recurse. + AllZeros = true; + for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) + if (!isa<Constant>(GEPRHS->getOperand(i)) || + !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) { + AllZeros = false; + break; + } + if (AllZeros) + return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); + + if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { + // If the GEPs only differ by one index, compare it. + unsigned NumDifferences = 0; // Keep track of # differences. + unsigned DiffOperand = 0; // The operand that differs. + for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) + if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { + if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != + GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { + // Irreconcilable differences. + NumDifferences = 2; + break; + } else { + if (NumDifferences++) break; + DiffOperand = i; + } + } + + if (NumDifferences == 0) // SAME GEP? + return ReplaceInstUsesWith(I, // No comparison is needed here. + ConstantInt::get(Type::Int1Ty, + ICmpInst::isTrueWhenEqual(Cond))); + + else if (NumDifferences == 1) { + Value *LHSV = GEPLHS->getOperand(DiffOperand); + Value *RHSV = GEPRHS->getOperand(DiffOperand); + // Make sure we do a signed comparison here. + return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); + } + } + + // Only lower this if the icmp is the only user of the GEP or if we expect + // the result to fold to a constant! + if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && + (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { + // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) + Value *L = EmitGEPOffset(GEPLHS, I, *this); + Value *R = EmitGEPOffset(GEPRHS, I, *this); + return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); + } + } + return 0; +} + +/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. +/// +Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, + Instruction *LHSI, + Constant *RHSC) { + if (!isa<ConstantFP>(RHSC)) return 0; + const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); + + // Get the width of the mantissa. We don't want to hack on conversions that + // might lose information from the integer, e.g. "i64 -> float" + int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); + if (MantissaWidth == -1) return 0; // Unknown. + + // Check to see that the input is converted from an integer type that is small + // enough that preserves all bits. TODO: check here for "known" sign bits. + // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. + unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); + + // If this is a uitofp instruction, we need an extra bit to hold the sign. + bool LHSUnsigned = isa<UIToFPInst>(LHSI); + if (LHSUnsigned) + ++InputSize; + + // If the conversion would lose info, don't hack on this. + if ((int)InputSize > MantissaWidth) + return 0; + + // Otherwise, we can potentially simplify the comparison. We know that it + // will always come through as an integer value and we know the constant is + // not a NAN (it would have been previously simplified). + assert(!RHS.isNaN() && "NaN comparison not already folded!"); + + ICmpInst::Predicate Pred; + switch (I.getPredicate()) { + default: assert(0 && "Unexpected predicate!"); + case FCmpInst::FCMP_UEQ: + case FCmpInst::FCMP_OEQ: + Pred = ICmpInst::ICMP_EQ; + break; + case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_OGT: + Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; + break; + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_OGE: + Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; + break; + case FCmpInst::FCMP_ULT: + case FCmpInst::FCMP_OLT: + Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; + break; + case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_OLE: + Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; + break; + case FCmpInst::FCMP_UNE: + case FCmpInst::FCMP_ONE: + Pred = ICmpInst::ICMP_NE; + break; + case FCmpInst::FCMP_ORD: + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + case FCmpInst::FCMP_UNO: + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + } + + const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); + + // Now we know that the APFloat is a normal number, zero or inf. + + // See if the FP constant is too large for the integer. For example, + // comparing an i8 to 300.0. + unsigned IntWidth = IntTy->getPrimitiveSizeInBits(); + + if (!LHSUnsigned) { + // If the RHS value is > SignedMax, fold the comparison. This handles +INF + // and large values. + APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false); + SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, + APFloat::rmNearestTiesToEven); + if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 + if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || + Pred == ICmpInst::ICMP_SLE) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + } + } else { + // If the RHS value is > UnsignedMax, fold the comparison. This handles + // +INF and large values. + APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false); + UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, + APFloat::rmNearestTiesToEven); + if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 + if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || + Pred == ICmpInst::ICMP_ULE) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + } + } + + if (!LHSUnsigned) { + // See if the RHS value is < SignedMin. + APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false); + SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, + APFloat::rmNearestTiesToEven); + if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 + if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || + Pred == ICmpInst::ICMP_SGE) + return ReplaceInstUsesWith(I,ConstantInt::getTrue()); + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + } + } + + // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or + // [0, UMAX], but it may still be fractional. See if it is fractional by + // casting the FP value to the integer value and back, checking for equality. + // Don't do this for zero, because -0.0 is not fractional. + Constant *RHSInt = LHSUnsigned + ? ConstantExpr::getFPToUI(RHSC, IntTy) + : ConstantExpr::getFPToSI(RHSC, IntTy); + if (!RHS.isZero()) { + bool Equal = LHSUnsigned + ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC + : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; + if (!Equal) { + // If we had a comparison against a fractional value, we have to adjust + // the compare predicate and sometimes the value. RHSC is rounded towards + // zero at this point. + switch (Pred) { + default: assert(0 && "Unexpected integer comparison!"); + case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + case ICmpInst::ICMP_ULE: + // (float)int <= 4.4 --> int <= 4 + // (float)int <= -4.4 --> false + if (RHS.isNegative()) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + break; + case ICmpInst::ICMP_SLE: + // (float)int <= 4.4 --> int <= 4 + // (float)int <= -4.4 --> int < -4 + if (RHS.isNegative()) + Pred = ICmpInst::ICMP_SLT; + break; + case ICmpInst::ICMP_ULT: + // (float)int < -4.4 --> false + // (float)int < 4.4 --> int <= 4 + if (RHS.isNegative()) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + Pred = ICmpInst::ICMP_ULE; + break; + case ICmpInst::ICMP_SLT: + // (float)int < -4.4 --> int < -4 + // (float)int < 4.4 --> int <= 4 + if (!RHS.isNegative()) + Pred = ICmpInst::ICMP_SLE; + break; + case ICmpInst::ICMP_UGT: + // (float)int > 4.4 --> int > 4 + // (float)int > -4.4 --> true + if (RHS.isNegative()) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + break; + case ICmpInst::ICMP_SGT: + // (float)int > 4.4 --> int > 4 + // (float)int > -4.4 --> int >= -4 + if (RHS.isNegative()) + Pred = ICmpInst::ICMP_SGE; + break; + case ICmpInst::ICMP_UGE: + // (float)int >= -4.4 --> true + // (float)int >= 4.4 --> int > 4 + if (!RHS.isNegative()) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + Pred = ICmpInst::ICMP_UGT; + break; + case ICmpInst::ICMP_SGE: + // (float)int >= -4.4 --> int >= -4 + // (float)int >= 4.4 --> int > 4 + if (!RHS.isNegative()) + Pred = ICmpInst::ICMP_SGT; + break; + } + } + } + + // Lower this FP comparison into an appropriate integer version of the + // comparison. + return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); +} + +Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { + bool Changed = SimplifyCompare(I); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // Fold trivial predicates. + if (I.getPredicate() == FCmpInst::FCMP_FALSE) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + if (I.getPredicate() == FCmpInst::FCMP_TRUE) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + + // Simplify 'fcmp pred X, X' + if (Op0 == Op1) { + switch (I.getPredicate()) { + default: assert(0 && "Unknown predicate!"); + case FCmpInst::FCMP_UEQ: // True if unordered or equal + case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal + case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + case FCmpInst::FCMP_OGT: // True if ordered and greater than + case FCmpInst::FCMP_OLT: // True if ordered and less than + case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + + case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) + case FCmpInst::FCMP_ULT: // True if unordered or less than + case FCmpInst::FCMP_UGT: // True if unordered or greater than + case FCmpInst::FCMP_UNE: // True if unordered or not equal + // Canonicalize these to be 'fcmp uno %X, 0.0'. + I.setPredicate(FCmpInst::FCMP_UNO); + I.setOperand(1, Constant::getNullValue(Op0->getType())); + return &I; + + case FCmpInst::FCMP_ORD: // True if ordered (no nans) + case FCmpInst::FCMP_OEQ: // True if ordered and equal + case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal + case FCmpInst::FCMP_OLE: // True if ordered and less than or equal + // Canonicalize these to be 'fcmp ord %X, 0.0'. + I.setPredicate(FCmpInst::FCMP_ORD); + I.setOperand(1, Constant::getNullValue(Op0->getType())); + return &I; + } + } + + if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef + return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty)); + + // Handle fcmp with constant RHS + if (Constant *RHSC = dyn_cast<Constant>(Op1)) { + // If the constant is a nan, see if we can fold the comparison based on it. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { + if (CFP->getValueAPF().isNaN()) { + if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and... + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + assert(FCmpInst::isUnordered(I.getPredicate()) && + "Comparison must be either ordered or unordered!"); + // True if unordered. + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + } + } + + if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) + switch (LHSI->getOpcode()) { + case Instruction::PHI: + // Only fold fcmp into the PHI if the phi and fcmp are in the same + // block. If in the same block, we're encouraging jump threading. If + // not, we are just pessimizing the code by making an i1 phi. + if (LHSI->getParent() == I.getParent()) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + break; + case Instruction::SIToFP: + case Instruction::UIToFP: + if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) + return NV; + break; + case Instruction::Select: + // If either operand of the select is a constant, we can fold the + // comparison into the select arms, which will cause one to be + // constant folded and the select turned into a bitwise or. + Value *Op1 = 0, *Op2 = 0; + if (LHSI->hasOneUse()) { + if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { + // Fold the known value into the constant operand. + Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); + // Insert a new FCmp of the other select operand. + Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(), + LHSI->getOperand(2), RHSC, + I.getName()), I); + } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { + // Fold the known value into the constant operand. + Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); + // Insert a new FCmp of the other select operand. + Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(), + LHSI->getOperand(1), RHSC, + I.getName()), I); + } + } + + if (Op1) + return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); + break; + } + } + + return Changed ? &I : 0; +} + +Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { + bool Changed = SimplifyCompare(I); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + const Type *Ty = Op0->getType(); + + // icmp X, X + if (Op0 == Op1) + return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, + I.isTrueWhenEqual())); + + if (isa<UndefValue>(Op1)) // X icmp undef -> undef + return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty)); + + // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value + // addresses never equal each other! We already know that Op0 != Op1. + if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) || + isa<ConstantPointerNull>(Op0)) && + (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) || + isa<ConstantPointerNull>(Op1))) + return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, + !I.isTrueWhenEqual())); + + // icmp's with boolean values can always be turned into bitwise operations + if (Ty == Type::Int1Ty) { + switch (I.getPredicate()) { + default: assert(0 && "Invalid icmp instruction!"); + case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) + Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp"); + InsertNewInstBefore(Xor, I); + return BinaryOperator::CreateNot(Xor); + } + case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B + return BinaryOperator::CreateXor(Op0, Op1); + + case ICmpInst::ICMP_UGT: + std::swap(Op0, Op1); // Change icmp ugt -> icmp ult + // FALL THROUGH + case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B + Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp"); + InsertNewInstBefore(Not, I); + return BinaryOperator::CreateAnd(Not, Op1); + } + case ICmpInst::ICMP_SGT: + std::swap(Op0, Op1); // Change icmp sgt -> icmp slt + // FALL THROUGH + case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B + Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp"); + InsertNewInstBefore(Not, I); + return BinaryOperator::CreateAnd(Not, Op0); + } + case ICmpInst::ICMP_UGE: + std::swap(Op0, Op1); // Change icmp uge -> icmp ule + // FALL THROUGH + case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B + Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp"); + InsertNewInstBefore(Not, I); + return BinaryOperator::CreateOr(Not, Op1); + } + case ICmpInst::ICMP_SGE: + std::swap(Op0, Op1); // Change icmp sge -> icmp sle + // FALL THROUGH + case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B + Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp"); + InsertNewInstBefore(Not, I); + return BinaryOperator::CreateOr(Not, Op0); + } + } + } + + unsigned BitWidth = 0; + if (TD) + BitWidth = TD->getTypeSizeInBits(Ty); + else if (isa<IntegerType>(Ty)) + BitWidth = Ty->getPrimitiveSizeInBits(); + + bool isSignBit = false; + + // See if we are doing a comparison with a constant. + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { + Value *A = 0, *B = 0; + + // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) + if (I.isEquality() && CI->isNullValue() && + match(Op0, m_Sub(m_Value(A), m_Value(B)))) { + // (icmp cond A B) if cond is equality + return new ICmpInst(I.getPredicate(), A, B); + } + + // If we have an icmp le or icmp ge instruction, turn it into the + // appropriate icmp lt or icmp gt instruction. This allows us to rely on + // them being folded in the code below. + switch (I.getPredicate()) { + default: break; + case ICmpInst::ICMP_ULE: + if (CI->isMaxValue(false)) // A <=u MAX -> TRUE + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI)); + case ICmpInst::ICMP_SLE: + if (CI->isMaxValue(true)) // A <=s MAX -> TRUE + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI)); + case ICmpInst::ICMP_UGE: + if (CI->isMinValue(false)) // A >=u MIN -> TRUE + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI)); + case ICmpInst::ICMP_SGE: + if (CI->isMinValue(true)) // A >=s MIN -> TRUE + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI)); + } + + // If this comparison is a normal comparison, it demands all + // bits, if it is a sign bit comparison, it only demands the sign bit. + bool UnusedBit; + isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); + } + + // See if we can fold the comparison based on range information we can get + // by checking whether bits are known to be zero or one in the input. + if (BitWidth != 0) { + APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); + APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); + + if (SimplifyDemandedBits(I.getOperandUse(0), + isSignBit ? APInt::getSignBit(BitWidth) + : APInt::getAllOnesValue(BitWidth), + Op0KnownZero, Op0KnownOne, 0)) + return &I; + if (SimplifyDemandedBits(I.getOperandUse(1), + APInt::getAllOnesValue(BitWidth), + Op1KnownZero, Op1KnownOne, 0)) + return &I; + + // Given the known and unknown bits, compute a range that the LHS could be + // in. Compute the Min, Max and RHS values based on the known bits. For the + // EQ and NE we use unsigned values. + APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); + APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); + if (ICmpInst::isSignedPredicate(I.getPredicate())) { + ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, + Op0Min, Op0Max); + ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, + Op1Min, Op1Max); + } else { + ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, + Op0Min, Op0Max); + ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, + Op1Min, Op1Max); + } + + // If Min and Max are known to be the same, then SimplifyDemandedBits + // figured out that the LHS is a constant. Just constant fold this now so + // that code below can assume that Min != Max. + if (!isa<Constant>(Op0) && Op0Min == Op0Max) + return new ICmpInst(I.getPredicate(), ConstantInt::get(Op0Min), Op1); + if (!isa<Constant>(Op1) && Op1Min == Op1Max) + return new ICmpInst(I.getPredicate(), Op0, ConstantInt::get(Op1Min)); + + // Based on the range information we know about the LHS, see if we can + // simplify this comparison. For example, (x&4) < 8 is always true. + switch (I.getPredicate()) { + default: assert(0 && "Unknown icmp opcode!"); + case ICmpInst::ICMP_EQ: + if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + break; + case ICmpInst::ICMP_NE: + if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + break; + case ICmpInst::ICMP_ULT: + if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { + if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI)); + + // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear + if (CI->isMinValue(true)) + return new ICmpInst(ICmpInst::ICMP_SGT, Op0, + ConstantInt::getAllOnesValue(Op0->getType())); + } + break; + case ICmpInst::ICMP_UGT: + if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + + if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { + if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI)); + + // (x >u 2147483647) -> (x <s 0) -> true if sign bit set + if (CI->isMaxValue(true)) + return new ICmpInst(ICmpInst::ICMP_SLT, Op0, + ConstantInt::getNullValue(Op0->getType())); + } + break; + case ICmpInst::ICMP_SLT: + if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { + if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI)); + } + break; + case ICmpInst::ICMP_SGT: + if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + + if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { + if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI)); + } + break; + case ICmpInst::ICMP_SGE: + assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); + if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + break; + case ICmpInst::ICMP_SLE: + assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); + if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + break; + case ICmpInst::ICMP_UGE: + assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); + if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + break; + case ICmpInst::ICMP_ULE: + assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); + if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) + return ReplaceInstUsesWith(I, ConstantInt::getTrue()); + if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) + return ReplaceInstUsesWith(I, ConstantInt::getFalse()); + break; + } + + // Turn a signed comparison into an unsigned one if both operands + // are known to have the same sign. + if (I.isSignedPredicate() && + ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || + (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) + return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); + } + + // Test if the ICmpInst instruction is used exclusively by a select as + // part of a minimum or maximum operation. If so, refrain from doing + // any other folding. This helps out other analyses which understand + // non-obfuscated minimum and maximum idioms, such as ScalarEvolution + // and CodeGen. And in this case, at least one of the comparison + // operands has at least one user besides the compare (the select), + // which would often largely negate the benefit of folding anyway. + if (I.hasOneUse()) + if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin())) + if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || + (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) + return 0; + + // See if we are doing a comparison between a constant and an instruction that + // can be folded into the comparison. + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { + // Since the RHS is a ConstantInt (CI), if the left hand side is an + // instruction, see if that instruction also has constants so that the + // instruction can be folded into the icmp + if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) + if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) + return Res; + } + + // Handle icmp with constant (but not simple integer constant) RHS + if (Constant *RHSC = dyn_cast<Constant>(Op1)) { + if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) + switch (LHSI->getOpcode()) { + case Instruction::GetElementPtr: + if (RHSC->isNullValue()) { + // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null + bool isAllZeros = true; + for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i) + if (!isa<Constant>(LHSI->getOperand(i)) || + !cast<Constant>(LHSI->getOperand(i))->isNullValue()) { + isAllZeros = false; + break; + } + if (isAllZeros) + return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), + Constant::getNullValue(LHSI->getOperand(0)->getType())); + } + break; + + case Instruction::PHI: + // Only fold icmp into the PHI if the phi and fcmp are in the same + // block. If in the same block, we're encouraging jump threading. If + // not, we are just pessimizing the code by making an i1 phi. + if (LHSI->getParent() == I.getParent()) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + break; + case Instruction::Select: { + // If either operand of the select is a constant, we can fold the + // comparison into the select arms, which will cause one to be + // constant folded and the select turned into a bitwise or. + Value *Op1 = 0, *Op2 = 0; + if (LHSI->hasOneUse()) { + if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { + // Fold the known value into the constant operand. + Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); + // Insert a new ICmp of the other select operand. + Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(), + LHSI->getOperand(2), RHSC, + I.getName()), I); + } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { + // Fold the known value into the constant operand. + Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); + // Insert a new ICmp of the other select operand. + Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(), + LHSI->getOperand(1), RHSC, + I.getName()), I); + } + } + + if (Op1) + return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); + break; + } + case Instruction::Malloc: + // If we have (malloc != null), and if the malloc has a single use, we + // can assume it is successful and remove the malloc. + if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) { + AddToWorkList(LHSI); + return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, + !I.isTrueWhenEqual())); + } + break; + } + } + + // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. + if (User *GEP = dyn_castGetElementPtr(Op0)) + if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) + return NI; + if (User *GEP = dyn_castGetElementPtr(Op1)) + if (Instruction *NI = FoldGEPICmp(GEP, Op0, + ICmpInst::getSwappedPredicate(I.getPredicate()), I)) + return NI; + + // Test to see if the operands of the icmp are casted versions of other + // values. If the ptr->ptr cast can be stripped off both arguments, we do so + // now. + if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { + if (isa<PointerType>(Op0->getType()) && + (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { + // We keep moving the cast from the left operand over to the right + // operand, where it can often be eliminated completely. + Op0 = CI->getOperand(0); + + // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast + // so eliminate it as well. + if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) + Op1 = CI2->getOperand(0); + + // If Op1 is a constant, we can fold the cast into the constant. + if (Op0->getType() != Op1->getType()) { + if (Constant *Op1C = dyn_cast<Constant>(Op1)) { + Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); + } else { + // Otherwise, cast the RHS right before the icmp + Op1 = InsertBitCastBefore(Op1, Op0->getType(), I); + } + } + return new ICmpInst(I.getPredicate(), Op0, Op1); + } + } + + if (isa<CastInst>(Op0)) { + // Handle the special case of: icmp (cast bool to X), <cst> + // This comes up when you have code like + // int X = A < B; + // if (X) ... + // For generality, we handle any zero-extension of any operand comparison + // with a constant or another cast from the same type. + if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1)) + if (Instruction *R = visitICmpInstWithCastAndCast(I)) + return R; + } + + // See if it's the same type of instruction on the left and right. + if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { + if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { + if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() && + Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) { + switch (Op0I->getOpcode()) { + default: break; + case Instruction::Add: + case Instruction::Sub: + case Instruction::Xor: + if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b + return new ICmpInst(I.getPredicate(), Op0I->getOperand(0), + Op1I->getOperand(0)); + // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { + if (CI->getValue().isSignBit()) { + ICmpInst::Predicate Pred = I.isSignedPredicate() + ? I.getUnsignedPredicate() + : I.getSignedPredicate(); + return new ICmpInst(Pred, Op0I->getOperand(0), + Op1I->getOperand(0)); + } + + if (CI->getValue().isMaxSignedValue()) { + ICmpInst::Predicate Pred = I.isSignedPredicate() + ? I.getUnsignedPredicate() + : I.getSignedPredicate(); + Pred = I.getSwappedPredicate(Pred); + return new ICmpInst(Pred, Op0I->getOperand(0), + Op1I->getOperand(0)); + } + } + break; + case Instruction::Mul: + if (!I.isEquality()) + break; + + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { + // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask + // Mask = -1 >> count-trailing-zeros(Cst). + if (!CI->isZero() && !CI->isOne()) { + const APInt &AP = CI->getValue(); + ConstantInt *Mask = ConstantInt::get( + APInt::getLowBitsSet(AP.getBitWidth(), + AP.getBitWidth() - + AP.countTrailingZeros())); + Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0), + Mask); + Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0), + Mask); + InsertNewInstBefore(And1, I); + InsertNewInstBefore(And2, I); + return new ICmpInst(I.getPredicate(), And1, And2); + } + } + break; + } + } + } + } + + // ~x < ~y --> y < x + { Value *A, *B; + if (match(Op0, m_Not(m_Value(A))) && + match(Op1, m_Not(m_Value(B)))) + return new ICmpInst(I.getPredicate(), B, A); + } + + if (I.isEquality()) { + Value *A, *B, *C, *D; + + // -x == -y --> x == y + if (match(Op0, m_Neg(m_Value(A))) && + match(Op1, m_Neg(m_Value(B)))) + return new ICmpInst(I.getPredicate(), A, B); + + if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { + if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 + Value *OtherVal = A == Op1 ? B : A; + return new ICmpInst(I.getPredicate(), OtherVal, + Constant::getNullValue(A->getType())); + } + + if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { + // A^c1 == C^c2 --> A == C^(c1^c2) + ConstantInt *C1, *C2; + if (match(B, m_ConstantInt(C1)) && + match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { + Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue()); + Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp"); + return new ICmpInst(I.getPredicate(), A, + InsertNewInstBefore(Xor, I)); + } + + // A^B == A^D -> B == D + if (A == C) return new ICmpInst(I.getPredicate(), B, D); + if (A == D) return new ICmpInst(I.getPredicate(), B, C); + if (B == C) return new ICmpInst(I.getPredicate(), A, D); + if (B == D) return new ICmpInst(I.getPredicate(), A, C); + } + } + + if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && + (A == Op0 || B == Op0)) { + // A == (A^B) -> B == 0 + Value *OtherVal = A == Op0 ? B : A; + return new ICmpInst(I.getPredicate(), OtherVal, + Constant::getNullValue(A->getType())); + } + + // (A-B) == A -> B == 0 + if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B)))) + return new ICmpInst(I.getPredicate(), B, + Constant::getNullValue(B->getType())); + + // A == (A-B) -> B == 0 + if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B)))) + return new ICmpInst(I.getPredicate(), B, + Constant::getNullValue(B->getType())); + + // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 + if (Op0->hasOneUse() && Op1->hasOneUse() && + match(Op0, m_And(m_Value(A), m_Value(B))) && + match(Op1, m_And(m_Value(C), m_Value(D)))) { + Value *X = 0, *Y = 0, *Z = 0; + + if (A == C) { + X = B; Y = D; Z = A; + } else if (A == D) { + X = B; Y = C; Z = A; + } else if (B == C) { + X = A; Y = D; Z = B; + } else if (B == D) { + X = A; Y = C; Z = B; + } + + if (X) { // Build (X^Y) & Z + Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I); + Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I); + I.setOperand(0, Op1); + I.setOperand(1, Constant::getNullValue(Op1->getType())); + return &I; + } + } + } + return Changed ? &I : 0; +} + + +/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS +/// and CmpRHS are both known to be integer constants. +Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, + ConstantInt *DivRHS) { + ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); + const APInt &CmpRHSV = CmpRHS->getValue(); + + // FIXME: If the operand types don't match the type of the divide + // then don't attempt this transform. The code below doesn't have the + // logic to deal with a signed divide and an unsigned compare (and + // vice versa). This is because (x /s C1) <s C2 produces different + // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even + // (x /u C1) <u C2. Simply casting the operands and result won't + // work. :( The if statement below tests that condition and bails + // if it finds it. + bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; + if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate()) + return 0; + if (DivRHS->isZero()) + return 0; // The ProdOV computation fails on divide by zero. + if (DivIsSigned && DivRHS->isAllOnesValue()) + return 0; // The overflow computation also screws up here + if (DivRHS->isOne()) + return 0; // Not worth bothering, and eliminates some funny cases + // with INT_MIN. + + // Compute Prod = CI * DivRHS. We are essentially solving an equation + // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and + // C2 (CI). By solving for X we can turn this into a range check + // instead of computing a divide. + ConstantInt *Prod = Multiply(CmpRHS, DivRHS); + + // Determine if the product overflows by seeing if the product is + // not equal to the divide. Make sure we do the same kind of divide + // as in the LHS instruction that we're folding. + bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : + ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; + + // Get the ICmp opcode + ICmpInst::Predicate Pred = ICI.getPredicate(); + + // Figure out the interval that is being checked. For example, a comparison + // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). + // Compute this interval based on the constants involved and the signedness of + // the compare/divide. This computes a half-open interval, keeping track of + // whether either value in the interval overflows. After analysis each + // overflow variable is set to 0 if it's corresponding bound variable is valid + // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. + int LoOverflow = 0, HiOverflow = 0; + ConstantInt *LoBound = 0, *HiBound = 0; + + if (!DivIsSigned) { // udiv + // e.g. X/5 op 3 --> [15, 20) + LoBound = Prod; + HiOverflow = LoOverflow = ProdOV; + if (!HiOverflow) + HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false); + } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. + if (CmpRHSV == 0) { // (X / pos) op 0 + // Can't overflow. e.g. X/2 op 0 --> [-1, 2) + LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS))); + HiBound = DivRHS; + } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos + LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) + HiOverflow = LoOverflow = ProdOV; + if (!HiOverflow) + HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true); + } else { // (X / pos) op neg + // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) + HiBound = AddOne(Prod); + LoOverflow = HiOverflow = ProdOV ? -1 : 0; + if (!LoOverflow) { + ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS)); + LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, + true) ? -1 : 0; + } + } + } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0. + if (CmpRHSV == 0) { // (X / neg) op 0 + // e.g. X/-5 op 0 --> [-4, 5) + LoBound = AddOne(DivRHS); + HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS)); + if (HiBound == DivRHS) { // -INTMIN = INTMIN + HiOverflow = 1; // [INTMIN+1, overflow) + HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN + } + } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos + // e.g. X/-5 op 3 --> [-19, -14) + HiBound = AddOne(Prod); + HiOverflow = LoOverflow = ProdOV ? -1 : 0; + if (!LoOverflow) + LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0; + } else { // (X / neg) op neg + LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) + LoOverflow = HiOverflow = ProdOV; + if (!HiOverflow) + HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true); + } + + // Dividing by a negative swaps the condition. LT <-> GT + Pred = ICmpInst::getSwappedPredicate(Pred); + } + + Value *X = DivI->getOperand(0); + switch (Pred) { + default: assert(0 && "Unhandled icmp opcode!"); + case ICmpInst::ICMP_EQ: + if (LoOverflow && HiOverflow) + return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); + else if (HiOverflow) + return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : + ICmpInst::ICMP_UGE, X, LoBound); + else if (LoOverflow) + return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : + ICmpInst::ICMP_ULT, X, HiBound); + else + return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI); + case ICmpInst::ICMP_NE: + if (LoOverflow && HiOverflow) + return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); + else if (HiOverflow) + return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : + ICmpInst::ICMP_ULT, X, LoBound); + else if (LoOverflow) + return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : + ICmpInst::ICMP_UGE, X, HiBound); + else + return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI); + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_SLT: + if (LoOverflow == +1) // Low bound is greater than input range. + return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); + if (LoOverflow == -1) // Low bound is less than input range. + return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); + return new ICmpInst(Pred, X, LoBound); + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_SGT: + if (HiOverflow == +1) // High bound greater than input range. + return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); + else if (HiOverflow == -1) // High bound less than input range. + return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); + if (Pred == ICmpInst::ICMP_UGT) + return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); + else + return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); + } +} + + +/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". +/// +Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, + Instruction *LHSI, + ConstantInt *RHS) { + const APInt &RHSV = RHS->getValue(); + + switch (LHSI->getOpcode()) { + case Instruction::Trunc: + if (ICI.isEquality() && LHSI->hasOneUse()) { + // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all + // of the high bits truncated out of x are known. + unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), + SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); + APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits)); + APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); + ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne); + + // If all the high bits are known, we can do this xform. + if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { + // Pull in the high bits from known-ones set. + APInt NewRHS(RHS->getValue()); + NewRHS.zext(SrcBits); + NewRHS |= KnownOne; + return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), + ConstantInt::get(NewRHS)); + } + } + break; + + case Instruction::Xor: // (icmp pred (xor X, XorCST), CI) + if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { + // If this is a comparison that tests the signbit (X < 0) or (x > -1), + // fold the xor. + if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || + (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { + Value *CompareVal = LHSI->getOperand(0); + + // If the sign bit of the XorCST is not set, there is no change to + // the operation, just stop using the Xor. + if (!XorCST->getValue().isNegative()) { + ICI.setOperand(0, CompareVal); + AddToWorkList(LHSI); + return &ICI; + } + + // Was the old condition true if the operand is positive? + bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; + + // If so, the new one isn't. + isTrueIfPositive ^= true; + + if (isTrueIfPositive) + return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS)); + else + return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS)); + } + + if (LHSI->hasOneUse()) { + // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) + if (!ICI.isEquality() && XorCST->getValue().isSignBit()) { + const APInt &SignBit = XorCST->getValue(); + ICmpInst::Predicate Pred = ICI.isSignedPredicate() + ? ICI.getUnsignedPredicate() + : ICI.getSignedPredicate(); + return new ICmpInst(Pred, LHSI->getOperand(0), + ConstantInt::get(RHSV ^ SignBit)); + } + + // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) + if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) { + const APInt &NotSignBit = XorCST->getValue(); + ICmpInst::Predicate Pred = ICI.isSignedPredicate() + ? ICI.getUnsignedPredicate() + : ICI.getSignedPredicate(); + Pred = ICI.getSwappedPredicate(Pred); + return new ICmpInst(Pred, LHSI->getOperand(0), + ConstantInt::get(RHSV ^ NotSignBit)); + } + } + } + break; + case Instruction::And: // (icmp pred (and X, AndCST), RHS) + if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && + LHSI->getOperand(0)->hasOneUse()) { + ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); + + // If the LHS is an AND of a truncating cast, we can widen the + // and/compare to be the input width without changing the value + // produced, eliminating a cast. + if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { + // We can do this transformation if either the AND constant does not + // have its sign bit set or if it is an equality comparison. + // Extending a relational comparison when we're checking the sign + // bit would not work. + if (Cast->hasOneUse() && + (ICI.isEquality() || + (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) { + uint32_t BitWidth = + cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth(); + APInt NewCST = AndCST->getValue(); + NewCST.zext(BitWidth); + APInt NewCI = RHSV; + NewCI.zext(BitWidth); + Instruction *NewAnd = + BinaryOperator::CreateAnd(Cast->getOperand(0), + ConstantInt::get(NewCST),LHSI->getName()); + InsertNewInstBefore(NewAnd, ICI); + return new ICmpInst(ICI.getPredicate(), NewAnd, + ConstantInt::get(NewCI)); + } + } + + // If this is: (X >> C1) & C2 != C3 (where any shift and any compare + // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This + // happens a LOT in code produced by the C front-end, for bitfield + // access. + BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); + if (Shift && !Shift->isShift()) + Shift = 0; + + ConstantInt *ShAmt; + ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0; + const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. + const Type *AndTy = AndCST->getType(); // Type of the and. + + // We can fold this as long as we can't shift unknown bits + // into the mask. This can only happen with signed shift + // rights, as they sign-extend. + if (ShAmt) { + bool CanFold = Shift->isLogicalShift(); + if (!CanFold) { + // To test for the bad case of the signed shr, see if any + // of the bits shifted in could be tested after the mask. + uint32_t TyBits = Ty->getPrimitiveSizeInBits(); + int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); + + uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); + if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & + AndCST->getValue()) == 0) + CanFold = true; + } + + if (CanFold) { + Constant *NewCst; + if (Shift->getOpcode() == Instruction::Shl) + NewCst = ConstantExpr::getLShr(RHS, ShAmt); + else + NewCst = ConstantExpr::getShl(RHS, ShAmt); + + // Check to see if we are shifting out any of the bits being + // compared. + if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) { + // If we shifted bits out, the fold is not going to work out. + // As a special case, check to see if this means that the + // result is always true or false now. + if (ICI.getPredicate() == ICmpInst::ICMP_EQ) + return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); + if (ICI.getPredicate() == ICmpInst::ICMP_NE) + return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); + } else { + ICI.setOperand(1, NewCst); + Constant *NewAndCST; + if (Shift->getOpcode() == Instruction::Shl) + NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); + else + NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); + LHSI->setOperand(1, NewAndCST); + LHSI->setOperand(0, Shift->getOperand(0)); + AddToWorkList(Shift); // Shift is dead. + AddUsesToWorkList(ICI); + return &ICI; + } + } + } + + // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is + // preferable because it allows the C<<Y expression to be hoisted out + // of a loop if Y is invariant and X is not. + if (Shift && Shift->hasOneUse() && RHSV == 0 && + ICI.isEquality() && !Shift->isArithmeticShift() && + !isa<Constant>(Shift->getOperand(0))) { + // Compute C << Y. + Value *NS; + if (Shift->getOpcode() == Instruction::LShr) { + NS = BinaryOperator::CreateShl(AndCST, + Shift->getOperand(1), "tmp"); + } else { + // Insert a logical shift. + NS = BinaryOperator::CreateLShr(AndCST, + Shift->getOperand(1), "tmp"); + } + InsertNewInstBefore(cast<Instruction>(NS), ICI); + + // Compute X & (C << Y). + Instruction *NewAnd = + BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); + InsertNewInstBefore(NewAnd, ICI); + + ICI.setOperand(0, NewAnd); + return &ICI; + } + } + break; + + case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) + ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); + if (!ShAmt) break; + + uint32_t TypeBits = RHSV.getBitWidth(); + + // Check that the shift amount is in range. If not, don't perform + // undefined shifts. When the shift is visited it will be + // simplified. + if (ShAmt->uge(TypeBits)) + break; + + if (ICI.isEquality()) { + // If we are comparing against bits always shifted out, the + // comparison cannot succeed. + Constant *Comp = + ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt); + if (Comp != RHS) {// Comparing against a bit that we know is zero. + bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; + Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE); + return ReplaceInstUsesWith(ICI, Cst); + } + + if (LHSI->hasOneUse()) { + // Otherwise strength reduce the shift into an and. + uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); + Constant *Mask = + ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal)); + + Instruction *AndI = + BinaryOperator::CreateAnd(LHSI->getOperand(0), + Mask, LHSI->getName()+".mask"); + Value *And = InsertNewInstBefore(AndI, ICI); + return new ICmpInst(ICI.getPredicate(), And, + ConstantInt::get(RHSV.lshr(ShAmtVal))); + } + } + + // Otherwise, if this is a comparison of the sign bit, simplify to and/test. + bool TrueIfSigned = false; + if (LHSI->hasOneUse() && + isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { + // (X << 31) <s 0 --> (X&1) != 0 + Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) << + (TypeBits-ShAmt->getZExtValue()-1)); + Instruction *AndI = + BinaryOperator::CreateAnd(LHSI->getOperand(0), + Mask, LHSI->getName()+".mask"); + Value *And = InsertNewInstBefore(AndI, ICI); + + return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, + And, Constant::getNullValue(And->getType())); + } + break; + } + + case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) + case Instruction::AShr: { + // Only handle equality comparisons of shift-by-constant. + ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); + if (!ShAmt || !ICI.isEquality()) break; + + // Check that the shift amount is in range. If not, don't perform + // undefined shifts. When the shift is visited it will be + // simplified. + uint32_t TypeBits = RHSV.getBitWidth(); + if (ShAmt->uge(TypeBits)) + break; + + uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); + + // If we are comparing against bits always shifted out, the + // comparison cannot succeed. + APInt Comp = RHSV << ShAmtVal; + if (LHSI->getOpcode() == Instruction::LShr) + Comp = Comp.lshr(ShAmtVal); + else + Comp = Comp.ashr(ShAmtVal); + + if (Comp != RHSV) { // Comparing against a bit that we know is zero. + bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; + Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE); + return ReplaceInstUsesWith(ICI, Cst); + } + + // Otherwise, check to see if the bits shifted out are known to be zero. + // If so, we can compare against the unshifted value: + // (X & 4) >> 1 == 2 --> (X & 4) == 4. + if (LHSI->hasOneUse() && + MaskedValueIsZero(LHSI->getOperand(0), + APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) { + return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), + ConstantExpr::getShl(RHS, ShAmt)); + } + + if (LHSI->hasOneUse()) { + // Otherwise strength reduce the shift into an and. + APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); + Constant *Mask = ConstantInt::get(Val); + + Instruction *AndI = + BinaryOperator::CreateAnd(LHSI->getOperand(0), + Mask, LHSI->getName()+".mask"); + Value *And = InsertNewInstBefore(AndI, ICI); + return new ICmpInst(ICI.getPredicate(), And, + ConstantExpr::getShl(RHS, ShAmt)); + } + break; + } + + case Instruction::SDiv: + case Instruction::UDiv: + // Fold: icmp pred ([us]div X, C1), C2 -> range test + // Fold this div into the comparison, producing a range check. + // Determine, based on the divide type, what the range is being + // checked. If there is an overflow on the low or high side, remember + // it, otherwise compute the range [low, hi) bounding the new value. + // See: InsertRangeTest above for the kinds of replacements possible. + if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) + if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), + DivRHS)) + return R; + break; + + case Instruction::Add: + // Fold: icmp pred (add, X, C1), C2 + + if (!ICI.isEquality()) { + ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); + if (!LHSC) break; + const APInt &LHSV = LHSC->getValue(); + + ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) + .subtract(LHSV); + + if (ICI.isSignedPredicate()) { + if (CR.getLower().isSignBit()) { + return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), + ConstantInt::get(CR.getUpper())); + } else if (CR.getUpper().isSignBit()) { + return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), + ConstantInt::get(CR.getLower())); + } + } else { + if (CR.getLower().isMinValue()) { + return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), + ConstantInt::get(CR.getUpper())); + } else if (CR.getUpper().isMinValue()) { + return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), + ConstantInt::get(CR.getLower())); + } + } + } + break; + } + + // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. + if (ICI.isEquality()) { + bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; + + // If the first operand is (add|sub|and|or|xor|rem) with a constant, and + // the second operand is a constant, simplify a bit. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { + switch (BO->getOpcode()) { + case Instruction::SRem: + // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. + if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ + const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); + if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) { + Instruction *NewRem = + BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1), + BO->getName()); + InsertNewInstBefore(NewRem, ICI); + return new ICmpInst(ICI.getPredicate(), NewRem, + Constant::getNullValue(BO->getType())); + } + } + break; + case Instruction::Add: + // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. + if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { + if (BO->hasOneUse()) + return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), + Subtract(RHS, BOp1C)); + } else if (RHSV == 0) { + // Replace ((add A, B) != 0) with (A != -B) if A or B is + // efficiently invertible, or if the add has just this one use. + Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); + + if (Value *NegVal = dyn_castNegVal(BOp1)) + return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); + else if (Value *NegVal = dyn_castNegVal(BOp0)) + return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); + else if (BO->hasOneUse()) { + Instruction *Neg = BinaryOperator::CreateNeg(BOp1); + InsertNewInstBefore(Neg, ICI); + Neg->takeName(BO); + return new ICmpInst(ICI.getPredicate(), BOp0, Neg); + } + } + break; + case Instruction::Xor: + // For the xor case, we can xor two constants together, eliminating + // the explicit xor. + if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) + return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), + ConstantExpr::getXor(RHS, BOC)); + + // FALLTHROUGH + case Instruction::Sub: + // Replace (([sub|xor] A, B) != 0) with (A != B) + if (RHSV == 0) + return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), + BO->getOperand(1)); + break; + + case Instruction::Or: + // If bits are being or'd in that are not present in the constant we + // are comparing against, then the comparison could never succeed! + if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { + Constant *NotCI = ConstantExpr::getNot(RHS); + if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) + return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty, + isICMP_NE)); + } + break; + + case Instruction::And: + if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { + // If bits are being compared against that are and'd out, then the + // comparison can never succeed! + if ((RHSV & ~BOC->getValue()) != 0) + return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty, + isICMP_NE)); + + // If we have ((X & C) == C), turn it into ((X & C) != 0). + if (RHS == BOC && RHSV.isPowerOf2()) + return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : + ICmpInst::ICMP_NE, LHSI, + Constant::getNullValue(RHS->getType())); + + // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 + if (BOC->getValue().isSignBit()) { + Value *X = BO->getOperand(0); + Constant *Zero = Constant::getNullValue(X->getType()); + ICmpInst::Predicate pred = isICMP_NE ? + ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; + return new ICmpInst(pred, X, Zero); + } + + // ((X & ~7) == 0) --> X < 8 + if (RHSV == 0 && isHighOnes(BOC)) { + Value *X = BO->getOperand(0); + Constant *NegX = ConstantExpr::getNeg(BOC); + ICmpInst::Predicate pred = isICMP_NE ? + ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; + return new ICmpInst(pred, X, NegX); + } + } + default: break; + } + } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { + // Handle icmp {eq|ne} <intrinsic>, intcst. + if (II->getIntrinsicID() == Intrinsic::bswap) { + AddToWorkList(II); + ICI.setOperand(0, II->getOperand(1)); + ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap())); + return &ICI; + } + } + } + return 0; +} + +/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). +/// We only handle extending casts so far. +/// +Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { + const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); + Value *LHSCIOp = LHSCI->getOperand(0); + const Type *SrcTy = LHSCIOp->getType(); + const Type *DestTy = LHSCI->getType(); + Value *RHSCIOp; + + // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the + // integer type is the same size as the pointer type. + if (LHSCI->getOpcode() == Instruction::PtrToInt && + getTargetData().getPointerSizeInBits() == + cast<IntegerType>(DestTy)->getBitWidth()) { + Value *RHSOp = 0; + if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { + RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); + } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) { + RHSOp = RHSC->getOperand(0); + // If the pointer types don't match, insert a bitcast. + if (LHSCIOp->getType() != RHSOp->getType()) + RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI); + } + + if (RHSOp) + return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); + } + + // The code below only handles extension cast instructions, so far. + // Enforce this. + if (LHSCI->getOpcode() != Instruction::ZExt && + LHSCI->getOpcode() != Instruction::SExt) + return 0; + + bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; + bool isSignedCmp = ICI.isSignedPredicate(); + + if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { + // Not an extension from the same type? + RHSCIOp = CI->getOperand(0); + if (RHSCIOp->getType() != LHSCIOp->getType()) + return 0; + + // If the signedness of the two casts doesn't agree (i.e. one is a sext + // and the other is a zext), then we can't handle this. + if (CI->getOpcode() != LHSCI->getOpcode()) + return 0; + + // Deal with equality cases early. + if (ICI.isEquality()) + return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); + + // A signed comparison of sign extended values simplifies into a + // signed comparison. + if (isSignedCmp && isSignedExt) + return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); + + // The other three cases all fold into an unsigned comparison. + return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); + } + + // If we aren't dealing with a constant on the RHS, exit early + ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); + if (!CI) + return 0; + + // Compute the constant that would happen if we truncated to SrcTy then + // reextended to DestTy. + Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); + Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); + + // If the re-extended constant didn't change... + if (Res2 == CI) { + // Make sure that sign of the Cmp and the sign of the Cast are the same. + // For example, we might have: + // %A = sext short %X to uint + // %B = icmp ugt uint %A, 1330 + // It is incorrect to transform this into + // %B = icmp ugt short %X, 1330 + // because %A may have negative value. + // + // However, we allow this when the compare is EQ/NE, because they are + // signless. + if (isSignedExt == isSignedCmp || ICI.isEquality()) + return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); + return 0; + } + + // The re-extended constant changed so the constant cannot be represented + // in the shorter type. Consequently, we cannot emit a simple comparison. + + // First, handle some easy cases. We know the result cannot be equal at this + // point so handle the ICI.isEquality() cases + if (ICI.getPredicate() == ICmpInst::ICMP_EQ) + return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); + if (ICI.getPredicate() == ICmpInst::ICMP_NE) + return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); + + // Evaluate the comparison for LT (we invert for GT below). LE and GE cases + // should have been folded away previously and not enter in here. + Value *Result; + if (isSignedCmp) { + // We're performing a signed comparison. + if (cast<ConstantInt>(CI)->getValue().isNegative()) + Result = ConstantInt::getFalse(); // X < (small) --> false + else + Result = ConstantInt::getTrue(); // X < (large) --> true + } else { + // We're performing an unsigned comparison. + if (isSignedExt) { + // We're performing an unsigned comp with a sign extended value. + // This is true if the input is >= 0. [aka >s -1] + Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy); + Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp, + NegOne, ICI.getName()), ICI); + } else { + // Unsigned extend & unsigned compare -> always true. + Result = ConstantInt::getTrue(); + } + } + + // Finally, return the value computed. + if (ICI.getPredicate() == ICmpInst::ICMP_ULT || + ICI.getPredicate() == ICmpInst::ICMP_SLT) + return ReplaceInstUsesWith(ICI, Result); + + assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || + ICI.getPredicate()==ICmpInst::ICMP_SGT) && + "ICmp should be folded!"); + if (Constant *CI = dyn_cast<Constant>(Result)) + return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI)); + return BinaryOperator::CreateNot(Result); +} + +Instruction *InstCombiner::visitShl(BinaryOperator &I) { + return commonShiftTransforms(I); +} + +Instruction *InstCombiner::visitLShr(BinaryOperator &I) { + return commonShiftTransforms(I); +} + +Instruction *InstCombiner::visitAShr(BinaryOperator &I) { + if (Instruction *R = commonShiftTransforms(I)) + return R; + + Value *Op0 = I.getOperand(0); + + // ashr int -1, X = -1 (for any arithmetic shift rights of ~0) + if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) + if (CSI->isAllOnesValue()) + return ReplaceInstUsesWith(I, CSI); + + // See if we can turn a signed shr into an unsigned shr. + if (!isa<VectorType>(I.getType())) { + if (MaskedValueIsZero(Op0, + APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()))) + return BinaryOperator::CreateLShr(Op0, I.getOperand(1)); + + // Arithmetic shifting an all-sign-bit value is a no-op. + unsigned NumSignBits = ComputeNumSignBits(Op0); + if (NumSignBits == Op0->getType()->getPrimitiveSizeInBits()) + return ReplaceInstUsesWith(I, Op0); + } + + return 0; +} + +Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { + assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // shl X, 0 == X and shr X, 0 == X + // shl 0, X == 0 and shr 0, X == 0 + if (Op1 == Constant::getNullValue(Op1->getType()) || + Op0 == Constant::getNullValue(Op0->getType())) + return ReplaceInstUsesWith(I, Op0); + + if (isa<UndefValue>(Op0)) { + if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef + return ReplaceInstUsesWith(I, Op0); + else // undef << X -> 0, undef >>u X -> 0 + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + } + if (isa<UndefValue>(Op1)) { + if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X + return ReplaceInstUsesWith(I, Op0); + else // X << undef, X >>u undef -> 0 + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + } + + // See if we can fold away this shift. + if (!isa<VectorType>(I.getType()) && SimplifyDemandedInstructionBits(I)) + return &I; + + // Try to fold constant and into select arguments. + if (isa<Constant>(Op0)) + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + + if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) + if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) + return Res; + return 0; +} + +Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, + BinaryOperator &I) { + bool isLeftShift = I.getOpcode() == Instruction::Shl; + + // See if we can simplify any instructions used by the instruction whose sole + // purpose is to compute bits we don't care about. + uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits(); + + // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr + // of a signed value. + // + if (Op1->uge(TypeBits)) { + if (I.getOpcode() != Instruction::AShr) + return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); + else { + I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); + return &I; + } + } + + // ((X*C1) << C2) == (X * (C1 << C2)) + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) + if (BO->getOpcode() == Instruction::Mul && isLeftShift) + if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) + return BinaryOperator::CreateMul(BO->getOperand(0), + ConstantExpr::getShl(BOOp, Op1)); + + // Try to fold constant and into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) + if (Instruction *R = FoldOpIntoSelect(I, SI, this)) + return R; + if (isa<PHINode>(Op0)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + + // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) + if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { + Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); + // If 'shift2' is an ashr, we would have to get the sign bit into a funny + // place. Don't try to do this transformation in this case. Also, we + // require that the input operand is a shift-by-constant so that we have + // confidence that the shifts will get folded together. We could do this + // xform in more cases, but it is unlikely to be profitable. + if (TrOp && I.isLogicalShift() && TrOp->isShift() && + isa<ConstantInt>(TrOp->getOperand(1))) { + // Okay, we'll do this xform. Make the shift of shift. + Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType()); + Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt, + I.getName()); + InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2) + + // For logical shifts, the truncation has the effect of making the high + // part of the register be zeros. Emulate this by inserting an AND to + // clear the top bits as needed. This 'and' will usually be zapped by + // other xforms later if dead. + unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits(); + unsigned DstSize = TI->getType()->getPrimitiveSizeInBits(); + APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); + + // The mask we constructed says what the trunc would do if occurring + // between the shifts. We want to know the effect *after* the second + // shift. We know that it is a logical shift by a constant, so adjust the + // mask as appropriate. + if (I.getOpcode() == Instruction::Shl) + MaskV <<= Op1->getZExtValue(); + else { + assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); + MaskV = MaskV.lshr(Op1->getZExtValue()); + } + + Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV), + TI->getName()); + InsertNewInstBefore(And, I); // shift1 & 0x00FF + + // Return the value truncated to the interesting size. + return new TruncInst(And, I.getType()); + } + } + + if (Op0->hasOneUse()) { + if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { + // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) + Value *V1, *V2; + ConstantInt *CC; + switch (Op0BO->getOpcode()) { + default: break; + case Instruction::Add: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + // These operators commute. + // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) + if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && + match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){ + Instruction *YS = BinaryOperator::CreateShl( + Op0BO->getOperand(0), Op1, + Op0BO->getName()); + InsertNewInstBefore(YS, I); // (Y << C) + Instruction *X = + BinaryOperator::Create(Op0BO->getOpcode(), YS, V1, + Op0BO->getOperand(1)->getName()); + InsertNewInstBefore(X, I); // (X + (Y << C)) + uint32_t Op1Val = Op1->getLimitedValue(TypeBits); + return BinaryOperator::CreateAnd(X, ConstantInt::get( + APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); + } + + // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) + Value *Op0BOOp1 = Op0BO->getOperand(1); + if (isLeftShift && Op0BOOp1->hasOneUse() && + match(Op0BOOp1, + m_And(m_Shr(m_Value(V1), m_Specific(Op1)), + m_ConstantInt(CC))) && + cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) { + Instruction *YS = BinaryOperator::CreateShl( + Op0BO->getOperand(0), Op1, + Op0BO->getName()); + InsertNewInstBefore(YS, I); // (Y << C) + Instruction *XM = + BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1), + V1->getName()+".mask"); + InsertNewInstBefore(XM, I); // X & (CC << C) + + return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); + } + } + + // FALL THROUGH. + case Instruction::Sub: { + // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) + if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && + match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){ + Instruction *YS = BinaryOperator::CreateShl( + Op0BO->getOperand(1), Op1, + Op0BO->getName()); + InsertNewInstBefore(YS, I); // (Y << C) + Instruction *X = + BinaryOperator::Create(Op0BO->getOpcode(), V1, YS, + Op0BO->getOperand(0)->getName()); + InsertNewInstBefore(X, I); // (X + (Y << C)) + uint32_t Op1Val = Op1->getLimitedValue(TypeBits); + return BinaryOperator::CreateAnd(X, ConstantInt::get( + APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); + } + + // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) + if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && + match(Op0BO->getOperand(0), + m_And(m_Shr(m_Value(V1), m_Value(V2)), + m_ConstantInt(CC))) && V2 == Op1 && + cast<BinaryOperator>(Op0BO->getOperand(0)) + ->getOperand(0)->hasOneUse()) { + Instruction *YS = BinaryOperator::CreateShl( + Op0BO->getOperand(1), Op1, + Op0BO->getName()); + InsertNewInstBefore(YS, I); // (Y << C) + Instruction *XM = + BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1), + V1->getName()+".mask"); + InsertNewInstBefore(XM, I); // X & (CC << C) + + return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); + } + + break; + } + } + + + // If the operand is an bitwise operator with a constant RHS, and the + // shift is the only use, we can pull it out of the shift. + if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { + bool isValid = true; // Valid only for And, Or, Xor + bool highBitSet = false; // Transform if high bit of constant set? + + switch (Op0BO->getOpcode()) { + default: isValid = false; break; // Do not perform transform! + case Instruction::Add: + isValid = isLeftShift; + break; + case Instruction::Or: + case Instruction::Xor: + highBitSet = false; + break; + case Instruction::And: + highBitSet = true; + break; + } + + // If this is a signed shift right, and the high bit is modified + // by the logical operation, do not perform the transformation. + // The highBitSet boolean indicates the value of the high bit of + // the constant which would cause it to be modified for this + // operation. + // + if (isValid && I.getOpcode() == Instruction::AShr) + isValid = Op0C->getValue()[TypeBits-1] == highBitSet; + + if (isValid) { + Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); + + Instruction *NewShift = + BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1); + InsertNewInstBefore(NewShift, I); + NewShift->takeName(Op0BO); + + return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, + NewRHS); + } + } + } + } + + // Find out if this is a shift of a shift by a constant. + BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0); + if (ShiftOp && !ShiftOp->isShift()) + ShiftOp = 0; + + if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { + ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); + uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); + uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); + assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); + if (ShiftAmt1 == 0) return 0; // Will be simplified in the future. + Value *X = ShiftOp->getOperand(0); + + uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift. + + const IntegerType *Ty = cast<IntegerType>(I.getType()); + + // Check for (X << c1) << c2 and (X >> c1) >> c2 + if (I.getOpcode() == ShiftOp->getOpcode()) { + // If this is oversized composite shift, then unsigned shifts get 0, ashr + // saturates. + if (AmtSum >= TypeBits) { + if (I.getOpcode() != Instruction::AShr) + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr. + } + + return BinaryOperator::Create(I.getOpcode(), X, + ConstantInt::get(Ty, AmtSum)); + } else if (ShiftOp->getOpcode() == Instruction::LShr && + I.getOpcode() == Instruction::AShr) { + if (AmtSum >= TypeBits) + return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); + + // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0. + return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); + } else if (ShiftOp->getOpcode() == Instruction::AShr && + I.getOpcode() == Instruction::LShr) { + // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0. + if (AmtSum >= TypeBits) + AmtSum = TypeBits-1; + + Instruction *Shift = + BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); + InsertNewInstBefore(Shift, I); + + APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); + return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); + } + + // Okay, if we get here, one shift must be left, and the other shift must be + // right. See if the amounts are equal. + if (ShiftAmt1 == ShiftAmt2) { + // If we have ((X >>? C) << C), turn this into X & (-1 << C). + if (I.getOpcode() == Instruction::Shl) { + APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1)); + return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask)); + } + // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). + if (I.getOpcode() == Instruction::LShr) { + APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); + return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask)); + } + // We can simplify ((X << C) >>s C) into a trunc + sext. + // NOTE: we could do this for any C, but that would make 'unusual' integer + // types. For now, just stick to ones well-supported by the code + // generators. + const Type *SExtType = 0; + switch (Ty->getBitWidth() - ShiftAmt1) { + case 1 : + case 8 : + case 16 : + case 32 : + case 64 : + case 128: + SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1); + break; + default: break; + } + if (SExtType) { + Instruction *NewTrunc = new TruncInst(X, SExtType, "sext"); + InsertNewInstBefore(NewTrunc, I); + return new SExtInst(NewTrunc, Ty); + } + // Otherwise, we can't handle it yet. + } else if (ShiftAmt1 < ShiftAmt2) { + uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; + + // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) + if (I.getOpcode() == Instruction::Shl) { + assert(ShiftOp->getOpcode() == Instruction::LShr || + ShiftOp->getOpcode() == Instruction::AShr); + Instruction *Shift = + BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); + InsertNewInstBefore(Shift, I); + + APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); + return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); + } + + // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2) + if (I.getOpcode() == Instruction::LShr) { + assert(ShiftOp->getOpcode() == Instruction::Shl); + Instruction *Shift = + BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff)); + InsertNewInstBefore(Shift, I); + + APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); + return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); + } + + // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. + } else { + assert(ShiftAmt2 < ShiftAmt1); + uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; + + // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) + if (I.getOpcode() == Instruction::Shl) { + assert(ShiftOp->getOpcode() == Instruction::LShr || + ShiftOp->getOpcode() == Instruction::AShr); + Instruction *Shift = + BinaryOperator::Create(ShiftOp->getOpcode(), X, + ConstantInt::get(Ty, ShiftDiff)); + InsertNewInstBefore(Shift, I); + + APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); + return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); + } + + // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2) + if (I.getOpcode() == Instruction::LShr) { + assert(ShiftOp->getOpcode() == Instruction::Shl); + Instruction *Shift = + BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); + InsertNewInstBefore(Shift, I); + + APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); + return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask)); + } + + // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in. + } + } + return 0; +} + + +/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear +/// expression. If so, decompose it, returning some value X, such that Val is +/// X*Scale+Offset. +/// +static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, + int &Offset) { + assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { + Offset = CI->getZExtValue(); + Scale = 0; + return ConstantInt::get(Type::Int32Ty, 0); + } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { + if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { + if (I->getOpcode() == Instruction::Shl) { + // This is a value scaled by '1 << the shift amt'. + Scale = 1U << RHS->getZExtValue(); + Offset = 0; + return I->getOperand(0); + } else if (I->getOpcode() == Instruction::Mul) { + // This value is scaled by 'RHS'. + Scale = RHS->getZExtValue(); + Offset = 0; + return I->getOperand(0); + } else if (I->getOpcode() == Instruction::Add) { + // We have X+C. Check to see if we really have (X*C2)+C1, + // where C1 is divisible by C2. + unsigned SubScale; + Value *SubVal = + DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); + Offset += RHS->getZExtValue(); + Scale = SubScale; + return SubVal; + } + } + } + + // Otherwise, we can't look past this. + Scale = 1; + Offset = 0; + return Val; +} + + +/// PromoteCastOfAllocation - If we find a cast of an allocation instruction, +/// try to eliminate the cast by moving the type information into the alloc. +Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, + AllocationInst &AI) { + const PointerType *PTy = cast<PointerType>(CI.getType()); + + // Remove any uses of AI that are dead. + assert(!CI.use_empty() && "Dead instructions should be removed earlier!"); + + for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) { + Instruction *User = cast<Instruction>(*UI++); + if (isInstructionTriviallyDead(User)) { + while (UI != E && *UI == User) + ++UI; // If this instruction uses AI more than once, don't break UI. + + ++NumDeadInst; + DOUT << "IC: DCE: " << *User; + EraseInstFromFunction(*User); + } + } + + // Get the type really allocated and the type casted to. + const Type *AllocElTy = AI.getAllocatedType(); + const Type *CastElTy = PTy->getElementType(); + if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; + + unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); + unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); + if (CastElTyAlign < AllocElTyAlign) return 0; + + // If the allocation has multiple uses, only promote it if we are strictly + // increasing the alignment of the resultant allocation. If we keep it the + // same, we open the door to infinite loops of various kinds. (A reference + // from a dbg.declare doesn't count as a use for this purpose.) + if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) && + CastElTyAlign == AllocElTyAlign) return 0; + + uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy); + uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy); + if (CastElTySize == 0 || AllocElTySize == 0) return 0; + + // See if we can satisfy the modulus by pulling a scale out of the array + // size argument. + unsigned ArraySizeScale; + int ArrayOffset; + Value *NumElements = // See if the array size is a decomposable linear expr. + DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); + + // If we can now satisfy the modulus, by using a non-1 scale, we really can + // do the xform. + if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || + (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; + + unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; + Value *Amt = 0; + if (Scale == 1) { + Amt = NumElements; + } else { + // If the allocation size is constant, form a constant mul expression + Amt = ConstantInt::get(Type::Int32Ty, Scale); + if (isa<ConstantInt>(NumElements)) + Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt)); + // otherwise multiply the amount and the number of elements + else { + Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp"); + Amt = InsertNewInstBefore(Tmp, AI); + } + } + + if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { + Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true); + Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp"); + Amt = InsertNewInstBefore(Tmp, AI); + } + + AllocationInst *New; + if (isa<MallocInst>(AI)) + New = new MallocInst(CastElTy, Amt, AI.getAlignment()); + else + New = new AllocaInst(CastElTy, Amt, AI.getAlignment()); + InsertNewInstBefore(New, AI); + New->takeName(&AI); + + // If the allocation has one real use plus a dbg.declare, just remove the + // declare. + if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) { + EraseInstFromFunction(*DI); + } + // If the allocation has multiple real uses, insert a cast and change all + // things that used it to use the new cast. This will also hack on CI, but it + // will die soon. + else if (!AI.hasOneUse()) { + AddUsesToWorkList(AI); + // New is the allocation instruction, pointer typed. AI is the original + // allocation instruction, also pointer typed. Thus, cast to use is BitCast. + CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast"); + InsertNewInstBefore(NewCast, AI); + AI.replaceAllUsesWith(NewCast); + } + return ReplaceInstUsesWith(CI, New); +} + +/// CanEvaluateInDifferentType - Return true if we can take the specified value +/// and return it as type Ty without inserting any new casts and without +/// changing the computed value. This is used by code that tries to decide +/// whether promoting or shrinking integer operations to wider or smaller types +/// will allow us to eliminate a truncate or extend. +/// +/// This is a truncation operation if Ty is smaller than V->getType(), or an +/// extension operation if Ty is larger. +/// +/// If CastOpc is a truncation, then Ty will be a type smaller than V. We +/// should return true if trunc(V) can be computed by computing V in the smaller +/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as +/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be +/// efficiently truncated. +/// +/// If CastOpc is a sext or zext, we are asking if the low bits of the value can +/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get +/// the final result. +bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, + unsigned CastOpc, + int &NumCastsRemoved){ + // We can always evaluate constants in another type. + if (isa<ConstantInt>(V)) + return true; + + Instruction *I = dyn_cast<Instruction>(V); + if (!I) return false; + + const IntegerType *OrigTy = cast<IntegerType>(V->getType()); + + // If this is an extension or truncate, we can often eliminate it. + if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) { + // If this is a cast from the destination type, we can trivially eliminate + // it, and this will remove a cast overall. + if (I->getOperand(0)->getType() == Ty) { + // If the first operand is itself a cast, and is eliminable, do not count + // this as an eliminable cast. We would prefer to eliminate those two + // casts first. + if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse()) + ++NumCastsRemoved; + return true; + } + } + + // We can't extend or shrink something that has multiple uses: doing so would + // require duplicating the instruction in general, which isn't profitable. + if (!I->hasOneUse()) return false; + + unsigned Opc = I->getOpcode(); + switch (Opc) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + // These operators can all arbitrarily be extended or truncated. + return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, + NumCastsRemoved) && + CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc, + NumCastsRemoved); + + case Instruction::Shl: + // If we are truncating the result of this SHL, and if it's a shift of a + // constant amount, we can always perform a SHL in a smaller type. + if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint32_t BitWidth = Ty->getBitWidth(); + if (BitWidth < OrigTy->getBitWidth() && + CI->getLimitedValue(BitWidth) < BitWidth) + return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, + NumCastsRemoved); + } + break; + case Instruction::LShr: + // If this is a truncate of a logical shr, we can truncate it to a smaller + // lshr iff we know that the bits we would otherwise be shifting in are + // already zeros. + if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint32_t OrigBitWidth = OrigTy->getBitWidth(); + uint32_t BitWidth = Ty->getBitWidth(); + if (BitWidth < OrigBitWidth && + MaskedValueIsZero(I->getOperand(0), + APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && + CI->getLimitedValue(BitWidth) < BitWidth) { + return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, + NumCastsRemoved); + } + } + break; + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::Trunc: + // If this is the same kind of case as our original (e.g. zext+zext), we + // can safely replace it. Note that replacing it does not reduce the number + // of casts in the input. + if (Opc == CastOpc) + return true; + + // sext (zext ty1), ty2 -> zext ty2 + if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt) + return true; + break; + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(I); + return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc, + NumCastsRemoved) && + CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc, + NumCastsRemoved); + } + case Instruction::PHI: { + // We can change a phi if we can change all operands. + PHINode *PN = cast<PHINode>(I); + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc, + NumCastsRemoved)) + return false; + return true; + } + default: + // TODO: Can handle more cases here. + break; + } + + return false; +} + +/// EvaluateInDifferentType - Given an expression that +/// CanEvaluateInDifferentType returns true for, actually insert the code to +/// evaluate the expression. +Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, + bool isSigned) { + if (Constant *C = dyn_cast<Constant>(V)) + return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); + + // Otherwise, it must be an instruction. + Instruction *I = cast<Instruction>(V); + Instruction *Res = 0; + unsigned Opc = I->getOpcode(); + switch (Opc) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::AShr: + case Instruction::LShr: + case Instruction::Shl: { + Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); + Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); + Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); + break; + } + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + // If the source type of the cast is the type we're trying for then we can + // just return the source. There's no need to insert it because it is not + // new. + if (I->getOperand(0)->getType() == Ty) + return I->getOperand(0); + + // Otherwise, must be the same type of cast, so just reinsert a new one. + Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0), + Ty); + break; + case Instruction::Select: { + Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); + Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); + Res = SelectInst::Create(I->getOperand(0), True, False); + break; + } + case Instruction::PHI: { + PHINode *OPN = cast<PHINode>(I); + PHINode *NPN = PHINode::Create(Ty); + for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { + Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); + NPN->addIncoming(V, OPN->getIncomingBlock(i)); + } + Res = NPN; + break; + } + default: + // TODO: Can handle more cases here. + assert(0 && "Unreachable!"); + break; + } + + Res->takeName(I); + return InsertNewInstBefore(Res, *I); +} + +/// @brief Implement the transforms common to all CastInst visitors. +Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { + Value *Src = CI.getOperand(0); + + // Many cases of "cast of a cast" are eliminable. If it's eliminable we just + // eliminate it now. + if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast + if (Instruction::CastOps opc = + isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { + // The first cast (CSrc) is eliminable so we need to fix up or replace + // the second cast (CI). CSrc will then have a good chance of being dead. + return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); + } + } + + // If we are casting a select then fold the cast into the select + if (SelectInst *SI = dyn_cast<SelectInst>(Src)) + if (Instruction *NV = FoldOpIntoSelect(CI, SI, this)) + return NV; + + // If we are casting a PHI then fold the cast into the PHI + if (isa<PHINode>(Src)) + if (Instruction *NV = FoldOpIntoPhi(CI)) + return NV; + + return 0; +} + +/// FindElementAtOffset - Given a type and a constant offset, determine whether +/// or not there is a sequence of GEP indices into the type that will land us at +/// the specified offset. If so, fill them into NewIndices and return the +/// resultant element type, otherwise return null. +static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset, + SmallVectorImpl<Value*> &NewIndices, + const TargetData *TD) { + if (!Ty->isSized()) return 0; + + // Start with the index over the outer type. Note that the type size + // might be zero (even if the offset isn't zero) if the indexed type + // is something like [0 x {int, int}] + const Type *IntPtrTy = TD->getIntPtrType(); + int64_t FirstIdx = 0; + if (int64_t TySize = TD->getTypeAllocSize(Ty)) { + FirstIdx = Offset/TySize; + Offset -= FirstIdx*TySize; + + // Handle hosts where % returns negative instead of values [0..TySize). + if (Offset < 0) { + --FirstIdx; + Offset += TySize; + assert(Offset >= 0); + } + assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); + } + + NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); + + // Index into the types. If we fail, set OrigBase to null. + while (Offset) { + // Indexing into tail padding between struct/array elements. + if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) + return 0; + + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + const StructLayout *SL = TD->getStructLayout(STy); + assert(Offset < (int64_t)SL->getSizeInBytes() && + "Offset must stay within the indexed type"); + + unsigned Elt = SL->getElementContainingOffset(Offset); + NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt)); + + Offset -= SL->getElementOffset(Elt); + Ty = STy->getElementType(Elt); + } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { + uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType()); + assert(EltSize && "Cannot index into a zero-sized array"); + NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); + Offset %= EltSize; + Ty = AT->getElementType(); + } else { + // Otherwise, we can't index into the middle of this atomic type, bail. + return 0; + } + } + + return Ty; +} + +/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) +Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { + Value *Src = CI.getOperand(0); + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { + // If casting the result of a getelementptr instruction with no offset, turn + // this into a cast of the original pointer! + if (GEP->hasAllZeroIndices()) { + // Changing the cast operand is usually not a good idea but it is safe + // here because the pointer operand is being replaced with another + // pointer operand so the opcode doesn't need to change. + AddToWorkList(GEP); + CI.setOperand(0, GEP->getOperand(0)); + return &CI; + } + + // If the GEP has a single use, and the base pointer is a bitcast, and the + // GEP computes a constant offset, see if we can convert these three + // instructions into fewer. This typically happens with unions and other + // non-type-safe code. + if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) { + if (GEP->hasAllConstantIndices()) { + // We are guaranteed to get a constant from EmitGEPOffset. + ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this)); + int64_t Offset = OffsetV->getSExtValue(); + + // Get the base pointer input of the bitcast, and the type it points to. + Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); + const Type *GEPIdxTy = + cast<PointerType>(OrigBase->getType())->getElementType(); + SmallVector<Value*, 8> NewIndices; + if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices, TD)) { + // If we were able to index down into an element, create the GEP + // and bitcast the result. This eliminates one bitcast, potentially + // two. + Instruction *NGEP = GetElementPtrInst::Create(OrigBase, + NewIndices.begin(), + NewIndices.end(), ""); + InsertNewInstBefore(NGEP, CI); + NGEP->takeName(GEP); + + if (isa<BitCastInst>(CI)) + return new BitCastInst(NGEP, CI.getType()); + assert(isa<PtrToIntInst>(CI)); + return new PtrToIntInst(NGEP, CI.getType()); + } + } + } + } + + return commonCastTransforms(CI); +} + +/// isSafeIntegerType - Return true if this is a basic integer type, not a crazy +/// type like i42. We don't want to introduce operations on random non-legal +/// integer types where they don't already exist in the code. In the future, +/// we should consider making this based off target-data, so that 32-bit targets +/// won't get i64 operations etc. +static bool isSafeIntegerType(const Type *Ty) { + switch (Ty->getPrimitiveSizeInBits()) { + case 8: + case 16: + case 32: + case 64: + return true; + default: + return false; + } +} + +/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as +/// integer types. This function implements the common transforms for all those +/// cases. +/// @brief Implement the transforms common to CastInst with integer operands +Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { + if (Instruction *Result = commonCastTransforms(CI)) + return Result; + + Value *Src = CI.getOperand(0); + const Type *SrcTy = Src->getType(); + const Type *DestTy = CI.getType(); + uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits(); + + // See if we can simplify any instructions used by the LHS whose sole + // purpose is to compute bits we don't care about. + if (SimplifyDemandedInstructionBits(CI)) + return &CI; + + // If the source isn't an instruction or has more than one use then we + // can't do anything more. + Instruction *SrcI = dyn_cast<Instruction>(Src); + if (!SrcI || !Src->hasOneUse()) + return 0; + + // Attempt to propagate the cast into the instruction for int->int casts. + int NumCastsRemoved = 0; + if (!isa<BitCastInst>(CI) && + // Only do this if the dest type is a simple type, don't convert the + // expression tree to something weird like i93 unless the source is also + // strange. + (isSafeIntegerType(DestTy) || !isSafeIntegerType(SrcI->getType())) && + CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy), + CI.getOpcode(), NumCastsRemoved)) { + // If this cast is a truncate, evaluting in a different type always + // eliminates the cast, so it is always a win. If this is a zero-extension, + // we need to do an AND to maintain the clear top-part of the computation, + // so we require that the input have eliminated at least one cast. If this + // is a sign extension, we insert two new casts (to do the extension) so we + // require that two casts have been eliminated. + bool DoXForm = false; + bool JustReplace = false; + switch (CI.getOpcode()) { + default: + // All the others use floating point so we shouldn't actually + // get here because of the check above. + assert(0 && "Unknown cast type"); + case Instruction::Trunc: + DoXForm = true; + break; + case Instruction::ZExt: { + DoXForm = NumCastsRemoved >= 1; + if (!DoXForm && 0) { + // If it's unnecessary to issue an AND to clear the high bits, it's + // always profitable to do this xform. + Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false); + APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); + if (MaskedValueIsZero(TryRes, Mask)) + return ReplaceInstUsesWith(CI, TryRes); + + if (Instruction *TryI = dyn_cast<Instruction>(TryRes)) + if (TryI->use_empty()) + EraseInstFromFunction(*TryI); + } + break; + } + case Instruction::SExt: { + DoXForm = NumCastsRemoved >= 2; + if (!DoXForm && !isa<TruncInst>(SrcI) && 0) { + // If we do not have to emit the truncate + sext pair, then it's always + // profitable to do this xform. + // + // It's not safe to eliminate the trunc + sext pair if one of the + // eliminated cast is a truncate. e.g. + // t2 = trunc i32 t1 to i16 + // t3 = sext i16 t2 to i32 + // != + // i32 t1 + Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true); + unsigned NumSignBits = ComputeNumSignBits(TryRes); + if (NumSignBits > (DestBitSize - SrcBitSize)) + return ReplaceInstUsesWith(CI, TryRes); + + if (Instruction *TryI = dyn_cast<Instruction>(TryRes)) + if (TryI->use_empty()) + EraseInstFromFunction(*TryI); + } + break; + } + } + + if (DoXForm) { + DOUT << "ICE: EvaluateInDifferentType converting expression type to avoid" + << " cast: " << CI; + Value *Res = EvaluateInDifferentType(SrcI, DestTy, + CI.getOpcode() == Instruction::SExt); + if (JustReplace) + // Just replace this cast with the result. + return ReplaceInstUsesWith(CI, Res); + + assert(Res->getType() == DestTy); + switch (CI.getOpcode()) { + default: assert(0 && "Unknown cast type!"); + case Instruction::Trunc: + case Instruction::BitCast: + // Just replace this cast with the result. + return ReplaceInstUsesWith(CI, Res); + case Instruction::ZExt: { + assert(SrcBitSize < DestBitSize && "Not a zext?"); + + // If the high bits are already zero, just replace this cast with the + // result. + APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); + if (MaskedValueIsZero(Res, Mask)) + return ReplaceInstUsesWith(CI, Res); + + // We need to emit an AND to clear the high bits. + Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize, + SrcBitSize)); + return BinaryOperator::CreateAnd(Res, C); + } + case Instruction::SExt: { + // If the high bits are already filled with sign bit, just replace this + // cast with the result. + unsigned NumSignBits = ComputeNumSignBits(Res); + if (NumSignBits > (DestBitSize - SrcBitSize)) + return ReplaceInstUsesWith(CI, Res); + + // We need to emit a cast to truncate, then a cast to sext. + return CastInst::Create(Instruction::SExt, + InsertCastBefore(Instruction::Trunc, Res, Src->getType(), + CI), DestTy); + } + } + } + } + + Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; + Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; + + switch (SrcI->getOpcode()) { + case Instruction::Add: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + // If we are discarding information, rewrite. + if (DestBitSize <= SrcBitSize && DestBitSize != 1) { + // Don't insert two casts if they cannot be eliminated. We allow + // two casts to be inserted if the sizes are the same. This could + // only be converting signedness, which is a noop. + if (DestBitSize == SrcBitSize || + !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) || + !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { + Instruction::CastOps opcode = CI.getOpcode(); + Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI); + Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI); + return BinaryOperator::Create( + cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c); + } + } + + // cast (xor bool X, true) to int --> xor (cast bool X to int), 1 + if (isa<ZExtInst>(CI) && SrcBitSize == 1 && + SrcI->getOpcode() == Instruction::Xor && + Op1 == ConstantInt::getTrue() && + (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) { + Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI); + return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); + } + break; + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + // If we are just changing the sign, rewrite. + if (DestBitSize == SrcBitSize) { + // Don't insert two casts if they cannot be eliminated. We allow + // two casts to be inserted if the sizes are the same. This could + // only be converting signedness, which is a noop. + if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) || + !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { + Value *Op0c = InsertCastBefore(Instruction::BitCast, + Op0, DestTy, *SrcI); + Value *Op1c = InsertCastBefore(Instruction::BitCast, + Op1, DestTy, *SrcI); + return BinaryOperator::Create( + cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c); + } + } + break; + + case Instruction::Shl: + // Allow changing the sign of the source operand. Do not allow + // changing the size of the shift, UNLESS the shift amount is a + // constant. We must not change variable sized shifts to a smaller + // size, because it is undefined to shift more bits out than exist + // in the value. + if (DestBitSize == SrcBitSize || + (DestBitSize < SrcBitSize && isa<Constant>(Op1))) { + Instruction::CastOps opcode = (DestBitSize == SrcBitSize ? + Instruction::BitCast : Instruction::Trunc); + Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI); + Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI); + return BinaryOperator::CreateShl(Op0c, Op1c); + } + break; + case Instruction::AShr: + // If this is a signed shr, and if all bits shifted in are about to be + // truncated off, turn it into an unsigned shr to allow greater + // simplifications. + if (DestBitSize < SrcBitSize && + isa<ConstantInt>(Op1)) { + uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize); + if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) { + // Insert the new logical shift right. + return BinaryOperator::CreateLShr(Op0, Op1); + } + } + break; + } + return 0; +} + +Instruction *InstCombiner::visitTrunc(TruncInst &CI) { + if (Instruction *Result = commonIntCastTransforms(CI)) + return Result; + + Value *Src = CI.getOperand(0); + const Type *Ty = CI.getType(); + uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits(); + uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth(); + + // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0) + if (DestBitWidth == 1) { + Constant *One = ConstantInt::get(Src->getType(), 1); + Src = InsertNewInstBefore(BinaryOperator::CreateAnd(Src, One, "tmp"), CI); + Value *Zero = Constant::getNullValue(Src->getType()); + return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); + } + + // Optimize trunc(lshr(), c) to pull the shift through the truncate. + ConstantInt *ShAmtV = 0; + Value *ShiftOp = 0; + if (Src->hasOneUse() && + match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) { + uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth); + + // Get a mask for the bits shifting in. + APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth)); + if (MaskedValueIsZero(ShiftOp, Mask)) { + if (ShAmt >= DestBitWidth) // All zeros. + return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty)); + + // Okay, we can shrink this. Truncate the input, then return a new + // shift. + Value *V1 = InsertCastBefore(Instruction::Trunc, ShiftOp, Ty, CI); + Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty); + return BinaryOperator::CreateLShr(V1, V2); + } + } + + return 0; +} + +/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations +/// in order to eliminate the icmp. +Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, + bool DoXform) { + // If we are just checking for a icmp eq of a single bit and zext'ing it + // to an integer, then shift the bit to the appropriate place and then + // cast to integer to avoid the comparison. + if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { + const APInt &Op1CV = Op1C->getValue(); + + // zext (x <s 0) to i32 --> x>>u31 true if signbit set. + // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. + if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || + (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { + if (!DoXform) return ICI; + + Value *In = ICI->getOperand(0); + Value *Sh = ConstantInt::get(In->getType(), + In->getType()->getPrimitiveSizeInBits()-1); + In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh, + In->getName()+".lobit"), + CI); + if (In->getType() != CI.getType()) + In = CastInst::CreateIntegerCast(In, CI.getType(), + false/*ZExt*/, "tmp", &CI); + + if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { + Constant *One = ConstantInt::get(In->getType(), 1); + In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One, + In->getName()+".not"), + CI); + } + + return ReplaceInstUsesWith(CI, In); + } + + + + // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. + // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. + // zext (X == 1) to i32 --> X iff X has only the low bit set. + // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. + // zext (X != 0) to i32 --> X iff X has only the low bit set. + // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. + // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. + // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. + if ((Op1CV == 0 || Op1CV.isPowerOf2()) && + // This only works for EQ and NE + ICI->isEquality()) { + // If Op1C some other power of two, convert: + uint32_t BitWidth = Op1C->getType()->getBitWidth(); + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + APInt TypeMask(APInt::getAllOnesValue(BitWidth)); + ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); + + APInt KnownZeroMask(~KnownZero); + if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? + if (!DoXform) return ICI; + + bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; + if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { + // (X&4) == 2 --> false + // (X&4) != 2 --> true + Constant *Res = ConstantInt::get(Type::Int1Ty, isNE); + Res = ConstantExpr::getZExt(Res, CI.getType()); + return ReplaceInstUsesWith(CI, Res); + } + + uint32_t ShiftAmt = KnownZeroMask.logBase2(); + Value *In = ICI->getOperand(0); + if (ShiftAmt) { + // Perform a logical shr by shiftamt. + // Insert the shift to put the result in the low bit. + In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, + ConstantInt::get(In->getType(), ShiftAmt), + In->getName()+".lobit"), CI); + } + + if ((Op1CV != 0) == isNE) { // Toggle the low bit. + Constant *One = ConstantInt::get(In->getType(), 1); + In = BinaryOperator::CreateXor(In, One, "tmp"); + InsertNewInstBefore(cast<Instruction>(In), CI); + } + + if (CI.getType() == In->getType()) + return ReplaceInstUsesWith(CI, In); + else + return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); + } + } + } + + return 0; +} + +Instruction *InstCombiner::visitZExt(ZExtInst &CI) { + // If one of the common conversion will work .. + if (Instruction *Result = commonIntCastTransforms(CI)) + return Result; + + Value *Src = CI.getOperand(0); + + // If this is a TRUNC followed by a ZEXT then we are dealing with integral + // types and if the sizes are just right we can convert this into a logical + // 'and' which will be much cheaper than the pair of casts. + if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast + // Get the sizes of the types involved. We know that the intermediate type + // will be smaller than A or C, but don't know the relation between A and C. + Value *A = CSrc->getOperand(0); + unsigned SrcSize = A->getType()->getPrimitiveSizeInBits(); + unsigned MidSize = CSrc->getType()->getPrimitiveSizeInBits(); + unsigned DstSize = CI.getType()->getPrimitiveSizeInBits(); + // If we're actually extending zero bits, then if + // SrcSize < DstSize: zext(a & mask) + // SrcSize == DstSize: a & mask + // SrcSize > DstSize: trunc(a) & mask + if (SrcSize < DstSize) { + APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); + Constant *AndConst = ConstantInt::get(AndValue); + Instruction *And = + BinaryOperator::CreateAnd(A, AndConst, CSrc->getName()+".mask"); + InsertNewInstBefore(And, CI); + return new ZExtInst(And, CI.getType()); + } else if (SrcSize == DstSize) { + APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); + return BinaryOperator::CreateAnd(A, ConstantInt::get(AndValue)); + } else if (SrcSize > DstSize) { + Instruction *Trunc = new TruncInst(A, CI.getType(), "tmp"); + InsertNewInstBefore(Trunc, CI); + APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); + return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(AndValue)); + } + } + + if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) + return transformZExtICmp(ICI, CI); + + BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); + if (SrcI && SrcI->getOpcode() == Instruction::Or) { + // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one + // of the (zext icmp) will be transformed. + ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); + ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); + if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && + (transformZExtICmp(LHS, CI, false) || + transformZExtICmp(RHS, CI, false))) { + Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI); + Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI); + return BinaryOperator::Create(Instruction::Or, LCast, RCast); + } + } + + return 0; +} + +Instruction *InstCombiner::visitSExt(SExtInst &CI) { + if (Instruction *I = commonIntCastTransforms(CI)) + return I; + + Value *Src = CI.getOperand(0); + + // Canonicalize sign-extend from i1 to a select. + if (Src->getType() == Type::Int1Ty) + return SelectInst::Create(Src, + ConstantInt::getAllOnesValue(CI.getType()), + Constant::getNullValue(CI.getType())); + + // See if the value being truncated is already sign extended. If so, just + // eliminate the trunc/sext pair. + if (getOpcode(Src) == Instruction::Trunc) { + Value *Op = cast<User>(Src)->getOperand(0); + unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth(); + unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth(); + unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth(); + unsigned NumSignBits = ComputeNumSignBits(Op); + + if (OpBits == DestBits) { + // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign + // bits, it is already ready. + if (NumSignBits > DestBits-MidBits) + return ReplaceInstUsesWith(CI, Op); + } else if (OpBits < DestBits) { + // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign + // bits, just sext from i32. + if (NumSignBits > OpBits-MidBits) + return new SExtInst(Op, CI.getType(), "tmp"); + } else { + // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign + // bits, just truncate to i32. + if (NumSignBits > OpBits-MidBits) + return new TruncInst(Op, CI.getType(), "tmp"); + } + } + + // If the input is a shl/ashr pair of a same constant, then this is a sign + // extension from a smaller value. If we could trust arbitrary bitwidth + // integers, we could turn this into a truncate to the smaller bit and then + // use a sext for the whole extension. Since we don't, look deeper and check + // for a truncate. If the source and dest are the same type, eliminate the + // trunc and extend and just do shifts. For example, turn: + // %a = trunc i32 %i to i8 + // %b = shl i8 %a, 6 + // %c = ashr i8 %b, 6 + // %d = sext i8 %c to i32 + // into: + // %a = shl i32 %i, 30 + // %d = ashr i32 %a, 30 + Value *A = 0; + ConstantInt *BA = 0, *CA = 0; + if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)), + m_ConstantInt(CA))) && + BA == CA && isa<TruncInst>(A)) { + Value *I = cast<TruncInst>(A)->getOperand(0); + if (I->getType() == CI.getType()) { + unsigned MidSize = Src->getType()->getPrimitiveSizeInBits(); + unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits(); + unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; + Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); + I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV, + CI.getName()), CI); + return BinaryOperator::CreateAShr(I, ShAmtV); + } + } + + return 0; +} + +/// FitsInFPType - Return a Constant* for the specified FP constant if it fits +/// in the specified FP type without changing its value. +static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { + bool losesInfo; + APFloat F = CFP->getValueAPF(); + (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); + if (!losesInfo) + return ConstantFP::get(F); + return 0; +} + +/// LookThroughFPExtensions - If this is an fp extension instruction, look +/// through it until we get the source value. +static Value *LookThroughFPExtensions(Value *V) { + if (Instruction *I = dyn_cast<Instruction>(V)) + if (I->getOpcode() == Instruction::FPExt) + return LookThroughFPExtensions(I->getOperand(0)); + + // If this value is a constant, return the constant in the smallest FP type + // that can accurately represent it. This allows us to turn + // (float)((double)X+2.0) into x+2.0f. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { + if (CFP->getType() == Type::PPC_FP128Ty) + return V; // No constant folding of this. + // See if the value can be truncated to float and then reextended. + if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) + return V; + if (CFP->getType() == Type::DoubleTy) + return V; // Won't shrink. + if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) + return V; + // Don't try to shrink to various long double types. + } + + return V; +} + +Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { + if (Instruction *I = commonCastTransforms(CI)) + return I; + + // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are + // smaller than the destination type, we can eliminate the truncate by doing + // the add as the smaller type. This applies to add/sub/mul/div as well as + // many builtins (sqrt, etc). + BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); + if (OpI && OpI->hasOneUse()) { + switch (OpI->getOpcode()) { + default: break; + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::FDiv: + case Instruction::FRem: + const Type *SrcTy = OpI->getType(); + Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); + Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); + if (LHSTrunc->getType() != SrcTy && + RHSTrunc->getType() != SrcTy) { + unsigned DstSize = CI.getType()->getPrimitiveSizeInBits(); + // If the source types were both smaller than the destination type of + // the cast, do this xform. + if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize && + RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) { + LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc, + CI.getType(), CI); + RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc, + CI.getType(), CI); + return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); + } + } + break; + } + } + return 0; +} + +Instruction *InstCombiner::visitFPExt(CastInst &CI) { + return commonCastTransforms(CI); +} + +Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { + Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); + if (OpI == 0) + return commonCastTransforms(FI); + + // fptoui(uitofp(X)) --> X + // fptoui(sitofp(X)) --> X + // This is safe if the intermediate type has enough bits in its mantissa to + // accurately represent all values of X. For example, do not do this with + // i64->float->i64. This is also safe for sitofp case, because any negative + // 'X' value would cause an undefined result for the fptoui. + if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && + OpI->getOperand(0)->getType() == FI.getType() && + (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */ + OpI->getType()->getFPMantissaWidth()) + return ReplaceInstUsesWith(FI, OpI->getOperand(0)); + + return commonCastTransforms(FI); +} + +Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { + Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); + if (OpI == 0) + return commonCastTransforms(FI); + + // fptosi(sitofp(X)) --> X + // fptosi(uitofp(X)) --> X + // This is safe if the intermediate type has enough bits in its mantissa to + // accurately represent all values of X. For example, do not do this with + // i64->float->i64. This is also safe for sitofp case, because any negative + // 'X' value would cause an undefined result for the fptoui. + if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && + OpI->getOperand(0)->getType() == FI.getType() && + (int)FI.getType()->getPrimitiveSizeInBits() <= + OpI->getType()->getFPMantissaWidth()) + return ReplaceInstUsesWith(FI, OpI->getOperand(0)); + + return commonCastTransforms(FI); +} + +Instruction *InstCombiner::visitUIToFP(CastInst &CI) { + return commonCastTransforms(CI); +} + +Instruction *InstCombiner::visitSIToFP(CastInst &CI) { + return commonCastTransforms(CI); +} + +Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { + // If the destination integer type is smaller than the intptr_t type for + // this target, do a ptrtoint to intptr_t then do a trunc. This allows the + // trunc to be exposed to other transforms. Don't do this for extending + // ptrtoint's, because we don't know if the target sign or zero extends its + // pointers. + if (CI.getType()->getPrimitiveSizeInBits() < TD->getPointerSizeInBits()) { + Value *P = InsertNewInstBefore(new PtrToIntInst(CI.getOperand(0), + TD->getIntPtrType(), + "tmp"), CI); + return new TruncInst(P, CI.getType()); + } + + return commonPointerCastTransforms(CI); +} + +Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { + // If the source integer type is larger than the intptr_t type for + // this target, do a trunc to the intptr_t type, then inttoptr of it. This + // allows the trunc to be exposed to other transforms. Don't do this for + // extending inttoptr's, because we don't know if the target sign or zero + // extends to pointers. + if (CI.getOperand(0)->getType()->getPrimitiveSizeInBits() > + TD->getPointerSizeInBits()) { + Value *P = InsertNewInstBefore(new TruncInst(CI.getOperand(0), + TD->getIntPtrType(), + "tmp"), CI); + return new IntToPtrInst(P, CI.getType()); + } + + if (Instruction *I = commonCastTransforms(CI)) + return I; + + const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType(); + if (!DestPointee->isSized()) return 0; + + // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP. + ConstantInt *Cst; + Value *X; + if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)), + m_ConstantInt(Cst)))) { + // If the source and destination operands have the same type, see if this + // is a single-index GEP. + if (X->getType() == CI.getType()) { + // Get the size of the pointee type. + uint64_t Size = TD->getTypeAllocSize(DestPointee); + + // Convert the constant to intptr type. + APInt Offset = Cst->getValue(); + Offset.sextOrTrunc(TD->getPointerSizeInBits()); + + // If Offset is evenly divisible by Size, we can do this xform. + if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){ + Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size)); + return GetElementPtrInst::Create(X, ConstantInt::get(Offset)); + } + } + // TODO: Could handle other cases, e.g. where add is indexing into field of + // struct etc. + } else if (CI.getOperand(0)->hasOneUse() && + match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) { + // Otherwise, if this is inttoptr(add x, cst), try to turn this into an + // "inttoptr+GEP" instead of "add+intptr". + + // Get the size of the pointee type. + uint64_t Size = TD->getTypeAllocSize(DestPointee); + + // Convert the constant to intptr type. + APInt Offset = Cst->getValue(); + Offset.sextOrTrunc(TD->getPointerSizeInBits()); + + // If Offset is evenly divisible by Size, we can do this xform. + if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){ + Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size)); + + Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(), + "tmp"), CI); + return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp"); + } + } + return 0; +} + +Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { + // If the operands are integer typed then apply the integer transforms, + // otherwise just apply the common ones. + Value *Src = CI.getOperand(0); + const Type *SrcTy = Src->getType(); + const Type *DestTy = CI.getType(); + + if (SrcTy->isInteger() && DestTy->isInteger()) { + if (Instruction *Result = commonIntCastTransforms(CI)) + return Result; + } else if (isa<PointerType>(SrcTy)) { + if (Instruction *I = commonPointerCastTransforms(CI)) + return I; + } else { + if (Instruction *Result = commonCastTransforms(CI)) + return Result; + } + + + // Get rid of casts from one type to the same type. These are useless and can + // be replaced by the operand. + if (DestTy == Src->getType()) + return ReplaceInstUsesWith(CI, Src); + + if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { + const PointerType *SrcPTy = cast<PointerType>(SrcTy); + const Type *DstElTy = DstPTy->getElementType(); + const Type *SrcElTy = SrcPTy->getElementType(); + + // If the address spaces don't match, don't eliminate the bitcast, which is + // required for changing types. + if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) + return 0; + + // If we are casting a malloc or alloca to a pointer to a type of the same + // size, rewrite the allocation instruction to allocate the "right" type. + if (AllocationInst *AI = dyn_cast<AllocationInst>(Src)) + if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) + return V; + + // If the source and destination are pointers, and this cast is equivalent + // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. + // This can enhance SROA and other transforms that want type-safe pointers. + Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty); + unsigned NumZeros = 0; + while (SrcElTy != DstElTy && + isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) && + SrcElTy->getNumContainedTypes() /* not "{}" */) { + SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); + ++NumZeros; + } + + // If we found a path from the src to dest, create the getelementptr now. + if (SrcElTy == DstElTy) { + SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); + return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "", + ((Instruction*) NULL)); + } + } + + if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { + if (SVI->hasOneUse()) { + // Okay, we have (bitconvert (shuffle ..)). Check to see if this is + // a bitconvert to a vector with the same # elts. + if (isa<VectorType>(DestTy) && + cast<VectorType>(DestTy)->getNumElements() == + SVI->getType()->getNumElements() && + SVI->getType()->getNumElements() == + cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { + CastInst *Tmp; + // If either of the operands is a cast from CI.getType(), then + // evaluating the shuffle in the casted destination's type will allow + // us to eliminate at least one cast. + if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && + Tmp->getOperand(0)->getType() == DestTy) || + ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && + Tmp->getOperand(0)->getType() == DestTy)) { + Value *LHS = InsertCastBefore(Instruction::BitCast, + SVI->getOperand(0), DestTy, CI); + Value *RHS = InsertCastBefore(Instruction::BitCast, + SVI->getOperand(1), DestTy, CI); + // Return a new shuffle vector. Use the same element ID's, as we + // know the vector types match #elts. + return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); + } + } + } + } + return 0; +} + +/// GetSelectFoldableOperands - We want to turn code that looks like this: +/// %C = or %A, %B +/// %D = select %cond, %C, %A +/// into: +/// %C = select %cond, %B, 0 +/// %D = or %A, %C +/// +/// Assuming that the specified instruction is an operand to the select, return +/// a bitmask indicating which operands of this instruction are foldable if they +/// equal the other incoming value of the select. +/// +static unsigned GetSelectFoldableOperands(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + return 3; // Can fold through either operand. + case Instruction::Sub: // Can only fold on the amount subtracted. + case Instruction::Shl: // Can only fold on the shift amount. + case Instruction::LShr: + case Instruction::AShr: + return 1; + default: + return 0; // Cannot fold + } +} + +/// GetSelectFoldableConstant - For the same transformation as the previous +/// function, return the identity constant that goes into the select. +static Constant *GetSelectFoldableConstant(Instruction *I) { + switch (I->getOpcode()) { + default: assert(0 && "This cannot happen!"); abort(); + case Instruction::Add: + case Instruction::Sub: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + return Constant::getNullValue(I->getType()); + case Instruction::And: + return Constant::getAllOnesValue(I->getType()); + case Instruction::Mul: + return ConstantInt::get(I->getType(), 1); + } +} + +/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI +/// have the same opcode and only one use each. Try to simplify this. +Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, + Instruction *FI) { + if (TI->getNumOperands() == 1) { + // If this is a non-volatile load or a cast from the same type, + // merge. + if (TI->isCast()) { + if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) + return 0; + } else { + return 0; // unknown unary op. + } + + // Fold this by inserting a select from the input values. + SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0), + FI->getOperand(0), SI.getName()+".v"); + InsertNewInstBefore(NewSI, SI); + return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, + TI->getType()); + } + + // Only handle binary operators here. + if (!isa<BinaryOperator>(TI)) + return 0; + + // Figure out if the operations have any operands in common. + Value *MatchOp, *OtherOpT, *OtherOpF; + bool MatchIsOpZero; + if (TI->getOperand(0) == FI->getOperand(0)) { + MatchOp = TI->getOperand(0); + OtherOpT = TI->getOperand(1); + OtherOpF = FI->getOperand(1); + MatchIsOpZero = true; + } else if (TI->getOperand(1) == FI->getOperand(1)) { + MatchOp = TI->getOperand(1); + OtherOpT = TI->getOperand(0); + OtherOpF = FI->getOperand(0); + MatchIsOpZero = false; + } else if (!TI->isCommutative()) { + return 0; + } else if (TI->getOperand(0) == FI->getOperand(1)) { + MatchOp = TI->getOperand(0); + OtherOpT = TI->getOperand(1); + OtherOpF = FI->getOperand(0); + MatchIsOpZero = true; + } else if (TI->getOperand(1) == FI->getOperand(0)) { + MatchOp = TI->getOperand(1); + OtherOpT = TI->getOperand(0); + OtherOpF = FI->getOperand(1); + MatchIsOpZero = true; + } else { + return 0; + } + + // If we reach here, they do have operations in common. + SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT, + OtherOpF, SI.getName()+".v"); + InsertNewInstBefore(NewSI, SI); + + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { + if (MatchIsOpZero) + return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); + else + return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); + } + assert(0 && "Shouldn't get here"); + return 0; +} + +static bool isSelect01(Constant *C1, Constant *C2) { + ConstantInt *C1I = dyn_cast<ConstantInt>(C1); + if (!C1I) + return false; + ConstantInt *C2I = dyn_cast<ConstantInt>(C2); + if (!C2I) + return false; + return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne()); +} + +/// FoldSelectIntoOp - Try fold the select into one of the operands to +/// facilitate further optimization. +Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, + Value *FalseVal) { + // See the comment above GetSelectFoldableOperands for a description of the + // transformation we are doing here. + if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { + if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && + !isa<Constant>(FalseVal)) { + if (unsigned SFO = GetSelectFoldableOperands(TVI)) { + unsigned OpToFold = 0; + if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { + OpToFold = 1; + } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { + OpToFold = 2; + } + + if (OpToFold) { + Constant *C = GetSelectFoldableConstant(TVI); + Value *OOp = TVI->getOperand(2-OpToFold); + // Avoid creating select between 2 constants unless it's selecting + // between 0 and 1. + if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { + Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C); + InsertNewInstBefore(NewSel, SI); + NewSel->takeName(TVI); + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI)) + return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel); + assert(0 && "Unknown instruction!!"); + } + } + } + } + } + + if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { + if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && + !isa<Constant>(TrueVal)) { + if (unsigned SFO = GetSelectFoldableOperands(FVI)) { + unsigned OpToFold = 0; + if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { + OpToFold = 1; + } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { + OpToFold = 2; + } + + if (OpToFold) { + Constant *C = GetSelectFoldableConstant(FVI); + Value *OOp = FVI->getOperand(2-OpToFold); + // Avoid creating select between 2 constants unless it's selecting + // between 0 and 1. + if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { + Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp); + InsertNewInstBefore(NewSel, SI); + NewSel->takeName(FVI); + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI)) + return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel); + assert(0 && "Unknown instruction!!"); + } + } + } + } + } + + return 0; +} + +/// visitSelectInstWithICmp - Visit a SelectInst that has an +/// ICmpInst as its first operand. +/// +Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, + ICmpInst *ICI) { + bool Changed = false; + ICmpInst::Predicate Pred = ICI->getPredicate(); + Value *CmpLHS = ICI->getOperand(0); + Value *CmpRHS = ICI->getOperand(1); + Value *TrueVal = SI.getTrueValue(); + Value *FalseVal = SI.getFalseValue(); + + // Check cases where the comparison is with a constant that + // can be adjusted to fit the min/max idiom. We may edit ICI in + // place here, so make sure the select is the only user. + if (ICI->hasOneUse()) + if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { + switch (Pred) { + default: break; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_SLT: { + // X < MIN ? T : F --> F + if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) + return ReplaceInstUsesWith(SI, FalseVal); + // X < C ? X : C-1 --> X > C-1 ? C-1 : X + Constant *AdjustedRHS = SubOne(CI); + if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || + (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { + Pred = ICmpInst::getSwappedPredicate(Pred); + CmpRHS = AdjustedRHS; + std::swap(FalseVal, TrueVal); + ICI->setPredicate(Pred); + ICI->setOperand(1, CmpRHS); + SI.setOperand(1, TrueVal); + SI.setOperand(2, FalseVal); + Changed = true; + } + break; + } + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_SGT: { + // X > MAX ? T : F --> F + if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) + return ReplaceInstUsesWith(SI, FalseVal); + // X > C ? X : C+1 --> X < C+1 ? C+1 : X + Constant *AdjustedRHS = AddOne(CI); + if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || + (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { + Pred = ICmpInst::getSwappedPredicate(Pred); + CmpRHS = AdjustedRHS; + std::swap(FalseVal, TrueVal); + ICI->setPredicate(Pred); + ICI->setOperand(1, CmpRHS); + SI.setOperand(1, TrueVal); + SI.setOperand(2, FalseVal); + Changed = true; + } + break; + } + } + + // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed + // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed + CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; + if (match(TrueVal, m_ConstantInt<-1>()) && + match(FalseVal, m_ConstantInt<0>())) + Pred = ICI->getPredicate(); + else if (match(TrueVal, m_ConstantInt<0>()) && + match(FalseVal, m_ConstantInt<-1>())) + Pred = CmpInst::getInversePredicate(ICI->getPredicate()); + + if (Pred != CmpInst::BAD_ICMP_PREDICATE) { + // If we are just checking for a icmp eq of a single bit and zext'ing it + // to an integer, then shift the bit to the appropriate place and then + // cast to integer to avoid the comparison. + const APInt &Op1CV = CI->getValue(); + + // sext (x <s 0) to i32 --> x>>s31 true if signbit set. + // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear. + if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) || + (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { + Value *In = ICI->getOperand(0); + Value *Sh = ConstantInt::get(In->getType(), + In->getType()->getPrimitiveSizeInBits()-1); + In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh, + In->getName()+".lobit"), + *ICI); + if (In->getType() != SI.getType()) + In = CastInst::CreateIntegerCast(In, SI.getType(), + true/*SExt*/, "tmp", ICI); + + if (Pred == ICmpInst::ICMP_SGT) + In = InsertNewInstBefore(BinaryOperator::CreateNot(In, + In->getName()+".not"), *ICI); + + return ReplaceInstUsesWith(SI, In); + } + } + } + + if (CmpLHS == TrueVal && CmpRHS == FalseVal) { + // Transform (X == Y) ? X : Y -> Y + if (Pred == ICmpInst::ICMP_EQ) + return ReplaceInstUsesWith(SI, FalseVal); + // Transform (X != Y) ? X : Y -> X + if (Pred == ICmpInst::ICMP_NE) + return ReplaceInstUsesWith(SI, TrueVal); + /// NOTE: if we wanted to, this is where to detect integer MIN/MAX + + } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) { + // Transform (X == Y) ? Y : X -> X + if (Pred == ICmpInst::ICMP_EQ) + return ReplaceInstUsesWith(SI, FalseVal); + // Transform (X != Y) ? Y : X -> Y + if (Pred == ICmpInst::ICMP_NE) + return ReplaceInstUsesWith(SI, TrueVal); + /// NOTE: if we wanted to, this is where to detect integer MIN/MAX + } + + /// NOTE: if we wanted to, this is where to detect integer ABS + + return Changed ? &SI : 0; +} + +Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { + Value *CondVal = SI.getCondition(); + Value *TrueVal = SI.getTrueValue(); + Value *FalseVal = SI.getFalseValue(); + + // select true, X, Y -> X + // select false, X, Y -> Y + if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal)) + return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal); + + // select C, X, X -> X + if (TrueVal == FalseVal) + return ReplaceInstUsesWith(SI, TrueVal); + + if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X + return ReplaceInstUsesWith(SI, FalseVal); + if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X + return ReplaceInstUsesWith(SI, TrueVal); + if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y + if (isa<Constant>(TrueVal)) + return ReplaceInstUsesWith(SI, TrueVal); + else + return ReplaceInstUsesWith(SI, FalseVal); + } + + if (SI.getType() == Type::Int1Ty) { + if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { + if (C->getZExtValue()) { + // Change: A = select B, true, C --> A = or B, C + return BinaryOperator::CreateOr(CondVal, FalseVal); + } else { + // Change: A = select B, false, C --> A = and !B, C + Value *NotCond = + InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, + "not."+CondVal->getName()), SI); + return BinaryOperator::CreateAnd(NotCond, FalseVal); + } + } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { + if (C->getZExtValue() == false) { + // Change: A = select B, C, false --> A = and B, C + return BinaryOperator::CreateAnd(CondVal, TrueVal); + } else { + // Change: A = select B, C, true --> A = or !B, C + Value *NotCond = + InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, + "not."+CondVal->getName()), SI); + return BinaryOperator::CreateOr(NotCond, TrueVal); + } + } + + // select a, b, a -> a&b + // select a, a, b -> a|b + if (CondVal == TrueVal) + return BinaryOperator::CreateOr(CondVal, FalseVal); + else if (CondVal == FalseVal) + return BinaryOperator::CreateAnd(CondVal, TrueVal); + } + + // Selecting between two integer constants? + if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) + if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { + // select C, 1, 0 -> zext C to int + if (FalseValC->isZero() && TrueValC->getValue() == 1) { + return CastInst::Create(Instruction::ZExt, CondVal, SI.getType()); + } else if (TrueValC->isZero() && FalseValC->getValue() == 1) { + // select C, 0, 1 -> zext !C to int + Value *NotCond = + InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, + "not."+CondVal->getName()), SI); + return CastInst::Create(Instruction::ZExt, NotCond, SI.getType()); + } + + if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) { + + // (x <s 0) ? -1 : 0 -> ashr x, 31 + if (TrueValC->isAllOnesValue() && FalseValC->isZero()) + if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) { + if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) { + // The comparison constant and the result are not neccessarily the + // same width. Make an all-ones value by inserting a AShr. + Value *X = IC->getOperand(0); + uint32_t Bits = X->getType()->getPrimitiveSizeInBits(); + Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1); + Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X, + ShAmt, "ones"); + InsertNewInstBefore(SRA, SI); + + // Then cast to the appropriate width. + return CastInst::CreateIntegerCast(SRA, SI.getType(), true); + } + } + + + // If one of the constants is zero (we know they can't both be) and we + // have an icmp instruction with zero, and we have an 'and' with the + // non-constant value, eliminate this whole mess. This corresponds to + // cases like this: ((X & 27) ? 27 : 0) + if (TrueValC->isZero() || FalseValC->isZero()) + if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) && + cast<Constant>(IC->getOperand(1))->isNullValue()) + if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0))) + if (ICA->getOpcode() == Instruction::And && + isa<ConstantInt>(ICA->getOperand(1)) && + (ICA->getOperand(1) == TrueValC || + ICA->getOperand(1) == FalseValC) && + isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) { + // Okay, now we know that everything is set up, we just don't + // know whether we have a icmp_ne or icmp_eq and whether the + // true or false val is the zero. + bool ShouldNotVal = !TrueValC->isZero(); + ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; + Value *V = ICA; + if (ShouldNotVal) + V = InsertNewInstBefore(BinaryOperator::Create( + Instruction::Xor, V, ICA->getOperand(1)), SI); + return ReplaceInstUsesWith(SI, V); + } + } + } + + // See if we are selecting two values based on a comparison of the two values. + if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { + if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { + // Transform (X == Y) ? X : Y -> Y + if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { + // This is not safe in general for floating point: + // consider X== -0, Y== +0. + // It becomes safe if either operand is a nonzero constant. + ConstantFP *CFPt, *CFPf; + if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && + !CFPt->getValueAPF().isZero()) || + ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && + !CFPf->getValueAPF().isZero())) + return ReplaceInstUsesWith(SI, FalseVal); + } + // Transform (X != Y) ? X : Y -> X + if (FCI->getPredicate() == FCmpInst::FCMP_ONE) + return ReplaceInstUsesWith(SI, TrueVal); + // NOTE: if we wanted to, this is where to detect MIN/MAX + + } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ + // Transform (X == Y) ? Y : X -> X + if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { + // This is not safe in general for floating point: + // consider X== -0, Y== +0. + // It becomes safe if either operand is a nonzero constant. + ConstantFP *CFPt, *CFPf; + if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && + !CFPt->getValueAPF().isZero()) || + ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && + !CFPf->getValueAPF().isZero())) + return ReplaceInstUsesWith(SI, FalseVal); + } + // Transform (X != Y) ? Y : X -> Y + if (FCI->getPredicate() == FCmpInst::FCMP_ONE) + return ReplaceInstUsesWith(SI, TrueVal); + // NOTE: if we wanted to, this is where to detect MIN/MAX + } + // NOTE: if we wanted to, this is where to detect ABS + } + + // See if we are selecting two values based on a comparison of the two values. + if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) + if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) + return Result; + + if (Instruction *TI = dyn_cast<Instruction>(TrueVal)) + if (Instruction *FI = dyn_cast<Instruction>(FalseVal)) + if (TI->hasOneUse() && FI->hasOneUse()) { + Instruction *AddOp = 0, *SubOp = 0; + + // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) + if (TI->getOpcode() == FI->getOpcode()) + if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) + return IV; + + // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is + // even legal for FP. + if (TI->getOpcode() == Instruction::Sub && + FI->getOpcode() == Instruction::Add) { + AddOp = FI; SubOp = TI; + } else if (FI->getOpcode() == Instruction::Sub && + TI->getOpcode() == Instruction::Add) { + AddOp = TI; SubOp = FI; + } + + if (AddOp) { + Value *OtherAddOp = 0; + if (SubOp->getOperand(0) == AddOp->getOperand(0)) { + OtherAddOp = AddOp->getOperand(1); + } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { + OtherAddOp = AddOp->getOperand(0); + } + + if (OtherAddOp) { + // So at this point we know we have (Y -> OtherAddOp): + // select C, (add X, Y), (sub X, Z) + Value *NegVal; // Compute -Z + if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) { + NegVal = ConstantExpr::getNeg(C); + } else { + NegVal = InsertNewInstBefore( + BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI); + } + + Value *NewTrueOp = OtherAddOp; + Value *NewFalseOp = NegVal; + if (AddOp != TI) + std::swap(NewTrueOp, NewFalseOp); + Instruction *NewSel = + SelectInst::Create(CondVal, NewTrueOp, + NewFalseOp, SI.getName() + ".p"); + + NewSel = InsertNewInstBefore(NewSel, SI); + return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); + } + } + } + + // See if we can fold the select into one of our operands. + if (SI.getType()->isInteger()) { + Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal); + if (FoldI) + return FoldI; + } + + if (BinaryOperator::isNot(CondVal)) { + SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); + SI.setOperand(1, FalseVal); + SI.setOperand(2, TrueVal); + return &SI; + } + + return 0; +} + +/// EnforceKnownAlignment - If the specified pointer points to an object that +/// we control, modify the object's alignment to PrefAlign. This isn't +/// often possible though. If alignment is important, a more reliable approach +/// is to simply align all global variables and allocation instructions to +/// their preferred alignment from the beginning. +/// +static unsigned EnforceKnownAlignment(Value *V, + unsigned Align, unsigned PrefAlign) { + + User *U = dyn_cast<User>(V); + if (!U) return Align; + + switch (getOpcode(U)) { + default: break; + case Instruction::BitCast: + return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); + case Instruction::GetElementPtr: { + // If all indexes are zero, it is just the alignment of the base pointer. + bool AllZeroOperands = true; + for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i) + if (!isa<Constant>(*i) || + !cast<Constant>(*i)->isNullValue()) { + AllZeroOperands = false; + break; + } + + if (AllZeroOperands) { + // Treat this like a bitcast. + return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); + } + break; + } + } + + if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // If there is a large requested alignment and we can, bump up the alignment + // of the global. + if (!GV->isDeclaration()) { + if (GV->getAlignment() >= PrefAlign) + Align = GV->getAlignment(); + else { + GV->setAlignment(PrefAlign); + Align = PrefAlign; + } + } + } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) { + // If there is a requested alignment and if this is an alloca, round up. We + // don't do this for malloc, because some systems can't respect the request. + if (isa<AllocaInst>(AI)) { + if (AI->getAlignment() >= PrefAlign) + Align = AI->getAlignment(); + else { + AI->setAlignment(PrefAlign); + Align = PrefAlign; + } + } + } + + return Align; +} + +/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that +/// we can determine, return it, otherwise return 0. If PrefAlign is specified, +/// and it is more than the alignment of the ultimate object, see if we can +/// increase the alignment of the ultimate object, making this check succeed. +unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V, + unsigned PrefAlign) { + unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) : + sizeof(PrefAlign) * CHAR_BIT; + APInt Mask = APInt::getAllOnesValue(BitWidth); + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + ComputeMaskedBits(V, Mask, KnownZero, KnownOne); + unsigned TrailZ = KnownZero.countTrailingOnes(); + unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); + + if (PrefAlign > Align) + Align = EnforceKnownAlignment(V, Align, PrefAlign); + + // We don't need to make any adjustment. + return Align; +} + +Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { + unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1)); + unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2)); + unsigned MinAlign = std::min(DstAlign, SrcAlign); + unsigned CopyAlign = MI->getAlignment(); + + if (CopyAlign < MinAlign) { + MI->setAlignment(MinAlign); + return MI; + } + + // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with + // load/store. + ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3)); + if (MemOpLength == 0) return 0; + + // Source and destination pointer types are always "i8*" for intrinsic. See + // if the size is something we can handle with a single primitive load/store. + // A single load+store correctly handles overlapping memory in the memmove + // case. + unsigned Size = MemOpLength->getZExtValue(); + if (Size == 0) return MI; // Delete this mem transfer. + + if (Size > 8 || (Size&(Size-1))) + return 0; // If not 1/2/4/8 bytes, exit. + + // Use an integer load+store unless we can find something better. + Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3)); + + // Memcpy forces the use of i8* for the source and destination. That means + // that if you're using memcpy to move one double around, you'll get a cast + // from double* to i8*. We'd much rather use a double load+store rather than + // an i64 load+store, here because this improves the odds that the source or + // dest address will be promotable. See if we can find a better type than the + // integer datatype. + if (Value *Op = getBitCastOperand(MI->getOperand(1))) { + const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType(); + if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) { + // The SrcETy might be something like {{{double}}} or [1 x double]. Rip + // down through these levels if so. + while (!SrcETy->isSingleValueType()) { + if (const StructType *STy = dyn_cast<StructType>(SrcETy)) { + if (STy->getNumElements() == 1) + SrcETy = STy->getElementType(0); + else + break; + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) { + if (ATy->getNumElements() == 1) + SrcETy = ATy->getElementType(); + else + break; + } else + break; + } + + if (SrcETy->isSingleValueType()) + NewPtrTy = PointerType::getUnqual(SrcETy); + } + } + + + // If the memcpy/memmove provides better alignment info than we can + // infer, use it. + SrcAlign = std::max(SrcAlign, CopyAlign); + DstAlign = std::max(DstAlign, CopyAlign); + + Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI); + Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI); + Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign); + InsertNewInstBefore(L, *MI); + InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI); + + // Set the size of the copy to 0, it will be deleted on the next iteration. + MI->setOperand(3, Constant::getNullValue(MemOpLength->getType())); + return MI; +} + +Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { + unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest()); + if (MI->getAlignment() < Alignment) { + MI->setAlignment(Alignment); + return MI; + } + + // Extract the length and alignment and fill if they are constant. + ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); + ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); + if (!LenC || !FillC || FillC->getType() != Type::Int8Ty) + return 0; + uint64_t Len = LenC->getZExtValue(); + Alignment = MI->getAlignment(); + + // If the length is zero, this is a no-op + if (Len == 0) return MI; // memset(d,c,0,a) -> noop + + // memset(s,c,n) -> store s, c (for n=1,2,4,8) + if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { + const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8. + + Value *Dest = MI->getDest(); + Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI); + + // Alignment 0 is identity for alignment 1 for memset, but not store. + if (Alignment == 0) Alignment = 1; + + // Extract the fill value and store. + uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; + InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false, + Alignment), *MI); + + // Set the size of the copy to 0, it will be deleted on the next iteration. + MI->setLength(Constant::getNullValue(LenC->getType())); + return MI; + } + + return 0; +} + + +/// visitCallInst - CallInst simplification. This mostly only handles folding +/// of intrinsic instructions. For normal calls, it allows visitCallSite to do +/// the heavy lifting. +/// +Instruction *InstCombiner::visitCallInst(CallInst &CI) { + // If the caller function is nounwind, mark the call as nounwind, even if the + // callee isn't. + if (CI.getParent()->getParent()->doesNotThrow() && + !CI.doesNotThrow()) { + CI.setDoesNotThrow(); + return &CI; + } + + + + IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); + if (!II) return visitCallSite(&CI); + + // Intrinsics cannot occur in an invoke, so handle them here instead of in + // visitCallSite. + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { + bool Changed = false; + + // memmove/cpy/set of zero bytes is a noop. + if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { + if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); + + if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) + if (CI->getZExtValue() == 1) { + // Replace the instruction with just byte operations. We would + // transform other cases to loads/stores, but we don't know if + // alignment is sufficient. + } + } + + // If we have a memmove and the source operation is a constant global, + // then the source and dest pointers can't alias, so we can change this + // into a call to memcpy. + if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { + if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) + if (GVSrc->isConstant()) { + Module *M = CI.getParent()->getParent()->getParent(); + Intrinsic::ID MemCpyID = Intrinsic::memcpy; + const Type *Tys[1]; + Tys[0] = CI.getOperand(3)->getType(); + CI.setOperand(0, + Intrinsic::getDeclaration(M, MemCpyID, Tys, 1)); + Changed = true; + } + + // memmove(x,x,size) -> noop. + if (MMI->getSource() == MMI->getDest()) + return EraseInstFromFunction(CI); + } + + // If we can determine a pointer alignment that is bigger than currently + // set, update the alignment. + if (isa<MemTransferInst>(MI)) { + if (Instruction *I = SimplifyMemTransfer(MI)) + return I; + } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { + if (Instruction *I = SimplifyMemSet(MSI)) + return I; + } + + if (Changed) return II; + } + + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::bswap: + // bswap(bswap(x)) -> x + if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1))) + if (Operand->getIntrinsicID() == Intrinsic::bswap) + return ReplaceInstUsesWith(CI, Operand->getOperand(1)); + break; + case Intrinsic::ppc_altivec_lvx: + case Intrinsic::ppc_altivec_lvxl: + case Intrinsic::x86_sse_loadu_ps: + case Intrinsic::x86_sse2_loadu_pd: + case Intrinsic::x86_sse2_loadu_dq: + // Turn PPC lvx -> load if the pointer is known aligned. + // Turn X86 loadups -> load if the pointer is known aligned. + if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { + Value *Ptr = InsertBitCastBefore(II->getOperand(1), + PointerType::getUnqual(II->getType()), + CI); + return new LoadInst(Ptr); + } + break; + case Intrinsic::ppc_altivec_stvx: + case Intrinsic::ppc_altivec_stvxl: + // Turn stvx -> store if the pointer is known aligned. + if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) { + const Type *OpPtrTy = + PointerType::getUnqual(II->getOperand(1)->getType()); + Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI); + return new StoreInst(II->getOperand(1), Ptr); + } + break; + case Intrinsic::x86_sse_storeu_ps: + case Intrinsic::x86_sse2_storeu_pd: + case Intrinsic::x86_sse2_storeu_dq: + // Turn X86 storeu -> store if the pointer is known aligned. + if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { + const Type *OpPtrTy = + PointerType::getUnqual(II->getOperand(2)->getType()); + Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI); + return new StoreInst(II->getOperand(2), Ptr); + } + break; + + case Intrinsic::x86_sse_cvttss2si: { + // These intrinsics only demands the 0th element of its input vector. If + // we can simplify the input based on that, do so now. + unsigned VWidth = + cast<VectorType>(II->getOperand(1)->getType())->getNumElements(); + APInt DemandedElts(VWidth, 1); + APInt UndefElts(VWidth, 0); + if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, + UndefElts)) { + II->setOperand(1, V); + return II; + } + break; + } + + case Intrinsic::ppc_altivec_vperm: + // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. + if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) { + assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); + + // Check that all of the elements are integer constants or undefs. + bool AllEltsOk = true; + for (unsigned i = 0; i != 16; ++i) { + if (!isa<ConstantInt>(Mask->getOperand(i)) && + !isa<UndefValue>(Mask->getOperand(i))) { + AllEltsOk = false; + break; + } + } + + if (AllEltsOk) { + // Cast the input vectors to byte vectors. + Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI); + Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI); + Value *Result = UndefValue::get(Op0->getType()); + + // Only extract each element once. + Value *ExtractedElts[32]; + memset(ExtractedElts, 0, sizeof(ExtractedElts)); + + for (unsigned i = 0; i != 16; ++i) { + if (isa<UndefValue>(Mask->getOperand(i))) + continue; + unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue(); + Idx &= 31; // Match the hardware behavior. + + if (ExtractedElts[Idx] == 0) { + Instruction *Elt = + new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp"); + InsertNewInstBefore(Elt, CI); + ExtractedElts[Idx] = Elt; + } + + // Insert this value into the result vector. + Result = InsertElementInst::Create(Result, ExtractedElts[Idx], + i, "tmp"); + InsertNewInstBefore(cast<Instruction>(Result), CI); + } + return CastInst::Create(Instruction::BitCast, Result, CI.getType()); + } + } + break; + + case Intrinsic::stackrestore: { + // If the save is right next to the restore, remove the restore. This can + // happen when variable allocas are DCE'd. + if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) { + if (SS->getIntrinsicID() == Intrinsic::stacksave) { + BasicBlock::iterator BI = SS; + if (&*++BI == II) + return EraseInstFromFunction(CI); + } + } + + // Scan down this block to see if there is another stack restore in the + // same block without an intervening call/alloca. + BasicBlock::iterator BI = II; + TerminatorInst *TI = II->getParent()->getTerminator(); + bool CannotRemove = false; + for (++BI; &*BI != TI; ++BI) { + if (isa<AllocaInst>(BI)) { + CannotRemove = true; + break; + } + if (CallInst *BCI = dyn_cast<CallInst>(BI)) { + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { + // If there is a stackrestore below this one, remove this one. + if (II->getIntrinsicID() == Intrinsic::stackrestore) + return EraseInstFromFunction(CI); + // Otherwise, ignore the intrinsic. + } else { + // If we found a non-intrinsic call, we can't remove the stack + // restore. + CannotRemove = true; + break; + } + } + } + + // If the stack restore is in a return/unwind block and if there are no + // allocas or calls between the restore and the return, nuke the restore. + if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI))) + return EraseInstFromFunction(CI); + break; + } + } + + return visitCallSite(II); +} + +// InvokeInst simplification +// +Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { + return visitCallSite(&II); +} + +/// isSafeToEliminateVarargsCast - If this cast does not affect the value +/// passed through the varargs area, we can eliminate the use of the cast. +static bool isSafeToEliminateVarargsCast(const CallSite CS, + const CastInst * const CI, + const TargetData * const TD, + const int ix) { + if (!CI->isLosslessCast()) + return false; + + // The size of ByVal arguments is derived from the type, so we + // can't change to a type with a different size. If the size were + // passed explicitly we could avoid this check. + if (!CS.paramHasAttr(ix, Attribute::ByVal)) + return true; + + const Type* SrcTy = + cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); + const Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); + if (!SrcTy->isSized() || !DstTy->isSized()) + return false; + if (TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy)) + return false; + return true; +} + +// visitCallSite - Improvements for call and invoke instructions. +// +Instruction *InstCombiner::visitCallSite(CallSite CS) { + bool Changed = false; + + // If the callee is a constexpr cast of a function, attempt to move the cast + // to the arguments of the call/invoke. + if (transformConstExprCastCall(CS)) return 0; + + Value *Callee = CS.getCalledValue(); + + if (Function *CalleeF = dyn_cast<Function>(Callee)) + if (CalleeF->getCallingConv() != CS.getCallingConv()) { + Instruction *OldCall = CS.getInstruction(); + // If the call and callee calling conventions don't match, this call must + // be unreachable, as the call is undefined. + new StoreInst(ConstantInt::getTrue(), + UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), + OldCall); + if (!OldCall->use_empty()) + OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); + if (isa<CallInst>(OldCall)) // Not worth removing an invoke here. + return EraseInstFromFunction(*OldCall); + return 0; + } + + if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { + // This instruction is not reachable, just remove it. We insert a store to + // undef so that we know that this code is not reachable, despite the fact + // that we can't modify the CFG here. + new StoreInst(ConstantInt::getTrue(), + UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), + CS.getInstruction()); + + if (!CS.getInstruction()->use_empty()) + CS.getInstruction()-> + replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); + + if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { + // Don't break the CFG, insert a dummy cond branch. + BranchInst::Create(II->getNormalDest(), II->getUnwindDest(), + ConstantInt::getTrue(), II); + } + return EraseInstFromFunction(*CS.getInstruction()); + } + + if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee)) + if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0))) + if (In->getIntrinsicID() == Intrinsic::init_trampoline) + return transformCallThroughTrampoline(CS); + + const PointerType *PTy = cast<PointerType>(Callee->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + if (FTy->isVarArg()) { + int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1); + // See if we can optimize any arguments passed through the varargs area of + // the call. + for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), + E = CS.arg_end(); I != E; ++I, ++ix) { + CastInst *CI = dyn_cast<CastInst>(*I); + if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) { + *I = CI->getOperand(0); + Changed = true; + } + } + } + + if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { + // Inline asm calls cannot throw - mark them 'nounwind'. + CS.setDoesNotThrow(); + Changed = true; + } + + return Changed ? CS.getInstruction() : 0; +} + +// transformConstExprCastCall - If the callee is a constexpr cast of a function, +// attempt to move the cast to the arguments of the call/invoke. +// +bool InstCombiner::transformConstExprCastCall(CallSite CS) { + if (!isa<ConstantExpr>(CS.getCalledValue())) return false; + ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue()); + if (CE->getOpcode() != Instruction::BitCast || + !isa<Function>(CE->getOperand(0))) + return false; + Function *Callee = cast<Function>(CE->getOperand(0)); + Instruction *Caller = CS.getInstruction(); + const AttrListPtr &CallerPAL = CS.getAttributes(); + + // Okay, this is a cast from a function to a different type. Unless doing so + // would cause a type conversion of one of our arguments, change this call to + // be a direct call with arguments casted to the appropriate types. + // + const FunctionType *FT = Callee->getFunctionType(); + const Type *OldRetTy = Caller->getType(); + const Type *NewRetTy = FT->getReturnType(); + + if (isa<StructType>(NewRetTy)) + return false; // TODO: Handle multiple return values. + + // Check to see if we are changing the return type... + if (OldRetTy != NewRetTy) { + if (Callee->isDeclaration() && + // Conversion is ok if changing from one pointer type to another or from + // a pointer to an integer of the same size. + !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) && + (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType()))) + return false; // Cannot transform this return value. + + if (!Caller->use_empty() && + // void -> non-void is handled specially + NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy)) + return false; // Cannot transform this return value. + + if (!CallerPAL.isEmpty() && !Caller->use_empty()) { + Attributes RAttrs = CallerPAL.getRetAttributes(); + if (RAttrs & Attribute::typeIncompatible(NewRetTy)) + return false; // Attribute not compatible with transformed value. + } + + // If the callsite is an invoke instruction, and the return value is used by + // a PHI node in a successor, we cannot change the return type of the call + // because there is no place to put the cast instruction (without breaking + // the critical edge). Bail out in this case. + if (!Caller->use_empty()) + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) + for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); + UI != E; ++UI) + if (PHINode *PN = dyn_cast<PHINode>(*UI)) + if (PN->getParent() == II->getNormalDest() || + PN->getParent() == II->getUnwindDest()) + return false; + } + + unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); + unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); + + CallSite::arg_iterator AI = CS.arg_begin(); + for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { + const Type *ParamTy = FT->getParamType(i); + const Type *ActTy = (*AI)->getType(); + + if (!CastInst::isCastable(ActTy, ParamTy)) + return false; // Cannot transform this parameter value. + + if (CallerPAL.getParamAttributes(i + 1) + & Attribute::typeIncompatible(ParamTy)) + return false; // Attribute not compatible with transformed value. + + // Converting from one pointer type to another or between a pointer and an + // integer of the same size is safe even if we do not have a body. + bool isConvertible = ActTy == ParamTy || + ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) && + (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType())); + if (Callee->isDeclaration() && !isConvertible) return false; + } + + if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && + Callee->isDeclaration()) + return false; // Do not delete arguments unless we have a function body. + + if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && + !CallerPAL.isEmpty()) + // In this case we have more arguments than the new function type, but we + // won't be dropping them. Check that these extra arguments have attributes + // that are compatible with being a vararg call argument. + for (unsigned i = CallerPAL.getNumSlots(); i; --i) { + if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams()) + break; + Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs; + if (PAttrs & Attribute::VarArgsIncompatible) + return false; + } + + // Okay, we decided that this is a safe thing to do: go ahead and start + // inserting cast instructions as necessary... + std::vector<Value*> Args; + Args.reserve(NumActualArgs); + SmallVector<AttributeWithIndex, 8> attrVec; + attrVec.reserve(NumCommonArgs); + + // Get any return attributes. + Attributes RAttrs = CallerPAL.getRetAttributes(); + + // If the return value is not being used, the type may not be compatible + // with the existing attributes. Wipe out any problematic attributes. + RAttrs &= ~Attribute::typeIncompatible(NewRetTy); + + // Add the new return attributes. + if (RAttrs) + attrVec.push_back(AttributeWithIndex::get(0, RAttrs)); + + AI = CS.arg_begin(); + for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { + const Type *ParamTy = FT->getParamType(i); + if ((*AI)->getType() == ParamTy) { + Args.push_back(*AI); + } else { + Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, + false, ParamTy, false); + CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp"); + Args.push_back(InsertNewInstBefore(NewCast, *Caller)); + } + + // Add any parameter attributes. + if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) + attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); + } + + // If the function takes more arguments than the call was taking, add them + // now... + for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) + Args.push_back(Constant::getNullValue(FT->getParamType(i))); + + // If we are removing arguments to the function, emit an obnoxious warning... + if (FT->getNumParams() < NumActualArgs) { + if (!FT->isVarArg()) { + cerr << "WARNING: While resolving call to function '" + << Callee->getName() << "' arguments were dropped!\n"; + } else { + // Add all of the arguments in their promoted form to the arg list... + for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { + const Type *PTy = getPromotedType((*AI)->getType()); + if (PTy != (*AI)->getType()) { + // Must promote to pass through va_arg area! + Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, + PTy, false); + Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp"); + InsertNewInstBefore(Cast, *Caller); + Args.push_back(Cast); + } else { + Args.push_back(*AI); + } + + // Add any parameter attributes. + if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) + attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); + } + } + } + + if (Attributes FnAttrs = CallerPAL.getFnAttributes()) + attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); + + if (NewRetTy == Type::VoidTy) + Caller->setName(""); // Void type should not have a name. + + const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end()); + + Instruction *NC; + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { + NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(), + Args.begin(), Args.end(), + Caller->getName(), Caller); + cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); + cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); + } else { + NC = CallInst::Create(Callee, Args.begin(), Args.end(), + Caller->getName(), Caller); + CallInst *CI = cast<CallInst>(Caller); + if (CI->isTailCall()) + cast<CallInst>(NC)->setTailCall(); + cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); + cast<CallInst>(NC)->setAttributes(NewCallerPAL); + } + + // Insert a cast of the return type as necessary. + Value *NV = NC; + if (OldRetTy != NV->getType() && !Caller->use_empty()) { + if (NV->getType() != Type::VoidTy) { + Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, + OldRetTy, false); + NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp"); + + // If this is an invoke instruction, we should insert it after the first + // non-phi, instruction in the normal successor block. + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { + BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI(); + InsertNewInstBefore(NC, *I); + } else { + // Otherwise, it's a call, just insert cast right after the call instr + InsertNewInstBefore(NC, *Caller); + } + AddUsersToWorkList(*Caller); + } else { + NV = UndefValue::get(Caller->getType()); + } + } + + if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) + Caller->replaceAllUsesWith(NV); + Caller->eraseFromParent(); + RemoveFromWorkList(Caller); + return true; +} + +// transformCallThroughTrampoline - Turn a call to a function created by the +// init_trampoline intrinsic into a direct call to the underlying function. +// +Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { + Value *Callee = CS.getCalledValue(); + const PointerType *PTy = cast<PointerType>(Callee->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + const AttrListPtr &Attrs = CS.getAttributes(); + + // If the call already has the 'nest' attribute somewhere then give up - + // otherwise 'nest' would occur twice after splicing in the chain. + if (Attrs.hasAttrSomewhere(Attribute::Nest)) + return 0; + + IntrinsicInst *Tramp = + cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0)); + + Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts()); + const PointerType *NestFPTy = cast<PointerType>(NestF->getType()); + const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType()); + + const AttrListPtr &NestAttrs = NestF->getAttributes(); + if (!NestAttrs.isEmpty()) { + unsigned NestIdx = 1; + const Type *NestTy = 0; + Attributes NestAttr = Attribute::None; + + // Look for a parameter marked with the 'nest' attribute. + for (FunctionType::param_iterator I = NestFTy->param_begin(), + E = NestFTy->param_end(); I != E; ++NestIdx, ++I) + if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) { + // Record the parameter type and any other attributes. + NestTy = *I; + NestAttr = NestAttrs.getParamAttributes(NestIdx); + break; + } + + if (NestTy) { + Instruction *Caller = CS.getInstruction(); + std::vector<Value*> NewArgs; + NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); + + SmallVector<AttributeWithIndex, 8> NewAttrs; + NewAttrs.reserve(Attrs.getNumSlots() + 1); + + // Insert the nest argument into the call argument list, which may + // mean appending it. Likewise for attributes. + + // Add any result attributes. + if (Attributes Attr = Attrs.getRetAttributes()) + NewAttrs.push_back(AttributeWithIndex::get(0, Attr)); + + { + unsigned Idx = 1; + CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); + do { + if (Idx == NestIdx) { + // Add the chain argument and attributes. + Value *NestVal = Tramp->getOperand(3); + if (NestVal->getType() != NestTy) + NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller); + NewArgs.push_back(NestVal); + NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr)); + } + + if (I == E) + break; + + // Add the original argument and attributes. + NewArgs.push_back(*I); + if (Attributes Attr = Attrs.getParamAttributes(Idx)) + NewAttrs.push_back + (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr)); + + ++Idx, ++I; + } while (1); + } + + // Add any function attributes. + if (Attributes Attr = Attrs.getFnAttributes()) + NewAttrs.push_back(AttributeWithIndex::get(~0, Attr)); + + // The trampoline may have been bitcast to a bogus type (FTy). + // Handle this by synthesizing a new function type, equal to FTy + // with the chain parameter inserted. + + std::vector<const Type*> NewTypes; + NewTypes.reserve(FTy->getNumParams()+1); + + // Insert the chain's type into the list of parameter types, which may + // mean appending it. + { + unsigned Idx = 1; + FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); + + do { + if (Idx == NestIdx) + // Add the chain's type. + NewTypes.push_back(NestTy); + + if (I == E) + break; + + // Add the original type. + NewTypes.push_back(*I); + + ++Idx, ++I; + } while (1); + } + + // Replace the trampoline call with a direct call. Let the generic + // code sort out any function type mismatches. + FunctionType *NewFTy = + FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); + Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ? + NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy)); + const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end()); + + Instruction *NewCaller; + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { + NewCaller = InvokeInst::Create(NewCallee, + II->getNormalDest(), II->getUnwindDest(), + NewArgs.begin(), NewArgs.end(), + Caller->getName(), Caller); + cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); + cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); + } else { + NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(), + Caller->getName(), Caller); + if (cast<CallInst>(Caller)->isTailCall()) + cast<CallInst>(NewCaller)->setTailCall(); + cast<CallInst>(NewCaller)-> + setCallingConv(cast<CallInst>(Caller)->getCallingConv()); + cast<CallInst>(NewCaller)->setAttributes(NewPAL); + } + if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) + Caller->replaceAllUsesWith(NewCaller); + Caller->eraseFromParent(); + RemoveFromWorkList(Caller); + return 0; + } + } + + // Replace the trampoline call with a direct call. Since there is no 'nest' + // parameter, there is no need to adjust the argument list. Let the generic + // code sort out any function type mismatches. + Constant *NewCallee = + NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy); + CS.setCalledFunction(NewCallee); + return CS.getInstruction(); +} + +/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)] +/// and if a/b/c/d and the add's all have a single use, turn this into two phi's +/// and a single binop. +Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { + Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); + assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); + unsigned Opc = FirstInst->getOpcode(); + Value *LHSVal = FirstInst->getOperand(0); + Value *RHSVal = FirstInst->getOperand(1); + + const Type *LHSType = LHSVal->getType(); + const Type *RHSType = RHSVal->getType(); + + // Scan to see if all operands are the same opcode, all have one use, and all + // kill their operands (i.e. the operands have one use). + for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { + Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); + if (!I || I->getOpcode() != Opc || !I->hasOneUse() || + // Verify type of the LHS matches so we don't fold cmp's of different + // types or GEP's with different index types. + I->getOperand(0)->getType() != LHSType || + I->getOperand(1)->getType() != RHSType) + return 0; + + // If they are CmpInst instructions, check their predicates + if (Opc == Instruction::ICmp || Opc == Instruction::FCmp) + if (cast<CmpInst>(I)->getPredicate() != + cast<CmpInst>(FirstInst)->getPredicate()) + return 0; + + // Keep track of which operand needs a phi node. + if (I->getOperand(0) != LHSVal) LHSVal = 0; + if (I->getOperand(1) != RHSVal) RHSVal = 0; + } + + // Otherwise, this is safe to transform! + + Value *InLHS = FirstInst->getOperand(0); + Value *InRHS = FirstInst->getOperand(1); + PHINode *NewLHS = 0, *NewRHS = 0; + if (LHSVal == 0) { + NewLHS = PHINode::Create(LHSType, + FirstInst->getOperand(0)->getName() + ".pn"); + NewLHS->reserveOperandSpace(PN.getNumOperands()/2); + NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); + InsertNewInstBefore(NewLHS, PN); + LHSVal = NewLHS; + } + + if (RHSVal == 0) { + NewRHS = PHINode::Create(RHSType, + FirstInst->getOperand(1)->getName() + ".pn"); + NewRHS->reserveOperandSpace(PN.getNumOperands()/2); + NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); + InsertNewInstBefore(NewRHS, PN); + RHSVal = NewRHS; + } + + // Add all operands to the new PHIs. + if (NewLHS || NewRHS) { + for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { + Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); + if (NewLHS) { + Value *NewInLHS = InInst->getOperand(0); + NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); + } + if (NewRHS) { + Value *NewInRHS = InInst->getOperand(1); + NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); + } + } + } + + if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) + return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); + CmpInst *CIOp = cast<CmpInst>(FirstInst); + return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal, + RHSVal); +} + +Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { + GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); + + SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), + FirstInst->op_end()); + // This is true if all GEP bases are allocas and if all indices into them are + // constants. + bool AllBasePointersAreAllocas = true; + + // Scan to see if all operands are the same opcode, all have one use, and all + // kill their operands (i.e. the operands have one use). + for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { + GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); + if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || + GEP->getNumOperands() != FirstInst->getNumOperands()) + return 0; + + // Keep track of whether or not all GEPs are of alloca pointers. + if (AllBasePointersAreAllocas && + (!isa<AllocaInst>(GEP->getOperand(0)) || + !GEP->hasAllConstantIndices())) + AllBasePointersAreAllocas = false; + + // Compare the operand lists. + for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { + if (FirstInst->getOperand(op) == GEP->getOperand(op)) + continue; + + // Don't merge two GEPs when two operands differ (introducing phi nodes) + // if one of the PHIs has a constant for the index. The index may be + // substantially cheaper to compute for the constants, so making it a + // variable index could pessimize the path. This also handles the case + // for struct indices, which must always be constant. + if (isa<ConstantInt>(FirstInst->getOperand(op)) || + isa<ConstantInt>(GEP->getOperand(op))) + return 0; + + if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) + return 0; + FixedOperands[op] = 0; // Needs a PHI. + } + } + + // If all of the base pointers of the PHI'd GEPs are from allocas, don't + // bother doing this transformation. At best, this will just save a bit of + // offset calculation, but all the predecessors will have to materialize the + // stack address into a register anyway. We'd actually rather *clone* the + // load up into the predecessors so that we have a load of a gep of an alloca, + // which can usually all be folded into the load. + if (AllBasePointersAreAllocas) + return 0; + + // Otherwise, this is safe to transform. Insert PHI nodes for each operand + // that is variable. + SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); + + bool HasAnyPHIs = false; + for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { + if (FixedOperands[i]) continue; // operand doesn't need a phi. + Value *FirstOp = FirstInst->getOperand(i); + PHINode *NewPN = PHINode::Create(FirstOp->getType(), + FirstOp->getName()+".pn"); + InsertNewInstBefore(NewPN, PN); + + NewPN->reserveOperandSpace(e); + NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); + OperandPhis[i] = NewPN; + FixedOperands[i] = NewPN; + HasAnyPHIs = true; + } + + + // Add all operands to the new PHIs. + if (HasAnyPHIs) { + for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { + GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); + BasicBlock *InBB = PN.getIncomingBlock(i); + + for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) + if (PHINode *OpPhi = OperandPhis[op]) + OpPhi->addIncoming(InGEP->getOperand(op), InBB); + } + } + + Value *Base = FixedOperands[0]; + return GetElementPtrInst::Create(Base, FixedOperands.begin()+1, + FixedOperands.end()); +} + + +/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to +/// sink the load out of the block that defines it. This means that it must be +/// obvious the value of the load is not changed from the point of the load to +/// the end of the block it is in. +/// +/// Finally, it is safe, but not profitable, to sink a load targetting a +/// non-address-taken alloca. Doing so will cause us to not promote the alloca +/// to a register. +static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { + BasicBlock::iterator BBI = L, E = L->getParent()->end(); + + for (++BBI; BBI != E; ++BBI) + if (BBI->mayWriteToMemory()) + return false; + + // Check for non-address taken alloca. If not address-taken already, it isn't + // profitable to do this xform. + if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { + bool isAddressTaken = false; + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); + UI != E; ++UI) { + if (isa<LoadInst>(UI)) continue; + if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { + // If storing TO the alloca, then the address isn't taken. + if (SI->getOperand(1) == AI) continue; + } + isAddressTaken = true; + break; + } + + if (!isAddressTaken && AI->isStaticAlloca()) + return false; + } + + // If this load is a load from a GEP with a constant offset from an alloca, + // then we don't want to sink it. In its present form, it will be + // load [constant stack offset]. Sinking it will cause us to have to + // materialize the stack addresses in each predecessor in a register only to + // do a shared load from register in the successor. + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) + if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) + if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) + return false; + + return true; +} + + +// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" +// operator and they all are only used by the PHI, PHI together their +// inputs, and do the operation once, to the result of the PHI. +Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { + Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); + + // Scan the instruction, looking for input operations that can be folded away. + // If all input operands to the phi are the same instruction (e.g. a cast from + // the same type or "+42") we can pull the operation through the PHI, reducing + // code size and simplifying code. + Constant *ConstantOp = 0; + const Type *CastSrcTy = 0; + bool isVolatile = false; + if (isa<CastInst>(FirstInst)) { + CastSrcTy = FirstInst->getOperand(0)->getType(); + } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { + // Can fold binop, compare or shift here if the RHS is a constant, + // otherwise call FoldPHIArgBinOpIntoPHI. + ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); + if (ConstantOp == 0) + return FoldPHIArgBinOpIntoPHI(PN); + } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) { + isVolatile = LI->isVolatile(); + // We can't sink the load if the loaded value could be modified between the + // load and the PHI. + if (LI->getParent() != PN.getIncomingBlock(0) || + !isSafeAndProfitableToSinkLoad(LI)) + return 0; + + // If the PHI is of volatile loads and the load block has multiple + // successors, sinking it would remove a load of the volatile value from + // the path through the other successor. + if (isVolatile && + LI->getParent()->getTerminator()->getNumSuccessors() != 1) + return 0; + + } else if (isa<GetElementPtrInst>(FirstInst)) { + return FoldPHIArgGEPIntoPHI(PN); + } else { + return 0; // Cannot fold this operation. + } + + // Check to see if all arguments are the same operation. + for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { + if (!isa<Instruction>(PN.getIncomingValue(i))) return 0; + Instruction *I = cast<Instruction>(PN.getIncomingValue(i)); + if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst)) + return 0; + if (CastSrcTy) { + if (I->getOperand(0)->getType() != CastSrcTy) + return 0; // Cast operation must match. + } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + // We can't sink the load if the loaded value could be modified between + // the load and the PHI. + if (LI->isVolatile() != isVolatile || + LI->getParent() != PN.getIncomingBlock(i) || + !isSafeAndProfitableToSinkLoad(LI)) + return 0; + + // If the PHI is of volatile loads and the load block has multiple + // successors, sinking it would remove a load of the volatile value from + // the path through the other successor. + if (isVolatile && + LI->getParent()->getTerminator()->getNumSuccessors() != 1) + return 0; + + } else if (I->getOperand(1) != ConstantOp) { + return 0; + } + } + + // Okay, they are all the same operation. Create a new PHI node of the + // correct type, and PHI together all of the LHS's of the instructions. + PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), + PN.getName()+".in"); + NewPN->reserveOperandSpace(PN.getNumOperands()/2); + + Value *InVal = FirstInst->getOperand(0); + NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); + + // Add all operands to the new PHI. + for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { + Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); + if (NewInVal != InVal) + InVal = 0; + NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); + } + + Value *PhiVal; + if (InVal) { + // The new PHI unions all of the same values together. This is really + // common, so we handle it intelligently here for compile-time speed. + PhiVal = InVal; + delete NewPN; + } else { + InsertNewInstBefore(NewPN, PN); + PhiVal = NewPN; + } + + // Insert and return the new operation. + if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst)) + return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType()); + if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) + return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); + if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) + return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), + PhiVal, ConstantOp); + assert(isa<LoadInst>(FirstInst) && "Unknown operation"); + + // If this was a volatile load that we are merging, make sure to loop through + // and mark all the input loads as non-volatile. If we don't do this, we will + // insert a new volatile load and the old ones will not be deletable. + if (isVolatile) + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) + cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false); + + return new LoadInst(PhiVal, "", isVolatile); +} + +/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle +/// that is dead. +static bool DeadPHICycle(PHINode *PN, + SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) { + if (PN->use_empty()) return true; + if (!PN->hasOneUse()) return false; + + // Remember this node, and if we find the cycle, return. + if (!PotentiallyDeadPHIs.insert(PN)) + return true; + + // Don't scan crazily complex things. + if (PotentiallyDeadPHIs.size() == 16) + return false; + + if (PHINode *PU = dyn_cast<PHINode>(PN->use_back())) + return DeadPHICycle(PU, PotentiallyDeadPHIs); + + return false; +} + +/// PHIsEqualValue - Return true if this phi node is always equal to +/// NonPhiInVal. This happens with mutually cyclic phi nodes like: +/// z = some value; x = phi (y, z); y = phi (x, z) +static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, + SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) { + // See if we already saw this PHI node. + if (!ValueEqualPHIs.insert(PN)) + return true; + + // Don't scan crazily complex things. + if (ValueEqualPHIs.size() == 16) + return false; + + // Scan the operands to see if they are either phi nodes or are equal to + // the value. + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *Op = PN->getIncomingValue(i); + if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { + if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) + return false; + } else if (Op != NonPhiInVal) + return false; + } + + return true; +} + + +// PHINode simplification +// +Instruction *InstCombiner::visitPHINode(PHINode &PN) { + // If LCSSA is around, don't mess with Phi nodes + if (MustPreserveLCSSA) return 0; + + if (Value *V = PN.hasConstantValue()) + return ReplaceInstUsesWith(PN, V); + + // If all PHI operands are the same operation, pull them through the PHI, + // reducing code size. + if (isa<Instruction>(PN.getIncomingValue(0)) && + isa<Instruction>(PN.getIncomingValue(1)) && + cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == + cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && + // FIXME: The hasOneUse check will fail for PHIs that use the value more + // than themselves more than once. + PN.getIncomingValue(0)->hasOneUse()) + if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) + return Result; + + // If this is a trivial cycle in the PHI node graph, remove it. Basically, if + // this PHI only has a single use (a PHI), and if that PHI only has one use (a + // PHI)... break the cycle. + if (PN.hasOneUse()) { + Instruction *PHIUser = cast<Instruction>(PN.use_back()); + if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { + SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; + PotentiallyDeadPHIs.insert(&PN); + if (DeadPHICycle(PU, PotentiallyDeadPHIs)) + return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); + } + + // If this phi has a single use, and if that use just computes a value for + // the next iteration of a loop, delete the phi. This occurs with unused + // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this + // common case here is good because the only other things that catch this + // are induction variable analysis (sometimes) and ADCE, which is only run + // late. + if (PHIUser->hasOneUse() && + (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && + PHIUser->use_back() == &PN) { + return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); + } + } + + // We sometimes end up with phi cycles that non-obviously end up being the + // same value, for example: + // z = some value; x = phi (y, z); y = phi (x, z) + // where the phi nodes don't necessarily need to be in the same block. Do a + // quick check to see if the PHI node only contains a single non-phi value, if + // so, scan to see if the phi cycle is actually equal to that value. + { + unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues(); + // Scan for the first non-phi operand. + while (InValNo != NumOperandVals && + isa<PHINode>(PN.getIncomingValue(InValNo))) + ++InValNo; + + if (InValNo != NumOperandVals) { + Value *NonPhiInVal = PN.getOperand(InValNo); + + // Scan the rest of the operands to see if there are any conflicts, if so + // there is no need to recursively scan other phis. + for (++InValNo; InValNo != NumOperandVals; ++InValNo) { + Value *OpVal = PN.getIncomingValue(InValNo); + if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) + break; + } + + // If we scanned over all operands, then we have one unique value plus + // phi values. Scan PHI nodes to see if they all merge in each other or + // the value. + if (InValNo == NumOperandVals) { + SmallPtrSet<PHINode*, 16> ValueEqualPHIs; + if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) + return ReplaceInstUsesWith(PN, NonPhiInVal); + } + } + } + return 0; +} + +static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy, + Instruction *InsertPoint, + InstCombiner *IC) { + unsigned PtrSize = DTy->getPrimitiveSizeInBits(); + unsigned VTySize = V->getType()->getPrimitiveSizeInBits(); + // We must cast correctly to the pointer type. Ensure that we + // sign extend the integer value if it is smaller as this is + // used for address computation. + Instruction::CastOps opcode = + (VTySize < PtrSize ? Instruction::SExt : + (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc)); + return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint); +} + + +Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { + Value *PtrOp = GEP.getOperand(0); + // Is it 'getelementptr %P, i32 0' or 'getelementptr %P' + // If so, eliminate the noop. + if (GEP.getNumOperands() == 1) + return ReplaceInstUsesWith(GEP, PtrOp); + + if (isa<UndefValue>(GEP.getOperand(0))) + return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); + + bool HasZeroPointerIndex = false; + if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1))) + HasZeroPointerIndex = C->isNullValue(); + + if (GEP.getNumOperands() == 2 && HasZeroPointerIndex) + return ReplaceInstUsesWith(GEP, PtrOp); + + // Eliminate unneeded casts for indices. + bool MadeChange = false; + + gep_type_iterator GTI = gep_type_begin(GEP); + for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end(); + i != e; ++i, ++GTI) { + if (isa<SequentialType>(*GTI)) { + if (CastInst *CI = dyn_cast<CastInst>(*i)) { + if (CI->getOpcode() == Instruction::ZExt || + CI->getOpcode() == Instruction::SExt) { + const Type *SrcTy = CI->getOperand(0)->getType(); + // We can eliminate a cast from i32 to i64 iff the target + // is a 32-bit pointer target. + if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) { + MadeChange = true; + *i = CI->getOperand(0); + } + } + } + // If we are using a wider index than needed for this platform, shrink it + // to what we need. If narrower, sign-extend it to what we need. + // If the incoming value needs a cast instruction, + // insert it. This explicit cast can make subsequent optimizations more + // obvious. + Value *Op = *i; + if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) { + if (Constant *C = dyn_cast<Constant>(Op)) { + *i = ConstantExpr::getTrunc(C, TD->getIntPtrType()); + MadeChange = true; + } else { + Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(), + GEP); + *i = Op; + MadeChange = true; + } + } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) { + if (Constant *C = dyn_cast<Constant>(Op)) { + *i = ConstantExpr::getSExt(C, TD->getIntPtrType()); + MadeChange = true; + } else { + Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(), + GEP); + *i = Op; + MadeChange = true; + } + } + } + } + if (MadeChange) return &GEP; + + // Combine Indices - If the source pointer to this getelementptr instruction + // is a getelementptr instruction, combine the indices of the two + // getelementptr instructions into a single instruction. + // + SmallVector<Value*, 8> SrcGEPOperands; + if (User *Src = dyn_castGetElementPtr(PtrOp)) + SrcGEPOperands.append(Src->op_begin(), Src->op_end()); + + if (!SrcGEPOperands.empty()) { + // Note that if our source is a gep chain itself that we wait for that + // chain to be resolved before we perform this transformation. This + // avoids us creating a TON of code in some cases. + // + if (isa<GetElementPtrInst>(SrcGEPOperands[0]) && + cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2) + return 0; // Wait until our source is folded to completion. + + SmallVector<Value*, 8> Indices; + + // Find out whether the last index in the source GEP is a sequential idx. + bool EndsWithSequential = false; + for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)), + E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I) + EndsWithSequential = !isa<StructType>(*I); + + // Can we combine the two pointer arithmetics offsets? + if (EndsWithSequential) { + // Replace: gep (gep %P, long B), long A, ... + // With: T = long A+B; gep %P, T, ... + // + Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1); + if (SO1 == Constant::getNullValue(SO1->getType())) { + Sum = GO1; + } else if (GO1 == Constant::getNullValue(GO1->getType())) { + Sum = SO1; + } else { + // If they aren't the same type, convert both to an integer of the + // target's pointer size. + if (SO1->getType() != GO1->getType()) { + if (Constant *SO1C = dyn_cast<Constant>(SO1)) { + SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true); + } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) { + GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true); + } else { + unsigned PS = TD->getPointerSizeInBits(); + if (TD->getTypeSizeInBits(SO1->getType()) == PS) { + // Convert GO1 to SO1's type. + GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this); + + } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) { + // Convert SO1 to GO1's type. + SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this); + } else { + const Type *PT = TD->getIntPtrType(); + SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this); + GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this); + } + } + } + if (isa<Constant>(SO1) && isa<Constant>(GO1)) + Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1)); + else { + Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); + InsertNewInstBefore(cast<Instruction>(Sum), GEP); + } + } + + // Recycle the GEP we already have if possible. + if (SrcGEPOperands.size() == 2) { + GEP.setOperand(0, SrcGEPOperands[0]); + GEP.setOperand(1, Sum); + return &GEP; + } else { + Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, + SrcGEPOperands.end()-1); + Indices.push_back(Sum); + Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end()); + } + } else if (isa<Constant>(*GEP.idx_begin()) && + cast<Constant>(*GEP.idx_begin())->isNullValue() && + SrcGEPOperands.size() != 1) { + // Otherwise we can do the fold if the first index of the GEP is a zero + Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, + SrcGEPOperands.end()); + Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end()); + } + + if (!Indices.empty()) + return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(), + Indices.end(), GEP.getName()); + + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) { + // GEP of global variable. If all of the indices for this GEP are + // constants, we can promote this to a constexpr instead of an instruction. + + // Scan for nonconstants... + SmallVector<Constant*, 8> Indices; + User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); + for (; I != E && isa<Constant>(*I); ++I) + Indices.push_back(cast<Constant>(*I)); + + if (I == E) { // If they are all constants... + Constant *CE = ConstantExpr::getGetElementPtr(GV, + &Indices[0],Indices.size()); + + // Replace all uses of the GEP with the new constexpr... + return ReplaceInstUsesWith(GEP, CE); + } + } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast? + if (!isa<PointerType>(X->getType())) { + // Not interesting. Source pointer must be a cast from pointer. + } else if (HasZeroPointerIndex) { + // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... + // into : GEP [10 x i8]* X, i32 0, ... + // + // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... + // into : GEP i8* X, ... + // + // This occurs when the program declares an array extern like "int X[];" + const PointerType *CPTy = cast<PointerType>(PtrOp->getType()); + const PointerType *XTy = cast<PointerType>(X->getType()); + if (const ArrayType *CATy = + dyn_cast<ArrayType>(CPTy->getElementType())) { + // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? + if (CATy->getElementType() == XTy->getElementType()) { + // -> GEP i8* X, ... + SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end()); + return GetElementPtrInst::Create(X, Indices.begin(), Indices.end(), + GEP.getName()); + } else if (const ArrayType *XATy = + dyn_cast<ArrayType>(XTy->getElementType())) { + // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? + if (CATy->getElementType() == XATy->getElementType()) { + // -> GEP [10 x i8]* X, i32 0, ... + // At this point, we know that the cast source type is a pointer + // to an array of the same type as the destination pointer + // array. Because the array type is never stepped over (there + // is a leading zero) we can fold the cast into this GEP. + GEP.setOperand(0, X); + return &GEP; + } + } + } + } else if (GEP.getNumOperands() == 2) { + // Transform things like: + // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V + // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast + const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType(); + const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); + if (isa<ArrayType>(SrcElTy) && + TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) == + TD->getTypeAllocSize(ResElTy)) { + Value *Idx[2]; + Idx[0] = Constant::getNullValue(Type::Int32Ty); + Idx[1] = GEP.getOperand(1); + Value *V = InsertNewInstBefore( + GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP); + // V and GEP are both pointer types --> BitCast + return new BitCastInst(V, GEP.getType()); + } + + // Transform things like: + // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp + // (where tmp = 8*tmp2) into: + // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast + + if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) { + uint64_t ArrayEltSize = + TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); + + // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We + // allow either a mul, shift, or constant here. + Value *NewIdx = 0; + ConstantInt *Scale = 0; + if (ArrayEltSize == 1) { + NewIdx = GEP.getOperand(1); + Scale = ConstantInt::get(NewIdx->getType(), 1); + } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { + NewIdx = ConstantInt::get(CI->getType(), 1); + Scale = CI; + } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ + if (Inst->getOpcode() == Instruction::Shl && + isa<ConstantInt>(Inst->getOperand(1))) { + ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); + uint32_t ShAmtVal = ShAmt->getLimitedValue(64); + Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal); + NewIdx = Inst->getOperand(0); + } else if (Inst->getOpcode() == Instruction::Mul && + isa<ConstantInt>(Inst->getOperand(1))) { + Scale = cast<ConstantInt>(Inst->getOperand(1)); + NewIdx = Inst->getOperand(0); + } + } + + // If the index will be to exactly the right offset with the scale taken + // out, perform the transformation. Note, we don't know whether Scale is + // signed or not. We'll use unsigned version of division/modulo + // operation after making sure Scale doesn't have the sign bit set. + if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL && + Scale->getZExtValue() % ArrayEltSize == 0) { + Scale = ConstantInt::get(Scale->getType(), + Scale->getZExtValue() / ArrayEltSize); + if (Scale->getZExtValue() != 1) { + Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), + false /*ZExt*/); + Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale"); + NewIdx = InsertNewInstBefore(Sc, GEP); + } + + // Insert the new GEP instruction. + Value *Idx[2]; + Idx[0] = Constant::getNullValue(Type::Int32Ty); + Idx[1] = NewIdx; + Instruction *NewGEP = + GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()); + NewGEP = InsertNewInstBefore(NewGEP, GEP); + // The NewGEP must be pointer typed, so must the old one -> BitCast + return new BitCastInst(NewGEP, GEP.getType()); + } + } + } + } + + /// See if we can simplify: + /// X = bitcast A to B* + /// Y = gep X, <...constant indices...> + /// into a gep of the original struct. This is important for SROA and alias + /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. + if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { + if (!isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) { + // Determine how much the GEP moves the pointer. We are guaranteed to get + // a constant back from EmitGEPOffset. + ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP, GEP, *this)); + int64_t Offset = OffsetV->getSExtValue(); + + // If this GEP instruction doesn't move the pointer, just replace the GEP + // with a bitcast of the real input to the dest type. + if (Offset == 0) { + // If the bitcast is of an allocation, and the allocation will be + // converted to match the type of the cast, don't touch this. + if (isa<AllocationInst>(BCI->getOperand(0))) { + // See if the bitcast simplifies, if so, don't nuke this GEP yet. + if (Instruction *I = visitBitCast(*BCI)) { + if (I != BCI) { + I->takeName(BCI); + BCI->getParent()->getInstList().insert(BCI, I); + ReplaceInstUsesWith(*BCI, I); + } + return &GEP; + } + } + return new BitCastInst(BCI->getOperand(0), GEP.getType()); + } + + // Otherwise, if the offset is non-zero, we need to find out if there is a + // field at Offset in 'A's type. If so, we can pull the cast through the + // GEP. + SmallVector<Value*, 8> NewIndices; + const Type *InTy = + cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); + if (FindElementAtOffset(InTy, Offset, NewIndices, TD)) { + Instruction *NGEP = + GetElementPtrInst::Create(BCI->getOperand(0), NewIndices.begin(), + NewIndices.end()); + if (NGEP->getType() == GEP.getType()) return NGEP; + InsertNewInstBefore(NGEP, GEP); + NGEP->takeName(&GEP); + return new BitCastInst(NGEP, GEP.getType()); + } + } + } + + return 0; +} + +Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) { + // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1 + if (AI.isArrayAllocation()) { // Check C != 1 + if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { + const Type *NewTy = + ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); + AllocationInst *New = 0; + + // Create and insert the replacement instruction... + if (isa<MallocInst>(AI)) + New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName()); + else { + assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!"); + New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName()); + } + + InsertNewInstBefore(New, AI); + + // Scan to the end of the allocation instructions, to skip over a block of + // allocas if possible...also skip interleaved debug info + // + BasicBlock::iterator It = New; + while (isa<AllocationInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It; + + // Now that I is pointing to the first non-allocation-inst in the block, + // insert our getelementptr instruction... + // + Value *NullIdx = Constant::getNullValue(Type::Int32Ty); + Value *Idx[2]; + Idx[0] = NullIdx; + Idx[1] = NullIdx; + Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2, + New->getName()+".sub", It); + + // Now make everything use the getelementptr instead of the original + // allocation. + return ReplaceInstUsesWith(AI, V); + } else if (isa<UndefValue>(AI.getArraySize())) { + return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); + } + } + + if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) { + // If alloca'ing a zero byte object, replace the alloca with a null pointer. + // Note that we only do this for alloca's, because malloc should allocate + // and return a unique pointer, even for a zero byte allocation. + if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) + return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); + + // If the alignment is 0 (unspecified), assign it the preferred alignment. + if (AI.getAlignment() == 0) + AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType())); + } + + return 0; +} + +Instruction *InstCombiner::visitFreeInst(FreeInst &FI) { + Value *Op = FI.getOperand(0); + + // free undef -> unreachable. + if (isa<UndefValue>(Op)) { + // Insert a new store to null because we cannot modify the CFG here. + new StoreInst(ConstantInt::getTrue(), + UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI); + return EraseInstFromFunction(FI); + } + + // If we have 'free null' delete the instruction. This can happen in stl code + // when lots of inlining happens. + if (isa<ConstantPointerNull>(Op)) + return EraseInstFromFunction(FI); + + // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X + if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) { + FI.setOperand(0, CI->getOperand(0)); + return &FI; + } + + // Change free (gep X, 0,0,0,0) into free(X) + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { + if (GEPI->hasAllZeroIndices()) { + AddToWorkList(GEPI); + FI.setOperand(0, GEPI->getOperand(0)); + return &FI; + } + } + + // Change free(malloc) into nothing, if the malloc has a single use. + if (MallocInst *MI = dyn_cast<MallocInst>(Op)) + if (MI->hasOneUse()) { + EraseInstFromFunction(FI); + return EraseInstFromFunction(*MI); + } + + return 0; +} + + +/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. +static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, + const TargetData *TD) { + User *CI = cast<User>(LI.getOperand(0)); + Value *CastOp = CI->getOperand(0); + + if (TD) { + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) { + // Instead of loading constant c string, use corresponding integer value + // directly if string length is small enough. + std::string Str; + if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) { + unsigned len = Str.length(); + const Type *Ty = cast<PointerType>(CE->getType())->getElementType(); + unsigned numBits = Ty->getPrimitiveSizeInBits(); + // Replace LI with immediate integer store. + if ((numBits >> 3) == len + 1) { + APInt StrVal(numBits, 0); + APInt SingleChar(numBits, 0); + if (TD->isLittleEndian()) { + for (signed i = len-1; i >= 0; i--) { + SingleChar = (uint64_t) Str[i] & UCHAR_MAX; + StrVal = (StrVal << 8) | SingleChar; + } + } else { + for (unsigned i = 0; i < len; i++) { + SingleChar = (uint64_t) Str[i] & UCHAR_MAX; + StrVal = (StrVal << 8) | SingleChar; + } + // Append NULL at the end. + SingleChar = 0; + StrVal = (StrVal << 8) | SingleChar; + } + Value *NL = ConstantInt::get(StrVal); + return IC.ReplaceInstUsesWith(LI, NL); + } + } + } + } + + const PointerType *DestTy = cast<PointerType>(CI->getType()); + const Type *DestPTy = DestTy->getElementType(); + if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) { + + // If the address spaces don't match, don't eliminate the cast. + if (DestTy->getAddressSpace() != SrcTy->getAddressSpace()) + return 0; + + const Type *SrcPTy = SrcTy->getElementType(); + + if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || + isa<VectorType>(DestPTy)) { + // If the source is an array, the code below will not succeed. Check to + // see if a trivial 'gep P, 0, 0' will help matters. Only do this for + // constants. + if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy)) + if (Constant *CSrc = dyn_cast<Constant>(CastOp)) + if (ASrcTy->getNumElements() != 0) { + Value *Idxs[2]; + Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty); + CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2); + SrcTy = cast<PointerType>(CastOp->getType()); + SrcPTy = SrcTy->getElementType(); + } + + if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || + isa<VectorType>(SrcPTy)) && + // Do not allow turning this into a load of an integer, which is then + // casted to a pointer, this pessimizes pointer analysis a lot. + (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) && + IC.getTargetData().getTypeSizeInBits(SrcPTy) == + IC.getTargetData().getTypeSizeInBits(DestPTy)) { + + // Okay, we are casting from one integer or pointer type to another of + // the same size. Instead of casting the pointer before the load, cast + // the result of the loaded value. + Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp, + CI->getName(), + LI.isVolatile()),LI); + // Now cast the result of the load. + return new BitCastInst(NewLoad, LI.getType()); + } + } + } + return 0; +} + +/// isSafeToLoadUnconditionally - Return true if we know that executing a load +/// from this value cannot trap. If it is not obviously safe to load from the +/// specified pointer, we do a quick local scan of the basic block containing +/// ScanFrom, to determine if the address is already accessed. +static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { + // If it is an alloca it is always safe to load from. + if (isa<AllocaInst>(V)) return true; + + // If it is a global variable it is mostly safe to load from. + if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V)) + // Don't try to evaluate aliases. External weak GV can be null. + return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage(); + + // Otherwise, be a little bit agressive by scanning the local block where we + // want to check to see if the pointer is already being loaded or stored + // from/to. If so, the previous load or store would have already trapped, + // so there is no harm doing an extra load (also, CSE will later eliminate + // the load entirely). + BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); + + while (BBI != E) { + --BBI; + + // If we see a free or a call (which might do a free) the pointer could be + // marked invalid. + if (isa<FreeInst>(BBI) || + (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))) + return false; + + if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { + if (LI->getOperand(0) == V) return true; + } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { + if (SI->getOperand(1) == V) return true; + } + + } + return false; +} + +Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { + Value *Op = LI.getOperand(0); + + // Attempt to improve the alignment. + unsigned KnownAlign = + GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType())); + if (KnownAlign > + (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) : + LI.getAlignment())) + LI.setAlignment(KnownAlign); + + // load (cast X) --> cast (load X) iff safe + if (isa<CastInst>(Op)) + if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) + return Res; + + // None of the following transforms are legal for volatile loads. + if (LI.isVolatile()) return 0; + + // Do really simple store-to-load forwarding and load CSE, to catch cases + // where there are several consequtive memory accesses to the same location, + // separated by a few arithmetic operations. + BasicBlock::iterator BBI = &LI; + if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6)) + return ReplaceInstUsesWith(LI, AvailableVal); + + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { + const Value *GEPI0 = GEPI->getOperand(0); + // TODO: Consider a target hook for valid address spaces for this xform. + if (isa<ConstantPointerNull>(GEPI0) && + cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) { + // Insert a new store to null instruction before the load to indicate + // that this code is not reachable. We do this instead of inserting + // an unreachable instruction directly because we cannot modify the + // CFG. + new StoreInst(UndefValue::get(LI.getType()), + Constant::getNullValue(Op->getType()), &LI); + return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); + } + } + + if (Constant *C = dyn_cast<Constant>(Op)) { + // load null/undef -> undef + // TODO: Consider a target hook for valid address spaces for this xform. + if (isa<UndefValue>(C) || (C->isNullValue() && + cast<PointerType>(Op->getType())->getAddressSpace() == 0)) { + // Insert a new store to null instruction before the load to indicate that + // this code is not reachable. We do this instead of inserting an + // unreachable instruction directly because we cannot modify the CFG. + new StoreInst(UndefValue::get(LI.getType()), + Constant::getNullValue(Op->getType()), &LI); + return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); + } + + // Instcombine load (constant global) into the value loaded. + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op)) + if (GV->isConstant() && GV->hasDefinitiveInitializer()) + return ReplaceInstUsesWith(LI, GV->getInitializer()); + + // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded. + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) { + if (CE->getOpcode() == Instruction::GetElementPtr) { + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) + if (GV->isConstant() && GV->hasDefinitiveInitializer()) + if (Constant *V = + ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) + return ReplaceInstUsesWith(LI, V); + if (CE->getOperand(0)->isNullValue()) { + // Insert a new store to null instruction before the load to indicate + // that this code is not reachable. We do this instead of inserting + // an unreachable instruction directly because we cannot modify the + // CFG. + new StoreInst(UndefValue::get(LI.getType()), + Constant::getNullValue(Op->getType()), &LI); + return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); + } + + } else if (CE->isCast()) { + if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) + return Res; + } + } + } + + // If this load comes from anywhere in a constant global, and if the global + // is all undef or zero, we know what it loads. + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){ + if (GV->isConstant() && GV->hasDefinitiveInitializer()) { + if (GV->getInitializer()->isNullValue()) + return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType())); + else if (isa<UndefValue>(GV->getInitializer())) + return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); + } + } + + if (Op->hasOneUse()) { + // Change select and PHI nodes to select values instead of addresses: this + // helps alias analysis out a lot, allows many others simplifications, and + // exposes redundancy in the code. + // + // Note that we cannot do the transformation unless we know that the + // introduced loads cannot trap! Something like this is valid as long as + // the condition is always false: load (select bool %C, int* null, int* %G), + // but it would not be valid if we transformed it to load from null + // unconditionally. + // + if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { + // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). + if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) && + isSafeToLoadUnconditionally(SI->getOperand(2), SI)) { + Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1), + SI->getOperand(1)->getName()+".val"), LI); + Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2), + SI->getOperand(2)->getName()+".val"), LI); + return SelectInst::Create(SI->getCondition(), V1, V2); + } + + // load (select (cond, null, P)) -> load P + if (Constant *C = dyn_cast<Constant>(SI->getOperand(1))) + if (C->isNullValue()) { + LI.setOperand(0, SI->getOperand(2)); + return &LI; + } + + // load (select (cond, P, null)) -> load P + if (Constant *C = dyn_cast<Constant>(SI->getOperand(2))) + if (C->isNullValue()) { + LI.setOperand(0, SI->getOperand(1)); + return &LI; + } + } + } + return 0; +} + +/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P +/// when possible. This makes it generally easy to do alias analysis and/or +/// SROA/mem2reg of the memory object. +static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { + User *CI = cast<User>(SI.getOperand(1)); + Value *CastOp = CI->getOperand(0); + + const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType(); + const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType()); + if (SrcTy == 0) return 0; + + const Type *SrcPTy = SrcTy->getElementType(); + + if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy)) + return 0; + + /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" + /// to its first element. This allows us to handle things like: + /// store i32 xxx, (bitcast {foo*, float}* %P to i32*) + /// on 32-bit hosts. + SmallVector<Value*, 4> NewGEPIndices; + + // If the source is an array, the code below will not succeed. Check to + // see if a trivial 'gep P, 0, 0' will help matters. Only do this for + // constants. + if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) { + // Index through pointer. + Constant *Zero = Constant::getNullValue(Type::Int32Ty); + NewGEPIndices.push_back(Zero); + + while (1) { + if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) { + if (!STy->getNumElements()) /* Struct can be empty {} */ + break; + NewGEPIndices.push_back(Zero); + SrcPTy = STy->getElementType(0); + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) { + NewGEPIndices.push_back(Zero); + SrcPTy = ATy->getElementType(); + } else { + break; + } + } + + SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); + } + + if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy)) + return 0; + + // If the pointers point into different address spaces or if they point to + // values with different sizes, we can't do the transformation. + if (SrcTy->getAddressSpace() != + cast<PointerType>(CI->getType())->getAddressSpace() || + IC.getTargetData().getTypeSizeInBits(SrcPTy) != + IC.getTargetData().getTypeSizeInBits(DestPTy)) + return 0; + + // Okay, we are casting from one integer or pointer type to another of + // the same size. Instead of casting the pointer before + // the store, cast the value to be stored. + Value *NewCast; + Value *SIOp0 = SI.getOperand(0); + Instruction::CastOps opcode = Instruction::BitCast; + const Type* CastSrcTy = SIOp0->getType(); + const Type* CastDstTy = SrcPTy; + if (isa<PointerType>(CastDstTy)) { + if (CastSrcTy->isInteger()) + opcode = Instruction::IntToPtr; + } else if (isa<IntegerType>(CastDstTy)) { + if (isa<PointerType>(SIOp0->getType())) + opcode = Instruction::PtrToInt; + } + + // SIOp0 is a pointer to aggregate and this is a store to the first field, + // emit a GEP to index into its first field. + if (!NewGEPIndices.empty()) { + if (Constant *C = dyn_cast<Constant>(CastOp)) + CastOp = ConstantExpr::getGetElementPtr(C, &NewGEPIndices[0], + NewGEPIndices.size()); + else + CastOp = IC.InsertNewInstBefore( + GetElementPtrInst::Create(CastOp, NewGEPIndices.begin(), + NewGEPIndices.end()), SI); + } + + if (Constant *C = dyn_cast<Constant>(SIOp0)) + NewCast = ConstantExpr::getCast(opcode, C, CastDstTy); + else + NewCast = IC.InsertNewInstBefore( + CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"), + SI); + return new StoreInst(NewCast, CastOp); +} + +/// equivalentAddressValues - Test if A and B will obviously have the same +/// value. This includes recognizing that %t0 and %t1 will have the same +/// value in code like this: +/// %t0 = getelementptr \@a, 0, 3 +/// store i32 0, i32* %t0 +/// %t1 = getelementptr \@a, 0, 3 +/// %t2 = load i32* %t1 +/// +static bool equivalentAddressValues(Value *A, Value *B) { + // Test if the values are trivially equivalent. + if (A == B) return true; + + // Test if the values come form identical arithmetic instructions. + if (isa<BinaryOperator>(A) || + isa<CastInst>(A) || + isa<PHINode>(A) || + isa<GetElementPtrInst>(A)) + if (Instruction *BI = dyn_cast<Instruction>(B)) + if (cast<Instruction>(A)->isIdenticalTo(BI)) + return true; + + // Otherwise they may not be equivalent. + return false; +} + +// If this instruction has two uses, one of which is a llvm.dbg.declare, +// return the llvm.dbg.declare. +DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) { + if (!V->hasNUses(2)) + return 0; + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); + UI != E; ++UI) { + if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI)) + return DI; + if (isa<BitCastInst>(UI) && UI->hasOneUse()) { + if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin())) + return DI; + } + } + return 0; +} + +Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { + Value *Val = SI.getOperand(0); + Value *Ptr = SI.getOperand(1); + + if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile) + EraseInstFromFunction(SI); + ++NumCombined; + return 0; + } + + // If the RHS is an alloca with a single use, zapify the store, making the + // alloca dead. + // If the RHS is an alloca with a two uses, the other one being a + // llvm.dbg.declare, zapify the store and the declare, making the + // alloca dead. We must do this to prevent declare's from affecting + // codegen. + if (!SI.isVolatile()) { + if (Ptr->hasOneUse()) { + if (isa<AllocaInst>(Ptr)) { + EraseInstFromFunction(SI); + ++NumCombined; + return 0; + } + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { + if (isa<AllocaInst>(GEP->getOperand(0))) { + if (GEP->getOperand(0)->hasOneUse()) { + EraseInstFromFunction(SI); + ++NumCombined; + return 0; + } + if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) { + EraseInstFromFunction(*DI); + EraseInstFromFunction(SI); + ++NumCombined; + return 0; + } + } + } + } + if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) { + EraseInstFromFunction(*DI); + EraseInstFromFunction(SI); + ++NumCombined; + return 0; + } + } + + // Attempt to improve the alignment. + unsigned KnownAlign = + GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType())); + if (KnownAlign > + (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) : + SI.getAlignment())) + SI.setAlignment(KnownAlign); + + // Do really simple DSE, to catch cases where there are several consecutive + // stores to the same location, separated by a few arithmetic operations. This + // situation often occurs with bitfield accesses. + BasicBlock::iterator BBI = &SI; + for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; + --ScanInsts) { + --BBI; + // Don't count debug info directives, lest they affect codegen, + // and we skip pointer-to-pointer bitcasts, which are NOPs. + // It is necessary for correctness to skip those that feed into a + // llvm.dbg.declare, as these are not present when debugging is off. + if (isa<DbgInfoIntrinsic>(BBI) || + (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) { + ScanInsts++; + continue; + } + + if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { + // Prev store isn't volatile, and stores to the same location? + if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1), + SI.getOperand(1))) { + ++NumDeadStore; + ++BBI; + EraseInstFromFunction(*PrevSI); + continue; + } + break; + } + + // If this is a load, we have to stop. However, if the loaded value is from + // the pointer we're loading and is producing the pointer we're storing, + // then *this* store is dead (X = load P; store X -> P). + if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { + if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && + !SI.isVolatile()) { + EraseInstFromFunction(SI); + ++NumCombined; + return 0; + } + // Otherwise, this is a load from some other location. Stores before it + // may not be dead. + break; + } + + // Don't skip over loads or things that can modify memory. + if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) + break; + } + + + if (SI.isVolatile()) return 0; // Don't hack volatile stores. + + // store X, null -> turns into 'unreachable' in SimplifyCFG + if (isa<ConstantPointerNull>(Ptr)) { + if (!isa<UndefValue>(Val)) { + SI.setOperand(0, UndefValue::get(Val->getType())); + if (Instruction *U = dyn_cast<Instruction>(Val)) + AddToWorkList(U); // Dropped a use. + ++NumCombined; + } + return 0; // Do not modify these! + } + + // store undef, Ptr -> noop + if (isa<UndefValue>(Val)) { + EraseInstFromFunction(SI); + ++NumCombined; + return 0; + } + + // If the pointer destination is a cast, see if we can fold the cast into the + // source instead. + if (isa<CastInst>(Ptr)) + if (Instruction *Res = InstCombineStoreToCast(*this, SI)) + return Res; + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) + if (CE->isCast()) + if (Instruction *Res = InstCombineStoreToCast(*this, SI)) + return Res; + + + // If this store is the last instruction in the basic block (possibly + // excepting debug info instructions and the pointer bitcasts that feed + // into them), and if the block ends with an unconditional branch, try + // to move it to the successor block. + BBI = &SI; + do { + ++BBI; + } while (isa<DbgInfoIntrinsic>(BBI) || + (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))); + if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) + if (BI->isUnconditional()) + if (SimplifyStoreAtEndOfBlock(SI)) + return 0; // xform done! + + return 0; +} + +/// SimplifyStoreAtEndOfBlock - Turn things like: +/// if () { *P = v1; } else { *P = v2 } +/// into a phi node with a store in the successor. +/// +/// Simplify things like: +/// *P = v1; if () { *P = v2; } +/// into a phi node with a store in the successor. +/// +bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { + BasicBlock *StoreBB = SI.getParent(); + + // Check to see if the successor block has exactly two incoming edges. If + // so, see if the other predecessor contains a store to the same location. + // if so, insert a PHI node (if needed) and move the stores down. + BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); + + // Determine whether Dest has exactly two predecessors and, if so, compute + // the other predecessor. + pred_iterator PI = pred_begin(DestBB); + BasicBlock *OtherBB = 0; + if (*PI != StoreBB) + OtherBB = *PI; + ++PI; + if (PI == pred_end(DestBB)) + return false; + + if (*PI != StoreBB) { + if (OtherBB) + return false; + OtherBB = *PI; + } + if (++PI != pred_end(DestBB)) + return false; + + // Bail out if all the relevant blocks aren't distinct (this can happen, + // for example, if SI is in an infinite loop) + if (StoreBB == DestBB || OtherBB == DestBB) + return false; + + // Verify that the other block ends in a branch and is not otherwise empty. + BasicBlock::iterator BBI = OtherBB->getTerminator(); + BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); + if (!OtherBr || BBI == OtherBB->begin()) + return false; + + // If the other block ends in an unconditional branch, check for the 'if then + // else' case. there is an instruction before the branch. + StoreInst *OtherStore = 0; + if (OtherBr->isUnconditional()) { + --BBI; + // Skip over debugging info. + while (isa<DbgInfoIntrinsic>(BBI) || + (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) { + if (BBI==OtherBB->begin()) + return false; + --BBI; + } + // If this isn't a store, or isn't a store to the same location, bail out. + OtherStore = dyn_cast<StoreInst>(BBI); + if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1)) + return false; + } else { + // Otherwise, the other block ended with a conditional branch. If one of the + // destinations is StoreBB, then we have the if/then case. + if (OtherBr->getSuccessor(0) != StoreBB && + OtherBr->getSuccessor(1) != StoreBB) + return false; + + // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an + // if/then triangle. See if there is a store to the same ptr as SI that + // lives in OtherBB. + for (;; --BBI) { + // Check to see if we find the matching store. + if ((OtherStore = dyn_cast<StoreInst>(BBI))) { + if (OtherStore->getOperand(1) != SI.getOperand(1)) + return false; + break; + } + // If we find something that may be using or overwriting the stored + // value, or if we run out of instructions, we can't do the xform. + if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || + BBI == OtherBB->begin()) + return false; + } + + // In order to eliminate the store in OtherBr, we have to + // make sure nothing reads or overwrites the stored value in + // StoreBB. + for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { + // FIXME: This should really be AA driven. + if (I->mayReadFromMemory() || I->mayWriteToMemory()) + return false; + } + } + + // Insert a PHI node now if we need it. + Value *MergedVal = OtherStore->getOperand(0); + if (MergedVal != SI.getOperand(0)) { + PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge"); + PN->reserveOperandSpace(2); + PN->addIncoming(SI.getOperand(0), SI.getParent()); + PN->addIncoming(OtherStore->getOperand(0), OtherBB); + MergedVal = InsertNewInstBefore(PN, DestBB->front()); + } + + // Advance to a place where it is safe to insert the new store and + // insert it. + BBI = DestBB->getFirstNonPHI(); + InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), + OtherStore->isVolatile()), *BBI); + + // Nuke the old stores. + EraseInstFromFunction(SI); + EraseInstFromFunction(*OtherStore); + ++NumCombined; + return true; +} + + +Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { + // Change br (not X), label True, label False to: br X, label False, True + Value *X = 0; + BasicBlock *TrueDest; + BasicBlock *FalseDest; + if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && + !isa<Constant>(X)) { + // Swap Destinations and condition... + BI.setCondition(X); + BI.setSuccessor(0, FalseDest); + BI.setSuccessor(1, TrueDest); + return &BI; + } + + // Cannonicalize fcmp_one -> fcmp_oeq + FCmpInst::Predicate FPred; Value *Y; + if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), + TrueDest, FalseDest))) + if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || + FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) { + FCmpInst *I = cast<FCmpInst>(BI.getCondition()); + FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred); + Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I); + NewSCC->takeName(I); + // Swap Destinations and condition... + BI.setCondition(NewSCC); + BI.setSuccessor(0, FalseDest); + BI.setSuccessor(1, TrueDest); + RemoveFromWorkList(I); + I->eraseFromParent(); + AddToWorkList(NewSCC); + return &BI; + } + + // Cannonicalize icmp_ne -> icmp_eq + ICmpInst::Predicate IPred; + if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), + TrueDest, FalseDest))) + if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || + IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || + IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) { + ICmpInst *I = cast<ICmpInst>(BI.getCondition()); + ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred); + Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I); + NewSCC->takeName(I); + // Swap Destinations and condition... + BI.setCondition(NewSCC); + BI.setSuccessor(0, FalseDest); + BI.setSuccessor(1, TrueDest); + RemoveFromWorkList(I); + I->eraseFromParent();; + AddToWorkList(NewSCC); + return &BI; + } + + return 0; +} + +Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { + Value *Cond = SI.getCondition(); + if (Instruction *I = dyn_cast<Instruction>(Cond)) { + if (I->getOpcode() == Instruction::Add) + if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { + // change 'switch (X+4) case 1:' into 'switch (X) case -3' + for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) + SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)), + AddRHS)); + SI.setOperand(0, I->getOperand(0)); + AddToWorkList(I); + return &SI; + } + } + return 0; +} + +Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { + Value *Agg = EV.getAggregateOperand(); + + if (!EV.hasIndices()) + return ReplaceInstUsesWith(EV, Agg); + + if (Constant *C = dyn_cast<Constant>(Agg)) { + if (isa<UndefValue>(C)) + return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType())); + + if (isa<ConstantAggregateZero>(C)) + return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType())); + + if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { + // Extract the element indexed by the first index out of the constant + Value *V = C->getOperand(*EV.idx_begin()); + if (EV.getNumIndices() > 1) + // Extract the remaining indices out of the constant indexed by the + // first index + return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end()); + else + return ReplaceInstUsesWith(EV, V); + } + return 0; // Can't handle other constants + } + if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { + // We're extracting from an insertvalue instruction, compare the indices + const unsigned *exti, *exte, *insi, *inse; + for (exti = EV.idx_begin(), insi = IV->idx_begin(), + exte = EV.idx_end(), inse = IV->idx_end(); + exti != exte && insi != inse; + ++exti, ++insi) { + if (*insi != *exti) + // The insert and extract both reference distinctly different elements. + // This means the extract is not influenced by the insert, and we can + // replace the aggregate operand of the extract with the aggregate + // operand of the insert. i.e., replace + // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 + // %E = extractvalue { i32, { i32 } } %I, 0 + // with + // %E = extractvalue { i32, { i32 } } %A, 0 + return ExtractValueInst::Create(IV->getAggregateOperand(), + EV.idx_begin(), EV.idx_end()); + } + if (exti == exte && insi == inse) + // Both iterators are at the end: Index lists are identical. Replace + // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 + // %C = extractvalue { i32, { i32 } } %B, 1, 0 + // with "i32 42" + return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); + if (exti == exte) { + // The extract list is a prefix of the insert list. i.e. replace + // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 + // %E = extractvalue { i32, { i32 } } %I, 1 + // with + // %X = extractvalue { i32, { i32 } } %A, 1 + // %E = insertvalue { i32 } %X, i32 42, 0 + // by switching the order of the insert and extract (though the + // insertvalue should be left in, since it may have other uses). + Value *NewEV = InsertNewInstBefore( + ExtractValueInst::Create(IV->getAggregateOperand(), + EV.idx_begin(), EV.idx_end()), + EV); + return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), + insi, inse); + } + if (insi == inse) + // The insert list is a prefix of the extract list + // We can simply remove the common indices from the extract and make it + // operate on the inserted value instead of the insertvalue result. + // i.e., replace + // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 + // %E = extractvalue { i32, { i32 } } %I, 1, 0 + // with + // %E extractvalue { i32 } { i32 42 }, 0 + return ExtractValueInst::Create(IV->getInsertedValueOperand(), + exti, exte); + } + // Can't simplify extracts from other values. Note that nested extracts are + // already simplified implicitely by the above (extract ( extract (insert) ) + // will be translated into extract ( insert ( extract ) ) first and then just + // the value inserted, if appropriate). + return 0; +} + +/// CheapToScalarize - Return true if the value is cheaper to scalarize than it +/// is to leave as a vector operation. +static bool CheapToScalarize(Value *V, bool isConstant) { + if (isa<ConstantAggregateZero>(V)) + return true; + if (ConstantVector *C = dyn_cast<ConstantVector>(V)) { + if (isConstant) return true; + // If all elts are the same, we can extract. + Constant *Op0 = C->getOperand(0); + for (unsigned i = 1; i < C->getNumOperands(); ++i) + if (C->getOperand(i) != Op0) + return false; + return true; + } + Instruction *I = dyn_cast<Instruction>(V); + if (!I) return false; + + // Insert element gets simplified to the inserted element or is deleted if + // this is constant idx extract element and its a constant idx insertelt. + if (I->getOpcode() == Instruction::InsertElement && isConstant && + isa<ConstantInt>(I->getOperand(2))) + return true; + if (I->getOpcode() == Instruction::Load && I->hasOneUse()) + return true; + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) + if (BO->hasOneUse() && + (CheapToScalarize(BO->getOperand(0), isConstant) || + CheapToScalarize(BO->getOperand(1), isConstant))) + return true; + if (CmpInst *CI = dyn_cast<CmpInst>(I)) + if (CI->hasOneUse() && + (CheapToScalarize(CI->getOperand(0), isConstant) || + CheapToScalarize(CI->getOperand(1), isConstant))) + return true; + + return false; +} + +/// Read and decode a shufflevector mask. +/// +/// It turns undef elements into values that are larger than the number of +/// elements in the input. +static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) { + unsigned NElts = SVI->getType()->getNumElements(); + if (isa<ConstantAggregateZero>(SVI->getOperand(2))) + return std::vector<unsigned>(NElts, 0); + if (isa<UndefValue>(SVI->getOperand(2))) + return std::vector<unsigned>(NElts, 2*NElts); + + std::vector<unsigned> Result; + const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2)); + for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i) + if (isa<UndefValue>(*i)) + Result.push_back(NElts*2); // undef -> 8 + else + Result.push_back(cast<ConstantInt>(*i)->getZExtValue()); + return Result; +} + +/// FindScalarElement - Given a vector and an element number, see if the scalar +/// value is already around as a register, for example if it were inserted then +/// extracted from the vector. +static Value *FindScalarElement(Value *V, unsigned EltNo) { + assert(isa<VectorType>(V->getType()) && "Not looking at a vector?"); + const VectorType *PTy = cast<VectorType>(V->getType()); + unsigned Width = PTy->getNumElements(); + if (EltNo >= Width) // Out of range access. + return UndefValue::get(PTy->getElementType()); + + if (isa<UndefValue>(V)) + return UndefValue::get(PTy->getElementType()); + else if (isa<ConstantAggregateZero>(V)) + return Constant::getNullValue(PTy->getElementType()); + else if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) + return CP->getOperand(EltNo); + else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { + // If this is an insert to a variable element, we don't know what it is. + if (!isa<ConstantInt>(III->getOperand(2))) + return 0; + unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); + + // If this is an insert to the element we are looking for, return the + // inserted value. + if (EltNo == IIElt) + return III->getOperand(1); + + // Otherwise, the insertelement doesn't modify the value, recurse on its + // vector input. + return FindScalarElement(III->getOperand(0), EltNo); + } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { + unsigned LHSWidth = + cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); + unsigned InEl = getShuffleMask(SVI)[EltNo]; + if (InEl < LHSWidth) + return FindScalarElement(SVI->getOperand(0), InEl); + else if (InEl < LHSWidth*2) + return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth); + else + return UndefValue::get(PTy->getElementType()); + } + + // Otherwise, we don't know. + return 0; +} + +Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { + // If vector val is undef, replace extract with scalar undef. + if (isa<UndefValue>(EI.getOperand(0))) + return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); + + // If vector val is constant 0, replace extract with scalar 0. + if (isa<ConstantAggregateZero>(EI.getOperand(0))) + return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType())); + + if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) { + // If vector val is constant with all elements the same, replace EI with + // that element. When the elements are not identical, we cannot replace yet + // (we do that below, but only when the index is constant). + Constant *op0 = C->getOperand(0); + for (unsigned i = 1; i < C->getNumOperands(); ++i) + if (C->getOperand(i) != op0) { + op0 = 0; + break; + } + if (op0) + return ReplaceInstUsesWith(EI, op0); + } + + // If extracting a specified index from the vector, see if we can recursively + // find a previously computed scalar that was inserted into the vector. + if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { + unsigned IndexVal = IdxC->getZExtValue(); + unsigned VectorWidth = + cast<VectorType>(EI.getOperand(0)->getType())->getNumElements(); + + // If this is extracting an invalid index, turn this into undef, to avoid + // crashing the code below. + if (IndexVal >= VectorWidth) + return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); + + // This instruction only demands the single element from the input vector. + // If the input vector has a single use, simplify it based on this use + // property. + if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { + APInt UndefElts(VectorWidth, 0); + APInt DemandedMask(VectorWidth, 1 << IndexVal); + if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), + DemandedMask, UndefElts)) { + EI.setOperand(0, V); + return &EI; + } + } + + if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal)) + return ReplaceInstUsesWith(EI, Elt); + + // If the this extractelement is directly using a bitcast from a vector of + // the same number of elements, see if we can find the source element from + // it. In this case, we will end up needing to bitcast the scalars. + if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { + if (const VectorType *VT = + dyn_cast<VectorType>(BCI->getOperand(0)->getType())) + if (VT->getNumElements() == VectorWidth) + if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal)) + return new BitCastInst(Elt, EI.getType()); + } + } + + if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { + if (I->hasOneUse()) { + // Push extractelement into predecessor operation if legal and + // profitable to do so + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { + bool isConstantElt = isa<ConstantInt>(EI.getOperand(1)); + if (CheapToScalarize(BO, isConstantElt)) { + ExtractElementInst *newEI0 = + new ExtractElementInst(BO->getOperand(0), EI.getOperand(1), + EI.getName()+".lhs"); + ExtractElementInst *newEI1 = + new ExtractElementInst(BO->getOperand(1), EI.getOperand(1), + EI.getName()+".rhs"); + InsertNewInstBefore(newEI0, EI); + InsertNewInstBefore(newEI1, EI); + return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1); + } + } else if (isa<LoadInst>(I)) { + unsigned AS = + cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace(); + Value *Ptr = InsertBitCastBefore(I->getOperand(0), + PointerType::get(EI.getType(), AS),EI); + GetElementPtrInst *GEP = + GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep"); + InsertNewInstBefore(GEP, EI); + return new LoadInst(GEP); + } + } + if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { + // Extracting the inserted element? + if (IE->getOperand(2) == EI.getOperand(1)) + return ReplaceInstUsesWith(EI, IE->getOperand(1)); + // If the inserted and extracted elements are constants, they must not + // be the same value, extract from the pre-inserted value instead. + if (isa<Constant>(IE->getOperand(2)) && + isa<Constant>(EI.getOperand(1))) { + AddUsesToWorkList(EI); + EI.setOperand(0, IE->getOperand(0)); + return &EI; + } + } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { + // If this is extracting an element from a shufflevector, figure out where + // it came from and extract from the appropriate input element instead. + if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { + unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()]; + Value *Src; + unsigned LHSWidth = + cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); + + if (SrcIdx < LHSWidth) + Src = SVI->getOperand(0); + else if (SrcIdx < LHSWidth*2) { + SrcIdx -= LHSWidth; + Src = SVI->getOperand(1); + } else { + return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); + } + return new ExtractElementInst(Src, SrcIdx); + } + } + } + return 0; +} + +/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns +/// elements from either LHS or RHS, return the shuffle mask and true. +/// Otherwise, return false. +static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, + std::vector<Constant*> &Mask) { + assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() && + "Invalid CollectSingleShuffleElements"); + unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); + + if (isa<UndefValue>(V)) { + Mask.assign(NumElts, UndefValue::get(Type::Int32Ty)); + return true; + } else if (V == LHS) { + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::Int32Ty, i)); + return true; + } else if (V == RHS) { + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts)); + return true; + } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { + // If this is an insert of an extract from some other vector, include it. + Value *VecOp = IEI->getOperand(0); + Value *ScalarOp = IEI->getOperand(1); + Value *IdxOp = IEI->getOperand(2); + + if (!isa<ConstantInt>(IdxOp)) + return false; + unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); + + if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. + // Okay, we can handle this if the vector we are insertinting into is + // transitively ok. + if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { + // If so, update the mask to reflect the inserted undef. + Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty); + return true; + } + } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ + if (isa<ConstantInt>(EI->getOperand(1)) && + EI->getOperand(0)->getType() == V->getType()) { + unsigned ExtractedIdx = + cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + + // This must be extracting from either LHS or RHS. + if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { + // Okay, we can handle this if the vector we are insertinting into is + // transitively ok. + if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { + // If so, update the mask to reflect the inserted value. + if (EI->getOperand(0) == LHS) { + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::Int32Ty, ExtractedIdx); + } else { + assert(EI->getOperand(0) == RHS); + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts); + + } + return true; + } + } + } + } + } + // TODO: Handle shufflevector here! + + return false; +} + +/// CollectShuffleElements - We are building a shuffle of V, using RHS as the +/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask +/// that computes V and the LHS value of the shuffle. +static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask, + Value *&RHS) { + assert(isa<VectorType>(V->getType()) && + (RHS == 0 || V->getType() == RHS->getType()) && + "Invalid shuffle!"); + unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); + + if (isa<UndefValue>(V)) { + Mask.assign(NumElts, UndefValue::get(Type::Int32Ty)); + return V; + } else if (isa<ConstantAggregateZero>(V)) { + Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0)); + return V; + } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { + // If this is an insert of an extract from some other vector, include it. + Value *VecOp = IEI->getOperand(0); + Value *ScalarOp = IEI->getOperand(1); + Value *IdxOp = IEI->getOperand(2); + + if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { + if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && + EI->getOperand(0)->getType() == V->getType()) { + unsigned ExtractedIdx = + cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); + + // Either the extracted from or inserted into vector must be RHSVec, + // otherwise we'd end up with a shuffle of three inputs. + if (EI->getOperand(0) == RHS || RHS == 0) { + RHS = EI->getOperand(0); + Value *V = CollectShuffleElements(VecOp, Mask, RHS); + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx); + return V; + } + + if (VecOp == RHS) { + Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS); + // Everything but the extracted element is replaced with the RHS. + for (unsigned i = 0; i != NumElts; ++i) { + if (i != InsertedIdx) + Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i); + } + return V; + } + + // If this insertelement is a chain that comes from exactly these two + // vectors, return the vector and the effective shuffle. + if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask)) + return EI->getOperand(0); + + } + } + } + // TODO: Handle shufflevector here! + + // Otherwise, can't do anything fancy. Return an identity vector. + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::Int32Ty, i)); + return V; +} + +Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { + Value *VecOp = IE.getOperand(0); + Value *ScalarOp = IE.getOperand(1); + Value *IdxOp = IE.getOperand(2); + + // Inserting an undef or into an undefined place, remove this. + if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) + ReplaceInstUsesWith(IE, VecOp); + + // If the inserted element was extracted from some other vector, and if the + // indexes are constant, try to turn this into a shufflevector operation. + if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { + if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && + EI->getOperand(0)->getType() == IE.getType()) { + unsigned NumVectorElts = IE.getType()->getNumElements(); + unsigned ExtractedIdx = + cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); + + if (ExtractedIdx >= NumVectorElts) // Out of range extract. + return ReplaceInstUsesWith(IE, VecOp); + + if (InsertedIdx >= NumVectorElts) // Out of range insert. + return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); + + // If we are extracting a value from a vector, then inserting it right + // back into the same place, just use the input vector. + if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) + return ReplaceInstUsesWith(IE, VecOp); + + // We could theoretically do this for ANY input. However, doing so could + // turn chains of insertelement instructions into a chain of shufflevector + // instructions, and right now we do not merge shufflevectors. As such, + // only do this in a situation where it is clear that there is benefit. + if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) { + // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of + // the values of VecOp, except then one read from EIOp0. + // Build a new shuffle mask. + std::vector<Constant*> Mask; + if (isa<UndefValue>(VecOp)) + Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty)); + else { + assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing"); + Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty, + NumVectorElts)); + } + Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx); + return new ShuffleVectorInst(EI->getOperand(0), VecOp, + ConstantVector::get(Mask)); + } + + // If this insertelement isn't used by some other insertelement, turn it + // (and any insertelements it points to), into one big shuffle. + if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) { + std::vector<Constant*> Mask; + Value *RHS = 0; + Value *LHS = CollectShuffleElements(&IE, Mask, RHS); + if (RHS == 0) RHS = UndefValue::get(LHS->getType()); + // We now have a shuffle of LHS, RHS, Mask. + return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask)); + } + } + } + + return 0; +} + + +Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { + Value *LHS = SVI.getOperand(0); + Value *RHS = SVI.getOperand(1); + std::vector<unsigned> Mask = getShuffleMask(&SVI); + + bool MadeChange = false; + + // Undefined shuffle mask -> undefined value. + if (isa<UndefValue>(SVI.getOperand(2))) + return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); + + unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements(); + + if (VWidth != cast<VectorType>(LHS->getType())->getNumElements()) + return 0; + + APInt UndefElts(VWidth, 0); + APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); + if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { + LHS = SVI.getOperand(0); + RHS = SVI.getOperand(1); + MadeChange = true; + } + + // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') + // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). + if (LHS == RHS || isa<UndefValue>(LHS)) { + if (isa<UndefValue>(LHS) && LHS == RHS) { + // shuffle(undef,undef,mask) -> undef. + return ReplaceInstUsesWith(SVI, LHS); + } + + // Remap any references to RHS to use LHS. + std::vector<Constant*> Elts; + for (unsigned i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] >= 2*e) + Elts.push_back(UndefValue::get(Type::Int32Ty)); + else { + if ((Mask[i] >= e && isa<UndefValue>(RHS)) || + (Mask[i] < e && isa<UndefValue>(LHS))) { + Mask[i] = 2*e; // Turn into undef. + Elts.push_back(UndefValue::get(Type::Int32Ty)); + } else { + Mask[i] = Mask[i] % e; // Force to LHS. + Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i])); + } + } + } + SVI.setOperand(0, SVI.getOperand(1)); + SVI.setOperand(1, UndefValue::get(RHS->getType())); + SVI.setOperand(2, ConstantVector::get(Elts)); + LHS = SVI.getOperand(0); + RHS = SVI.getOperand(1); + MadeChange = true; + } + + // Analyze the shuffle, are the LHS or RHS and identity shuffles? + bool isLHSID = true, isRHSID = true; + + for (unsigned i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] >= e*2) continue; // Ignore undef values. + // Is this an identity shuffle of the LHS value? + isLHSID &= (Mask[i] == i); + + // Is this an identity shuffle of the RHS value? + isRHSID &= (Mask[i]-e == i); + } + + // Eliminate identity shuffles. + if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); + if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); + + // If the LHS is a shufflevector itself, see if we can combine it with this + // one without producing an unusual shuffle. Here we are really conservative: + // we are absolutely afraid of producing a shuffle mask not in the input + // program, because the code gen may not be smart enough to turn a merged + // shuffle into two specific shuffles: it may produce worse code. As such, + // we only merge two shuffles if the result is one of the two input shuffle + // masks. In this case, merging the shuffles just removes one instruction, + // which we know is safe. This is good for things like turning: + // (splat(splat)) -> splat. + if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) { + if (isa<UndefValue>(RHS)) { + std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI); + + std::vector<unsigned> NewMask; + for (unsigned i = 0, e = Mask.size(); i != e; ++i) + if (Mask[i] >= 2*e) + NewMask.push_back(2*e); + else + NewMask.push_back(LHSMask[Mask[i]]); + + // If the result mask is equal to the src shuffle or this shuffle mask, do + // the replacement. + if (NewMask == LHSMask || NewMask == Mask) { + unsigned LHSInNElts = + cast<VectorType>(LHSSVI->getOperand(0)->getType())->getNumElements(); + std::vector<Constant*> Elts; + for (unsigned i = 0, e = NewMask.size(); i != e; ++i) { + if (NewMask[i] >= LHSInNElts*2) { + Elts.push_back(UndefValue::get(Type::Int32Ty)); + } else { + Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i])); + } + } + return new ShuffleVectorInst(LHSSVI->getOperand(0), + LHSSVI->getOperand(1), + ConstantVector::get(Elts)); + } + } + } + + return MadeChange ? &SVI : 0; +} + + + + +/// TryToSinkInstruction - Try to move the specified instruction from its +/// current block into the beginning of DestBlock, which can only happen if it's +/// safe to move the instruction past all of the instructions between it and the +/// end of its block. +static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { + assert(I->hasOneUse() && "Invariants didn't hold!"); + + // Cannot move control-flow-involving, volatile loads, vaarg, etc. + if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I)) + return false; + + // Do not sink alloca instructions out of the entry block. + if (isa<AllocaInst>(I) && I->getParent() == + &DestBlock->getParent()->getEntryBlock()) + return false; + + // We can only sink load instructions if there is nothing between the load and + // the end of block that could change the value. + if (I->mayReadFromMemory()) { + for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); + Scan != E; ++Scan) + if (Scan->mayWriteToMemory()) + return false; + } + + BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI(); + + CopyPrecedingStopPoint(I, InsertPos); + I->moveBefore(InsertPos); + ++NumSunkInst; + return true; +} + + +/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding +/// all reachable code to the worklist. +/// +/// This has a couple of tricks to make the code faster and more powerful. In +/// particular, we constant fold and DCE instructions as we go, to avoid adding +/// them to the worklist (this significantly speeds up instcombine on code where +/// many instructions are dead or constant). Additionally, if we find a branch +/// whose condition is a known constant, we only visit the reachable successors. +/// +static void AddReachableCodeToWorklist(BasicBlock *BB, + SmallPtrSet<BasicBlock*, 64> &Visited, + InstCombiner &IC, + const TargetData *TD) { + SmallVector<BasicBlock*, 256> Worklist; + Worklist.push_back(BB); + + while (!Worklist.empty()) { + BB = Worklist.back(); + Worklist.pop_back(); + + // We have now visited this block! If we've already been here, ignore it. + if (!Visited.insert(BB)) continue; + + DbgInfoIntrinsic *DBI_Prev = NULL; + for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { + Instruction *Inst = BBI++; + + // DCE instruction if trivially dead. + if (isInstructionTriviallyDead(Inst)) { + ++NumDeadInst; + DOUT << "IC: DCE: " << *Inst; + Inst->eraseFromParent(); + continue; + } + + // ConstantProp instruction if trivially constant. + if (Constant *C = ConstantFoldInstruction(Inst, TD)) { + DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst; + Inst->replaceAllUsesWith(C); + ++NumConstProp; + Inst->eraseFromParent(); + continue; + } + + // If there are two consecutive llvm.dbg.stoppoint calls then + // it is likely that the optimizer deleted code in between these + // two intrinsics. + DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst); + if (DBI_Next) { + if (DBI_Prev + && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint + && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) { + IC.RemoveFromWorkList(DBI_Prev); + DBI_Prev->eraseFromParent(); + } + DBI_Prev = DBI_Next; + } else { + DBI_Prev = 0; + } + + IC.AddToWorkList(Inst); + } + + // Recursively visit successors. If this is a branch or switch on a + // constant, only visit the reachable successor. + TerminatorInst *TI = BB->getTerminator(); + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { + bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); + BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); + Worklist.push_back(ReachableBB); + continue; + } + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { + // See if this is an explicit destination. + for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) + if (SI->getCaseValue(i) == Cond) { + BasicBlock *ReachableBB = SI->getSuccessor(i); + Worklist.push_back(ReachableBB); + continue; + } + + // Otherwise it is the default destination. + Worklist.push_back(SI->getSuccessor(0)); + continue; + } + } + + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) + Worklist.push_back(TI->getSuccessor(i)); + } +} + +bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { + bool Changed = false; + TD = &getAnalysis<TargetData>(); + + DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " + << F.getNameStr() << "\n"); + + { + // Do a depth-first traversal of the function, populate the worklist with + // the reachable instructions. Ignore blocks that are not reachable. Keep + // track of which blocks we visit. + SmallPtrSet<BasicBlock*, 64> Visited; + AddReachableCodeToWorklist(F.begin(), Visited, *this, TD); + + // Do a quick scan over the function. If we find any blocks that are + // unreachable, remove any instructions inside of them. This prevents + // the instcombine code from having to deal with some bad special cases. + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + if (!Visited.count(BB)) { + Instruction *Term = BB->getTerminator(); + while (Term != BB->begin()) { // Remove instrs bottom-up + BasicBlock::iterator I = Term; --I; + + DOUT << "IC: DCE: " << *I; + // A debug intrinsic shouldn't force another iteration if we weren't + // going to do one without it. + if (!isa<DbgInfoIntrinsic>(I)) { + ++NumDeadInst; + Changed = true; + } + if (!I->use_empty()) + I->replaceAllUsesWith(UndefValue::get(I->getType())); + I->eraseFromParent(); + } + } + } + + while (!Worklist.empty()) { + Instruction *I = RemoveOneFromWorkList(); + if (I == 0) continue; // skip null values. + + // Check to see if we can DCE the instruction. + if (isInstructionTriviallyDead(I)) { + // Add operands to the worklist. + if (I->getNumOperands() < 4) + AddUsesToWorkList(*I); + ++NumDeadInst; + + DOUT << "IC: DCE: " << *I; + + I->eraseFromParent(); + RemoveFromWorkList(I); + Changed = true; + continue; + } + + // Instruction isn't dead, see if we can constant propagate it. + if (Constant *C = ConstantFoldInstruction(I, TD)) { + DOUT << "IC: ConstFold to: " << *C << " from: " << *I; + + // Add operands to the worklist. + AddUsesToWorkList(*I); + ReplaceInstUsesWith(*I, C); + + ++NumConstProp; + I->eraseFromParent(); + RemoveFromWorkList(I); + Changed = true; + continue; + } + + if (TD && + (I->getType()->getTypeID() == Type::VoidTyID || + I->isTrapping())) { + // See if we can constant fold its operands. + for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) + if (Constant *NewC = ConstantFoldConstantExpression(CE, TD)) + if (NewC != CE) { + i->set(NewC); + Changed = true; + } + } + + // See if we can trivially sink this instruction to a successor basic block. + if (I->hasOneUse()) { + BasicBlock *BB = I->getParent(); + BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent(); + if (UserParent != BB) { + bool UserIsSuccessor = false; + // See if the user is one of our successors. + for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) + if (*SI == UserParent) { + UserIsSuccessor = true; + break; + } + + // If the user is one of our immediate successors, and if that successor + // only has us as a predecessors (we'd have to split the critical edge + // otherwise), we can keep going. + if (UserIsSuccessor && !isa<PHINode>(I->use_back()) && + next(pred_begin(UserParent)) == pred_end(UserParent)) + // Okay, the CFG is simple enough, try to sink this instruction. + Changed |= TryToSinkInstruction(I, UserParent); + } + } + + // Now that we have an instruction, try combining it to simplify it... +#ifndef NDEBUG + std::string OrigI; +#endif + DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str();); + if (Instruction *Result = visit(*I)) { + ++NumCombined; + // Should we replace the old instruction with a new one? + if (Result != I) { + DOUT << "IC: Old = " << *I + << " New = " << *Result; + + // Everything uses the new instruction now. + I->replaceAllUsesWith(Result); + + // Push the new instruction and any users onto the worklist. + AddToWorkList(Result); + AddUsersToWorkList(*Result); + + // Move the name to the new instruction first. + Result->takeName(I); + + // Insert the new instruction into the basic block... + BasicBlock *InstParent = I->getParent(); + BasicBlock::iterator InsertPos = I; + + if (!isa<PHINode>(Result)) // If combining a PHI, don't insert + while (isa<PHINode>(InsertPos)) // middle of a block of PHIs. + ++InsertPos; + + InstParent->getInstList().insert(InsertPos, Result); + + // Make sure that we reprocess all operands now that we reduced their + // use counts. + AddUsesToWorkList(*I); + + // Instructions can end up on the worklist more than once. Make sure + // we do not process an instruction that has been deleted. + RemoveFromWorkList(I); + + // Erase the old instruction. + InstParent->getInstList().erase(I); + } else { +#ifndef NDEBUG + DOUT << "IC: Mod = " << OrigI + << " New = " << *I; +#endif + + // If the instruction was modified, it's possible that it is now dead. + // if so, remove it. + if (isInstructionTriviallyDead(I)) { + // Make sure we process all operands now that we are reducing their + // use counts. + AddUsesToWorkList(*I); + + // Instructions may end up in the worklist more than once. Erase all + // occurrences of this instruction. + RemoveFromWorkList(I); + I->eraseFromParent(); + } else { + AddToWorkList(I); + AddUsersToWorkList(*I); + } + } + Changed = true; + } + } + + assert(WorklistMap.empty() && "Worklist empty, but map not?"); + + // Do an explicit clear, this shrinks the map if needed. + WorklistMap.clear(); + return Changed; +} + + +bool InstCombiner::runOnFunction(Function &F) { + MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID); + + bool EverMadeChange = false; + + // Iterate while there is work to do. + unsigned Iteration = 0; + while (DoOneIteration(F, Iteration++)) + EverMadeChange = true; + return EverMadeChange; +} + +FunctionPass *llvm::createInstructionCombiningPass() { + return new InstCombiner(); +} |