summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/InstCombine/InstCombineCalls.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2012-04-14 13:54:10 +0000
committerdim <dim@FreeBSD.org>2012-04-14 13:54:10 +0000
commit1fc08f5e9ef733ef1ce6f363fecedc2260e78974 (patch)
tree19c69a04768629f2d440944b71cbe90adae0b615 /lib/Transforms/InstCombine/InstCombineCalls.cpp
parent07637c87f826cdf411f0673595e9bc92ebd793f2 (diff)
downloadFreeBSD-src-1fc08f5e9ef733ef1ce6f363fecedc2260e78974.zip
FreeBSD-src-1fc08f5e9ef733ef1ce6f363fecedc2260e78974.tar.gz
Vendor import of llvm trunk r154661:
http://llvm.org/svn/llvm-project/llvm/trunk@r154661
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineCalls.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp160
1 files changed, 84 insertions, 76 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
index c7b3ff8..77e4727 100644
--- a/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -37,26 +37,26 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
unsigned CopyAlign = MI->getAlignment();
if (CopyAlign < MinAlign) {
- MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
MinAlign, false));
return MI;
}
-
+
// If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
// load/store.
ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
if (MemOpLength == 0) return 0;
-
+
// Source and destination pointer types are always "i8*" for intrinsic. See
// if the size is something we can handle with a single primitive load/store.
// A single load+store correctly handles overlapping memory in the memmove
// case.
unsigned Size = MemOpLength->getZExtValue();
if (Size == 0) return MI; // Delete this mem transfer.
-
+
if (Size > 8 || (Size&(Size-1)))
return 0; // If not 1/2/4/8 bytes, exit.
-
+
// Use an integer load+store unless we can find something better.
unsigned SrcAddrSp =
cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
@@ -66,7 +66,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
-
+
// Memcpy forces the use of i8* for the source and destination. That means
// that if you're using memcpy to move one double around, you'll get a cast
// from double* to i8*. We'd much rather use a double load+store rather than
@@ -94,20 +94,20 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
} else
break;
}
-
+
if (SrcETy->isSingleValueType()) {
NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
}
}
}
-
-
+
+
// If the memcpy/memmove provides better alignment info than we can
// infer, use it.
SrcAlign = std::max(SrcAlign, CopyAlign);
DstAlign = std::max(DstAlign, CopyAlign);
-
+
Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
@@ -127,7 +127,7 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
Alignment, false));
return MI;
}
-
+
// Extract the length and alignment and fill if they are constant.
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
@@ -135,14 +135,14 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
return 0;
uint64_t Len = LenC->getZExtValue();
Alignment = MI->getAlignment();
-
+
// If the length is zero, this is a no-op
if (Len == 0) return MI; // memset(d,c,0,a) -> noop
-
+
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
-
+
Value *Dest = MI->getDest();
unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
@@ -150,13 +150,13 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
// Alignment 0 is identity for alignment 1 for memset, but not store.
if (Alignment == 0) Alignment = 1;
-
+
// Extract the fill value and store.
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
MI->isVolatile());
S->setAlignment(Alignment);
-
+
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(LenC->getType()));
return MI;
@@ -165,7 +165,7 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
return 0;
}
-/// visitCallInst - CallInst simplification. This mostly only handles folding
+/// visitCallInst - CallInst simplification. This mostly only handles folding
/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
/// the heavy lifting.
///
@@ -182,7 +182,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
CI.setDoesNotThrow();
return &CI;
}
-
+
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
if (!II) return visitCallSite(&CI);
@@ -203,7 +203,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// alignment is sufficient.
}
}
-
+
// No other transformations apply to volatile transfers.
if (MI->isVolatile())
return 0;
@@ -242,13 +242,13 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (Changed) return II;
}
-
+
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::objectsize: {
// We need target data for just about everything so depend on it.
if (!TD) break;
-
+
Type *ReturnTy = CI.getType();
uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
@@ -265,6 +265,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// Get the current byte offset into the thing. Use the original
// operand in case we're looking through a bitcast.
SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
+ if (!GEP->getPointerOperandType()->isPointerTy())
+ return 0;
Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
Op1 = GEP->getPointerOperand()->stripPointerCasts();
@@ -322,7 +324,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
if (Operand->getIntrinsicID() == Intrinsic::bswap)
return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
-
+
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
@@ -334,7 +336,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return new TruncInst(V, TI->getType());
}
}
-
+
break;
case Intrinsic::powi:
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
@@ -359,14 +361,13 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
uint32_t BitWidth = IT->getBitWidth();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
- KnownZero, KnownOne);
+ ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
unsigned TrailingZeros = KnownOne.countTrailingZeros();
APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
if ((Mask & KnownZero) == Mask)
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
APInt(BitWidth, TrailingZeros)));
-
+
}
break;
case Intrinsic::ctlz: {
@@ -378,31 +379,29 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
uint32_t BitWidth = IT->getBitWidth();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
- KnownZero, KnownOne);
+ ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
unsigned LeadingZeros = KnownOne.countLeadingZeros();
APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
if ((Mask & KnownZero) == Mask)
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
APInt(BitWidth, LeadingZeros)));
-
+
}
break;
case Intrinsic::uadd_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
uint32_t BitWidth = IT->getBitWidth();
- APInt Mask = APInt::getSignBit(BitWidth);
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+ ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
if (LHSKnownNegative || LHSKnownPositive) {
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+ ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
if (LHSKnownNegative && RHSKnownNegative) {
@@ -448,7 +447,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// X + undef -> undef
if (isa<UndefValue>(II->getArgOperand(1)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
+
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// X + 0 -> {X, false}
if (RHS->isZero()) {
@@ -469,7 +468,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (isa<UndefValue>(II->getArgOperand(0)) ||
isa<UndefValue>(II->getArgOperand(1)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
+
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// X - 0 -> {X, false}
if (RHS->isZero()) {
@@ -477,7 +476,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
UndefValue::get(II->getArgOperand(0)->getType()),
ConstantInt::getFalse(II->getContext())
};
- Constant *Struct =
+ Constant *Struct =
ConstantStruct::get(cast<StructType>(II->getType()), V);
return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
}
@@ -486,14 +485,13 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::umul_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
- APInt Mask = APInt::getAllOnesValue(BitWidth);
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+ ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+ ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
// Get the largest possible values for each operand.
APInt LHSMax = ~LHSKnownZero;
@@ -526,19 +524,19 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// X * undef -> undef
if (isa<UndefValue>(II->getArgOperand(1)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
+
if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// X*0 -> {0, false}
if (RHSI->isZero())
return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
-
+
// X * 1 -> {X, false}
if (RHSI->equalsInt(1)) {
Constant *V[] = {
UndefValue::get(II->getArgOperand(0)->getType()),
ConstantInt::getFalse(II->getContext())
};
- Constant *Struct =
+ Constant *Struct =
ConstantStruct::get(cast<StructType>(II->getType()), V);
return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
}
@@ -557,7 +555,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::ppc_altivec_stvxl:
// Turn stvx -> store if the pointer is known aligned.
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
- Type *OpPtrTy =
+ Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(0)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
return new StoreInst(II->getArgOperand(0), Ptr);
@@ -568,7 +566,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::x86_sse2_storeu_dq:
// Turn X86 storeu -> store if the pointer is known aligned.
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
- Type *OpPtrTy =
+ Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(1)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
return new StoreInst(II->getArgOperand(1), Ptr);
@@ -621,19 +619,21 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::ppc_altivec_vperm:
// Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
- if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
- assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
-
+ if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
+ assert(Mask->getType()->getVectorNumElements() == 16 &&
+ "Bad type for intrinsic!");
+
// Check that all of the elements are integer constants or undefs.
bool AllEltsOk = true;
for (unsigned i = 0; i != 16; ++i) {
- if (!isa<ConstantInt>(Mask->getOperand(i)) &&
- !isa<UndefValue>(Mask->getOperand(i))) {
+ Constant *Elt = Mask->getAggregateElement(i);
+ if (Elt == 0 ||
+ !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
AllEltsOk = false;
break;
}
}
-
+
if (AllEltsOk) {
// Cast the input vectors to byte vectors.
Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
@@ -641,23 +641,24 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
Mask->getType());
Value *Result = UndefValue::get(Op0->getType());
-
+
// Only extract each element once.
Value *ExtractedElts[32];
memset(ExtractedElts, 0, sizeof(ExtractedElts));
-
+
for (unsigned i = 0; i != 16; ++i) {
- if (isa<UndefValue>(Mask->getOperand(i)))
+ if (isa<UndefValue>(Mask->getAggregateElement(i)))
continue;
- unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
+ unsigned Idx =
+ cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
Idx &= 31; // Match the hardware behavior.
-
+
if (ExtractedElts[Idx] == 0) {
- ExtractedElts[Idx] =
+ ExtractedElts[Idx] =
Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
Builder->getInt32(Idx&15));
}
-
+
// Insert this value into the result vector.
Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
Builder->getInt32(i));
@@ -703,7 +704,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return EraseInstFromFunction(CI);
}
}
-
+
// Scan down this block to see if there is another stack restore in the
// same block without an intervening call/alloca.
BasicBlock::iterator BI = II;
@@ -728,12 +729,11 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
}
}
-
+
// If the stack restore is in a return, resume, or unwind block and if there
// are no allocas or calls between the restore and the return, nuke the
// restore.
- if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI) ||
- isa<UnwindInst>(TI)))
+ if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
return EraseInstFromFunction(CI);
break;
}
@@ -748,7 +748,7 @@ Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
return visitCallSite(&II);
}
-/// isSafeToEliminateVarargsCast - If this cast does not affect the value
+/// isSafeToEliminateVarargsCast - If this cast does not affect the value
/// passed through the varargs area, we can eliminate the use of the cast.
static bool isSafeToEliminateVarargsCast(const CallSite CS,
const CastInst * const CI,
@@ -760,10 +760,10 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
// The size of ByVal arguments is derived from the type, so we
// can't change to a type with a different size. If the size were
// passed explicitly we could avoid this check.
- if (!CS.paramHasAttr(ix, Attribute::ByVal))
+ if (!CS.isByValArgument(ix))
return true;
- Type* SrcTy =
+ Type* SrcTy =
cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
@@ -807,7 +807,7 @@ public:
} // end anonymous namespace
// Try to fold some different type of calls here.
-// Currently we're only working with the checking functions, memcpy_chk,
+// Currently we're only working with the checking functions, memcpy_chk,
// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
// strcat_chk and strncat_chk.
Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
@@ -916,7 +916,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
!CalleeF->isDeclaration()) {
Instruction *OldCall = CS.getInstruction();
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
- UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
+ UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
OldCall);
// If OldCall dues not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
@@ -924,7 +924,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
if (isa<CallInst>(OldCall))
return EraseInstFromFunction(*OldCall);
-
+
// We cannot remove an invoke, because it would change the CFG, just
// change the callee to a null pointer.
cast<InvokeInst>(OldCall)->setCalledFunction(
@@ -960,7 +960,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
PointerType *PTy = cast<PointerType>(Callee->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
if (FTy->isVarArg()) {
- int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
+ int ix = FTy->getNumParams();
// See if we can optimize any arguments passed through the varargs area of
// the call.
for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
@@ -1061,17 +1061,17 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!CastInst::isCastable(ActTy, ParamTy))
return false; // Cannot transform this parameter value.
- unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
+ Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
if (Attrs & Attribute::typeIncompatible(ParamTy))
return false; // Attribute not compatible with transformed value.
-
+
// If the parameter is passed as a byval argument, then we have to have a
// sized type and the sized type has to have the same size as the old type.
if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
return false;
-
+
Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
if (TD->getTypeAllocSize(CurElTy) !=
TD->getTypeAllocSize(ParamPTy->getElementType()))
@@ -1099,8 +1099,17 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
return false;
+
+ // If both the callee and the cast type are varargs, we still have to make
+ // sure the number of fixed parameters are the same or we have the same
+ // ABI issues as if we introduce a varargs call.
+ if (FT->isVarArg() &&
+ cast<FunctionType>(APTy->getElementType())->isVarArg() &&
+ FT->getNumParams() !=
+ cast<FunctionType>(APTy->getElementType())->getNumParams())
+ return false;
}
-
+
if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
!CallerPAL.isEmpty())
// In this case we have more arguments than the new function type, but we
@@ -1114,7 +1123,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
return false;
}
-
+
// Okay, we decided that this is a safe thing to do: go ahead and start
// inserting cast instructions as necessary.
std::vector<Value*> Args;
@@ -1352,11 +1361,11 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
// Replace the trampoline call with a direct call. Let the generic
// code sort out any function type mismatches.
- FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
+ FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
FTy->isVarArg());
Constant *NewCallee =
NestF->getType() == PointerType::getUnqual(NewFTy) ?
- NestF : ConstantExpr::getBitCast(NestF,
+ NestF : ConstantExpr::getBitCast(NestF,
PointerType::getUnqual(NewFTy));
const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
NewAttrs.end());
@@ -1385,9 +1394,8 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
// parameter, there is no need to adjust the argument list. Let the generic
// code sort out any function type mismatches.
Constant *NewCallee =
- NestF->getType() == PTy ? NestF :
+ NestF->getType() == PTy ? NestF :
ConstantExpr::getBitCast(NestF, PTy);
CS.setCalledFunction(NewCallee);
return CS.getInstruction();
}
-
OpenPOWER on IntegriCloud