summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/GVN.cpp
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2009-10-14 17:57:32 +0000
committerrdivacky <rdivacky@FreeBSD.org>2009-10-14 17:57:32 +0000
commitcd749a9c07f1de2fb8affde90537efa4bc3e7c54 (patch)
treeb21f6de4e08b89bb7931806bab798fc2a5e3a686 /lib/Transforms/Scalar/GVN.cpp
parent72621d11de5b873f1695f391eb95f0b336c3d2d4 (diff)
downloadFreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.zip
FreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.tar.gz
Update llvm to r84119.
Diffstat (limited to 'lib/Transforms/Scalar/GVN.cpp')
-rw-r--r--lib/Transforms/Scalar/GVN.cpp1386
1 files changed, 821 insertions, 565 deletions
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index f4fe15e..2ed4a63 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -23,6 +23,7 @@
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
+#include "llvm/Operator.h"
#include "llvm/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
@@ -32,13 +33,18 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <cstdio>
using namespace llvm;
@@ -60,17 +66,17 @@ static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
/// as an efficient mechanism to determine the expression-wise equivalence of
/// two values.
namespace {
- struct VISIBILITY_HIDDEN Expression {
+ struct Expression {
enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
UDIV, SDIV, FDIV, UREM, SREM,
- FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
- ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
- ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
- FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
- FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
+ FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
+ ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
+ ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
+ FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
+ FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
- FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
+ FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
EMPTY, TOMBSTONE };
@@ -80,11 +86,11 @@ namespace {
uint32_t secondVN;
uint32_t thirdVN;
SmallVector<uint32_t, 4> varargs;
- Value* function;
-
+ Value *function;
+
Expression() { }
Expression(ExpressionOpcode o) : opcode(o) { }
-
+
bool operator==(const Expression &other) const {
if (opcode != other.opcode)
return false;
@@ -103,30 +109,30 @@ namespace {
else {
if (varargs.size() != other.varargs.size())
return false;
-
+
for (size_t i = 0; i < varargs.size(); ++i)
if (varargs[i] != other.varargs[i])
return false;
-
+
return true;
}
}
-
+
bool operator!=(const Expression &other) const {
return !(*this == other);
}
};
-
- class VISIBILITY_HIDDEN ValueTable {
+
+ class ValueTable {
private:
DenseMap<Value*, uint32_t> valueNumbering;
DenseMap<Expression, uint32_t> expressionNumbering;
AliasAnalysis* AA;
MemoryDependenceAnalysis* MD;
DominatorTree* DT;
-
+
uint32_t nextValueNumber;
-
+
Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
Expression::ExpressionOpcode getOpcode(CmpInst* C);
Expression::ExpressionOpcode getOpcode(CastInst* C);
@@ -142,11 +148,11 @@ namespace {
Expression create_expression(Constant* C);
public:
ValueTable() : nextValueNumber(1) { }
- uint32_t lookup_or_add(Value* V);
- uint32_t lookup(Value* V) const;
- void add(Value* V, uint32_t num);
+ uint32_t lookup_or_add(Value *V);
+ uint32_t lookup(Value *V) const;
+ void add(Value *V, uint32_t num);
void clear();
- void erase(Value* v);
+ void erase(Value *v);
unsigned size();
void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
AliasAnalysis *getAliasAnalysis() const { return AA; }
@@ -162,30 +168,30 @@ template <> struct DenseMapInfo<Expression> {
static inline Expression getEmptyKey() {
return Expression(Expression::EMPTY);
}
-
+
static inline Expression getTombstoneKey() {
return Expression(Expression::TOMBSTONE);
}
-
+
static unsigned getHashValue(const Expression e) {
unsigned hash = e.opcode;
-
+
hash = e.firstVN + hash * 37;
hash = e.secondVN + hash * 37;
hash = e.thirdVN + hash * 37;
-
+
hash = ((unsigned)((uintptr_t)e.type >> 4) ^
(unsigned)((uintptr_t)e.type >> 9)) +
hash * 37;
-
+
for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
E = e.varargs.end(); I != E; ++I)
hash = *I + hash * 37;
-
+
hash = ((unsigned)((uintptr_t)e.function >> 4) ^
(unsigned)((uintptr_t)e.function >> 9)) +
hash * 37;
-
+
return hash;
}
static bool isEqual(const Expression &LHS, const Expression &RHS) {
@@ -201,7 +207,7 @@ template <> struct DenseMapInfo<Expression> {
Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
switch(BO->getOpcode()) {
default: // THIS SHOULD NEVER HAPPEN
- assert(0 && "Binary operator with unknown opcode?");
+ llvm_unreachable("Binary operator with unknown opcode?");
case Instruction::Add: return Expression::ADD;
case Instruction::FAdd: return Expression::FADD;
case Instruction::Sub: return Expression::SUB;
@@ -224,10 +230,10 @@ Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
}
Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
- if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
+ if (isa<ICmpInst>(C)) {
switch (C->getPredicate()) {
default: // THIS SHOULD NEVER HAPPEN
- assert(0 && "Comparison with unknown predicate?");
+ llvm_unreachable("Comparison with unknown predicate?");
case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
case ICmpInst::ICMP_NE: return Expression::ICMPNE;
case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
@@ -239,32 +245,32 @@ Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
}
- }
- assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
- switch (C->getPredicate()) {
- default: // THIS SHOULD NEVER HAPPEN
- assert(0 && "Comparison with unknown predicate?");
- case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
- case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
- case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
- case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
- case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
- case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
- case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
- case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
- case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
- case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
- case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
- case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
- case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
- case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
+ } else {
+ switch (C->getPredicate()) {
+ default: // THIS SHOULD NEVER HAPPEN
+ llvm_unreachable("Comparison with unknown predicate?");
+ case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
+ case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
+ case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
+ case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
+ case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
+ case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
+ case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
+ case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
+ case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
+ case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
+ case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
+ case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
+ case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
+ case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
+ }
}
}
Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
switch(C->getOpcode()) {
default: // THIS SHOULD NEVER HAPPEN
- assert(0 && "Cast operator with unknown opcode?");
+ llvm_unreachable("Cast operator with unknown opcode?");
case Instruction::Trunc: return Expression::TRUNC;
case Instruction::ZExt: return Expression::ZEXT;
case Instruction::SExt: return Expression::SEXT;
@@ -282,126 +288,126 @@ Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
Expression ValueTable::create_expression(CallInst* C) {
Expression e;
-
+
e.type = C->getType();
e.firstVN = 0;
e.secondVN = 0;
e.thirdVN = 0;
e.function = C->getCalledFunction();
e.opcode = Expression::CALL;
-
+
for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
I != E; ++I)
e.varargs.push_back(lookup_or_add(*I));
-
+
return e;
}
Expression ValueTable::create_expression(BinaryOperator* BO) {
Expression e;
-
+
e.firstVN = lookup_or_add(BO->getOperand(0));
e.secondVN = lookup_or_add(BO->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = BO->getType();
e.opcode = getOpcode(BO);
-
+
return e;
}
Expression ValueTable::create_expression(CmpInst* C) {
Expression e;
-
+
e.firstVN = lookup_or_add(C->getOperand(0));
e.secondVN = lookup_or_add(C->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = C->getType();
e.opcode = getOpcode(C);
-
+
return e;
}
Expression ValueTable::create_expression(CastInst* C) {
Expression e;
-
+
e.firstVN = lookup_or_add(C->getOperand(0));
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
e.type = C->getType();
e.opcode = getOpcode(C);
-
+
return e;
}
Expression ValueTable::create_expression(ShuffleVectorInst* S) {
Expression e;
-
+
e.firstVN = lookup_or_add(S->getOperand(0));
e.secondVN = lookup_or_add(S->getOperand(1));
e.thirdVN = lookup_or_add(S->getOperand(2));
e.function = 0;
e.type = S->getType();
e.opcode = Expression::SHUFFLE;
-
+
return e;
}
Expression ValueTable::create_expression(ExtractElementInst* E) {
Expression e;
-
+
e.firstVN = lookup_or_add(E->getOperand(0));
e.secondVN = lookup_or_add(E->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = E->getType();
e.opcode = Expression::EXTRACT;
-
+
return e;
}
Expression ValueTable::create_expression(InsertElementInst* I) {
Expression e;
-
+
e.firstVN = lookup_or_add(I->getOperand(0));
e.secondVN = lookup_or_add(I->getOperand(1));
e.thirdVN = lookup_or_add(I->getOperand(2));
e.function = 0;
e.type = I->getType();
e.opcode = Expression::INSERT;
-
+
return e;
}
Expression ValueTable::create_expression(SelectInst* I) {
Expression e;
-
+
e.firstVN = lookup_or_add(I->getCondition());
e.secondVN = lookup_or_add(I->getTrueValue());
e.thirdVN = lookup_or_add(I->getFalseValue());
e.function = 0;
e.type = I->getType();
e.opcode = Expression::SELECT;
-
+
return e;
}
Expression ValueTable::create_expression(GetElementPtrInst* G) {
Expression e;
-
+
e.firstVN = lookup_or_add(G->getPointerOperand());
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
e.type = G->getType();
e.opcode = Expression::GEP;
-
+
for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
I != E; ++I)
e.varargs.push_back(lookup_or_add(*I));
-
+
return e;
}
@@ -410,21 +416,21 @@ Expression ValueTable::create_expression(GetElementPtrInst* G) {
//===----------------------------------------------------------------------===//
/// add - Insert a value into the table with a specified value number.
-void ValueTable::add(Value* V, uint32_t num) {
+void ValueTable::add(Value *V, uint32_t num) {
valueNumbering.insert(std::make_pair(V, num));
}
/// lookup_or_add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
-uint32_t ValueTable::lookup_or_add(Value* V) {
+uint32_t ValueTable::lookup_or_add(Value *V) {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
if (VI != valueNumbering.end())
return VI->second;
-
+
if (CallInst* C = dyn_cast<CallInst>(V)) {
if (AA->doesNotAccessMemory(C)) {
Expression e = create_expression(C);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -432,20 +438,20 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (AA->onlyReadsMemory(C)) {
Expression e = create_expression(C);
-
+
if (expressionNumbering.find(e) == expressionNumbering.end()) {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
-
+
MemDepResult local_dep = MD->getDependency(C);
-
+
if (!local_dep.isDef() && !local_dep.isNonLocal()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
@@ -453,12 +459,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
if (local_dep.isDef()) {
CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
-
+
if (local_cdep->getNumOperands() != C->getNumOperands()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
-
+
for (unsigned i = 1; i < C->getNumOperands(); ++i) {
uint32_t c_vn = lookup_or_add(C->getOperand(i));
uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
@@ -467,19 +473,19 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
return nextValueNumber++;
}
}
-
+
uint32_t v = lookup_or_add(local_cdep);
valueNumbering.insert(std::make_pair(V, v));
return v;
}
// Non-local case.
- const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
+ const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
MD->getNonLocalCallDependency(CallSite(C));
// FIXME: call/call dependencies for readonly calls should return def, not
// clobber! Move the checking logic to MemDep!
CallInst* cdep = 0;
-
+
// Check to see if we have a single dominating call instruction that is
// identical to C.
for (unsigned i = 0, e = deps.size(); i != e; ++i) {
@@ -494,23 +500,23 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
cdep = 0;
break;
}
-
+
CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
// FIXME: All duplicated with non-local case.
if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
cdep = NonLocalDepCall;
continue;
}
-
+
cdep = 0;
break;
}
-
+
if (!cdep) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
-
+
if (cdep->getNumOperands() != C->getNumOperands()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
@@ -523,18 +529,18 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
return nextValueNumber++;
}
}
-
+
uint32_t v = lookup_or_add(cdep);
valueNumbering.insert(std::make_pair(V, v));
return v;
-
+
} else {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
Expression e = create_expression(BO);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -542,12 +548,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
Expression e = create_expression(C);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -555,12 +561,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -568,12 +574,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -581,12 +587,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -594,12 +600,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -607,12 +613,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (CastInst* U = dyn_cast<CastInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -620,12 +626,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -633,7 +639,7 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else {
@@ -644,7 +650,7 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
/// lookup - Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
-uint32_t ValueTable::lookup(Value* V) const {
+uint32_t ValueTable::lookup(Value *V) const {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
assert(VI != valueNumbering.end() && "Value not numbered?");
return VI->second;
@@ -658,7 +664,7 @@ void ValueTable::clear() {
}
/// erase - Remove a value from the value numbering
-void ValueTable::erase(Value* V) {
+void ValueTable::erase(Value *V) {
valueNumbering.erase(V);
}
@@ -676,17 +682,17 @@ void ValueTable::verifyRemoved(const Value *V) const {
//===----------------------------------------------------------------------===//
namespace {
- struct VISIBILITY_HIDDEN ValueNumberScope {
+ struct ValueNumberScope {
ValueNumberScope* parent;
DenseMap<uint32_t, Value*> table;
-
+
ValueNumberScope(ValueNumberScope* p) : parent(p) { }
};
}
namespace {
- class VISIBILITY_HIDDEN GVN : public FunctionPass {
+ class GVN : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
@@ -698,45 +704,35 @@ namespace {
ValueTable VN;
DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
-
- typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
- PhiMapType phiMap;
-
-
+
// This transformation requires dominator postdominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
-
+
AU.addPreserved<DominatorTree>();
AU.addPreserved<AliasAnalysis>();
}
-
+
// Helper fuctions
// FIXME: eliminate or document these better
bool processLoad(LoadInst* L,
SmallVectorImpl<Instruction*> &toErase);
- bool processInstruction(Instruction* I,
+ bool processInstruction(Instruction *I,
SmallVectorImpl<Instruction*> &toErase);
bool processNonLocalLoad(LoadInst* L,
SmallVectorImpl<Instruction*> &toErase);
- bool processBlock(BasicBlock* BB);
- Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
- DenseMap<BasicBlock*, Value*> &Phis,
- bool top_level = false);
+ bool processBlock(BasicBlock *BB);
void dump(DenseMap<uint32_t, Value*>& d);
bool iterateOnFunction(Function &F);
- Value* CollapsePhi(PHINode* p);
- bool isSafeReplacement(PHINode* p, Instruction* inst);
+ Value *CollapsePhi(PHINode* p);
bool performPRE(Function& F);
- Value* lookupNumber(BasicBlock* BB, uint32_t num);
- bool mergeBlockIntoPredecessor(BasicBlock* BB);
- Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
+ Value *lookupNumber(BasicBlock *BB, uint32_t num);
void cleanupGlobalSets();
void verifyRemoved(const Instruction *I) const;
};
-
+
char GVN::ID = 0;
}
@@ -756,107 +752,31 @@ void GVN::dump(DenseMap<uint32_t, Value*>& d) {
printf("}\n");
}
-Value* GVN::CollapsePhi(PHINode* p) {
- Value* constVal = p->hasConstantValue();
- if (!constVal) return 0;
-
- Instruction* inst = dyn_cast<Instruction>(constVal);
- if (!inst)
- return constVal;
-
- if (DT->dominates(inst, p))
- if (isSafeReplacement(p, inst))
- return inst;
- return 0;
-}
-
-bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
+static bool isSafeReplacement(PHINode* p, Instruction *inst) {
if (!isa<PHINode>(inst))
return true;
-
+
for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
UI != E; ++UI)
if (PHINode* use_phi = dyn_cast<PHINode>(UI))
if (use_phi->getParent() == inst->getParent())
return false;
-
+
return true;
}
-/// GetValueForBlock - Get the value to use within the specified basic block.
-/// available values are in Phis.
-Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
- DenseMap<BasicBlock*, Value*> &Phis,
- bool top_level) {
-
- // If we have already computed this value, return the previously computed val.
- DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
- if (V != Phis.end() && !top_level) return V->second;
-
- // If the block is unreachable, just return undef, since this path
- // can't actually occur at runtime.
- if (!DT->isReachableFromEntry(BB))
- return Phis[BB] = Context->getUndef(orig->getType());
-
- if (BasicBlock *Pred = BB->getSinglePredecessor()) {
- Value *ret = GetValueForBlock(Pred, orig, Phis);
- Phis[BB] = ret;
- return ret;
- }
+Value *GVN::CollapsePhi(PHINode *PN) {
+ Value *ConstVal = PN->hasConstantValue(DT);
+ if (!ConstVal) return 0;
- // Get the number of predecessors of this block so we can reserve space later.
- // If there is already a PHI in it, use the #preds from it, otherwise count.
- // Getting it from the PHI is constant time.
- unsigned NumPreds;
- if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
- NumPreds = ExistingPN->getNumIncomingValues();
- else
- NumPreds = std::distance(pred_begin(BB), pred_end(BB));
-
- // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
- // now, then get values to fill in the incoming values for the PHI.
- PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
- BB->begin());
- PN->reserveOperandSpace(NumPreds);
-
- Phis.insert(std::make_pair(BB, PN));
-
- // Fill in the incoming values for the block.
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- Value* val = GetValueForBlock(*PI, orig, Phis);
- PN->addIncoming(val, *PI);
- }
-
- VN.getAliasAnalysis()->copyValue(orig, PN);
-
- // Attempt to collapse PHI nodes that are trivially redundant
- Value* v = CollapsePhi(PN);
- if (!v) {
- // Cache our phi construction results
- if (LoadInst* L = dyn_cast<LoadInst>(orig))
- phiMap[L->getPointerOperand()].insert(PN);
- else
- phiMap[orig].insert(PN);
-
- return PN;
- }
-
- PN->replaceAllUsesWith(v);
- if (isa<PointerType>(v->getType()))
- MD->invalidateCachedPointerInfo(v);
-
- for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
- E = Phis.end(); I != E; ++I)
- if (I->second == PN)
- I->second = v;
-
- DEBUG(cerr << "GVN removed: " << *PN);
- MD->removeInstruction(PN);
- PN->eraseFromParent();
- DEBUG(verifyRemoved(PN));
-
- Phis[BB] = v;
- return v;
+ Instruction *Inst = dyn_cast<Instruction>(ConstVal);
+ if (!Inst)
+ return ConstVal;
+
+ if (DT->dominates(Inst, PN))
+ if (isSafeReplacement(PN, Inst))
+ return Inst;
+ return 0;
}
/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
@@ -869,11 +789,11 @@ Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
/// currently speculating that it will be.
/// 3) we are speculating for this block and have used that to speculate for
/// other blocks.
-static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
+static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
// Optimistically assume that the block is fully available and check to see
// if we already know about this block in one lookup.
- std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
+ std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
FullyAvailableBlocks.insert(std::make_pair(BB, 2));
// If the entry already existed for this block, return the precomputed value.
@@ -884,29 +804,29 @@ static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
IV.first->second = 3;
return IV.first->second != 0;
}
-
+
// Otherwise, see if it is fully available in all predecessors.
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
-
+
// If this block has no predecessors, it isn't live-in here.
if (PI == PE)
goto SpeculationFailure;
-
+
for (; PI != PE; ++PI)
// If the value isn't fully available in one of our predecessors, then it
// isn't fully available in this block either. Undo our previous
// optimistic assumption and bail out.
if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
goto SpeculationFailure;
-
+
return true;
-
+
// SpeculationFailure - If we get here, we found out that this is not, after
// all, a fully-available block. We have a problem if we speculated on this and
// used the speculation to mark other blocks as available.
SpeculationFailure:
char &BBVal = FullyAvailableBlocks[BB];
-
+
// If we didn't speculate on this, just return with it set to false.
if (BBVal == 2) {
BBVal = 0;
@@ -918,7 +838,7 @@ SpeculationFailure:
// 0 if set to one.
SmallVector<BasicBlock*, 32> BBWorklist;
BBWorklist.push_back(BB);
-
+
while (!BBWorklist.empty()) {
BasicBlock *Entry = BBWorklist.pop_back_val();
// Note that this sets blocks to 0 (unavailable) if they happen to not
@@ -928,24 +848,372 @@ SpeculationFailure:
// Mark as unavailable.
EntryVal = 0;
-
+
for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
BBWorklist.push_back(*I);
}
-
+
return false;
}
+
+/// CanCoerceMustAliasedValueToLoad - Return true if
+/// CoerceAvailableValueToLoadType will succeed.
+static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
+ const Type *LoadTy,
+ const TargetData &TD) {
+ // If the loaded or stored value is an first class array or struct, don't try
+ // to transform them. We need to be able to bitcast to integer.
+ if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
+ isa<StructType>(StoredVal->getType()) ||
+ isa<ArrayType>(StoredVal->getType()))
+ return false;
+
+ // The store has to be at least as big as the load.
+ if (TD.getTypeSizeInBits(StoredVal->getType()) <
+ TD.getTypeSizeInBits(LoadTy))
+ return false;
+
+ return true;
+}
+
+
+/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
+/// then a load from a must-aliased pointer of a different type, try to coerce
+/// the stored value. LoadedTy is the type of the load we want to replace and
+/// InsertPt is the place to insert new instructions.
+///
+/// If we can't do it, return null.
+static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
+ const Type *LoadedTy,
+ Instruction *InsertPt,
+ const TargetData &TD) {
+ if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
+ return 0;
+
+ const Type *StoredValTy = StoredVal->getType();
+
+ uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
+ uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
+
+ // If the store and reload are the same size, we can always reuse it.
+ if (StoreSize == LoadSize) {
+ if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
+ // Pointer to Pointer -> use bitcast.
+ return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
+ }
+
+ // Convert source pointers to integers, which can be bitcast.
+ if (isa<PointerType>(StoredValTy)) {
+ StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ const Type *TypeToCastTo = LoadedTy;
+ if (isa<PointerType>(TypeToCastTo))
+ TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
+
+ if (StoredValTy != TypeToCastTo)
+ StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
+
+ // Cast to pointer if the load needs a pointer type.
+ if (isa<PointerType>(LoadedTy))
+ StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
+
+ return StoredVal;
+ }
+
+ // If the loaded value is smaller than the available value, then we can
+ // extract out a piece from it. If the available value is too small, then we
+ // can't do anything.
+ assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
+
+ // Convert source pointers to integers, which can be manipulated.
+ if (isa<PointerType>(StoredValTy)) {
+ StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ // Convert vectors and fp to integer, which can be manipulated.
+ if (!isa<IntegerType>(StoredValTy)) {
+ StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
+ StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ // If this is a big-endian system, we need to shift the value down to the low
+ // bits so that a truncate will work.
+ if (TD.isBigEndian()) {
+ Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
+ StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
+ }
+
+ // Truncate the integer to the right size now.
+ const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
+ StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
+
+ if (LoadedTy == NewIntTy)
+ return StoredVal;
+
+ // If the result is a pointer, inttoptr.
+ if (isa<PointerType>(LoadedTy))
+ return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
+
+ // Otherwise, bitcast.
+ return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
+}
+
+/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
+/// be expressed as a base pointer plus a constant offset. Return the base and
+/// offset to the caller.
+static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
+ const TargetData &TD) {
+ Operator *PtrOp = dyn_cast<Operator>(Ptr);
+ if (PtrOp == 0) return Ptr;
+
+ // Just look through bitcasts.
+ if (PtrOp->getOpcode() == Instruction::BitCast)
+ return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
+
+ // If this is a GEP with constant indices, we can look through it.
+ GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
+ if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
+ ++I, ++GTI) {
+ ConstantInt *OpC = cast<ConstantInt>(*I);
+ if (OpC->isZero()) continue;
+
+ // Handle a struct and array indices which add their offset to the pointer.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
+ } else {
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+ Offset += OpC->getSExtValue()*Size;
+ }
+ }
+
+ // Re-sign extend from the pointer size if needed to get overflow edge cases
+ // right.
+ unsigned PtrSize = TD.getPointerSizeInBits();
+ if (PtrSize < 64)
+ Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
+
+ return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
+}
+
+
+/// AnalyzeLoadFromClobberingStore - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering store. This means
+/// that the store *may* provide bits used by the load but we can't be sure
+/// because the pointers don't mustalias. Check this case to see if there is
+/// anything more we can do before we give up. This returns -1 if we have to
+/// give up, or a byte number in the stored value of the piece that feeds the
+/// load.
+static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
+ const TargetData &TD) {
+ // If the loaded or stored value is an first class array or struct, don't try
+ // to transform them. We need to be able to bitcast to integer.
+ if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) ||
+ isa<StructType>(DepSI->getOperand(0)->getType()) ||
+ isa<ArrayType>(DepSI->getOperand(0)->getType()))
+ return -1;
+
+ int64_t StoreOffset = 0, LoadOffset = 0;
+ Value *StoreBase =
+ GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
+ Value *LoadBase =
+ GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
+ if (StoreBase != LoadBase)
+ return -1;
+
+ // If the load and store are to the exact same address, they should have been
+ // a must alias. AA must have gotten confused.
+ // FIXME: Study to see if/when this happens.
+ if (LoadOffset == StoreOffset) {
+#if 0
+ errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
+ << "Base = " << *StoreBase << "\n"
+ << "Store Ptr = " << *DepSI->getPointerOperand() << "\n"
+ << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
+ << "Load Ptr = " << *L->getPointerOperand() << "\n"
+ << "Load Offs = " << LoadOffset << " - " << *L << "\n\n";
+ errs() << "'" << L->getParent()->getParent()->getName() << "'"
+ << *L->getParent();
+#endif
+ return -1;
+ }
+
+ // If the load and store don't overlap at all, the store doesn't provide
+ // anything to the load. In this case, they really don't alias at all, AA
+ // must have gotten confused.
+ // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
+ // remove this check, as it is duplicated with what we have below.
+ uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
+ uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
+
+ if ((StoreSize & 7) | (LoadSize & 7))
+ return -1;
+ StoreSize >>= 3; // Convert to bytes.
+ LoadSize >>= 3;
+
+
+ bool isAAFailure = false;
+ if (StoreOffset < LoadOffset) {
+ isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
+ } else {
+ isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
+ }
+ if (isAAFailure) {
+#if 0
+ errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
+ << "Base = " << *StoreBase << "\n"
+ << "Store Ptr = " << *DepSI->getPointerOperand() << "\n"
+ << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
+ << "Load Ptr = " << *L->getPointerOperand() << "\n"
+ << "Load Offs = " << LoadOffset << " - " << *L << "\n\n";
+ errs() << "'" << L->getParent()->getParent()->getName() << "'"
+ << *L->getParent();
+#endif
+ return -1;
+ }
+
+ // If the Load isn't completely contained within the stored bits, we don't
+ // have all the bits to feed it. We could do something crazy in the future
+ // (issue a smaller load then merge the bits in) but this seems unlikely to be
+ // valuable.
+ if (StoreOffset > LoadOffset ||
+ StoreOffset+StoreSize < LoadOffset+LoadSize)
+ return -1;
+
+ // Okay, we can do this transformation. Return the number of bytes into the
+ // store that the load is.
+ return LoadOffset-StoreOffset;
+}
+
+
+/// GetStoreValueForLoad - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering store. This means
+/// that the store *may* provide bits used by the load but we can't be sure
+/// because the pointers don't mustalias. Check this case to see if there is
+/// anything more we can do before we give up.
+static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
+ const Type *LoadTy,
+ Instruction *InsertPt, const TargetData &TD){
+ LLVMContext &Ctx = SrcVal->getType()->getContext();
+
+ uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
+ uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
+
+
+ // Compute which bits of the stored value are being used by the load. Convert
+ // to an integer type to start with.
+ if (isa<PointerType>(SrcVal->getType()))
+ SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
+ if (!isa<IntegerType>(SrcVal->getType()))
+ SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
+ "tmp", InsertPt);
+
+ // Shift the bits to the least significant depending on endianness.
+ unsigned ShiftAmt;
+ if (TD.isLittleEndian()) {
+ ShiftAmt = Offset*8;
+ } else {
+ ShiftAmt = (StoreSize-LoadSize-Offset)*8;
+ }
+
+ if (ShiftAmt)
+ SrcVal = BinaryOperator::CreateLShr(SrcVal,
+ ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
+
+ if (LoadSize != StoreSize)
+ SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
+ "tmp", InsertPt);
+
+ return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
+}
+
+struct AvailableValueInBlock {
+ /// BB - The basic block in question.
+ BasicBlock *BB;
+ /// V - The value that is live out of the block.
+ Value *V;
+ /// Offset - The byte offset in V that is interesting for the load query.
+ unsigned Offset;
+
+ static AvailableValueInBlock get(BasicBlock *BB, Value *V,
+ unsigned Offset = 0) {
+ AvailableValueInBlock Res;
+ Res.BB = BB;
+ Res.V = V;
+ Res.Offset = Offset;
+ return Res;
+ }
+};
+
+/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
+/// construct SSA form, allowing us to eliminate LI. This returns the value
+/// that should be used at LI's definition site.
+static Value *ConstructSSAForLoadSet(LoadInst *LI,
+ SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
+ const TargetData *TD,
+ AliasAnalysis *AA) {
+ SmallVector<PHINode*, 8> NewPHIs;
+ SSAUpdater SSAUpdate(&NewPHIs);
+ SSAUpdate.Initialize(LI);
+
+ const Type *LoadTy = LI->getType();
+
+ for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
+ BasicBlock *BB = ValuesPerBlock[i].BB;
+ Value *AvailableVal = ValuesPerBlock[i].V;
+ unsigned Offset = ValuesPerBlock[i].Offset;
+
+ if (SSAUpdate.HasValueForBlock(BB))
+ continue;
+
+ if (AvailableVal->getType() != LoadTy) {
+ assert(TD && "Need target data to handle type mismatch case");
+ AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
+ BB->getTerminator(), *TD);
+
+ if (Offset) {
+ DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
+ << *ValuesPerBlock[i].V << '\n'
+ << *AvailableVal << '\n' << "\n\n\n");
+ }
+
+
+ DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
+ << *ValuesPerBlock[i].V << '\n'
+ << *AvailableVal << '\n' << "\n\n\n");
+ }
+
+ SSAUpdate.AddAvailableValue(BB, AvailableVal);
+ }
+
+ // Perform PHI construction.
+ Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
+
+ // If new PHI nodes were created, notify alias analysis.
+ if (isa<PointerType>(V->getType()))
+ for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
+ AA->copyValue(LI, NewPHIs[i]);
+
+ return V;
+}
+
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst *LI,
SmallVectorImpl<Instruction*> &toErase) {
// Find the non-local dependencies of the load.
- SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
+ SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
Deps);
- //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
-
+ //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
+ // << Deps.size() << *LI << '\n');
+
// If we had to process more than one hundred blocks to find the
// dependencies, this load isn't worth worrying about. Optimizing
// it will be too expensive.
@@ -956,106 +1224,124 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// clobber in the current block. Reject this early.
if (Deps.size() == 1 && Deps[0].second.isClobber()) {
DEBUG(
- DOUT << "GVN: non-local load ";
- WriteAsOperand(*DOUT.stream(), LI);
- DOUT << " is clobbered by " << *Deps[0].second.getInst();
+ errs() << "GVN: non-local load ";
+ WriteAsOperand(errs(), LI);
+ errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
);
return false;
}
-
+
// Filter out useless results (non-locals, etc). Keep track of the blocks
// where we have a value available in repl, also keep track of whether we see
// dependencies that produce an unknown value for the load (such as a call
// that could potentially clobber the load).
- SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
+ SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
SmallVector<BasicBlock*, 16> UnavailableBlocks;
+
+ const TargetData *TD = 0;
for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
BasicBlock *DepBB = Deps[i].first;
MemDepResult DepInfo = Deps[i].second;
-
+
if (DepInfo.isClobber()) {
+ // If the dependence is to a store that writes to a superset of the bits
+ // read by the load, we can extract the bits we need for the load from the
+ // stored value.
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
+ if (TD == 0)
+ TD = getAnalysisIfAvailable<TargetData>();
+ if (TD) {
+ int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
+ if (Offset != -1) {
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ DepSI->getOperand(0),
+ Offset));
+ continue;
+ }
+ }
+ }
+
+ // FIXME: Handle memset/memcpy.
UnavailableBlocks.push_back(DepBB);
continue;
}
-
+
Instruction *DepInst = DepInfo.getInst();
-
+
// Loading the allocation -> undef.
- if (isa<AllocationInst>(DepInst)) {
- ValuesPerBlock.push_back(std::make_pair(DepBB,
- Context->getUndef(LI->getType())));
+ if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ UndefValue::get(LI->getType())));
continue;
}
-
- if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
- // Reject loads and stores that are to the same address but are of
- // different types.
- // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
- // of bitfield access, it would be interesting to optimize for it at some
- // point.
+
+ if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
+ // Reject loads and stores that are to the same address but are of
+ // different types if we have to.
if (S->getOperand(0)->getType() != LI->getType()) {
- UnavailableBlocks.push_back(DepBB);
- continue;
+ if (TD == 0)
+ TD = getAnalysisIfAvailable<TargetData>();
+
+ // If the stored value is larger or equal to the loaded value, we can
+ // reuse it.
+ if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
+ LI->getType(), *TD)) {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
}
-
- ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
-
- } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
+
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ S->getOperand(0)));
+ continue;
+ }
+
+ if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
+ // If the types mismatch and we can't handle it, reject reuse of the load.
if (LD->getType() != LI->getType()) {
- UnavailableBlocks.push_back(DepBB);
- continue;
+ if (TD == 0)
+ TD = getAnalysisIfAvailable<TargetData>();
+
+ // If the stored value is larger or equal to the loaded value, we can
+ // reuse it.
+ if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
}
- ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
- } else {
- UnavailableBlocks.push_back(DepBB);
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
continue;
}
+
+ UnavailableBlocks.push_back(DepBB);
+ continue;
}
-
+
// If we have no predecessors that produce a known value for this load, exit
// early.
if (ValuesPerBlock.empty()) return false;
-
+
// If all of the instructions we depend on produce a known value for this
// load, then it is fully redundant and we can use PHI insertion to compute
// its value. Insert PHIs and remove the fully redundant value now.
if (UnavailableBlocks.empty()) {
- // Use cached PHI construction information from previous runs
- SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
- // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
- for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
- I != E; ++I) {
- if ((*I)->getParent() == LI->getParent()) {
- DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
- LI->replaceAllUsesWith(*I);
- if (isa<PointerType>((*I)->getType()))
- MD->invalidateCachedPointerInfo(*I);
- toErase.push_back(LI);
- NumGVNLoad++;
- return true;
- }
-
- ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
- }
-
- DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
+ DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
- DenseMap<BasicBlock*, Value*> BlockReplValues;
- BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
// Perform PHI construction.
- Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
- LI->replaceAllUsesWith(v);
-
- if (isa<PHINode>(v))
- v->takeName(LI);
- if (isa<PointerType>(v->getType()))
- MD->invalidateCachedPointerInfo(v);
+ Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
+ VN.getAliasAnalysis());
+ LI->replaceAllUsesWith(V);
+
+ if (isa<PHINode>(V))
+ V->takeName(LI);
+ if (isa<PointerType>(V->getType()))
+ MD->invalidateCachedPointerInfo(V);
toErase.push_back(LI);
NumGVNLoad++;
return true;
}
-
+
if (!EnablePRE || !EnableLoadPRE)
return false;
@@ -1066,7 +1352,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// prefer to not increase code size. As such, we only do this when we know
// that we only have to insert *one* load (which means we're basically moving
// the load, not inserting a new one).
-
+
SmallPtrSet<BasicBlock *, 4> Blockers;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
Blockers.insert(UnavailableBlocks[i]);
@@ -1090,28 +1376,28 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
if (TmpBB->getTerminator()->getNumSuccessors() != 1)
allSingleSucc = false;
}
-
+
assert(TmpBB);
LoadBB = TmpBB;
-
+
// If we have a repl set with LI itself in it, this means we have a loop where
// at least one of the values is LI. Since this means that we won't be able
// to eliminate LI even if we insert uses in the other predecessors, we will
// end up increasing code size. Reject this by scanning for LI.
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
- if (ValuesPerBlock[i].second == LI)
+ if (ValuesPerBlock[i].V == LI)
return false;
-
+
if (isSinglePred) {
bool isHot = false;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
- if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
- // "Hot" Instruction is in some loop (because it dominates its dep.
- // instruction).
- if (DT->dominates(LI, I)) {
- isHot = true;
- break;
- }
+ if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
+ // "Hot" Instruction is in some loop (because it dominates its dep.
+ // instruction).
+ if (DT->dominates(LI, I)) {
+ isHot = true;
+ break;
+ }
// We are interested only in "hot" instructions. We don't want to do any
// mis-optimizations here.
@@ -1128,7 +1414,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
DenseMap<BasicBlock*, char> FullyAvailableBlocks;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
- FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
+ FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
FullyAvailableBlocks[UnavailableBlocks[i]] = false;
@@ -1136,33 +1422,33 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
PI != E; ++PI) {
if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
continue;
-
+
// If this load is not available in multiple predecessors, reject it.
if (UnavailablePred && UnavailablePred != *PI)
return false;
UnavailablePred = *PI;
}
-
+
assert(UnavailablePred != 0 &&
"Fully available value should be eliminated above!");
-
+
// If the loaded pointer is PHI node defined in this block, do PHI translation
// to get its value in the predecessor.
Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
-
+
// Make sure the value is live in the predecessor. If it was defined by a
// non-PHI instruction in this block, we don't know how to recompute it above.
if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
- DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
- << *LPInst << *LI << "\n");
+ DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
+ << *LPInst << '\n' << *LI << "\n");
return false;
}
-
+
// We don't currently handle critical edges :(
if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
- DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
- << UnavailablePred->getName() << "': " << *LI);
+ DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
+ << UnavailablePred->getName() << "': " << *LI << '\n');
return false;
}
@@ -1182,28 +1468,23 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// Okay, we can eliminate this load by inserting a reload in the predecessor
// and using PHI construction to get the value in the other predecessors, do
// it.
- DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
-
+ DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
+
Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
LI->getAlignment(),
UnavailablePred->getTerminator());
-
- SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
- for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
- I != E; ++I)
- ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
-
- DenseMap<BasicBlock*, Value*> BlockReplValues;
- BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
- BlockReplValues[UnavailablePred] = NewLoad;
-
+
+ // Add the newly created load.
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
+
// Perform PHI construction.
- Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
- LI->replaceAllUsesWith(v);
- if (isa<PHINode>(v))
- v->takeName(LI);
- if (isa<PointerType>(v->getType()))
- MD->invalidateCachedPointerInfo(v);
+ Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
+ VN.getAliasAnalysis());
+ LI->replaceAllUsesWith(V);
+ if (isa<PHINode>(V))
+ V->takeName(LI);
+ if (isa<PointerType>(V->getType()))
+ MD->invalidateCachedPointerInfo(V);
toErase.push_back(LI);
NumPRELoad++;
return true;
@@ -1214,64 +1495,119 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
if (L->isVolatile())
return false;
-
- Value* pointer = L->getPointerOperand();
// ... to a pointer that has been loaded from before...
- MemDepResult dep = MD->getDependency(L);
-
+ MemDepResult Dep = MD->getDependency(L);
+
// If the value isn't available, don't do anything!
- if (dep.isClobber()) {
+ if (Dep.isClobber()) {
+ // FIXME: We should handle memset/memcpy/memmove as dependent instructions
+ // to forward the value if available.
+ //if (isa<MemIntrinsic>(Dep.getInst()))
+ //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
+
+ // Check to see if we have something like this:
+ // store i32 123, i32* %P
+ // %A = bitcast i32* %P to i8*
+ // %B = gep i8* %A, i32 1
+ // %C = load i8* %B
+ //
+ // We could do that by recognizing if the clobber instructions are obviously
+ // a common base + constant offset, and if the previous store (or memset)
+ // completely covers this load. This sort of thing can happen in bitfield
+ // access code.
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
+ if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
+ int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
+ if (Offset != -1) {
+ Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
+ L->getType(), L, *TD);
+ DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
+ << *AvailVal << '\n' << *L << "\n\n\n");
+
+ // Replace the load!
+ L->replaceAllUsesWith(AvailVal);
+ if (isa<PointerType>(AvailVal->getType()))
+ MD->invalidateCachedPointerInfo(AvailVal);
+ toErase.push_back(L);
+ NumGVNLoad++;
+ return true;
+ }
+ }
+
DEBUG(
// fast print dep, using operator<< on instruction would be too slow
- DOUT << "GVN: load ";
- WriteAsOperand(*DOUT.stream(), L);
- Instruction *I = dep.getInst();
- DOUT << " is clobbered by " << *I;
+ errs() << "GVN: load ";
+ WriteAsOperand(errs(), L);
+ Instruction *I = Dep.getInst();
+ errs() << " is clobbered by " << *I << '\n';
);
return false;
}
// If it is defined in another block, try harder.
- if (dep.isNonLocal())
+ if (Dep.isNonLocal())
return processNonLocalLoad(L, toErase);
- Instruction *DepInst = dep.getInst();
+ Instruction *DepInst = Dep.getInst();
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
- // Only forward substitute stores to loads of the same type.
- // FIXME: Could do better!
- if (DepSI->getPointerOperand()->getType() != pointer->getType())
- return false;
+ Value *StoredVal = DepSI->getOperand(0);
+ // The store and load are to a must-aliased pointer, but they may not
+ // actually have the same type. See if we know how to reuse the stored
+ // value (depending on its type).
+ const TargetData *TD = 0;
+ if (StoredVal->getType() != L->getType() &&
+ (TD = getAnalysisIfAvailable<TargetData>())) {
+ StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
+ L, *TD);
+ if (StoredVal == 0)
+ return false;
+
+ DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
+ << '\n' << *L << "\n\n\n");
+ }
+
// Remove it!
- L->replaceAllUsesWith(DepSI->getOperand(0));
- if (isa<PointerType>(DepSI->getOperand(0)->getType()))
- MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
+ L->replaceAllUsesWith(StoredVal);
+ if (isa<PointerType>(StoredVal->getType()))
+ MD->invalidateCachedPointerInfo(StoredVal);
toErase.push_back(L);
NumGVNLoad++;
return true;
}
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
- // Only forward substitute stores to loads of the same type.
- // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
- if (DepLI->getType() != L->getType())
- return false;
+ Value *AvailableVal = DepLI;
+
+ // The loads are of a must-aliased pointer, but they may not actually have
+ // the same type. See if we know how to reuse the previously loaded value
+ // (depending on its type).
+ const TargetData *TD = 0;
+ if (DepLI->getType() != L->getType() &&
+ (TD = getAnalysisIfAvailable<TargetData>())) {
+ AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
+ if (AvailableVal == 0)
+ return false;
+
+ DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
+ << "\n" << *L << "\n\n\n");
+ }
// Remove it!
- L->replaceAllUsesWith(DepLI);
+ L->replaceAllUsesWith(AvailableVal);
if (isa<PointerType>(DepLI->getType()))
MD->invalidateCachedPointerInfo(DepLI);
toErase.push_back(L);
NumGVNLoad++;
return true;
}
-
+
// If this load really doesn't depend on anything, then we must be loading an
// undef value. This can happen when loading for a fresh allocation with no
// intervening stores, for example.
- if (isa<AllocationInst>(DepInst)) {
- L->replaceAllUsesWith(Context->getUndef(L->getType()));
+ if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
+ L->replaceAllUsesWith(UndefValue::get(L->getType()));
toErase.push_back(L);
NumGVNLoad++;
return true;
@@ -1280,150 +1616,93 @@ bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
return false;
}
-Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
+Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
if (I == localAvail.end())
return 0;
-
- ValueNumberScope* locals = I->second;
-
- while (locals) {
- DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
- if (I != locals->table.end())
+
+ ValueNumberScope *Locals = I->second;
+ while (Locals) {
+ DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
+ if (I != Locals->table.end())
return I->second;
- else
- locals = locals->parent;
+ Locals = Locals->parent;
}
-
+
return 0;
}
-/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
-/// by inheritance from the dominator fails, see if we can perform phi
-/// construction to eliminate the redundancy.
-Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
- BasicBlock* BaseBlock = orig->getParent();
-
- SmallPtrSet<BasicBlock*, 4> Visited;
- SmallVector<BasicBlock*, 8> Stack;
- Stack.push_back(BaseBlock);
-
- DenseMap<BasicBlock*, Value*> Results;
-
- // Walk backwards through our predecessors, looking for instances of the
- // value number we're looking for. Instances are recorded in the Results
- // map, which is then used to perform phi construction.
- while (!Stack.empty()) {
- BasicBlock* Current = Stack.back();
- Stack.pop_back();
-
- // If we've walked all the way to a proper dominator, then give up. Cases
- // where the instance is in the dominator will have been caught by the fast
- // path, and any cases that require phi construction further than this are
- // probably not worth it anyways. Note that this is a SIGNIFICANT compile
- // time improvement.
- if (DT->properlyDominates(Current, orig->getParent())) return 0;
-
- DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
- localAvail.find(Current);
- if (LA == localAvail.end()) return 0;
- DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
-
- if (V != LA->second->table.end()) {
- // Found an instance, record it.
- Results.insert(std::make_pair(Current, V->second));
- continue;
- }
-
- // If we reach the beginning of the function, then give up.
- if (pred_begin(Current) == pred_end(Current))
- return 0;
-
- for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
- PI != PE; ++PI)
- if (Visited.insert(*PI))
- Stack.push_back(*PI);
- }
-
- // If we didn't find instances, give up. Otherwise, perform phi construction.
- if (Results.size() == 0)
- return 0;
- else
- return GetValueForBlock(BaseBlock, orig, Results, true);
-}
/// processInstruction - When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I,
SmallVectorImpl<Instruction*> &toErase) {
- if (LoadInst* L = dyn_cast<LoadInst>(I)) {
- bool changed = processLoad(L, toErase);
-
- if (!changed) {
- unsigned num = VN.lookup_or_add(L);
- localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ bool Changed = processLoad(LI, toErase);
+
+ if (!Changed) {
+ unsigned Num = VN.lookup_or_add(LI);
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
}
-
- return changed;
+
+ return Changed;
}
-
- uint32_t nextNum = VN.getNextUnusedValueNumber();
- unsigned num = VN.lookup_or_add(I);
-
- if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
-
+
+ uint32_t NextNum = VN.getNextUnusedValueNumber();
+ unsigned Num = VN.lookup_or_add(I);
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
+
if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
return false;
-
- Value* branchCond = BI->getCondition();
- uint32_t condVN = VN.lookup_or_add(branchCond);
-
- BasicBlock* trueSucc = BI->getSuccessor(0);
- BasicBlock* falseSucc = BI->getSuccessor(1);
-
- if (trueSucc->getSinglePredecessor())
- localAvail[trueSucc]->table[condVN] = Context->getConstantIntTrue();
- if (falseSucc->getSinglePredecessor())
- localAvail[falseSucc]->table[condVN] = Context->getConstantIntFalse();
+
+ Value *BranchCond = BI->getCondition();
+ uint32_t CondVN = VN.lookup_or_add(BranchCond);
+
+ BasicBlock *TrueSucc = BI->getSuccessor(0);
+ BasicBlock *FalseSucc = BI->getSuccessor(1);
+
+ if (TrueSucc->getSinglePredecessor())
+ localAvail[TrueSucc]->table[CondVN] =
+ ConstantInt::getTrue(TrueSucc->getContext());
+ if (FalseSucc->getSinglePredecessor())
+ localAvail[FalseSucc]->table[CondVN] =
+ ConstantInt::getFalse(TrueSucc->getContext());
return false;
-
+
// Allocations are always uniquely numbered, so we can save time and memory
- // by fast failing them.
+ // by fast failing them.
} else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
return false;
}
-
+
// Collapse PHI nodes
if (PHINode* p = dyn_cast<PHINode>(I)) {
- Value* constVal = CollapsePhi(p);
-
+ Value *constVal = CollapsePhi(p);
+
if (constVal) {
- for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
- PI != PE; ++PI)
- PI->second.erase(p);
-
p->replaceAllUsesWith(constVal);
if (isa<PointerType>(constVal->getType()))
MD->invalidateCachedPointerInfo(constVal);
VN.erase(p);
-
+
toErase.push_back(p);
} else {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
}
-
+
// If the number we were assigned was a brand new VN, then we don't
// need to do a lookup to see if the number already exists
// somewhere in the domtree: it can't!
- } else if (num == nextNum) {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
-
+ } else if (Num == NextNum) {
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
+
// Perform fast-path value-number based elimination of values inherited from
// dominators.
- } else if (Value* repl = lookupNumber(I->getParent(), num)) {
+ } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
// Remove it!
VN.erase(I);
I->replaceAllUsesWith(repl);
@@ -1432,21 +1711,10 @@ bool GVN::processInstruction(Instruction *I,
toErase.push_back(I);
return true;
-#if 0
- // Perform slow-pathvalue-number based elimination with phi construction.
- } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
- // Remove it!
- VN.erase(I);
- I->replaceAllUsesWith(repl);
- if (isa<PointerType>(repl->getType()))
- MD->invalidateCachedPointerInfo(repl);
- toErase.push_back(I);
- return true;
-#endif
} else {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
}
-
+
return false;
}
@@ -1457,35 +1725,35 @@ bool GVN::runOnFunction(Function& F) {
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
VN.setDomTree(DT);
-
- bool changed = false;
- bool shouldContinue = true;
-
+
+ bool Changed = false;
+ bool ShouldContinue = true;
+
// Merge unconditional branches, allowing PRE to catch more
// optimization opportunities.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
- BasicBlock* BB = FI;
+ BasicBlock *BB = FI;
++FI;
bool removedBlock = MergeBlockIntoPredecessor(BB, this);
if (removedBlock) NumGVNBlocks++;
-
- changed |= removedBlock;
+
+ Changed |= removedBlock;
}
-
+
unsigned Iteration = 0;
-
- while (shouldContinue) {
- DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
- shouldContinue = iterateOnFunction(F);
- changed |= shouldContinue;
+
+ while (ShouldContinue) {
+ DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
+ ShouldContinue = iterateOnFunction(F);
+ Changed |= ShouldContinue;
++Iteration;
}
-
+
if (EnablePRE) {
bool PREChanged = true;
while (PREChanged) {
PREChanged = performPRE(F);
- changed |= PREChanged;
+ Changed |= PREChanged;
}
}
// FIXME: Should perform GVN again after PRE does something. PRE can move
@@ -1495,27 +1763,27 @@ bool GVN::runOnFunction(Function& F) {
cleanupGlobalSets();
- return changed;
+ return Changed;
}
-bool GVN::processBlock(BasicBlock* BB) {
+bool GVN::processBlock(BasicBlock *BB) {
// FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
// incrementing BI before processing an instruction).
SmallVector<Instruction*, 8> toErase;
- bool changed_function = false;
-
+ bool ChangedFunction = false;
+
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) {
- changed_function |= processInstruction(BI, toErase);
+ ChangedFunction |= processInstruction(BI, toErase);
if (toErase.empty()) {
++BI;
continue;
}
-
+
// If we need some instructions deleted, do it now.
NumGVNInstr += toErase.size();
-
+
// Avoid iterator invalidation.
bool AtStart = BI == BB->begin();
if (!AtStart)
@@ -1523,7 +1791,7 @@ bool GVN::processBlock(BasicBlock* BB) {
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I) {
- DEBUG(cerr << "GVN removed: " << **I);
+ DEBUG(errs() << "GVN removed: " << **I << '\n');
MD->removeInstruction(*I);
(*I)->eraseFromParent();
DEBUG(verifyRemoved(*I));
@@ -1535,8 +1803,8 @@ bool GVN::processBlock(BasicBlock* BB) {
else
++BI;
}
-
- return changed_function;
+
+ return ChangedFunction;
}
/// performPRE - Perform a purely local form of PRE that looks for diamond
@@ -1547,32 +1815,33 @@ bool GVN::performPRE(Function& F) {
DenseMap<BasicBlock*, Value*> predMap;
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
- BasicBlock* CurrentBlock = *DI;
-
+ BasicBlock *CurrentBlock = *DI;
+
// Nothing to PRE in the entry block.
if (CurrentBlock == &F.getEntryBlock()) continue;
-
+
for (BasicBlock::iterator BI = CurrentBlock->begin(),
BE = CurrentBlock->end(); BI != BE; ) {
Instruction *CurInst = BI++;
- if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
- isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
+ if (isa<AllocationInst>(CurInst) ||
+ isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
+ CurInst->getType()->isVoidTy() ||
CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
isa<DbgInfoIntrinsic>(CurInst))
continue;
- uint32_t valno = VN.lookup(CurInst);
-
+ uint32_t ValNo = VN.lookup(CurInst);
+
// Look for the predecessors for PRE opportunities. We're
// only trying to solve the basic diamond case, where
// a value is computed in the successor and one predecessor,
// but not the other. We also explicitly disallow cases
// where the successor is its own predecessor, because they're
// more complicated to get right.
- unsigned numWith = 0;
- unsigned numWithout = 0;
- BasicBlock* PREPred = 0;
+ unsigned NumWith = 0;
+ unsigned NumWithout = 0;
+ BasicBlock *PREPred = 0;
predMap.clear();
for (pred_iterator PI = pred_begin(CurrentBlock),
@@ -1581,59 +1850,59 @@ bool GVN::performPRE(Function& F) {
// own predecessor, on in blocks with predecessors
// that are not reachable.
if (*PI == CurrentBlock) {
- numWithout = 2;
+ NumWithout = 2;
break;
} else if (!localAvail.count(*PI)) {
- numWithout = 2;
+ NumWithout = 2;
break;
}
-
- DenseMap<uint32_t, Value*>::iterator predV =
- localAvail[*PI]->table.find(valno);
+
+ DenseMap<uint32_t, Value*>::iterator predV =
+ localAvail[*PI]->table.find(ValNo);
if (predV == localAvail[*PI]->table.end()) {
PREPred = *PI;
- numWithout++;
+ NumWithout++;
} else if (predV->second == CurInst) {
- numWithout = 2;
+ NumWithout = 2;
} else {
predMap[*PI] = predV->second;
- numWith++;
+ NumWith++;
}
}
-
+
// Don't do PRE when it might increase code size, i.e. when
// we would need to insert instructions in more than one pred.
- if (numWithout != 1 || numWith == 0)
+ if (NumWithout != 1 || NumWith == 0)
continue;
-
+
// We can't do PRE safely on a critical edge, so instead we schedule
// the edge to be split and perform the PRE the next time we iterate
// on the function.
- unsigned succNum = 0;
+ unsigned SuccNum = 0;
for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
i != e; ++i)
if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
- succNum = i;
+ SuccNum = i;
break;
}
-
- if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
- toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
+
+ if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
+ toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
continue;
}
-
+
// Instantiate the expression the in predecessor that lacked it.
// Because we are going top-down through the block, all value numbers
// will be available in the predecessor by the time we need them. Any
// that weren't original present will have been instantiated earlier
// in this loop.
- Instruction* PREInstr = CurInst->clone();
+ Instruction *PREInstr = CurInst->clone();
bool success = true;
for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
Value *Op = PREInstr->getOperand(i);
if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
continue;
-
+
if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
PREInstr->setOperand(i, V);
} else {
@@ -1641,25 +1910,25 @@ bool GVN::performPRE(Function& F) {
break;
}
}
-
+
// Fail out if we encounter an operand that is not available in
- // the PRE predecessor. This is typically because of loads which
+ // the PRE predecessor. This is typically because of loads which
// are not value numbered precisely.
if (!success) {
delete PREInstr;
DEBUG(verifyRemoved(PREInstr));
continue;
}
-
+
PREInstr->insertBefore(PREPred->getTerminator());
PREInstr->setName(CurInst->getName() + ".pre");
predMap[PREPred] = PREInstr;
- VN.add(PREInstr, valno);
+ VN.add(PREInstr, ValNo);
NumGVNPRE++;
-
+
// Update the availability map to include the new instruction.
- localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
-
+ localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
+
// Create a PHI to make the value available in this block.
PHINode* Phi = PHINode::Create(CurInst->getType(),
CurInst->getName() + ".pre-phi",
@@ -1667,27 +1936,27 @@ bool GVN::performPRE(Function& F) {
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI)
Phi->addIncoming(predMap[*PI], *PI);
-
- VN.add(Phi, valno);
- localAvail[CurrentBlock]->table[valno] = Phi;
-
+
+ VN.add(Phi, ValNo);
+ localAvail[CurrentBlock]->table[ValNo] = Phi;
+
CurInst->replaceAllUsesWith(Phi);
if (isa<PointerType>(Phi->getType()))
MD->invalidateCachedPointerInfo(Phi);
VN.erase(CurInst);
-
- DEBUG(cerr << "GVN PRE removed: " << *CurInst);
+
+ DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
MD->removeInstruction(CurInst);
CurInst->eraseFromParent();
DEBUG(verifyRemoved(CurInst));
Changed = true;
}
}
-
+
for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
SplitCriticalEdge(I->first, I->second, this);
-
+
return Changed || toSplit.size();
}
@@ -1705,25 +1974,24 @@ bool GVN::iterateOnFunction(Function &F) {
}
// Top-down walk of the dominator tree
- bool changed = false;
+ bool Changed = false;
#if 0
// Needed for value numbering with phi construction to work.
ReversePostOrderTraversal<Function*> RPOT(&F);
for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
RE = RPOT.end(); RI != RE; ++RI)
- changed |= processBlock(*RI);
+ Changed |= processBlock(*RI);
#else
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI)
- changed |= processBlock(DI->getBlock());
+ Changed |= processBlock(DI->getBlock());
#endif
- return changed;
+ return Changed;
}
void GVN::cleanupGlobalSets() {
VN.clear();
- phiMap.clear();
for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
@@ -1736,18 +2004,6 @@ void GVN::cleanupGlobalSets() {
void GVN::verifyRemoved(const Instruction *Inst) const {
VN.verifyRemoved(Inst);
- // Walk through the PHI map to make sure the instruction isn't hiding in there
- // somewhere.
- for (PhiMapType::iterator
- I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
- assert(I->first != Inst && "Inst is still a key in PHI map!");
-
- for (SmallPtrSet<Instruction*, 4>::iterator
- II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
- assert(*II != Inst && "Inst is still a value in PHI map!");
- }
- }
-
// Walk through the value number scope to make sure the instruction isn't
// ferreted away in it.
for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
OpenPOWER on IntegriCloud