summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/IPO
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2011-02-20 12:57:14 +0000
committerdim <dim@FreeBSD.org>2011-02-20 12:57:14 +0000
commitcbb70ce070d220642b038ea101d9c0f9fbf860d6 (patch)
treed2b61ce94e654cb01a254d2195259db5f9cc3f3c /lib/Transforms/IPO
parent4ace901e87dac5bbbac78ed325e75462e48e386e (diff)
downloadFreeBSD-src-cbb70ce070d220642b038ea101d9c0f9fbf860d6.zip
FreeBSD-src-cbb70ce070d220642b038ea101d9c0f9fbf860d6.tar.gz
Vendor import of llvm trunk r126079:
http://llvm.org/svn/llvm-project/llvm/trunk@126079
Diffstat (limited to 'lib/Transforms/IPO')
-rw-r--r--lib/Transforms/IPO/ArgumentPromotion.cpp117
-rw-r--r--lib/Transforms/IPO/CMakeLists.txt3
-rw-r--r--lib/Transforms/IPO/ConstantMerge.cpp86
-rw-r--r--lib/Transforms/IPO/DeadArgumentElimination.cpp76
-rw-r--r--lib/Transforms/IPO/DeadTypeElimination.cpp9
-rw-r--r--lib/Transforms/IPO/ExtractGV.cpp30
-rw-r--r--lib/Transforms/IPO/FunctionAttrs.cpp141
-rw-r--r--lib/Transforms/IPO/GlobalDCE.cpp6
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp830
-rw-r--r--lib/Transforms/IPO/IPConstantPropagation.cpp6
-rw-r--r--lib/Transforms/IPO/IPO.cpp38
-rw-r--r--lib/Transforms/IPO/InlineAlways.cpp11
-rw-r--r--lib/Transforms/IPO/InlineSimple.cpp15
-rw-r--r--lib/Transforms/IPO/Inliner.cpp56
-rw-r--r--lib/Transforms/IPO/Internalize.cpp4
-rw-r--r--lib/Transforms/IPO/LoopExtractor.cpp17
-rw-r--r--lib/Transforms/IPO/LowerSetJmp.cpp6
-rw-r--r--lib/Transforms/IPO/MergeFunctions.cpp646
-rw-r--r--lib/Transforms/IPO/PartialInlining.cpp8
-rw-r--r--lib/Transforms/IPO/PartialSpecialization.cpp216
-rw-r--r--lib/Transforms/IPO/PruneEH.cpp11
-rw-r--r--lib/Transforms/IPO/StripDeadPrototypes.cpp6
-rw-r--r--lib/Transforms/IPO/StripSymbols.cpp24
-rw-r--r--lib/Transforms/IPO/StructRetPromotion.cpp11
24 files changed, 1375 insertions, 998 deletions
diff --git a/lib/Transforms/IPO/ArgumentPromotion.cpp b/lib/Transforms/IPO/ArgumentPromotion.cpp
index 0c77e1f..0c650cf 100644
--- a/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -39,7 +39,6 @@
#include "llvm/LLVMContext.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
@@ -67,7 +66,9 @@ namespace {
virtual bool runOnSCC(CallGraphSCC &SCC);
static char ID; // Pass identification, replacement for typeid
explicit ArgPromotion(unsigned maxElements = 3)
- : CallGraphSCCPass(ID), maxElements(maxElements) {}
+ : CallGraphSCCPass(ID), maxElements(maxElements) {
+ initializeArgPromotionPass(*PassRegistry::getPassRegistry());
+ }
/// A vector used to hold the indices of a single GEP instruction
typedef std::vector<uint64_t> IndicesVector;
@@ -84,8 +85,12 @@ namespace {
}
char ArgPromotion::ID = 0;
-INITIALIZE_PASS(ArgPromotion, "argpromotion",
- "Promote 'by reference' arguments to scalars", false, false);
+INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
+ "Promote 'by reference' arguments to scalars", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
+ "Promote 'by reference' arguments to scalars", false, false)
Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
return new ArgPromotion(maxElements);
@@ -130,47 +135,74 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
if (PointerArgs.empty()) return 0;
// Second check: make sure that all callers are direct callers. We can't
- // transform functions that have indirect callers.
- if (F->hasAddressTaken())
- return 0;
-
+ // transform functions that have indirect callers. Also see if the function
+ // is self-recursive.
+ bool isSelfRecursive = false;
+ for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
+ UI != E; ++UI) {
+ CallSite CS(*UI);
+ // Must be a direct call.
+ if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
+
+ if (CS.getInstruction()->getParent()->getParent() == F)
+ isSelfRecursive = true;
+ }
+
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
SmallPtrSet<Argument*, 8> ArgsToPromote;
SmallPtrSet<Argument*, 8> ByValArgsToTransform;
for (unsigned i = 0; i != PointerArgs.size(); ++i) {
bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
+ Argument *PtrArg = PointerArgs[i].first;
+ const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
// If this is a byval argument, and if the aggregate type is small, just
// pass the elements, which is always safe.
- Argument *PtrArg = PointerArgs[i].first;
if (isByVal) {
- const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
if (maxElements > 0 && STy->getNumElements() > maxElements) {
DEBUG(dbgs() << "argpromotion disable promoting argument '"
<< PtrArg->getName() << "' because it would require adding more"
<< " than " << maxElements << " arguments to the function.\n");
- } else {
- // If all the elements are single-value types, we can promote it.
- bool AllSimple = true;
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- if (!STy->getElementType(i)->isSingleValueType()) {
- AllSimple = false;
- break;
- }
-
- // Safe to transform, don't even bother trying to "promote" it.
- // Passing the elements as a scalar will allow scalarrepl to hack on
- // the new alloca we introduce.
- if (AllSimple) {
- ByValArgsToTransform.insert(PtrArg);
- continue;
+ continue;
+ }
+
+ // If all the elements are single-value types, we can promote it.
+ bool AllSimple = true;
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ if (!STy->getElementType(i)->isSingleValueType()) {
+ AllSimple = false;
+ break;
}
}
+
+ // Safe to transform, don't even bother trying to "promote" it.
+ // Passing the elements as a scalar will allow scalarrepl to hack on
+ // the new alloca we introduce.
+ if (AllSimple) {
+ ByValArgsToTransform.insert(PtrArg);
+ continue;
+ }
}
}
+ // If the argument is a recursive type and we're in a recursive
+ // function, we could end up infinitely peeling the function argument.
+ if (isSelfRecursive) {
+ if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
+ bool RecursiveType = false;
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ if (STy->getElementType(i) == PtrArg->getType()) {
+ RecursiveType = true;
+ break;
+ }
+ }
+ if (RecursiveType)
+ continue;
+ }
+ }
+
// Otherwise, see if we can promote the pointer to its value.
if (isSafeToPromoteArgument(PtrArg, isByVal))
ArgsToPromote.insert(PtrArg);
@@ -183,22 +215,9 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
}
-/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
-/// to load.
-static bool IsAlwaysValidPointer(Value *V) {
- if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
- return IsAlwaysValidPointer(GEP->getOperand(0));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::GetElementPtr)
- return IsAlwaysValidPointer(CE->getOperand(0));
-
- return false;
-}
-
-/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
+/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
/// all callees pass in a valid pointer for the specified function argument.
-static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
+static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
Function *Callee = Arg->getParent();
unsigned ArgNo = std::distance(Callee->arg_begin(),
@@ -211,7 +230,7 @@ static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
CallSite CS(*UI);
assert(CS && "Should only have direct calls!");
- if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
+ if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
return false;
}
return true;
@@ -318,7 +337,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
GEPIndicesSet ToPromote;
// If the pointer is always valid, any load with first index 0 is valid.
- if (isByVal || AllCalleesPassInValidPointerForArgument(Arg))
+ if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
// First, iterate the entry block and mark loads of (geps of) arguments as
@@ -434,8 +453,6 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
SmallPtrSet<BasicBlock*, 16> TranspBlocks;
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- TargetData *TD = getAnalysisIfAvailable<TargetData>();
- if (!TD) return false; // Without TargetData, assume the worst.
for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
// Check to see if the load is invalidated from the start of the block to
@@ -443,11 +460,8 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
LoadInst *Load = Loads[i];
BasicBlock *BB = Load->getParent();
- const PointerType *LoadTy =
- cast<PointerType>(Load->getPointerOperand()->getType());
- unsigned LoadSize =(unsigned)TD->getTypeStoreSize(LoadTy->getElementType());
-
- if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
+ AliasAnalysis::Location Loc = AA.getLocation(Load);
+ if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.
@@ -458,7 +472,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
I = idf_ext_begin(P, TranspBlocks),
E = idf_ext_end(P, TranspBlocks); I != E; ++I)
- if (AA.canBasicBlockModify(**I, Arg, LoadSize))
+ if (AA.canBasicBlockModify(**I, Loc))
return false;
}
}
@@ -694,6 +708,9 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// of the previous load.
LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
newLoad->setAlignment(OrigLoad->getAlignment());
+ // Transfer the TBAA info too.
+ newLoad->setMetadata(LLVMContext::MD_tbaa,
+ OrigLoad->getMetadata(LLVMContext::MD_tbaa));
Args.push_back(newLoad);
AA.copyValue(OrigLoad, Args.back());
}
diff --git a/lib/Transforms/IPO/CMakeLists.txt b/lib/Transforms/IPO/CMakeLists.txt
index 65483e8..efdeec5 100644
--- a/lib/Transforms/IPO/CMakeLists.txt
+++ b/lib/Transforms/IPO/CMakeLists.txt
@@ -17,11 +17,8 @@ add_llvm_library(LLVMipo
LowerSetJmp.cpp
MergeFunctions.cpp
PartialInlining.cpp
- PartialSpecialization.cpp
PruneEH.cpp
StripDeadPrototypes.cpp
StripSymbols.cpp
StructRetPromotion.cpp
)
-
-target_link_libraries (LLVMipo LLVMScalarOpts LLVMInstCombine)
diff --git a/lib/Transforms/IPO/ConstantMerge.cpp b/lib/Transforms/IPO/ConstantMerge.cpp
index 64e8d79..a21efce 100644
--- a/lib/Transforms/IPO/ConstantMerge.cpp
+++ b/lib/Transforms/IPO/ConstantMerge.cpp
@@ -33,7 +33,9 @@ STATISTIC(NumMerged, "Number of global constants merged");
namespace {
struct ConstantMerge : public ModulePass {
static char ID; // Pass identification, replacement for typeid
- ConstantMerge() : ModulePass(ID) {}
+ ConstantMerge() : ModulePass(ID) {
+ initializeConstantMergePass(*PassRegistry::getPassRegistry());
+ }
// run - For this pass, process all of the globals in the module,
// eliminating duplicate constants.
@@ -44,7 +46,7 @@ namespace {
char ConstantMerge::ID = 0;
INITIALIZE_PASS(ConstantMerge, "constmerge",
- "Merge Duplicate Global Constants", false, false);
+ "Merge Duplicate Global Constants", false, false)
ModulePass *llvm::createConstantMergePass() { return new ConstantMerge(); }
@@ -63,6 +65,18 @@ static void FindUsedValues(GlobalVariable *LLVMUsed,
UsedValues.insert(GV);
}
+// True if A is better than B.
+static bool IsBetterCannonical(const GlobalVariable &A,
+ const GlobalVariable &B) {
+ if (!A.hasLocalLinkage() && B.hasLocalLinkage())
+ return true;
+
+ if (A.hasLocalLinkage() && !B.hasLocalLinkage())
+ return false;
+
+ return A.hasUnnamedAddr();
+}
+
bool ConstantMerge::runOnModule(Module &M) {
// Find all the globals that are marked "used". These cannot be merged.
SmallPtrSet<const GlobalValue*, 8> UsedGlobals;
@@ -83,44 +97,76 @@ bool ConstantMerge::runOnModule(Module &M) {
// second level constants have initializers which point to the globals that
// were just merged.
while (1) {
- // First pass: identify all globals that can be merged together, filling in
- // the Replacements vector. We cannot do the replacement in this pass
- // because doing so may cause initializers of other globals to be rewritten,
- // invalidating the Constant* pointers in CMap.
- //
+
+ // First: Find the canonical constants others will be merged with.
for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
GVI != E; ) {
GlobalVariable *GV = GVI++;
-
+
// If this GV is dead, remove it.
GV->removeDeadConstantUsers();
if (GV->use_empty() && GV->hasLocalLinkage()) {
GV->eraseFromParent();
continue;
}
-
- // Only process constants with initializers in the default addres space.
- if (!GV->isConstant() ||!GV->hasDefinitiveInitializer() ||
- GV->getType()->getAddressSpace() != 0 || !GV->getSection().empty() ||
+
+ // Only process constants with initializers in the default address space.
+ if (!GV->isConstant() || !GV->hasDefinitiveInitializer() ||
+ GV->getType()->getAddressSpace() != 0 || GV->hasSection() ||
// Don't touch values marked with attribute(used).
UsedGlobals.count(GV))
continue;
-
-
-
+
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
GlobalVariable *&Slot = CMap[Init];
- if (Slot == 0) { // Nope, add it to the map.
+ // If this is the first constant we find or if the old on is local,
+ // replace with the current one. It the current is externally visible
+ // it cannot be replace, but can be the canonical constant we merge with.
+ if (Slot == 0 || IsBetterCannonical(*GV, *Slot)) {
Slot = GV;
- } else if (GV->hasLocalLinkage()) { // Yup, this is a duplicate!
- // Make all uses of the duplicate constant use the canonical version.
- Replacements.push_back(std::make_pair(GV, Slot));
}
}
+ // Second: identify all globals that can be merged together, filling in
+ // the Replacements vector. We cannot do the replacement in this pass
+ // because doing so may cause initializers of other globals to be rewritten,
+ // invalidating the Constant* pointers in CMap.
+ for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
+ GVI != E; ) {
+ GlobalVariable *GV = GVI++;
+
+ // Only process constants with initializers in the default address space.
+ if (!GV->isConstant() || !GV->hasDefinitiveInitializer() ||
+ GV->getType()->getAddressSpace() != 0 || GV->hasSection() ||
+ // Don't touch values marked with attribute(used).
+ UsedGlobals.count(GV))
+ continue;
+
+ // We can only replace constant with local linkage.
+ if (!GV->hasLocalLinkage())
+ continue;
+
+ Constant *Init = GV->getInitializer();
+
+ // Check to see if the initializer is already known.
+ GlobalVariable *Slot = CMap[Init];
+
+ if (!Slot || Slot == GV)
+ continue;
+
+ if (!Slot->hasUnnamedAddr() && !GV->hasUnnamedAddr())
+ continue;
+
+ if (!GV->hasUnnamedAddr())
+ Slot->setUnnamedAddr(false);
+
+ // Make all uses of the duplicate constant use the canonical version.
+ Replacements.push_back(std::make_pair(GV, Slot));
+ }
+
if (Replacements.empty())
return MadeChange;
CMap.clear();
@@ -133,6 +179,8 @@ bool ConstantMerge::runOnModule(Module &M) {
Replacements[i].first->replaceAllUsesWith(Replacements[i].second);
// Delete the global value from the module.
+ assert(Replacements[i].first->hasLocalLinkage() &&
+ "Refusing to delete an externally visible global variable.");
Replacements[i].first->eraseFromParent();
}
diff --git a/lib/Transforms/IPO/DeadArgumentElimination.cpp b/lib/Transforms/IPO/DeadArgumentElimination.cpp
index 47df235..b423221 100644
--- a/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -39,7 +39,8 @@ using namespace llvm;
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
-
+STATISTIC(NumArgumentsReplacedWithUndef,
+ "Number of unread args replaced with undef");
namespace {
/// DAE - The dead argument elimination pass.
///
@@ -126,7 +127,9 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
- DAE() : ModulePass(ID) {}
+ DAE() : ModulePass(ID) {
+ initializeDAEPass(*PassRegistry::getPassRegistry());
+ }
bool runOnModule(Module &M);
@@ -146,12 +149,13 @@ namespace {
void PropagateLiveness(const RetOrArg &RA);
bool RemoveDeadStuffFromFunction(Function *F);
bool DeleteDeadVarargs(Function &Fn);
+ bool RemoveDeadArgumentsFromCallers(Function &Fn);
};
}
char DAE::ID = 0;
-INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false);
+INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
namespace {
/// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
@@ -168,7 +172,7 @@ namespace {
char DAH::ID = 0;
INITIALIZE_PASS(DAH, "deadarghaX0r",
"Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
- false, false);
+ false, false)
/// createDeadArgEliminationPass - This pass removes arguments from functions
/// which are not used by the body of the function.
@@ -285,6 +289,55 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
return true;
}
+/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
+/// arguments that are unused, and changes the caller parameters to be undefined
+/// instead.
+bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
+{
+ if (Fn.isDeclaration())
+ return false;
+
+ // Functions with local linkage should already have been handled.
+ if (Fn.hasLocalLinkage())
+ return false;
+
+ if (Fn.use_empty())
+ return false;
+
+ llvm::SmallVector<unsigned, 8> UnusedArgs;
+ for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
+ I != E; ++I) {
+ Argument *Arg = I;
+
+ if (Arg->use_empty() && !Arg->hasByValAttr())
+ UnusedArgs.push_back(Arg->getArgNo());
+ }
+
+ if (UnusedArgs.empty())
+ return false;
+
+ bool Changed = false;
+
+ for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
+ I != E; ++I) {
+ CallSite CS(*I);
+ if (!CS || !CS.isCallee(I))
+ continue;
+
+ // Now go through all unused args and replace them with "undef".
+ for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
+ unsigned ArgNo = UnusedArgs[I];
+
+ Value *Arg = CS.getArgument(ArgNo);
+ CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
+ ++NumArgumentsReplacedWithUndef;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
@@ -791,7 +844,8 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
} else if (New->getType()->isVoidTy()) {
// Our return value has uses, but they will get removed later on.
// Replace by null for now.
- Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
+ if (!Call->getType()->isX86_MMXTy())
+ Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
} else {
assert(RetTy->isStructTy() &&
"Return type changed, but not into a void. The old return type"
@@ -854,7 +908,8 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
} else {
// If this argument is dead, replace any uses of it with null constants
// (these are guaranteed to become unused later on).
- I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
+ if (!I->getType()->isX86_MMXTy())
+ I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
}
// If we change the return value of the function we must rewrite any return
@@ -935,5 +990,14 @@ bool DAE::runOnModule(Module &M) {
Function *F = I++;
Changed |= RemoveDeadStuffFromFunction(F);
}
+
+ // Finally, look for any unused parameters in functions with non-local
+ // linkage and replace the passed in parameters with undef.
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ Function& F = *I;
+
+ Changed |= RemoveDeadArgumentsFromCallers(F);
+ }
+
return Changed;
}
diff --git a/lib/Transforms/IPO/DeadTypeElimination.cpp b/lib/Transforms/IPO/DeadTypeElimination.cpp
index 5dc50c5..a509931 100644
--- a/lib/Transforms/IPO/DeadTypeElimination.cpp
+++ b/lib/Transforms/IPO/DeadTypeElimination.cpp
@@ -26,7 +26,9 @@ STATISTIC(NumKilled, "Number of unused typenames removed from symtab");
namespace {
struct DTE : public ModulePass {
static char ID; // Pass identification, replacement for typeid
- DTE() : ModulePass(ID) {}
+ DTE() : ModulePass(ID) {
+ initializeDTEPass(*PassRegistry::getPassRegistry());
+ }
// doPassInitialization - For this pass, it removes global symbol table
// entries for primitive types. These are never used for linking in GCC and
@@ -45,7 +47,10 @@ namespace {
}
char DTE::ID = 0;
-INITIALIZE_PASS(DTE, "deadtypeelim", "Dead Type Elimination", false, false);
+INITIALIZE_PASS_BEGIN(DTE, "deadtypeelim", "Dead Type Elimination",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(FindUsedTypes)
+INITIALIZE_PASS_END(DTE, "deadtypeelim", "Dead Type Elimination", false, false)
ModulePass *llvm::createDeadTypeEliminationPass() {
return new DTE();
diff --git a/lib/Transforms/IPO/ExtractGV.cpp b/lib/Transforms/IPO/ExtractGV.cpp
index 45c5fe7..9d432de 100644
--- a/lib/Transforms/IPO/ExtractGV.cpp
+++ b/lib/Transforms/IPO/ExtractGV.cpp
@@ -50,24 +50,22 @@ namespace {
// Visit the GlobalVariables.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- if (!I->isDeclaration()) {
- if (I->hasLocalLinkage())
- I->setVisibility(GlobalValue::HiddenVisibility);
- I->setLinkage(GlobalValue::ExternalLinkage);
- if (deleteStuff == Named.count(I))
- I->setInitializer(0);
- }
+ I != E; ++I) {
+ if (I->hasLocalLinkage())
+ I->setVisibility(GlobalValue::HiddenVisibility);
+ I->setLinkage(GlobalValue::ExternalLinkage);
+ if (deleteStuff == (bool)Named.count(I) && !I->isDeclaration())
+ I->setInitializer(0);
+ }
// Visit the Functions.
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isDeclaration()) {
- if (I->hasLocalLinkage())
- I->setVisibility(GlobalValue::HiddenVisibility);
- I->setLinkage(GlobalValue::ExternalLinkage);
- if (deleteStuff == Named.count(I))
- I->deleteBody();
- }
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ if (I->hasLocalLinkage())
+ I->setVisibility(GlobalValue::HiddenVisibility);
+ I->setLinkage(GlobalValue::ExternalLinkage);
+ if (deleteStuff == (bool)Named.count(I) && !I->isDeclaration())
+ I->deleteBody();
+ }
return true;
}
diff --git a/lib/Transforms/IPO/FunctionAttrs.cpp b/lib/Transforms/IPO/FunctionAttrs.cpp
index 6165ba0..95decec 100644
--- a/lib/Transforms/IPO/FunctionAttrs.cpp
+++ b/lib/Transforms/IPO/FunctionAttrs.cpp
@@ -23,10 +23,10 @@
#include "llvm/CallGraphSCCPass.h"
#include "llvm/GlobalVariable.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/UniqueVector.h"
@@ -41,7 +41,9 @@ STATISTIC(NumNoAlias, "Number of function returns marked noalias");
namespace {
struct FunctionAttrs : public CallGraphSCCPass {
static char ID; // Pass identification, replacement for typeid
- FunctionAttrs() : CallGraphSCCPass(ID) {}
+ FunctionAttrs() : CallGraphSCCPass(ID), AA(0) {
+ initializeFunctionAttrsPass(*PassRegistry::getPassRegistry());
+ }
// runOnSCC - Analyze the SCC, performing the transformation if possible.
bool runOnSCC(CallGraphSCC &SCC);
@@ -61,67 +63,25 @@ namespace {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
- bool PointsToLocalMemory(Value *V);
+ private:
+ AliasAnalysis *AA;
};
}
char FunctionAttrs::ID = 0;
-INITIALIZE_PASS(FunctionAttrs, "functionattrs",
- "Deduce function attributes", false, false);
+INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs",
+ "Deduce function attributes", false, false)
+INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_END(FunctionAttrs, "functionattrs",
+ "Deduce function attributes", false, false)
Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
-/// PointsToLocalMemory - Returns whether the given pointer value points to
-/// memory that is local to the function. Global constants are considered
-/// local to all functions.
-bool FunctionAttrs::PointsToLocalMemory(Value *V) {
- SmallVector<Value*, 16> Worklist;
- unsigned MaxLookup = 8;
-
- Worklist.push_back(V);
-
- do {
- V = Worklist.pop_back_val()->getUnderlyingObject();
-
- // An alloca instruction defines local memory.
- if (isa<AllocaInst>(V))
- continue;
-
- // A global constant counts as local memory for our purposes.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
- if (!GV->isConstant())
- return false;
- continue;
- }
-
- // If both select values point to local memory, then so does the select.
- if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
-
- // If all values incoming to a phi node point to local memory, then so does
- // the phi.
- if (PHINode *PN = dyn_cast<PHINode>(V)) {
- // Don't bother inspecting phi nodes with many operands.
- if (PN->getNumIncomingValues() > MaxLookup)
- return false;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- Worklist.push_back(PN->getIncomingValue(i));
- continue;
- }
-
- return false;
- } while (!Worklist.empty() && --MaxLookup);
-
- return Worklist.empty();
-}
-
/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
SmallPtrSet<Function*, 8> SCCNodes;
@@ -141,14 +101,15 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
// External node - may write memory. Just give up.
return false;
- if (F->doesNotAccessMemory())
+ AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
+ if (MRB == AliasAnalysis::DoesNotAccessMemory)
// Already perfect!
continue;
// Definitions with weak linkage may be overridden at linktime with
// something that writes memory, so treat them like declarations.
if (F->isDeclaration() || F->mayBeOverridden()) {
- if (!F->onlyReadsMemory())
+ if (!AliasAnalysis::onlyReadsMemory(MRB))
// May write memory. Just give up.
return false;
@@ -163,32 +124,62 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
// Some instructions can be ignored even if they read or write memory.
// Detect these now, skipping to the next instruction if one is found.
CallSite CS(cast<Value>(I));
- if (CS && CS.getCalledFunction()) {
+ if (CS) {
// Ignore calls to functions in the same SCC.
- if (SCCNodes.count(CS.getCalledFunction()))
+ if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
continue;
- // Ignore intrinsics that only access local memory.
- if (unsigned id = CS.getCalledFunction()->getIntrinsicID())
- if (AliasAnalysis::getIntrinsicModRefBehavior(id) ==
- AliasAnalysis::AccessesArguments) {
- // Check that all pointer arguments point to local memory.
+ AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS);
+ // If the call doesn't access arbitrary memory, we may be able to
+ // figure out something.
+ if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
+ // If the call does access argument pointees, check each argument.
+ if (AliasAnalysis::doesAccessArgPointees(MRB))
+ // Check whether all pointer arguments point to local memory, and
+ // ignore calls that only access local memory.
for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
CI != CE; ++CI) {
Value *Arg = *CI;
- if (Arg->getType()->isPointerTy() && !PointsToLocalMemory(Arg))
- // Writes memory. Just give up.
- return false;
+ if (Arg->getType()->isPointerTy()) {
+ AliasAnalysis::Location Loc(Arg,
+ AliasAnalysis::UnknownSize,
+ I->getMetadata(LLVMContext::MD_tbaa));
+ if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
+ if (MRB & AliasAnalysis::Mod)
+ // Writes non-local memory. Give up.
+ return false;
+ if (MRB & AliasAnalysis::Ref)
+ // Ok, it reads non-local memory.
+ ReadsMemory = true;
+ }
+ }
}
- // Only reads and writes local memory.
- continue;
- }
- } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- // Ignore loads from local memory.
- if (PointsToLocalMemory(LI->getPointerOperand()))
continue;
+ }
+ // The call could access any memory. If that includes writes, give up.
+ if (MRB & AliasAnalysis::Mod)
+ return false;
+ // If it reads, note it.
+ if (MRB & AliasAnalysis::Ref)
+ ReadsMemory = true;
+ continue;
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ // Ignore non-volatile loads from local memory.
+ if (!LI->isVolatile()) {
+ AliasAnalysis::Location Loc = AA->getLocation(LI);
+ if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
+ continue;
+ }
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- // Ignore stores to local memory.
- if (PointsToLocalMemory(SI->getPointerOperand()))
+ // Ignore non-volatile stores to local memory.
+ if (!SI->isVolatile()) {
+ AliasAnalysis::Location Loc = AA->getLocation(SI);
+ if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
+ continue;
+ }
+ } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
+ // Ignore vaargs on local memory.
+ AliasAnalysis::Location Loc = AA->getLocation(VI);
+ if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
}
@@ -198,10 +189,6 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
// Writes memory. Just give up.
return false;
- if (isMalloc(I))
- // malloc claims not to write memory! PR3754.
- return false;
-
// If this instruction may read memory, remember that.
ReadsMemory |= I->mayReadFromMemory();
}
@@ -384,6 +371,8 @@ bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
}
bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
+ AA = &getAnalysis<AliasAnalysis>();
+
bool Changed = AddReadAttrs(SCC);
Changed |= AddNoCaptureAttrs(SCC);
Changed |= AddNoAliasAttrs(SCC);
diff --git a/lib/Transforms/IPO/GlobalDCE.cpp b/lib/Transforms/IPO/GlobalDCE.cpp
index aa18601..2b427aa 100644
--- a/lib/Transforms/IPO/GlobalDCE.cpp
+++ b/lib/Transforms/IPO/GlobalDCE.cpp
@@ -31,7 +31,9 @@ STATISTIC(NumVariables, "Number of global variables removed");
namespace {
struct GlobalDCE : public ModulePass {
static char ID; // Pass identification, replacement for typeid
- GlobalDCE() : ModulePass(ID) {}
+ GlobalDCE() : ModulePass(ID) {
+ initializeGlobalDCEPass(*PassRegistry::getPassRegistry());
+ }
// run - Do the GlobalDCE pass on the specified module, optionally updating
// the specified callgraph to reflect the changes.
@@ -52,7 +54,7 @@ namespace {
char GlobalDCE::ID = 0;
INITIALIZE_PASS(GlobalDCE, "globaldce",
- "Dead Global Elimination", false, false);
+ "Dead Global Elimination", false, false)
ModulePass *llvm::createGlobalDCEPass() { return new GlobalDCE(); }
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index a77af54..d4cb712 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -40,6 +40,7 @@
using namespace llvm;
STATISTIC(NumMarked , "Number of globals marked constant");
+STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
@@ -55,11 +56,14 @@ STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
namespace {
+ struct GlobalStatus;
struct GlobalOpt : public ModulePass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
}
static char ID; // Pass identification, replacement for typeid
- GlobalOpt() : ModulePass(ID) {}
+ GlobalOpt() : ModulePass(ID) {
+ initializeGlobalOptPass(*PassRegistry::getPassRegistry());
+ }
bool runOnModule(Module &M);
@@ -69,13 +73,16 @@ namespace {
bool OptimizeGlobalVars(Module &M);
bool OptimizeGlobalAliases(Module &M);
bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
- bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
+ bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
+ bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
+ const SmallPtrSet<const PHINode*, 16> &PHIUsers,
+ const GlobalStatus &GS);
};
}
char GlobalOpt::ID = 0;
INITIALIZE_PASS(GlobalOpt, "globalopt",
- "Global Variable Optimizer", false, false);
+ "Global Variable Optimizer", false, false)
ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
@@ -85,6 +92,9 @@ namespace {
/// about it. If we find out that the address of the global is taken, none of
/// this info will be accurate.
struct GlobalStatus {
+ /// isCompared - True if the global's address is used in a comparison.
+ bool isCompared;
+
/// isLoaded - True if the global is ever loaded. If the global isn't ever
/// loaded it can be deleted.
bool isLoaded;
@@ -129,10 +139,11 @@ struct GlobalStatus {
/// HasPHIUser - Set to true if this global has a user that is a PHI node.
bool HasPHIUser;
-
- GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
- AccessingFunction(0), HasMultipleAccessingFunctions(false),
- HasNonInstructionUser(false), HasPHIUser(false) {}
+
+ GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
+ StoredOnceValue(0), AccessingFunction(0),
+ HasMultipleAccessingFunctions(false), HasNonInstructionUser(false),
+ HasPHIUser(false) {}
};
}
@@ -165,6 +176,11 @@ static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
const User *U = *UI;
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
GS.HasNonInstructionUser = true;
+
+ // If the result of the constantexpr isn't pointer type, then we won't
+ // know to expect it in various places. Just reject early.
+ if (!isa<PointerType>(CE->getType())) return true;
+
if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
if (!GS.HasMultipleAccessingFunctions) {
@@ -221,7 +237,7 @@ static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
GS.HasPHIUser = true;
} else if (isa<CmpInst>(I)) {
- // Nothing to analyse.
+ GS.isCompared = true;
} else if (isa<MemTransferInst>(I)) {
const MemTransferInst *MTI = cast<MemTransferInst>(I);
if (MTI->getArgOperand(0) == V)
@@ -308,7 +324,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
if (Init)
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
Changed |= CleanupConstantGlobalUsers(CE, SubInit);
- } else if (CE->getOpcode() == Instruction::BitCast &&
+ } else if (CE->getOpcode() == Instruction::BitCast &&
CE->getType()->isPointerTy()) {
// Pointer cast, delete any stores and memsets to the global.
Changed |= CleanupConstantGlobalUsers(CE, 0);
@@ -324,7 +340,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
// and will invalidate our notion of what Init is.
Constant *SubInit = 0;
if (!isa<ConstantExpr>(GEP->getOperand(0))) {
- ConstantExpr *CE =
+ ConstantExpr *CE =
dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
@@ -361,7 +377,7 @@ static bool isSafeSROAElementUse(Value *V) {
// We might have a dead and dangling constant hanging off of here.
if (Constant *C = dyn_cast<Constant>(V))
return SafeToDestroyConstant(C);
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
@@ -371,15 +387,15 @@ static bool isSafeSROAElementUse(Value *V) {
// Stores *to* the pointer are ok.
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getOperand(0) != V;
-
+
// Otherwise, it must be a GEP.
GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
if (GEPI == 0) return false;
-
+
if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
!cast<Constant>(GEPI->getOperand(1))->isNullValue())
return false;
-
+
for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
I != E; ++I)
if (!isSafeSROAElementUse(*I))
@@ -393,11 +409,11 @@ static bool isSafeSROAElementUse(Value *V) {
///
static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
// The user of the global must be a GEP Inst or a ConstantExpr GEP.
- if (!isa<GetElementPtrInst>(U) &&
- (!isa<ConstantExpr>(U) ||
+ if (!isa<GetElementPtrInst>(U) &&
+ (!isa<ConstantExpr>(U) ||
cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
return false;
-
+
// Check to see if this ConstantExpr GEP is SRA'able. In particular, we
// don't like < 3 operand CE's, and we don't like non-constant integer
// indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
@@ -409,18 +425,18 @@ static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
++GEPI; // Skip over the pointer index.
-
+
// If this is a use of an array allocation, do a bit more checking for sanity.
if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
uint64_t NumElements = AT->getNumElements();
ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
-
+
// Check to make sure that index falls within the array. If not,
// something funny is going on, so we won't do the optimization.
//
if (Idx->getZExtValue() >= NumElements)
return false;
-
+
// We cannot scalar repl this level of the array unless any array
// sub-indices are in-range constants. In particular, consider:
// A[0][i]. We cannot know that the user isn't doing invalid things like
@@ -441,7 +457,7 @@ static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
"Indexed GEP type is not array, vector, or struct!");
continue;
}
-
+
ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
return false;
@@ -465,7 +481,7 @@ static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
}
return true;
}
-
+
/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
/// variable. This opens the door for other optimizations by exposing the
@@ -476,7 +492,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
// Make sure this global only has simple uses that we can SRA.
if (!GlobalUsersSafeToSRA(GV))
return 0;
-
+
assert(GV->hasLocalLinkage() && !GV->isConstant());
Constant *Init = GV->getInitializer();
const Type *Ty = Init->getType();
@@ -488,7 +504,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
unsigned StartAlignment = GV->getAlignment();
if (StartAlignment == 0)
StartAlignment = TD.getABITypeAlignment(GV->getType());
-
+
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
NewGlobals.reserve(STy->getNumElements());
const StructLayout &Layout = *TD.getStructLayout(STy);
@@ -503,7 +519,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
GV->getType()->getAddressSpace());
Globals.insert(GV, NGV);
NewGlobals.push_back(NGV);
-
+
// Calculate the known alignment of the field. If the original aggregate
// had 256 byte alignment for example, something might depend on that:
// propagate info to each field.
@@ -522,7 +538,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
if (NumElements > 16 && GV->hasNUsesOrMore(16))
return 0; // It's not worth it.
NewGlobals.reserve(NumElements);
-
+
uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
for (unsigned i = 0, e = NumElements; i != e; ++i) {
@@ -537,7 +553,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
GV->getType()->getAddressSpace());
Globals.insert(GV, NGV);
NewGlobals.push_back(NGV);
-
+
// Calculate the known alignment of the field. If the original aggregate
// had 256 byte alignment for example, something might depend on that:
// propagate info to each field.
@@ -549,7 +565,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
if (NewGlobals.empty())
return 0;
-
+
DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
@@ -615,7 +631,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
}
/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
-/// value will trap if the value is dynamically null. PHIs keeps track of any
+/// value will trap if the value is dynamically null. PHIs keeps track of any
/// phi nodes we've seen to avoid reprocessing them.
static bool AllUsesOfValueWillTrapIfNull(const Value *V,
SmallPtrSet<const PHINode*, 8> &PHIs) {
@@ -757,7 +773,7 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
// Keep track of whether we are able to remove all the uses of the global
// other than the store that defines it.
bool AllNonStoreUsesGone = true;
-
+
// Replace all uses of loads with uses of uses of the stored value.
for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
User *GlobalUser = *GUI++;
@@ -830,7 +846,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
ConstantInt *NElements,
TargetData* TD) {
DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
-
+
const Type *GlobalType;
if (NElements->getZExtValue() == 1)
GlobalType = AllocTy;
@@ -840,14 +856,14 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
// Create the new global variable. The contents of the malloc'd memory is
// undefined, so initialize with an undef value.
- GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
+ GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
GlobalType, false,
GlobalValue::InternalLinkage,
UndefValue::get(GlobalType),
GV->getName()+".body",
GV,
GV->isThreadLocal());
-
+
// If there are bitcast users of the malloc (which is typical, usually we have
// a malloc + bitcast) then replace them with uses of the new global. Update
// other users to use the global as well.
@@ -867,10 +883,10 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
User->replaceUsesOfWith(CI, TheBC);
}
}
-
+
Constant *RepValue = NewGV;
if (NewGV->getType() != GV->getType()->getElementType())
- RepValue = ConstantExpr::getBitCast(RepValue,
+ RepValue = ConstantExpr::getBitCast(RepValue,
GV->getType()->getElementType());
// If there is a comparison against null, we will insert a global bool to
@@ -890,7 +906,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
SI->eraseFromParent();
continue;
}
-
+
LoadInst *LI = cast<LoadInst>(GV->use_back());
while (!LI->use_empty()) {
Use &LoadUse = LI->use_begin().getUse();
@@ -898,7 +914,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
LoadUse = RepValue;
continue;
}
-
+
ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
// Replace the cmp X, 0 with a use of the bool value.
Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
@@ -963,20 +979,20 @@ static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
continue; // Fine, ignore.
}
-
+
if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
return false; // Storing the pointer itself... bad.
continue; // Otherwise, storing through it, or storing into GV... fine.
}
-
+
// Must index into the array and into the struct.
if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
return false;
continue;
}
-
+
if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
// PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
// cycles.
@@ -985,13 +1001,13 @@ static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
return false;
continue;
}
-
+
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
return false;
continue;
}
-
+
return false;
}
return true;
@@ -1000,9 +1016,9 @@ static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
/// somewhere. Transform all uses of the allocation into loads from the
/// global and uses of the resultant pointer. Further, delete the store into
-/// GV. This assumes that these value pass the
+/// GV. This assumes that these value pass the
/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
-static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
+static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
GlobalVariable *GV) {
while (!Alloc->use_empty()) {
Instruction *U = cast<Instruction>(*Alloc->use_begin());
@@ -1035,7 +1051,7 @@ static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
continue;
}
}
-
+
// Insert a load from the global, and use it instead of the malloc.
Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
U->replaceUsesOfWith(Alloc, NL);
@@ -1053,24 +1069,24 @@ static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
++UI) {
const Instruction *User = cast<Instruction>(*UI);
-
+
// Comparison against null is ok.
if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
return false;
continue;
}
-
+
// getelementptr is also ok, but only a simple form.
if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
// Must index into the array and into the struct.
if (GEPI->getNumOperands() < 3)
return false;
-
+
// Otherwise the GEP is ok.
continue;
}
-
+
if (const PHINode *PN = dyn_cast<PHINode>(User)) {
if (!LoadUsingPHIsPerLoad.insert(PN))
// This means some phi nodes are dependent on each other.
@@ -1079,19 +1095,19 @@ static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
if (!LoadUsingPHIs.insert(PN))
// If we have already analyzed this PHI, then it is safe.
continue;
-
+
// Make sure all uses of the PHI are simple enough to transform.
if (!LoadUsesSimpleEnoughForHeapSRA(PN,
LoadUsingPHIs, LoadUsingPHIsPerLoad))
return false;
-
+
continue;
}
-
+
// Otherwise we don't know what this is, not ok.
return false;
}
-
+
return true;
}
@@ -1110,10 +1126,10 @@ static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
return false;
LoadUsingPHIsPerLoad.clear();
}
-
+
// If we reach here, we know that all uses of the loads and transitive uses
// (through PHI nodes) are simple enough to transform. However, we don't know
- // that all inputs the to the PHI nodes are in the same equivalence sets.
+ // that all inputs the to the PHI nodes are in the same equivalence sets.
// Check to verify that all operands of the PHIs are either PHIS that can be
// transformed, loads from GV, or MI itself.
for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
@@ -1121,29 +1137,29 @@ static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
const PHINode *PN = *I;
for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
Value *InVal = PN->getIncomingValue(op);
-
+
// PHI of the stored value itself is ok.
if (InVal == StoredVal) continue;
-
+
if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
// One of the PHIs in our set is (optimistically) ok.
if (LoadUsingPHIs.count(InPN))
continue;
return false;
}
-
+
// Load from GV is ok.
if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
if (LI->getOperand(0) == GV)
continue;
-
+
// UNDEF? NULL?
-
+
// Anything else is rejected.
return false;
}
}
-
+
return true;
}
@@ -1151,15 +1167,15 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
-
+
if (FieldNo >= FieldVals.size())
FieldVals.resize(FieldNo+1);
-
+
// If we already have this value, just reuse the previously scalarized
// version.
if (Value *FieldVal = FieldVals[FieldNo])
return FieldVal;
-
+
// Depending on what instruction this is, we have several cases.
Value *Result;
if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
@@ -1172,9 +1188,9 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
} else if (PHINode *PN = dyn_cast<PHINode>(V)) {
// PN's type is pointer to struct. Make a new PHI of pointer to struct
// field.
- const StructType *ST =
+ const StructType *ST =
cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
-
+
Result =
PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
PN->getName()+".f"+Twine(FieldNo), PN);
@@ -1183,13 +1199,13 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
llvm_unreachable("Unknown usable value");
Result = 0;
}
-
+
return FieldVals[FieldNo] = Result;
}
/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
/// the load, rewrite the derived value to use the HeapSRoA'd load.
-static void RewriteHeapSROALoadUser(Instruction *LoadUser,
+static void RewriteHeapSROALoadUser(Instruction *LoadUser,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
// If this is a comparison against null, handle it.
@@ -1199,30 +1215,30 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser,
// field.
Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
InsertedScalarizedValues, PHIsToRewrite);
-
+
Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
- Constant::getNullValue(NPtr->getType()),
+ Constant::getNullValue(NPtr->getType()),
SCI->getName());
SCI->replaceAllUsesWith(New);
SCI->eraseFromParent();
return;
}
-
+
// Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
&& "Unexpected GEPI!");
-
+
// Load the pointer for this field.
unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
InsertedScalarizedValues, PHIsToRewrite);
-
+
// Create the new GEP idx vector.
SmallVector<Value*, 8> GEPIdx;
GEPIdx.push_back(GEPI->getOperand(1));
GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
-
+
Value *NGEPI = GetElementPtrInst::Create(NewPtr,
GEPIdx.begin(), GEPIdx.end(),
GEPI->getName(), GEPI);
@@ -1243,7 +1259,7 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser,
tie(InsertPos, Inserted) =
InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
if (!Inserted) return;
-
+
// If this is the first time we've seen this PHI, recursively process all
// users.
for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
@@ -1256,7 +1272,7 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser,
/// is a value loaded from the global. Eliminate all uses of Ptr, making them
/// use FieldGlobals instead. All uses of loaded values satisfy
/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
-static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
+static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
@@ -1264,7 +1280,7 @@ static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
Instruction *User = cast<Instruction>(*UI++);
RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
}
-
+
if (Load->use_empty()) {
Load->eraseFromParent();
InsertedScalarizedValues.erase(Load);
@@ -1289,11 +1305,11 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
// new mallocs at the same place as CI, and N globals.
std::vector<Value*> FieldGlobals;
std::vector<Value*> FieldMallocs;
-
+
for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
const Type *FieldTy = STy->getElementType(FieldNo);
const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
-
+
GlobalVariable *NGV =
new GlobalVariable(*GV->getParent(),
PFieldTy, false, GlobalValue::InternalLinkage,
@@ -1301,7 +1317,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
GV->getName() + ".f" + Twine(FieldNo), GV,
GV->isThreadLocal());
FieldGlobals.push_back(NGV);
-
+
unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
if (const StructType *ST = dyn_cast<StructType>(FieldTy))
TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
@@ -1313,7 +1329,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
FieldMallocs.push_back(NMI);
new StoreInst(NMI, NGV, CI);
}
-
+
// The tricky aspect of this transformation is handling the case when malloc
// fails. In the original code, malloc failing would set the result pointer
// of malloc to null. In this case, some mallocs could succeed and others
@@ -1340,23 +1356,23 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
// Split the basic block at the old malloc.
BasicBlock *OrigBB = CI->getParent();
BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
-
+
// Create the block to check the first condition. Put all these blocks at the
// end of the function as they are unlikely to be executed.
BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
"malloc_ret_null",
OrigBB->getParent());
-
+
// Remove the uncond branch from OrigBB to ContBB, turning it into a cond
// branch on RunningOr.
OrigBB->getTerminator()->eraseFromParent();
BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
-
+
// Within the NullPtrBlock, we need to emit a comparison and branch for each
// pointer, because some may be null while others are not.
for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
- Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
+ Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
Constant::getNullValue(GVVal->getType()),
"tmp");
BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
@@ -1371,10 +1387,10 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
FreeBlock);
BranchInst::Create(NextBlock, FreeBlock);
-
+
NullPtrBlock = NextBlock;
}
-
+
BranchInst::Create(ContBB, NullPtrBlock);
// CI is no longer needed, remove it.
@@ -1385,25 +1401,25 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
/// inserted for a given load.
DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
InsertedScalarizedValues[GV] = FieldGlobals;
-
+
std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
-
+
// Okay, the malloc site is completely handled. All of the uses of GV are now
// loads, and all uses of those loads are simple. Rewrite them to use loads
// of the per-field globals instead.
for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
Instruction *User = cast<Instruction>(*UI++);
-
+
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
continue;
}
-
+
// Must be a store of null.
StoreInst *SI = cast<StoreInst>(User);
assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
"Unexpected heap-sra user!");
-
+
// Insert a store of null into each global.
for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
@@ -1430,7 +1446,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
}
}
-
+
// Drop all inter-phi links and any loads that made it this far.
for (DenseMap<Value*, std::vector<Value*> >::iterator
I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
@@ -1440,7 +1456,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
LI->dropAllReferences();
}
-
+
// Delete all the phis and loads now that inter-references are dead.
for (DenseMap<Value*, std::vector<Value*> >::iterator
I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
@@ -1450,7 +1466,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
LI->eraseFromParent();
}
-
+
// The old global is now dead, remove it.
GV->eraseFromParent();
@@ -1468,7 +1484,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
TargetData *TD) {
if (!TD)
return false;
-
+
// If this is a malloc of an abstract type, don't touch it.
if (!AllocTy->isSized())
return false;
@@ -1508,7 +1524,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
return true;
}
-
+
// If the allocation is an array of structures, consider transforming this
// into multiple malloc'd arrays, one for each field. This is basically
// SRoA for malloc'd memory.
@@ -1544,13 +1560,13 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
CI = dyn_cast<BitCastInst>(Malloc) ?
extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
}
-
+
GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
return true;
}
-
+
return false;
-}
+}
// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
// that only one value (besides its initializer) is ever stored to the global.
@@ -1568,7 +1584,7 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
GV->getInitializer()->isNullValue()) {
if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
if (GV->getInitializer()->getType() != SOVC->getType())
- SOVC =
+ SOVC =
ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
// Optimize away any trapping uses of the loaded value.
@@ -1576,7 +1592,7 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
return true;
} else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
const Type* MallocType = getMallocAllocatedType(CI);
- if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
+ if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
GVI, TD))
return true;
}
@@ -1591,7 +1607,7 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
/// whenever it is used. This exposes the values to other scalar optimizations.
static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
const Type *GVElType = GV->getType()->getElementType();
-
+
// If GVElType is already i1, it is already shrunk. If the type of the GV is
// an FP value, pointer or vector, don't do this optimization because a select
// between them is very expensive and unlikely to lead to later
@@ -1611,11 +1627,11 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
}
DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV);
-
+
// Create the new global, initializing it to false.
GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
false,
- GlobalValue::InternalLinkage,
+ GlobalValue::InternalLinkage,
ConstantInt::getFalse(GV->getContext()),
GV->getName()+".b",
GV->isThreadLocal());
@@ -1684,10 +1700,12 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
/// ProcessInternalGlobal - Analyze the specified global variable and optimize
/// it if possible. If we make a change, return true.
-bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
- Module::global_iterator &GVI) {
- SmallPtrSet<const PHINode*, 16> PHIUsers;
- GlobalStatus GS;
+bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
+ Module::global_iterator &GVI) {
+ if (!GV->hasLocalLinkage())
+ return false;
+
+ // Do more involved optimizations if the global is internal.
GV->removeDeadConstantUsers();
if (GV->use_empty()) {
@@ -1697,140 +1715,139 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
return true;
}
- if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
-#if 0
- DEBUG(dbgs() << "Global: " << *GV);
- DEBUG(dbgs() << " isLoaded = " << GS.isLoaded << "\n");
- DEBUG(dbgs() << " StoredType = ");
- switch (GS.StoredType) {
- case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
- case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
- break;
- case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
- case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
- }
- if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
- DEBUG(dbgs() << " StoredOnceValue = " << *GS.StoredOnceValue << "\n");
- if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
- DEBUG(dbgs() << " AccessingFunction = "
- << GS.AccessingFunction->getName() << "\n");
- DEBUG(dbgs() << " HasMultipleAccessingFunctions = "
- << GS.HasMultipleAccessingFunctions << "\n");
- DEBUG(dbgs() << " HasNonInstructionUser = "
- << GS.HasNonInstructionUser<<"\n");
- DEBUG(dbgs() << "\n");
-#endif
-
- // If this is a first class global and has only one accessing function
- // and this function is main (which we know is not recursive we can make
- // this global a local variable) we replace the global with a local alloca
- // in this function.
- //
- // NOTE: It doesn't make sense to promote non single-value types since we
- // are just replacing static memory to stack memory.
- //
- // If the global is in different address space, don't bring it to stack.
- if (!GS.HasMultipleAccessingFunctions &&
- GS.AccessingFunction && !GS.HasNonInstructionUser &&
- GV->getType()->getElementType()->isSingleValueType() &&
- GS.AccessingFunction->getName() == "main" &&
- GS.AccessingFunction->hasExternalLinkage() &&
- GV->getType()->getAddressSpace() == 0) {
- DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
- Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
- ->getEntryBlock().begin());
- const Type* ElemTy = GV->getType()->getElementType();
- // FIXME: Pass Global's alignment when globals have alignment
- AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
- if (!isa<UndefValue>(GV->getInitializer()))
- new StoreInst(GV->getInitializer(), Alloca, &FirstI);
-
- GV->replaceAllUsesWith(Alloca);
+ SmallPtrSet<const PHINode*, 16> PHIUsers;
+ GlobalStatus GS;
+
+ if (AnalyzeGlobal(GV, GS, PHIUsers))
+ return false;
+
+ if (!GS.isCompared && !GV->hasUnnamedAddr()) {
+ GV->setUnnamedAddr(true);
+ NumUnnamed++;
+ }
+
+ if (GV->isConstant() || !GV->hasInitializer())
+ return false;
+
+ return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
+}
+
+/// ProcessInternalGlobal - Analyze the specified global variable and optimize
+/// it if possible. If we make a change, return true.
+bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
+ Module::global_iterator &GVI,
+ const SmallPtrSet<const PHINode*, 16> &PHIUsers,
+ const GlobalStatus &GS) {
+ // If this is a first class global and has only one accessing function
+ // and this function is main (which we know is not recursive we can make
+ // this global a local variable) we replace the global with a local alloca
+ // in this function.
+ //
+ // NOTE: It doesn't make sense to promote non single-value types since we
+ // are just replacing static memory to stack memory.
+ //
+ // If the global is in different address space, don't bring it to stack.
+ if (!GS.HasMultipleAccessingFunctions &&
+ GS.AccessingFunction && !GS.HasNonInstructionUser &&
+ GV->getType()->getElementType()->isSingleValueType() &&
+ GS.AccessingFunction->getName() == "main" &&
+ GS.AccessingFunction->hasExternalLinkage() &&
+ GV->getType()->getAddressSpace() == 0) {
+ DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
+ Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
+ ->getEntryBlock().begin());
+ const Type* ElemTy = GV->getType()->getElementType();
+ // FIXME: Pass Global's alignment when globals have alignment
+ AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
+ if (!isa<UndefValue>(GV->getInitializer()))
+ new StoreInst(GV->getInitializer(), Alloca, &FirstI);
+
+ GV->replaceAllUsesWith(Alloca);
+ GV->eraseFromParent();
+ ++NumLocalized;
+ return true;
+ }
+
+ // If the global is never loaded (but may be stored to), it is dead.
+ // Delete it now.
+ if (!GS.isLoaded) {
+ DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
+
+ // Delete any stores we can find to the global. We may not be able to
+ // make it completely dead though.
+ bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
+
+ // If the global is dead now, delete it.
+ if (GV->use_empty()) {
GV->eraseFromParent();
- ++NumLocalized;
- return true;
+ ++NumDeleted;
+ Changed = true;
}
-
- // If the global is never loaded (but may be stored to), it is dead.
- // Delete it now.
- if (!GS.isLoaded) {
- DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
-
- // Delete any stores we can find to the global. We may not be able to
- // make it completely dead though.
- bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
-
- // If the global is dead now, delete it.
- if (GV->use_empty()) {
- GV->eraseFromParent();
- ++NumDeleted;
- Changed = true;
- }
- return Changed;
+ return Changed;
- } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
- DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
- GV->setConstant(true);
+ } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
+ DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
+ GV->setConstant(true);
- // Clean up any obviously simplifiable users now.
- CleanupConstantGlobalUsers(GV, GV->getInitializer());
+ // Clean up any obviously simplifiable users now.
+ CleanupConstantGlobalUsers(GV, GV->getInitializer());
- // If the global is dead now, just nuke it.
- if (GV->use_empty()) {
- DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
- << "all users and delete global!\n");
- GV->eraseFromParent();
- ++NumDeleted;
+ // If the global is dead now, just nuke it.
+ if (GV->use_empty()) {
+ DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
+ << "all users and delete global!\n");
+ GV->eraseFromParent();
+ ++NumDeleted;
+ }
+
+ ++NumMarked;
+ return true;
+ } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
+ if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
+ if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
+ GVI = FirstNewGV; // Don't skip the newly produced globals!
+ return true;
+ }
+ } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
+ // If the initial value for the global was an undef value, and if only
+ // one other value was stored into it, we can just change the
+ // initializer to be the stored value, then delete all stores to the
+ // global. This allows us to mark it constant.
+ if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
+ if (isa<UndefValue>(GV->getInitializer())) {
+ // Change the initial value here.
+ GV->setInitializer(SOVConstant);
+
+ // Clean up any obviously simplifiable users now.
+ CleanupConstantGlobalUsers(GV, GV->getInitializer());
+
+ if (GV->use_empty()) {
+ DEBUG(dbgs() << " *** Substituting initializer allowed us to "
+ << "simplify all users and delete global!\n");
+ GV->eraseFromParent();
+ ++NumDeleted;
+ } else {
+ GVI = GV;
+ }
+ ++NumSubstitute;
+ return true;
}
- ++NumMarked;
+ // Try to optimize globals based on the knowledge that only one value
+ // (besides its initializer) is ever stored to the global.
+ if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
+ getAnalysisIfAvailable<TargetData>()))
return true;
- } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
- if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
- if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
- GVI = FirstNewGV; // Don't skip the newly produced globals!
- return true;
- }
- } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
- // If the initial value for the global was an undef value, and if only
- // one other value was stored into it, we can just change the
- // initializer to be the stored value, then delete all stores to the
- // global. This allows us to mark it constant.
- if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
- if (isa<UndefValue>(GV->getInitializer())) {
- // Change the initial value here.
- GV->setInitializer(SOVConstant);
-
- // Clean up any obviously simplifiable users now.
- CleanupConstantGlobalUsers(GV, GV->getInitializer());
-
- if (GV->use_empty()) {
- DEBUG(dbgs() << " *** Substituting initializer allowed us to "
- << "simplify all users and delete global!\n");
- GV->eraseFromParent();
- ++NumDeleted;
- } else {
- GVI = GV;
- }
- ++NumSubstitute;
- return true;
- }
- // Try to optimize globals based on the knowledge that only one value
- // (besides its initializer) is ever stored to the global.
- if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
- getAnalysisIfAvailable<TargetData>()))
+ // Otherwise, if the global was not a boolean, we can shrink it to be a
+ // boolean.
+ if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
+ if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
+ ++NumShrunkToBool;
return true;
-
- // Otherwise, if the global was not a boolean, we can shrink it to be a
- // boolean.
- if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
- if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
- ++NumShrunkToBool;
- return true;
- }
- }
+ }
}
+
return false;
}
@@ -1917,10 +1934,8 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
if (New && New != CE)
GV->setInitializer(New);
}
- // Do more involved optimizations if the global is internal.
- if (!GV->isConstant() && GV->hasLocalLinkage() &&
- GV->hasInitializer())
- Changed |= ProcessInternalGlobal(GV, GVI);
+
+ Changed |= ProcessGlobal(GV, GVI);
}
return Changed;
}
@@ -1928,46 +1943,47 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
/// initializers have an init priority of 65535.
GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- if (I->getName() == "llvm.global_ctors") {
- // Found it, verify it's an array of { int, void()* }.
- const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
- if (!ATy) return 0;
- const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
- if (!STy || STy->getNumElements() != 2 ||
- !STy->getElementType(0)->isIntegerTy(32)) return 0;
- const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
- if (!PFTy) return 0;
- const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
- if (!FTy || !FTy->getReturnType()->isVoidTy() ||
- FTy->isVarArg() || FTy->getNumParams() != 0)
- return 0;
-
- // Verify that the initializer is simple enough for us to handle.
- if (!I->hasDefinitiveInitializer()) return 0;
- ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
- if (!CA) return 0;
- for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
- if (isa<ConstantPointerNull>(CS->getOperand(1)))
- continue;
+ GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
+ if (GV == 0) return 0;
+
+ // Found it, verify it's an array of { int, void()* }.
+ const ArrayType *ATy =dyn_cast<ArrayType>(GV->getType()->getElementType());
+ if (!ATy) return 0;
+ const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
+ if (!STy || STy->getNumElements() != 2 ||
+ !STy->getElementType(0)->isIntegerTy(32)) return 0;
+ const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
+ if (!PFTy) return 0;
+ const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
+ if (!FTy || !FTy->getReturnType()->isVoidTy() ||
+ FTy->isVarArg() || FTy->getNumParams() != 0)
+ return 0;
- // Must have a function or null ptr.
- if (!isa<Function>(CS->getOperand(1)))
- return 0;
-
- // Init priority must be standard.
- ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
- if (!CI || CI->getZExtValue() != 65535)
- return 0;
- } else {
- return 0;
- }
-
- return I;
- }
- return 0;
+ // Verify that the initializer is simple enough for us to handle. We are
+ // only allowed to optimize the initializer if it is unique.
+ if (!GV->hasUniqueInitializer()) return 0;
+
+ ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!CA) return 0;
+
+ for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
+ ConstantStruct *CS = dyn_cast<ConstantStruct>(*i);
+ if (CS == 0) return 0;
+
+ if (isa<ConstantPointerNull>(CS->getOperand(1)))
+ continue;
+
+ // Must have a function or null ptr.
+ if (!isa<Function>(CS->getOperand(1)))
+ return 0;
+
+ // Init priority must be standard.
+ ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
+ if (!CI || CI->getZExtValue() != 65535)
+ return 0;
+ }
+
+ return GV;
}
/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
@@ -1985,13 +2001,13 @@ static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
/// specified array, returning the new global to use.
-static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
+static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
const std::vector<Function*> &Ctors) {
// If we made a change, reassemble the initializer list.
std::vector<Constant*> CSVals;
CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
CSVals.push_back(0);
-
+
// Create the new init list.
std::vector<Constant*> CAList;
for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
@@ -2007,26 +2023,26 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
}
CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
}
-
+
// Create the array initializer.
const Type *StructTy =
cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
- Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
+ Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
CAList.size()), CAList);
-
+
// If we didn't change the number of elements, don't create a new GV.
if (CA->getType() == GCL->getInitializer()->getType()) {
GCL->setInitializer(CA);
return GCL;
}
-
+
// Create the new global and insert it next to the existing list.
GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
GCL->getLinkage(), CA, "",
GCL->isThreadLocal());
GCL->getParent()->getGlobalList().insert(GCL, NGV);
NGV->takeName(GCL);
-
+
// Nuke the old list, replacing any uses with the new one.
if (!GCL->use_empty()) {
Constant *V = NGV;
@@ -2035,7 +2051,7 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
GCL->replaceAllUsesWith(V);
}
GCL->eraseFromParent();
-
+
if (Ctors.size())
return NGV;
else
@@ -2043,17 +2059,86 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
}
-static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
- Value *V) {
+static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) {
if (Constant *CV = dyn_cast<Constant>(V)) return CV;
Constant *R = ComputedValues[V];
assert(R && "Reference to an uncomputed value!");
return R;
}
+static inline bool
+isSimpleEnoughValueToCommit(Constant *C,
+ SmallPtrSet<Constant*, 8> &SimpleConstants);
+
+
+/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
+/// handled by the code generator. We don't want to generate something like:
+/// void *X = &X/42;
+/// because the code generator doesn't have a relocation that can handle that.
+///
+/// This function should be called if C was not found (but just got inserted)
+/// in SimpleConstants to avoid having to rescan the same constants all the
+/// time.
+static bool isSimpleEnoughValueToCommitHelper(Constant *C,
+ SmallPtrSet<Constant*, 8> &SimpleConstants) {
+ // Simple integer, undef, constant aggregate zero, global addresses, etc are
+ // all supported.
+ if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
+ isa<GlobalValue>(C))
+ return true;
+
+ // Aggregate values are safe if all their elements are.
+ if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
+ isa<ConstantVector>(C)) {
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
+ Constant *Op = cast<Constant>(C->getOperand(i));
+ if (!isSimpleEnoughValueToCommit(Op, SimpleConstants))
+ return false;
+ }
+ return true;
+ }
+
+ // We don't know exactly what relocations are allowed in constant expressions,
+ // so we allow &global+constantoffset, which is safe and uniformly supported
+ // across targets.
+ ConstantExpr *CE = cast<ConstantExpr>(C);
+ switch (CE->getOpcode()) {
+ case Instruction::BitCast:
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ // These casts are always fine if the casted value is.
+ return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
+
+ // GEP is fine if it is simple + constant offset.
+ case Instruction::GetElementPtr:
+ for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
+ if (!isa<ConstantInt>(CE->getOperand(i)))
+ return false;
+ return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
+
+ case Instruction::Add:
+ // We allow simple+cst.
+ if (!isa<ConstantInt>(CE->getOperand(1)))
+ return false;
+ return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
+ }
+ return false;
+}
+
+static inline bool
+isSimpleEnoughValueToCommit(Constant *C,
+ SmallPtrSet<Constant*, 8> &SimpleConstants) {
+ // If we already checked this constant, we win.
+ if (!SimpleConstants.insert(C)) return true;
+ // Check the constant.
+ return isSimpleEnoughValueToCommitHelper(C, SimpleConstants);
+}
+
+
/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
-/// enough for us to understand. In particular, if it is a cast of something,
-/// we punt. We basically just support direct accesses to globals and GEP's of
+/// enough for us to understand. In particular, if it is a cast to anything
+/// other than from one pointer type to another pointer type, we punt.
+/// We basically just support direct accesses to globals and GEP's of
/// globals. This should be kept up to date with CommitValueTo.
static bool isSimpleEnoughPointerToCommit(Constant *C) {
// Conservatively, avoid aggregate types. This is because we don't
@@ -2062,19 +2147,19 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
return false;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- // Do not allow weak/linkonce/dllimport/dllexport linkage or
+ // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
// external globals.
- return GV->hasDefinitiveInitializer();
+ return GV->hasUniqueInitializer();
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
// Handle a constantexpr gep.
if (CE->getOpcode() == Instruction::GetElementPtr &&
isa<GlobalVariable>(CE->getOperand(0)) &&
cast<GEPOperator>(CE)->isInBounds()) {
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
- // Do not allow weak/linkonce/dllimport/dllexport linkage or
+ // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
// external globals.
- if (!GV->hasDefinitiveInitializer())
+ if (!GV->hasUniqueInitializer())
return false;
// The first index must be zero.
@@ -2087,7 +2172,18 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
return false;
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
+
+ // A constantexpr bitcast from a pointer to another pointer is a no-op,
+ // and we know how to evaluate it by moving the bitcast from the pointer
+ // operand to the value operand.
+ } else if (CE->getOpcode() == Instruction::BitCast &&
+ isa<GlobalVariable>(CE->getOperand(0))) {
+ // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
+ // external globals.
+ return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
}
+ }
+
return false;
}
@@ -2101,7 +2197,7 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
assert(Val->getType() == Init->getType() && "Type mismatch!");
return Val;
}
-
+
std::vector<Constant*> Elts;
if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
@@ -2119,13 +2215,13 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
llvm_unreachable("This code is out of sync with "
" ConstantFoldLoadThroughGEPConstantExpr");
}
-
+
// Replace the element that we are supposed to.
ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
unsigned Idx = CU->getZExtValue();
assert(Idx < STy->getNumElements() && "Struct index out of range!");
Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
-
+
// Return the modified struct.
return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
STy->isPacked());
@@ -2138,8 +2234,8 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
NumElts = ATy->getNumElements();
else
NumElts = cast<VectorType>(InitTy)->getNumElements();
-
-
+
+
// Break up the array into elements.
if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
@@ -2154,16 +2250,15 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
" ConstantFoldLoadThroughGEPConstantExpr");
Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
}
-
+
assert(CI->getZExtValue() < NumElts);
Elts[CI->getZExtValue()] =
EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
-
+
if (Init->getType()->isArrayTy())
return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
- else
- return ConstantVector::get(&Elts[0], Elts.size());
- }
+ return ConstantVector::get(Elts);
+ }
}
/// CommitValueTo - We have decided that Addr (which satisfies the predicate
@@ -2189,14 +2284,14 @@ static Constant *ComputeLoadResult(Constant *P,
// is the most up-to-date.
DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
if (I != Memory.end()) return I->second;
-
+
// Access it.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
if (GV->hasDefinitiveInitializer())
return GV->getInitializer();
return 0;
}
-
+
// Handle a constantexpr getelementptr.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
if (CE->getOpcode() == Instruction::GetElementPtr &&
@@ -2216,17 +2311,19 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
const SmallVectorImpl<Constant*> &ActualArgs,
std::vector<Function*> &CallStack,
DenseMap<Constant*, Constant*> &MutatedMemory,
- std::vector<GlobalVariable*> &AllocaTmps) {
+ std::vector<GlobalVariable*> &AllocaTmps,
+ SmallPtrSet<Constant*, 8> &SimpleConstants,
+ const TargetData *TD) {
// Check to see if this function is already executing (recursion). If so,
// bail out. TODO: we might want to accept limited recursion.
if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
return false;
-
+
CallStack.push_back(F);
-
+
/// Values - As we compute SSA register values, we store their contents here.
DenseMap<Value*, Constant*> Values;
-
+
// Initialize arguments to the incoming values specified.
unsigned ArgNo = 0;
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
@@ -2237,21 +2334,65 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
/// we can only evaluate any one basic block at most once. This set keeps
/// track of what we have executed so we can detect recursive cases etc.
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
-
+
// CurInst - The current instruction we're evaluating.
BasicBlock::iterator CurInst = F->begin()->begin();
-
+
// This is the main evaluation loop.
while (1) {
Constant *InstResult = 0;
-
+
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
if (SI->isVolatile()) return false; // no volatile accesses.
Constant *Ptr = getVal(Values, SI->getOperand(1));
if (!isSimpleEnoughPointerToCommit(Ptr))
// If this is too complex for us to commit, reject it.
return false;
+
Constant *Val = getVal(Values, SI->getOperand(0));
+
+ // If this might be too difficult for the backend to handle (e.g. the addr
+ // of one global variable divided by another) then we can't commit it.
+ if (!isSimpleEnoughValueToCommit(Val, SimpleConstants))
+ return false;
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (CE->getOpcode() == Instruction::BitCast) {
+ // If we're evaluating a store through a bitcast, then we need
+ // to pull the bitcast off the pointer type and push it onto the
+ // stored value.
+ Ptr = CE->getOperand(0);
+
+ const Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType();
+
+ // In order to push the bitcast onto the stored value, a bitcast
+ // from NewTy to Val's type must be legal. If it's not, we can try
+ // introspecting NewTy to find a legal conversion.
+ while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
+ // If NewTy is a struct, we can convert the pointer to the struct
+ // into a pointer to its first member.
+ // FIXME: This could be extended to support arrays as well.
+ if (const StructType *STy = dyn_cast<StructType>(NewTy)) {
+ NewTy = STy->getTypeAtIndex(0U);
+
+ const IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32);
+ Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
+ Constant * const IdxList[] = {IdxZero, IdxZero};
+
+ Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList, 2);
+
+ // If we can't improve the situation by introspecting NewTy,
+ // we have to give up.
+ } else {
+ return 0;
+ }
+ }
+
+ // If we found compatible types, go ahead and push the bitcast
+ // onto the stored value.
+ Val = ConstantExpr::getBitCast(Val, NewTy);
+ }
+
MutatedMemory[Ptr] = Val;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
InstResult = ConstantExpr::get(BO->getOpcode(),
@@ -2290,7 +2431,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
GlobalValue::InternalLinkage,
UndefValue::get(Ty),
AI->getName()));
- InstResult = AllocaTmps.back();
+ InstResult = AllocaTmps.back();
} else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
// Debug info can safely be ignored here.
@@ -2324,11 +2465,11 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
} else {
if (Callee->getFunctionType()->isVarArg())
return false;
-
+
Constant *RetVal;
// Execute the call, if successful, use the return value.
if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
- MutatedMemory, AllocaTmps))
+ MutatedMemory, AllocaTmps, SimpleConstants, TD))
return false;
InstResult = RetVal;
}
@@ -2342,7 +2483,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
if (!Cond) return false; // Cannot determine.
- NewBB = BI->getSuccessor(!Cond->getZExtValue());
+ NewBB = BI->getSuccessor(!Cond->getZExtValue());
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
ConstantInt *Val =
@@ -2358,20 +2499,20 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
} else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
if (RI->getNumOperands())
RetVal = getVal(Values, RI->getOperand(0));
-
+
CallStack.pop_back(); // return from fn.
return true; // We succeeded at evaluating this ctor!
} else {
// invoke, unwind, unreachable.
return false; // Cannot handle this terminator.
}
-
+
// Okay, we succeeded in evaluating this control flow. See if we have
// executed the new block before. If so, we have a looping function,
// which we cannot evaluate in reasonable time.
if (!ExecutedBlocks.insert(NewBB))
return false; // looped!
-
+
// Okay, we have never been in this block before. Check to see if there
// are any PHI nodes. If so, evaluate them with information about where
// we came from.
@@ -2387,10 +2528,14 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
// Did not know how to evaluate this!
return false;
}
-
- if (!CurInst->use_empty())
+
+ if (!CurInst->use_empty()) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
+ InstResult = ConstantFoldConstantExpression(CE, TD);
+
Values[CurInst] = InstResult;
-
+ }
+
// Advance program counter.
++CurInst;
}
@@ -2398,7 +2543,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
/// we can. Return true if we can, false otherwise.
-static bool EvaluateStaticConstructor(Function *F) {
+static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) {
/// MutatedMemory - For each store we execute, we update this map. Loads
/// check this to get the most up-to-date value. If evaluation is successful,
/// this state is committed to the process.
@@ -2408,17 +2553,23 @@ static bool EvaluateStaticConstructor(Function *F) {
/// to represent its body. This vector is needed so we can delete the
/// temporary globals when we are done.
std::vector<GlobalVariable*> AllocaTmps;
-
+
/// CallStack - This is used to detect recursion. In pathological situations
/// we could hit exponential behavior, but at least there is nothing
/// unbounded.
std::vector<Function*> CallStack;
+ /// SimpleConstants - These are constants we have checked and know to be
+ /// simple enough to live in a static initializer of a global.
+ SmallPtrSet<Constant*, 8> SimpleConstants;
+
// Call the function.
Constant *RetValDummy;
bool EvalSuccess = EvaluateFunction(F, RetValDummy,
SmallVector<Constant*, 0>(), CallStack,
- MutatedMemory, AllocaTmps);
+ MutatedMemory, AllocaTmps,
+ SimpleConstants, TD);
+
if (EvalSuccess) {
// We succeeded at evaluation: commit the result.
DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
@@ -2428,13 +2579,13 @@ static bool EvaluateStaticConstructor(Function *F) {
E = MutatedMemory.end(); I != E; ++I)
CommitValueTo(I->second, I->first);
}
-
+
// At this point, we are done interpreting. If we created any 'alloca'
// temporaries, release them now.
while (!AllocaTmps.empty()) {
GlobalVariable *Tmp = AllocaTmps.back();
AllocaTmps.pop_back();
-
+
// If there are still users of the alloca, the program is doing something
// silly, e.g. storing the address of the alloca somewhere and using it
// later. Since this is undefined, we'll just make it be null.
@@ -2442,7 +2593,7 @@ static bool EvaluateStaticConstructor(Function *F) {
Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
delete Tmp;
}
-
+
return EvalSuccess;
}
@@ -2454,7 +2605,8 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
bool MadeChange = false;
if (Ctors.empty()) return false;
-
+
+ const TargetData *TD = getAnalysisIfAvailable<TargetData>();
// Loop over global ctors, optimizing them when we can.
for (unsigned i = 0; i != Ctors.size(); ++i) {
Function *F = Ctors[i];
@@ -2467,12 +2619,12 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
}
break;
}
-
+
// We cannot simplify external ctor functions.
if (F->empty()) continue;
-
+
// If we can evaluate the ctor at compile time, do.
- if (EvaluateStaticConstructor(F)) {
+ if (EvaluateStaticConstructor(F, TD)) {
Ctors.erase(Ctors.begin()+i);
MadeChange = true;
--i;
@@ -2480,9 +2632,9 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
continue;
}
}
-
+
if (!MadeChange) return false;
-
+
GCL = InstallGlobalCtors(GCL, Ctors);
return true;
}
@@ -2546,21 +2698,21 @@ bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
bool GlobalOpt::runOnModule(Module &M) {
bool Changed = false;
-
+
// Try to find the llvm.globalctors list.
GlobalVariable *GlobalCtors = FindGlobalCtors(M);
bool LocalChange = true;
while (LocalChange) {
LocalChange = false;
-
+
// Delete functions that are trivially dead, ccc -> fastcc
LocalChange |= OptimizeFunctions(M);
-
+
// Optimize global_ctors list.
if (GlobalCtors)
LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
-
+
// Optimize non-address-taken globals.
LocalChange |= OptimizeGlobalVars(M);
@@ -2568,9 +2720,9 @@ bool GlobalOpt::runOnModule(Module &M) {
LocalChange |= OptimizeGlobalAliases(M);
Changed |= LocalChange;
}
-
+
// TODO: Move all global ctors functions to the end of the module for code
// layout.
-
+
return Changed;
}
diff --git a/lib/Transforms/IPO/IPConstantPropagation.cpp b/lib/Transforms/IPO/IPConstantPropagation.cpp
index 1b3cf78..c7c2939 100644
--- a/lib/Transforms/IPO/IPConstantPropagation.cpp
+++ b/lib/Transforms/IPO/IPConstantPropagation.cpp
@@ -35,7 +35,9 @@ namespace {
///
struct IPCP : public ModulePass {
static char ID; // Pass identification, replacement for typeid
- IPCP() : ModulePass(ID) {}
+ IPCP() : ModulePass(ID) {
+ initializeIPCPPass(*PassRegistry::getPassRegistry());
+ }
bool runOnModule(Module &M);
private:
@@ -46,7 +48,7 @@ namespace {
char IPCP::ID = 0;
INITIALIZE_PASS(IPCP, "ipconstprop",
- "Interprocedural constant propagation", false, false);
+ "Interprocedural constant propagation", false, false)
ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
diff --git a/lib/Transforms/IPO/IPO.cpp b/lib/Transforms/IPO/IPO.cpp
index 340b70e..fbe90ce 100644
--- a/lib/Transforms/IPO/IPO.cpp
+++ b/lib/Transforms/IPO/IPO.cpp
@@ -7,17 +7,51 @@
//
//===----------------------------------------------------------------------===//
//
-// This file implements the C bindings for libLLVMIPO.a, which implements
-// several transformations over the LLVM intermediate representation.
+// This file implements the common infrastructure (including C bindings) for
+// libLLVMIPO.a, which implements several transformations over the LLVM
+// intermediate representation.
//
//===----------------------------------------------------------------------===//
#include "llvm-c/Transforms/IPO.h"
+#include "llvm/InitializePasses.h"
#include "llvm/PassManager.h"
#include "llvm/Transforms/IPO.h"
using namespace llvm;
+void llvm::initializeIPO(PassRegistry &Registry) {
+ initializeArgPromotionPass(Registry);
+ initializeConstantMergePass(Registry);
+ initializeDAEPass(Registry);
+ initializeDAHPass(Registry);
+ initializeDTEPass(Registry);
+ initializeFunctionAttrsPass(Registry);
+ initializeGlobalDCEPass(Registry);
+ initializeGlobalOptPass(Registry);
+ initializeIPCPPass(Registry);
+ initializeAlwaysInlinerPass(Registry);
+ initializeSimpleInlinerPass(Registry);
+ initializeInternalizePassPass(Registry);
+ initializeLoopExtractorPass(Registry);
+ initializeBlockExtractorPassPass(Registry);
+ initializeSingleLoopExtractorPass(Registry);
+ initializeLowerSetJmpPass(Registry);
+ initializeMergeFunctionsPass(Registry);
+ initializePartialInlinerPass(Registry);
+ initializePruneEHPass(Registry);
+ initializeStripDeadPrototypesPassPass(Registry);
+ initializeStripSymbolsPass(Registry);
+ initializeStripDebugDeclarePass(Registry);
+ initializeStripDeadDebugInfoPass(Registry);
+ initializeStripNonDebugSymbolsPass(Registry);
+ initializeSRETPromotionPass(Registry);
+}
+
+void LLVMInitializeIPO(LLVMPassRegistryRef R) {
+ initializeIPO(*unwrap(R));
+}
+
void LLVMAddArgumentPromotionPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createArgumentPromotionPass());
}
diff --git a/lib/Transforms/IPO/InlineAlways.cpp b/lib/Transforms/IPO/InlineAlways.cpp
index ecc60ad..ce795b7 100644
--- a/lib/Transforms/IPO/InlineAlways.cpp
+++ b/lib/Transforms/IPO/InlineAlways.cpp
@@ -36,7 +36,9 @@ namespace {
InlineCostAnalyzer CA;
public:
// Use extremely low threshold.
- AlwaysInliner() : Inliner(ID, -2000000000) {}
+ AlwaysInliner() : Inliner(ID, -2000000000) {
+ initializeAlwaysInlinerPass(*PassRegistry::getPassRegistry());
+ }
static char ID; // Pass identification, replacement for typeid
InlineCost getInlineCost(CallSite CS) {
return CA.getInlineCost(CS, NeverInline);
@@ -61,8 +63,11 @@ namespace {
}
char AlwaysInliner::ID = 0;
-INITIALIZE_PASS(AlwaysInliner, "always-inline",
- "Inliner for always_inline functions", false, false);
+INITIALIZE_PASS_BEGIN(AlwaysInliner, "always-inline",
+ "Inliner for always_inline functions", false, false)
+INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_END(AlwaysInliner, "always-inline",
+ "Inliner for always_inline functions", false, false)
Pass *llvm::createAlwaysInlinerPass() { return new AlwaysInliner(); }
diff --git a/lib/Transforms/IPO/InlineSimple.cpp b/lib/Transforms/IPO/InlineSimple.cpp
index 9c6637d..0c5b3be 100644
--- a/lib/Transforms/IPO/InlineSimple.cpp
+++ b/lib/Transforms/IPO/InlineSimple.cpp
@@ -33,8 +33,12 @@ namespace {
SmallPtrSet<const Function*, 16> NeverInline;
InlineCostAnalyzer CA;
public:
- SimpleInliner() : Inliner(ID) {}
- SimpleInliner(int Threshold) : Inliner(ID, Threshold) {}
+ SimpleInliner() : Inliner(ID) {
+ initializeSimpleInlinerPass(*PassRegistry::getPassRegistry());
+ }
+ SimpleInliner(int Threshold) : Inliner(ID, Threshold) {
+ initializeSimpleInlinerPass(*PassRegistry::getPassRegistry());
+ }
static char ID; // Pass identification, replacement for typeid
InlineCost getInlineCost(CallSite CS) {
return CA.getInlineCost(CS, NeverInline);
@@ -56,8 +60,11 @@ namespace {
}
char SimpleInliner::ID = 0;
-INITIALIZE_PASS(SimpleInliner, "inline",
- "Function Integration/Inlining", false, false);
+INITIALIZE_PASS_BEGIN(SimpleInliner, "inline",
+ "Function Integration/Inlining", false, false)
+INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_END(SimpleInliner, "inline",
+ "Function Integration/Inlining", false, false)
Pass *llvm::createFunctionInliningPass() { return new SimpleInliner(); }
diff --git a/lib/Transforms/IPO/Inliner.cpp b/lib/Transforms/IPO/Inliner.cpp
index 4983e8e..37eafd7 100644
--- a/lib/Transforms/IPO/Inliner.cpp
+++ b/lib/Transforms/IPO/Inliner.cpp
@@ -52,7 +52,8 @@ Inliner::Inliner(char &ID)
: CallGraphSCCPass(ID), InlineThreshold(InlineLimit) {}
Inliner::Inliner(char &ID, int Threshold)
- : CallGraphSCCPass(ID), InlineThreshold(Threshold) {}
+ : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
+ InlineLimit : Threshold) {}
/// getAnalysisUsage - For this class, we declare that we require and preserve
/// the call graph. If the derived class implements this method, it should
@@ -74,7 +75,8 @@ InlinedArrayAllocasTy;
/// inline this call site we attempt to reuse already available allocas or add
/// any new allocas to the set if not possible.
static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
- InlinedArrayAllocasTy &InlinedArrayAllocas) {
+ InlinedArrayAllocasTy &InlinedArrayAllocas,
+ int InlineHistory) {
Function *Callee = CS.getCalledFunction();
Function *Caller = CS.getCaller();
@@ -91,7 +93,6 @@ static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
!Caller->hasFnAttr(Attribute::StackProtectReq))
Caller->addFnAttr(Attribute::StackProtect);
-
// Look at all of the allocas that we inlined through this call site. If we
// have already inlined other allocas through other calls into this function,
// then we know that they have disjoint lifetimes and that we can merge them.
@@ -115,6 +116,21 @@ static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
//
SmallPtrSet<AllocaInst*, 16> UsedAllocas;
+ // When processing our SCC, check to see if CS was inlined from some other
+ // call site. For example, if we're processing "A" in this code:
+ // A() { B() }
+ // B() { x = alloca ... C() }
+ // C() { y = alloca ... }
+ // Assume that C was not inlined into B initially, and so we're processing A
+ // and decide to inline B into A. Doing this makes an alloca available for
+ // reuse and makes a callsite (C) available for inlining. When we process
+ // the C call site we don't want to do any alloca merging between X and Y
+ // because their scopes are not disjoint. We could make this smarter by
+ // keeping track of the inline history for each alloca in the
+ // InlinedArrayAllocas but this isn't likely to be a significant win.
+ if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
+ return true;
+
// Loop over all the allocas we have so far and see if they can be merged with
// a previously inlined alloca. If not, remember that we had it.
for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
@@ -152,19 +168,21 @@ static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
// Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
// success!
- DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI);
+ DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
+ << *AvailableAlloca << '\n');
AI->replaceAllUsesWith(AvailableAlloca);
AI->eraseFromParent();
MergedAwayAlloca = true;
++NumMergedAllocas;
+ IFI.StaticAllocas[AllocaNo] = 0;
break;
}
// If we already nuked the alloca, we're done with it.
if (MergedAwayAlloca)
continue;
-
+
// If we were unable to merge away the alloca either because there are no
// allocas of the right type available or because we reused them all
// already, remember that this alloca came from an inlined function and mark
@@ -234,20 +252,25 @@ bool Inliner::shouldInline(CallSite CS) {
if (Caller->hasLocalLinkage()) {
int TotalSecondaryCost = 0;
bool outerCallsFound = false;
- bool allOuterCallsWillBeInlined = true;
- bool someOuterCallWouldNotBeInlined = false;
+ // This bool tracks what happens if we do NOT inline C into B.
+ bool callerWillBeRemoved = true;
+ // This bool tracks what happens if we DO inline C into B.
+ bool inliningPreventsSomeOuterInline = false;
for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
I != E; ++I) {
CallSite CS2(*I);
// If this isn't a call to Caller (it could be some other sort
- // of reference) skip it.
- if (!CS2 || CS2.getCalledFunction() != Caller)
+ // of reference) skip it. Such references will prevent the caller
+ // from being removed.
+ if (!CS2 || CS2.getCalledFunction() != Caller) {
+ callerWillBeRemoved = false;
continue;
+ }
InlineCost IC2 = getInlineCost(CS2);
if (IC2.isNever())
- allOuterCallsWillBeInlined = false;
+ callerWillBeRemoved = false;
if (IC2.isAlways() || IC2.isNever())
continue;
@@ -257,14 +280,14 @@ bool Inliner::shouldInline(CallSite CS) {
float FudgeFactor2 = getInlineFudgeFactor(CS2);
if (Cost2 >= (int)(CurrentThreshold2 * FudgeFactor2))
- allOuterCallsWillBeInlined = false;
+ callerWillBeRemoved = false;
// See if we have this case. We subtract off the penalty
// for the call instruction, which we would be deleting.
if (Cost2 < (int)(CurrentThreshold2 * FudgeFactor2) &&
Cost2 + Cost - (InlineConstants::CallPenalty + 1) >=
(int)(CurrentThreshold2 * FudgeFactor2)) {
- someOuterCallWouldNotBeInlined = true;
+ inliningPreventsSomeOuterInline = true;
TotalSecondaryCost += Cost2;
}
}
@@ -272,10 +295,10 @@ bool Inliner::shouldInline(CallSite CS) {
// one is set very low by getInlineCost, in anticipation that Caller will
// be removed entirely. We did not account for this above unless there
// is only one caller of Caller.
- if (allOuterCallsWillBeInlined && Caller->use_begin() != Caller->use_end())
+ if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
- if (outerCallsFound && someOuterCallWouldNotBeInlined &&
+ if (outerCallsFound && inliningPreventsSomeOuterInline &&
TotalSecondaryCost < Cost) {
DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() <<
" Cost = " << Cost <<
@@ -401,7 +424,7 @@ bool Inliner::runOnSCC(CallGraphSCC &SCC) {
// If this call site was obtained by inlining another function, verify
// that the include path for the function did not include the callee
- // itself. If so, we'd be recursively inlinling the same function,
+ // itself. If so, we'd be recursively inlining the same function,
// which would provide the same callsites, which would cause us to
// infinitely inline.
int InlineHistoryID = CallSites[CSi].second;
@@ -416,7 +439,8 @@ bool Inliner::runOnSCC(CallGraphSCC &SCC) {
continue;
// Attempt to inline the function.
- if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas))
+ if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
+ InlineHistoryID))
continue;
++NumInlined;
diff --git a/lib/Transforms/IPO/Internalize.cpp b/lib/Transforms/IPO/Internalize.cpp
index a1d919f..9b9ebad 100644
--- a/lib/Transforms/IPO/Internalize.cpp
+++ b/lib/Transforms/IPO/Internalize.cpp
@@ -64,10 +64,11 @@ namespace {
char InternalizePass::ID = 0;
INITIALIZE_PASS(InternalizePass, "internalize",
- "Internalize Global Symbols", false, false);
+ "Internalize Global Symbols", false, false)
InternalizePass::InternalizePass(bool AllButMain)
: ModulePass(ID), AllButMain(AllButMain){
+ initializeInternalizePassPass(*PassRegistry::getPassRegistry());
if (!APIFile.empty()) // If a filename is specified, use it.
LoadFile(APIFile.c_str());
if (!APIList.empty()) // If a list is specified, use it as well.
@@ -76,6 +77,7 @@ InternalizePass::InternalizePass(bool AllButMain)
InternalizePass::InternalizePass(const std::vector<const char *>&exportList)
: ModulePass(ID), AllButMain(false){
+ initializeInternalizePassPass(*PassRegistry::getPassRegistry());
for(std::vector<const char *>::const_iterator itr = exportList.begin();
itr != exportList.end(); itr++) {
ExternalNames.insert(*itr);
diff --git a/lib/Transforms/IPO/LoopExtractor.cpp b/lib/Transforms/IPO/LoopExtractor.cpp
index f88dff6..848944d 100644
--- a/lib/Transforms/IPO/LoopExtractor.cpp
+++ b/lib/Transforms/IPO/LoopExtractor.cpp
@@ -37,7 +37,9 @@ namespace {
unsigned NumLoops;
explicit LoopExtractor(unsigned numLoops = ~0)
- : LoopPass(ID), NumLoops(numLoops) {}
+ : LoopPass(ID), NumLoops(numLoops) {
+ initializeLoopExtractorPass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -50,8 +52,13 @@ namespace {
}
char LoopExtractor::ID = 0;
-INITIALIZE_PASS(LoopExtractor, "loop-extract",
- "Extract loops into new functions", false, false);
+INITIALIZE_PASS_BEGIN(LoopExtractor, "loop-extract",
+ "Extract loops into new functions", false, false)
+INITIALIZE_PASS_DEPENDENCY(BreakCriticalEdges)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_END(LoopExtractor, "loop-extract",
+ "Extract loops into new functions", false, false)
namespace {
/// SingleLoopExtractor - For bugpoint.
@@ -63,7 +70,7 @@ namespace {
char SingleLoopExtractor::ID = 0;
INITIALIZE_PASS(SingleLoopExtractor, "loop-extract-single",
- "Extract at most one loop into a new function", false, false);
+ "Extract at most one loop into a new function", false, false)
// createLoopExtractorPass - This pass extracts all natural loops from the
// program into a function if it can.
@@ -159,7 +166,7 @@ namespace {
char BlockExtractorPass::ID = 0;
INITIALIZE_PASS(BlockExtractorPass, "extract-blocks",
"Extract Basic Blocks From Module (for bugpoint use)",
- false, false);
+ false, false)
// createBlockExtractorPass - This pass extracts all blocks (except those
// specified in the argument list) from the functions in the module.
diff --git a/lib/Transforms/IPO/LowerSetJmp.cpp b/lib/Transforms/IPO/LowerSetJmp.cpp
index 6c715de..b545f0b 100644
--- a/lib/Transforms/IPO/LowerSetJmp.cpp
+++ b/lib/Transforms/IPO/LowerSetJmp.cpp
@@ -109,7 +109,9 @@ namespace {
bool IsTransformableFunction(StringRef Name);
public:
static char ID; // Pass identification, replacement for typeid
- LowerSetJmp() : ModulePass(ID) {}
+ LowerSetJmp() : ModulePass(ID) {
+ initializeLowerSetJmpPass(*PassRegistry::getPassRegistry());
+ }
void visitCallInst(CallInst& CI);
void visitInvokeInst(InvokeInst& II);
@@ -122,7 +124,7 @@ namespace {
} // end anonymous namespace
char LowerSetJmp::ID = 0;
-INITIALIZE_PASS(LowerSetJmp, "lowersetjmp", "Lower Set Jump", false, false);
+INITIALIZE_PASS(LowerSetJmp, "lowersetjmp", "Lower Set Jump", false, false)
// run - Run the transformation on the program. We grab the function
// prototypes for longjmp and setjmp. If they are used in the program,
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp
index 5d838f9..cccffca 100644
--- a/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/lib/Transforms/IPO/MergeFunctions.cpp
@@ -67,42 +67,87 @@
using namespace llvm;
STATISTIC(NumFunctionsMerged, "Number of functions merged");
+STATISTIC(NumThunksWritten, "Number of thunks generated");
+STATISTIC(NumAliasesWritten, "Number of aliases generated");
+STATISTIC(NumDoubleWeak, "Number of new functions created");
+
+/// Creates a hash-code for the function which is the same for any two
+/// functions that will compare equal, without looking at the instructions
+/// inside the function.
+static unsigned profileFunction(const Function *F) {
+ const FunctionType *FTy = F->getFunctionType();
-namespace {
- /// MergeFunctions finds functions which will generate identical machine code,
- /// by considering all pointer types to be equivalent. Once identified,
- /// MergeFunctions will fold them by replacing a call to one to a call to a
- /// bitcast of the other.
- ///
- class MergeFunctions : public ModulePass {
- public:
- static char ID;
- MergeFunctions() : ModulePass(ID) {}
-
- bool runOnModule(Module &M);
-
- private:
- /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G
- /// may be deleted, or may be converted into a thunk. In either case, it
- /// should never be visited again.
- void MergeTwoFunctions(Function *F, Function *G) const;
-
- /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
- /// replace direct uses of G with bitcast(F).
- void WriteThunk(Function *F, Function *G) const;
-
- TargetData *TD;
- };
+ FoldingSetNodeID ID;
+ ID.AddInteger(F->size());
+ ID.AddInteger(F->getCallingConv());
+ ID.AddBoolean(F->hasGC());
+ ID.AddBoolean(FTy->isVarArg());
+ ID.AddInteger(FTy->getReturnType()->getTypeID());
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ ID.AddInteger(FTy->getParamType(i)->getTypeID());
+ return ID.ComputeHash();
}
-char MergeFunctions::ID = 0;
-INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
+namespace {
+
+/// ComparableFunction - A struct that pairs together functions with a
+/// TargetData so that we can keep them together as elements in the DenseSet.
+class ComparableFunction {
+public:
+ static const ComparableFunction EmptyKey;
+ static const ComparableFunction TombstoneKey;
+ static TargetData * const LookupOnly;
+
+ ComparableFunction(Function *Func, TargetData *TD)
+ : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
+
+ Function *getFunc() const { return Func; }
+ unsigned getHash() const { return Hash; }
+ TargetData *getTD() const { return TD; }
+
+ // Drops AssertingVH reference to the function. Outside of debug mode, this
+ // does nothing.
+ void release() {
+ assert(Func &&
+ "Attempted to release function twice, or release empty/tombstone!");
+ Func = NULL;
+ }
+
+private:
+ explicit ComparableFunction(unsigned Hash)
+ : Func(NULL), Hash(Hash), TD(NULL) {}
+
+ AssertingVH<Function> Func;
+ unsigned Hash;
+ TargetData *TD;
+};
+
+const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
+const ComparableFunction ComparableFunction::TombstoneKey =
+ ComparableFunction(1);
+TargetData * const ComparableFunction::LookupOnly = (TargetData*)(-1);
-ModulePass *llvm::createMergeFunctionsPass() {
- return new MergeFunctions();
+}
+
+namespace llvm {
+ template <>
+ struct DenseMapInfo<ComparableFunction> {
+ static ComparableFunction getEmptyKey() {
+ return ComparableFunction::EmptyKey;
+ }
+ static ComparableFunction getTombstoneKey() {
+ return ComparableFunction::TombstoneKey;
+ }
+ static unsigned getHashValue(const ComparableFunction &CF) {
+ return CF.getHash();
+ }
+ static bool isEqual(const ComparableFunction &LHS,
+ const ComparableFunction &RHS);
+ };
}
namespace {
+
/// FunctionComparator - Compares two functions to determine whether or not
/// they will generate machine code with the same behaviour. TargetData is
/// used if available. The comparator always fails conservatively (erring on the
@@ -111,34 +156,34 @@ class FunctionComparator {
public:
FunctionComparator(const TargetData *TD, const Function *F1,
const Function *F2)
- : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
+ : F1(F1), F2(F2), TD(TD) {}
- /// Compare - test whether the two functions have equivalent behaviour.
- bool Compare();
+ /// Test whether the two functions have equivalent behaviour.
+ bool compare();
private:
- /// Compare - test whether two basic blocks have equivalent behaviour.
- bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
+ /// Test whether two basic blocks have equivalent behaviour.
+ bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
- /// Enumerate - Assign or look up previously assigned numbers for the two
- /// values, and return whether the numbers are equal. Numbers are assigned in
- /// the order visited.
- bool Enumerate(const Value *V1, const Value *V2);
+ /// Assign or look up previously assigned numbers for the two values, and
+ /// return whether the numbers are equal. Numbers are assigned in the order
+ /// visited.
+ bool enumerate(const Value *V1, const Value *V2);
- /// isEquivalentOperation - Compare two Instructions for equivalence, similar
- /// to Instruction::isSameOperationAs but with modifications to the type
+ /// Compare two Instructions for equivalence, similar to
+ /// Instruction::isSameOperationAs but with modifications to the type
/// comparison.
bool isEquivalentOperation(const Instruction *I1,
const Instruction *I2) const;
- /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
+ /// Compare two GEPs for equivalent pointer arithmetic.
bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
bool isEquivalentGEP(const GetElementPtrInst *GEP1,
const GetElementPtrInst *GEP2) {
return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
}
- /// isEquivalentType - Compare two Types, treating all pointer types as equal.
+ /// Compare two Types, treating all pointer types as equal.
bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
// The two functions undergoing comparison.
@@ -146,20 +191,26 @@ private:
const TargetData *TD;
- typedef DenseMap<const Value *, unsigned long> IDMap;
- IDMap Map1, Map2;
- unsigned long IDMap1Count, IDMap2Count;
+ DenseMap<const Value *, const Value *> id_map;
+ DenseSet<const Value *> seen_values;
};
+
}
-/// isEquivalentType - any two pointers in the same address space are
-/// equivalent. Otherwise, standard type equivalence rules apply.
+// Any two pointers in the same address space are equivalent, intptr_t and
+// pointers are equivalent. Otherwise, standard type equivalence rules apply.
bool FunctionComparator::isEquivalentType(const Type *Ty1,
const Type *Ty2) const {
if (Ty1 == Ty2)
return true;
- if (Ty1->getTypeID() != Ty2->getTypeID())
+ if (Ty1->getTypeID() != Ty2->getTypeID()) {
+ if (TD) {
+ LLVMContext &Ctx = Ty1->getContext();
+ if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
+ if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
+ }
return false;
+ }
switch(Ty1->getTypeID()) {
default:
@@ -167,6 +218,7 @@ bool FunctionComparator::isEquivalentType(const Type *Ty1,
// Fall through in Release mode.
case Type::IntegerTyID:
case Type::OpaqueTyID:
+ case Type::VectorTyID:
// Ty1 == Ty2 would have returned true earlier.
return false;
@@ -225,21 +277,18 @@ bool FunctionComparator::isEquivalentType(const Type *Ty1,
return ATy1->getNumElements() == ATy2->getNumElements() &&
isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
}
-
- case Type::VectorTyID: {
- const VectorType *VTy1 = cast<VectorType>(Ty1);
- const VectorType *VTy2 = cast<VectorType>(Ty2);
- return VTy1->getNumElements() == VTy2->getNumElements() &&
- isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
- }
}
}
-/// isEquivalentOperation - determine whether the two operations are the same
-/// except that pointer-to-A and pointer-to-B are equivalent. This should be
-/// kept in sync with Instruction::isSameOperationAs.
+// Determine whether the two operations are the same except that pointer-to-A
+// and pointer-to-B are equivalent. This should be kept in sync with
+// Instruction::isSameOperationAs.
bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
const Instruction *I2) const {
+ // Differences from Instruction::isSameOperationAs:
+ // * replace type comparison with calls to isEquivalentType.
+ // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
+ // * because of the above, we don't test for the tail bit on calls later on
if (I1->getOpcode() != I2->getOpcode() ||
I1->getNumOperands() != I2->getNumOperands() ||
!isEquivalentType(I1->getType(), I2->getType()) ||
@@ -263,14 +312,11 @@ bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
if (const CallInst *CI = dyn_cast<CallInst>(I1))
- return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
- CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
- CI->getAttributes().getRawPointer() ==
- cast<CallInst>(I2)->getAttributes().getRawPointer();
+ return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
+ CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
- CI->getAttributes().getRawPointer() ==
- cast<InvokeInst>(I2)->getAttributes().getRawPointer();
+ CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
return false;
@@ -291,8 +337,7 @@ bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
return true;
}
-/// isEquivalentGEP - determine whether two GEP operations perform the same
-/// underlying arithmetic.
+// Determine whether two GEP operations perform the same underlying arithmetic.
bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
const GEPOperator *GEP2) {
// When we have target data, we can reduce the GEP down to the value in bytes
@@ -315,17 +360,17 @@ bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
return false;
for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
- if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
+ if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
return false;
}
return true;
}
-/// Enumerate - Compare two values used by the two functions under pair-wise
-/// comparison. If this is the first time the values are seen, they're added to
-/// the mapping so that we will detect mismatches on next use.
-bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
+// Compare two values used by the two functions under pair-wise comparison. If
+// this is the first time the values are seen, they're added to the mapping so
+// that we will detect mismatches on next use.
+bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
// Check for function @f1 referring to itself and function @f2 referring to
// itself, or referring to each other, or both referring to either of them.
// They're all equivalent if the two functions are otherwise equivalent.
@@ -334,35 +379,44 @@ bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
if (V1 == F2 && V2 == F1)
return true;
- // TODO: constant expressions with GEP or references to F1 or F2.
- if (isa<Constant>(V1))
- return V1 == V2;
-
- if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
- const InlineAsm *IA1 = cast<InlineAsm>(V1);
- const InlineAsm *IA2 = cast<InlineAsm>(V2);
- return IA1->getAsmString() == IA2->getAsmString() &&
- IA1->getConstraintString() == IA2->getConstraintString();
+ if (const Constant *C1 = dyn_cast<Constant>(V1)) {
+ if (V1 == V2) return true;
+ const Constant *C2 = dyn_cast<Constant>(V2);
+ if (!C2) return false;
+ // TODO: constant expressions with GEP or references to F1 or F2.
+ if (C1->isNullValue() && C2->isNullValue() &&
+ isEquivalentType(C1->getType(), C2->getType()))
+ return true;
+ // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
+ // then they must have equal bit patterns.
+ return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
+ C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
}
- unsigned long &ID1 = Map1[V1];
- if (!ID1)
- ID1 = ++IDMap1Count;
+ if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
+ return V1 == V2;
- unsigned long &ID2 = Map2[V2];
- if (!ID2)
- ID2 = ++IDMap2Count;
+ // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
+ // check whether it's equal to V2. When there is no mapping then we need to
+ // ensure that V2 isn't already equivalent to something else. For this
+ // purpose, we track the V2 values in a set.
- return ID1 == ID2;
+ const Value *&map_elem = id_map[V1];
+ if (map_elem)
+ return map_elem == V2;
+ if (!seen_values.insert(V2).second)
+ return false;
+ map_elem = V2;
+ return true;
}
-/// Compare - test whether two basic blocks have equivalent behaviour.
-bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
+// Test whether two basic blocks have equivalent behaviour.
+bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
do {
- if (!Enumerate(F1I, F2I))
+ if (!enumerate(F1I, F2I))
return false;
if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
@@ -370,7 +424,7 @@ bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
if (!GEP2)
return false;
- if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
+ if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
return false;
if (!isEquivalentGEP(GEP1, GEP2))
@@ -384,7 +438,7 @@ bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
Value *OpF1 = F1I->getOperand(i);
Value *OpF2 = F2I->getOperand(i);
- if (!Enumerate(OpF1, OpF2))
+ if (!enumerate(OpF1, OpF2))
return false;
if (OpF1->getValueID() != OpF2->getValueID() ||
@@ -399,8 +453,8 @@ bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
return F1I == F1E && F2I == F2E;
}
-/// Compare - test whether the two functions have equivalent behaviour.
-bool FunctionComparator::Compare() {
+// Test whether the two functions have equivalent behaviour.
+bool FunctionComparator::compare() {
// We need to recheck everything, but check the things that weren't included
// in the hash first.
@@ -431,14 +485,14 @@ bool FunctionComparator::Compare() {
return false;
assert(F1->arg_size() == F2->arg_size() &&
- "Identical functions have a different number of args.");
+ "Identically typed functions have different numbers of args!");
// Visit the arguments so that they get enumerated in the order they're
// passed in.
for (Function::const_arg_iterator f1i = F1->arg_begin(),
f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
- if (!Enumerate(f1i, f2i))
- llvm_unreachable("Arguments repeat");
+ if (!enumerate(f1i, f2i))
+ llvm_unreachable("Arguments repeat!");
}
// We do a CFG-ordered walk since the actual ordering of the blocks in the
@@ -456,7 +510,7 @@ bool FunctionComparator::Compare() {
const BasicBlock *F1BB = F1BBs.pop_back_val();
const BasicBlock *F2BB = F2BBs.pop_back_val();
- if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
+ if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
return false;
const TerminatorInst *F1TI = F1BB->getTerminator();
@@ -474,23 +528,190 @@ bool FunctionComparator::Compare() {
return true;
}
-/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
-/// direct uses of G with bitcast(F).
-void MergeFunctions::WriteThunk(Function *F, Function *G) const {
+namespace {
+
+/// MergeFunctions finds functions which will generate identical machine code,
+/// by considering all pointer types to be equivalent. Once identified,
+/// MergeFunctions will fold them by replacing a call to one to a call to a
+/// bitcast of the other.
+///
+class MergeFunctions : public ModulePass {
+public:
+ static char ID;
+ MergeFunctions()
+ : ModulePass(ID), HasGlobalAliases(false) {
+ initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnModule(Module &M);
+
+private:
+ typedef DenseSet<ComparableFunction> FnSetType;
+
+ /// A work queue of functions that may have been modified and should be
+ /// analyzed again.
+ std::vector<WeakVH> Deferred;
+
+ /// Insert a ComparableFunction into the FnSet, or merge it away if it's
+ /// equal to one that's already present.
+ bool insert(ComparableFunction &NewF);
+
+ /// Remove a Function from the FnSet and queue it up for a second sweep of
+ /// analysis.
+ void remove(Function *F);
+
+ /// Find the functions that use this Value and remove them from FnSet and
+ /// queue the functions.
+ void removeUsers(Value *V);
+
+ /// Replace all direct calls of Old with calls of New. Will bitcast New if
+ /// necessary to make types match.
+ void replaceDirectCallers(Function *Old, Function *New);
+
+ /// Merge two equivalent functions. Upon completion, G may be deleted, or may
+ /// be converted into a thunk. In either case, it should never be visited
+ /// again.
+ void mergeTwoFunctions(Function *F, Function *G);
+
+ /// Replace G with a thunk or an alias to F. Deletes G.
+ void writeThunkOrAlias(Function *F, Function *G);
+
+ /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
+ /// of G with bitcast(F). Deletes G.
+ void writeThunk(Function *F, Function *G);
+
+ /// Replace G with an alias to F. Deletes G.
+ void writeAlias(Function *F, Function *G);
+
+ /// The set of all distinct functions. Use the insert() and remove() methods
+ /// to modify it.
+ FnSetType FnSet;
+
+ /// TargetData for more accurate GEP comparisons. May be NULL.
+ TargetData *TD;
+
+ /// Whether or not the target supports global aliases.
+ bool HasGlobalAliases;
+};
+
+} // end anonymous namespace
+
+char MergeFunctions::ID = 0;
+INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
+
+ModulePass *llvm::createMergeFunctionsPass() {
+ return new MergeFunctions();
+}
+
+bool MergeFunctions::runOnModule(Module &M) {
+ bool Changed = false;
+ TD = getAnalysisIfAvailable<TargetData>();
+
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
+ Deferred.push_back(WeakVH(I));
+ }
+ FnSet.resize(Deferred.size());
+
+ do {
+ std::vector<WeakVH> Worklist;
+ Deferred.swap(Worklist);
+
+ DEBUG(dbgs() << "size of module: " << M.size() << '\n');
+ DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
+
+ // Insert only strong functions and merge them. Strong function merging
+ // always deletes one of them.
+ for (std::vector<WeakVH>::iterator I = Worklist.begin(),
+ E = Worklist.end(); I != E; ++I) {
+ if (!*I) continue;
+ Function *F = cast<Function>(*I);
+ if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
+ !F->mayBeOverridden()) {
+ ComparableFunction CF = ComparableFunction(F, TD);
+ Changed |= insert(CF);
+ }
+ }
+
+ // Insert only weak functions and merge them. By doing these second we
+ // create thunks to the strong function when possible. When two weak
+ // functions are identical, we create a new strong function with two weak
+ // weak thunks to it which are identical but not mergable.
+ for (std::vector<WeakVH>::iterator I = Worklist.begin(),
+ E = Worklist.end(); I != E; ++I) {
+ if (!*I) continue;
+ Function *F = cast<Function>(*I);
+ if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
+ F->mayBeOverridden()) {
+ ComparableFunction CF = ComparableFunction(F, TD);
+ Changed |= insert(CF);
+ }
+ }
+ DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
+ } while (!Deferred.empty());
+
+ FnSet.clear();
+
+ return Changed;
+}
+
+bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
+ const ComparableFunction &RHS) {
+ if (LHS.getFunc() == RHS.getFunc() &&
+ LHS.getHash() == RHS.getHash())
+ return true;
+ if (!LHS.getFunc() || !RHS.getFunc())
+ return false;
+
+ // One of these is a special "underlying pointer comparison only" object.
+ if (LHS.getTD() == ComparableFunction::LookupOnly ||
+ RHS.getTD() == ComparableFunction::LookupOnly)
+ return false;
+
+ assert(LHS.getTD() == RHS.getTD() &&
+ "Comparing functions for different targets");
+
+ return FunctionComparator(LHS.getTD(), LHS.getFunc(),
+ RHS.getFunc()).compare();
+}
+
+// Replace direct callers of Old with New.
+void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
+ Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
+ for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
+ UI != UE;) {
+ Value::use_iterator TheIter = UI;
+ ++UI;
+ CallSite CS(*TheIter);
+ if (CS && CS.isCallee(TheIter)) {
+ remove(CS.getInstruction()->getParent()->getParent());
+ TheIter.getUse().set(BitcastNew);
+ }
+ }
+}
+
+// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
+void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
+ if (HasGlobalAliases && G->hasUnnamedAddr()) {
+ if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
+ G->hasWeakLinkage()) {
+ writeAlias(F, G);
+ return;
+ }
+ }
+
+ writeThunk(F, G);
+}
+
+// Replace G with a simple tail call to bitcast(F). Also replace direct uses
+// of G with bitcast(F). Deletes G.
+void MergeFunctions::writeThunk(Function *F, Function *G) {
if (!G->mayBeOverridden()) {
// Redirect direct callers of G to F.
- Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
- for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
- UI != UE;) {
- Value::use_iterator TheIter = UI;
- ++UI;
- CallSite CS(*TheIter);
- if (CS && CS.isCallee(TheIter))
- TheIter.getUse().set(BitcastF);
- }
+ replaceDirectCallers(G, F);
}
- // If G was internal then we may have replaced all uses if G with F. If so,
+ // If G was internal then we may have replaced all uses of G with F. If so,
// stop here and delete G. There's no need for a thunk.
if (G->hasLocalLinkage() && G->use_empty()) {
G->eraseFromParent();
@@ -522,131 +743,126 @@ void MergeFunctions::WriteThunk(Function *F, Function *G) const {
NewG->copyAttributesFrom(G);
NewG->takeName(G);
+ removeUsers(G);
G->replaceAllUsesWith(NewG);
G->eraseFromParent();
+
+ DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
+ ++NumThunksWritten;
}
-/// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
-/// Function G is deleted.
-void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) const {
- if (F->isWeakForLinker()) {
- assert(G->isWeakForLinker());
+// Replace G with an alias to F and delete G.
+void MergeFunctions::writeAlias(Function *F, Function *G) {
+ Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
+ GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
+ BitcastF, G->getParent());
+ F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
+ GA->takeName(G);
+ GA->setVisibility(G->getVisibility());
+ removeUsers(G);
+ G->replaceAllUsesWith(GA);
+ G->eraseFromParent();
+
+ DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
+ ++NumAliasesWritten;
+}
+
+// Merge two equivalent functions. Upon completion, Function G is deleted.
+void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
+ if (F->mayBeOverridden()) {
+ assert(G->mayBeOverridden());
+
+ if (HasGlobalAliases) {
+ // Make them both thunks to the same internal function.
+ Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
+ F->getParent());
+ H->copyAttributesFrom(F);
+ H->takeName(F);
+ removeUsers(F);
+ F->replaceAllUsesWith(H);
- // Make them both thunks to the same internal function.
- Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
- F->getParent());
- H->copyAttributesFrom(F);
- H->takeName(F);
- F->replaceAllUsesWith(H);
+ unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
- unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
+ writeAlias(F, G);
+ writeAlias(F, H);
- WriteThunk(F, G);
- WriteThunk(F, H);
+ F->setAlignment(MaxAlignment);
+ F->setLinkage(GlobalValue::PrivateLinkage);
+ } else {
+ // We can't merge them. Instead, pick one and update all direct callers
+ // to call it and hope that we improve the instruction cache hit rate.
+ replaceDirectCallers(G, F);
+ }
- F->setAlignment(MaxAlignment);
- F->setLinkage(GlobalValue::InternalLinkage);
+ ++NumDoubleWeak;
} else {
- WriteThunk(F, G);
+ writeThunkOrAlias(F, G);
}
++NumFunctionsMerged;
}
-static unsigned ProfileFunction(const Function *F) {
- const FunctionType *FTy = F->getFunctionType();
-
- FoldingSetNodeID ID;
- ID.AddInteger(F->size());
- ID.AddInteger(F->getCallingConv());
- ID.AddBoolean(F->hasGC());
- ID.AddBoolean(FTy->isVarArg());
- ID.AddInteger(FTy->getReturnType()->getTypeID());
- for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
- ID.AddInteger(FTy->getParamType(i)->getTypeID());
- return ID.ComputeHash();
-}
-
-class ComparableFunction {
-public:
- ComparableFunction(Function *Func, TargetData *TD)
- : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {}
+// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
+// that was already inserted.
+bool MergeFunctions::insert(ComparableFunction &NewF) {
+ std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
+ if (Result.second) {
+ DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
+ return false;
+ }
- AssertingVH<Function> const Func;
- const unsigned Hash;
- TargetData * const TD;
-};
+ const ComparableFunction &OldF = *Result.first;
-struct MergeFunctionsEqualityInfo {
- static ComparableFunction *getEmptyKey() {
- return reinterpret_cast<ComparableFunction*>(0);
- }
- static ComparableFunction *getTombstoneKey() {
- return reinterpret_cast<ComparableFunction*>(-1);
- }
- static unsigned getHashValue(const ComparableFunction *CF) {
- return CF->Hash;
- }
- static bool isEqual(const ComparableFunction *LHS,
- const ComparableFunction *RHS) {
- if (LHS == RHS)
- return true;
- if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
- RHS == getEmptyKey() || RHS == getTombstoneKey())
- return false;
- assert(LHS->TD == RHS->TD && "Comparing functions for different targets");
- return FunctionComparator(LHS->TD, LHS->Func, RHS->Func).Compare();
- }
-};
+ // Never thunk a strong function to a weak function.
+ assert(!OldF.getFunc()->mayBeOverridden() ||
+ NewF.getFunc()->mayBeOverridden());
-bool MergeFunctions::runOnModule(Module &M) {
- typedef DenseSet<ComparableFunction *, MergeFunctionsEqualityInfo> FnSetType;
+ DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
+ << NewF.getFunc()->getName() << '\n');
- bool Changed = false;
- TD = getAnalysisIfAvailable<TargetData>();
+ Function *DeleteF = NewF.getFunc();
+ NewF.release();
+ mergeTwoFunctions(OldF.getFunc(), DeleteF);
+ return true;
+}
- std::vector<Function *> Funcs;
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
- if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
- Funcs.push_back(F);
+// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
+// so that we'll look at it in the next round.
+void MergeFunctions::remove(Function *F) {
+ // We need to make sure we remove F, not a function "equal" to F per the
+ // function equality comparator.
+ //
+ // The special "lookup only" ComparableFunction bypasses the expensive
+ // function comparison in favour of a pointer comparison on the underlying
+ // Function*'s.
+ ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
+ if (FnSet.erase(CF)) {
+ DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
+ Deferred.push_back(F);
}
+}
- bool LocalChanged;
- do {
- LocalChanged = false;
-
- FnSetType FnSet;
- for (unsigned i = 0, e = Funcs.size(); i != e;) {
- Function *F = Funcs[i];
- ComparableFunction *NewF = new ComparableFunction(F, TD);
- std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
- if (!Result.second) {
- ComparableFunction *&OldF = *Result.first;
- assert(OldF && "Expected a hash collision");
-
- // NewF will be deleted in favour of OldF unless NewF is strong and
- // OldF is weak in which case swap them to keep the strong definition.
-
- if (OldF->Func->isWeakForLinker() && !NewF->Func->isWeakForLinker())
- std::swap(OldF, NewF);
-
- DEBUG(dbgs() << " " << OldF->Func->getName() << " == "
- << NewF->Func->getName() << '\n');
-
- Funcs.erase(Funcs.begin() + i);
- --e;
-
- Function *DeleteF = NewF->Func;
- delete NewF;
- MergeTwoFunctions(OldF->Func, DeleteF);
- LocalChanged = true;
- Changed = true;
- } else {
- ++i;
+// For each instruction used by the value, remove() the function that contains
+// the instruction. This should happen right before a call to RAUW.
+void MergeFunctions::removeUsers(Value *V) {
+ std::vector<Value *> Worklist;
+ Worklist.push_back(V);
+ while (!Worklist.empty()) {
+ Value *V = Worklist.back();
+ Worklist.pop_back();
+
+ for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ Use &U = UI.getUse();
+ if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
+ remove(I->getParent()->getParent());
+ } else if (isa<GlobalValue>(U.getUser())) {
+ // do nothing
+ } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
+ for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
+ CUI != CUE; ++CUI)
+ Worklist.push_back(*CUI);
}
}
- DeleteContainerPointers(FnSet);
- } while (LocalChanged);
-
- return Changed;
+ }
}
diff --git a/lib/Transforms/IPO/PartialInlining.cpp b/lib/Transforms/IPO/PartialInlining.cpp
index 432f7c5..2afd029 100644
--- a/lib/Transforms/IPO/PartialInlining.cpp
+++ b/lib/Transforms/IPO/PartialInlining.cpp
@@ -30,7 +30,9 @@ namespace {
struct PartialInliner : public ModulePass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const { }
static char ID; // Pass identification, replacement for typeid
- PartialInliner() : ModulePass(ID) {}
+ PartialInliner() : ModulePass(ID) {
+ initializePartialInlinerPass(*PassRegistry::getPassRegistry());
+ }
bool runOnModule(Module& M);
@@ -41,7 +43,7 @@ namespace {
char PartialInliner::ID = 0;
INITIALIZE_PASS(PartialInliner, "partial-inliner",
- "Partial Inliner", false, false);
+ "Partial Inliner", false, false)
ModulePass* llvm::createPartialInliningPass() { return new PartialInliner(); }
@@ -67,7 +69,7 @@ Function* PartialInliner::unswitchFunction(Function* F) {
return 0;
// Clone the function, so that we can hack away on it.
- ValueMap<const Value*, Value*> VMap;
+ ValueToValueMapTy VMap;
Function* duplicateFunction = CloneFunction(F, VMap,
/*ModuleLevelChanges=*/false);
duplicateFunction->setLinkage(GlobalValue::InternalLinkage);
diff --git a/lib/Transforms/IPO/PartialSpecialization.cpp b/lib/Transforms/IPO/PartialSpecialization.cpp
deleted file mode 100644
index 4a99a41..0000000
--- a/lib/Transforms/IPO/PartialSpecialization.cpp
+++ /dev/null
@@ -1,216 +0,0 @@
-//===-- PartialSpecialization.cpp - Specialize for common constants--------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass finds function arguments that are often a common constant and
-// specializes a version of the called function for that constant.
-//
-// This pass simply does the cloning for functions it specializes. It depends
-// on IPSCCP and DAE to clean up the results.
-//
-// The initial heuristic favors constant arguments that are used in control
-// flow.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "partialspecialization"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/Constant.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/ADT/DenseSet.h"
-#include <map>
-using namespace llvm;
-
-STATISTIC(numSpecialized, "Number of specialized functions created");
-STATISTIC(numReplaced, "Number of callers replaced by specialization");
-
-// Maximum number of arguments markable interested
-static const int MaxInterests = 6;
-
-// Call must be used at least occasionally
-static const int CallsMin = 5;
-
-// Must have 10% of calls having the same constant to specialize on
-static const double ConstValPercent = .1;
-
-namespace {
- typedef SmallVector<int, MaxInterests> InterestingArgVector;
- class PartSpec : public ModulePass {
- void scanForInterest(Function&, InterestingArgVector&);
- int scanDistribution(Function&, int, std::map<Constant*, int>&);
- public :
- static char ID; // Pass identification, replacement for typeid
- PartSpec() : ModulePass(ID) {}
- bool runOnModule(Module &M);
- };
-}
-
-char PartSpec::ID = 0;
-INITIALIZE_PASS(PartSpec, "partialspecialization",
- "Partial Specialization", false, false);
-
-// Specialize F by replacing the arguments (keys) in replacements with the
-// constants (values). Replace all calls to F with those constants with
-// a call to the specialized function. Returns the specialized function
-static Function*
-SpecializeFunction(Function* F,
- ValueMap<const Value*, Value*>& replacements) {
- // arg numbers of deleted arguments
- DenseMap<unsigned, const Argument*> deleted;
- for (ValueMap<const Value*, Value*>::iterator
- repb = replacements.begin(), repe = replacements.end();
- repb != repe; ++repb) {
- Argument const *arg = cast<const Argument>(repb->first);
- deleted[arg->getArgNo()] = arg;
- }
-
- Function* NF = CloneFunction(F, replacements,
- /*ModuleLevelChanges=*/false);
- NF->setLinkage(GlobalValue::InternalLinkage);
- F->getParent()->getFunctionList().push_back(NF);
-
- for (Value::use_iterator ii = F->use_begin(), ee = F->use_end();
- ii != ee; ) {
- Value::use_iterator i = ii;
- ++ii;
- User *U = *i;
- CallSite CS(U);
- if (CS) {
- if (CS.getCalledFunction() == F) {
- SmallVector<Value*, 6> args;
- // Assemble the non-specialized arguments for the updated callsite.
- // In the process, make sure that the specialized arguments are
- // constant and match the specialization. If that's not the case,
- // this callsite needs to call the original or some other
- // specialization; don't change it here.
- CallSite::arg_iterator as = CS.arg_begin(), ae = CS.arg_end();
- for (CallSite::arg_iterator ai = as; ai != ae; ++ai) {
- DenseMap<unsigned, const Argument*>::iterator delit = deleted.find(
- std::distance(as, ai));
- if (delit == deleted.end())
- args.push_back(cast<Value>(ai));
- else {
- Constant *ci = dyn_cast<Constant>(ai);
- if (!(ci && ci == replacements[delit->second]))
- goto next_use;
- }
- }
- Value* NCall;
- if (CallInst *CI = dyn_cast<CallInst>(U)) {
- NCall = CallInst::Create(NF, args.begin(), args.end(),
- CI->getName(), CI);
- cast<CallInst>(NCall)->setTailCall(CI->isTailCall());
- cast<CallInst>(NCall)->setCallingConv(CI->getCallingConv());
- } else {
- InvokeInst *II = cast<InvokeInst>(U);
- NCall = InvokeInst::Create(NF, II->getNormalDest(),
- II->getUnwindDest(),
- args.begin(), args.end(),
- II->getName(), II);
- cast<InvokeInst>(NCall)->setCallingConv(II->getCallingConv());
- }
- CS.getInstruction()->replaceAllUsesWith(NCall);
- CS.getInstruction()->eraseFromParent();
- ++numReplaced;
- }
- }
- next_use:;
- }
- return NF;
-}
-
-
-bool PartSpec::runOnModule(Module &M) {
- bool Changed = false;
- for (Module::iterator I = M.begin(); I != M.end(); ++I) {
- Function &F = *I;
- if (F.isDeclaration() || F.mayBeOverridden()) continue;
- InterestingArgVector interestingArgs;
- scanForInterest(F, interestingArgs);
-
- // Find the first interesting Argument that we can specialize on
- // If there are multiple interesting Arguments, then those will be found
- // when processing the cloned function.
- bool breakOuter = false;
- for (unsigned int x = 0; !breakOuter && x < interestingArgs.size(); ++x) {
- std::map<Constant*, int> distribution;
- int total = scanDistribution(F, interestingArgs[x], distribution);
- if (total > CallsMin)
- for (std::map<Constant*, int>::iterator ii = distribution.begin(),
- ee = distribution.end(); ii != ee; ++ii)
- if (total > ii->second && ii->first &&
- ii->second > total * ConstValPercent) {
- ValueMap<const Value*, Value*> m;
- Function::arg_iterator arg = F.arg_begin();
- for (int y = 0; y < interestingArgs[x]; ++y)
- ++arg;
- m[&*arg] = ii->first;
- SpecializeFunction(&F, m);
- ++numSpecialized;
- breakOuter = true;
- Changed = true;
- }
- }
- }
- return Changed;
-}
-
-/// scanForInterest - This function decides which arguments would be worth
-/// specializing on.
-void PartSpec::scanForInterest(Function& F, InterestingArgVector& args) {
- for(Function::arg_iterator ii = F.arg_begin(), ee = F.arg_end();
- ii != ee; ++ii) {
- for(Value::use_iterator ui = ii->use_begin(), ue = ii->use_end();
- ui != ue; ++ui) {
-
- bool interesting = false;
- User *U = *ui;
- if (isa<CmpInst>(U)) interesting = true;
- else if (isa<CallInst>(U))
- interesting = ui->getOperand(0) == ii;
- else if (isa<InvokeInst>(U))
- interesting = ui->getOperand(0) == ii;
- else if (isa<SwitchInst>(U)) interesting = true;
- else if (isa<BranchInst>(U)) interesting = true;
-
- if (interesting) {
- args.push_back(std::distance(F.arg_begin(), ii));
- break;
- }
- }
- }
-}
-
-/// scanDistribution - Construct a histogram of constants for arg of F at arg.
-int PartSpec::scanDistribution(Function& F, int arg,
- std::map<Constant*, int>& dist) {
- bool hasIndirect = false;
- int total = 0;
- for (Value::use_iterator ii = F.use_begin(), ee = F.use_end();
- ii != ee; ++ii) {
- User *U = *ii;
- CallSite CS(U);
- if (CS && CS.getCalledFunction() == &F) {
- ++dist[dyn_cast<Constant>(CS.getArgument(arg))];
- ++total;
- } else
- hasIndirect = true;
- }
-
- // Preserve the original address taken function even if all other uses
- // will be specialized.
- if (hasIndirect) ++total;
- return total;
-}
-
-ModulePass* llvm::createPartialSpecializationPass() { return new PartSpec(); }
diff --git a/lib/Transforms/IPO/PruneEH.cpp b/lib/Transforms/IPO/PruneEH.cpp
index 09ac76f..d91c2c4 100644
--- a/lib/Transforms/IPO/PruneEH.cpp
+++ b/lib/Transforms/IPO/PruneEH.cpp
@@ -37,7 +37,9 @@ STATISTIC(NumUnreach, "Number of noreturn calls optimized");
namespace {
struct PruneEH : public CallGraphSCCPass {
static char ID; // Pass identification, replacement for typeid
- PruneEH() : CallGraphSCCPass(ID) {}
+ PruneEH() : CallGraphSCCPass(ID) {
+ initializePruneEHPass(*PassRegistry::getPassRegistry());
+ }
// runOnSCC - Analyze the SCC, performing the transformation if possible.
bool runOnSCC(CallGraphSCC &SCC);
@@ -48,8 +50,11 @@ namespace {
}
char PruneEH::ID = 0;
-INITIALIZE_PASS(PruneEH, "prune-eh",
- "Remove unused exception handling info", false, false);
+INITIALIZE_PASS_BEGIN(PruneEH, "prune-eh",
+ "Remove unused exception handling info", false, false)
+INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_END(PruneEH, "prune-eh",
+ "Remove unused exception handling info", false, false)
Pass *llvm::createPruneEHPass() { return new PruneEH(); }
diff --git a/lib/Transforms/IPO/StripDeadPrototypes.cpp b/lib/Transforms/IPO/StripDeadPrototypes.cpp
index ee10ad0..b5f09ec 100644
--- a/lib/Transforms/IPO/StripDeadPrototypes.cpp
+++ b/lib/Transforms/IPO/StripDeadPrototypes.cpp
@@ -29,7 +29,9 @@ namespace {
class StripDeadPrototypesPass : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
- StripDeadPrototypesPass() : ModulePass(ID) { }
+ StripDeadPrototypesPass() : ModulePass(ID) {
+ initializeStripDeadPrototypesPassPass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnModule(Module &M);
};
@@ -37,7 +39,7 @@ public:
char StripDeadPrototypesPass::ID = 0;
INITIALIZE_PASS(StripDeadPrototypesPass, "strip-dead-prototypes",
- "Strip Unused Function Prototypes", false, false);
+ "Strip Unused Function Prototypes", false, false)
bool StripDeadPrototypesPass::runOnModule(Module &M) {
bool MadeChange = false;
diff --git a/lib/Transforms/IPO/StripSymbols.cpp b/lib/Transforms/IPO/StripSymbols.cpp
index 20b7b8f..a690765 100644
--- a/lib/Transforms/IPO/StripSymbols.cpp
+++ b/lib/Transforms/IPO/StripSymbols.cpp
@@ -39,7 +39,9 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
explicit StripSymbols(bool ODI = false)
- : ModulePass(ID), OnlyDebugInfo(ODI) {}
+ : ModulePass(ID), OnlyDebugInfo(ODI) {
+ initializeStripSymbolsPass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnModule(Module &M);
@@ -52,7 +54,9 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
explicit StripNonDebugSymbols()
- : ModulePass(ID) {}
+ : ModulePass(ID) {
+ initializeStripNonDebugSymbolsPass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnModule(Module &M);
@@ -65,7 +69,9 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
explicit StripDebugDeclare()
- : ModulePass(ID) {}
+ : ModulePass(ID) {
+ initializeStripDebugDeclarePass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnModule(Module &M);
@@ -78,7 +84,9 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
explicit StripDeadDebugInfo()
- : ModulePass(ID) {}
+ : ModulePass(ID) {
+ initializeStripDeadDebugInfoPass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnModule(Module &M);
@@ -90,7 +98,7 @@ namespace {
char StripSymbols::ID = 0;
INITIALIZE_PASS(StripSymbols, "strip",
- "Strip all symbols from a module", false, false);
+ "Strip all symbols from a module", false, false)
ModulePass *llvm::createStripSymbolsPass(bool OnlyDebugInfo) {
return new StripSymbols(OnlyDebugInfo);
@@ -99,7 +107,7 @@ ModulePass *llvm::createStripSymbolsPass(bool OnlyDebugInfo) {
char StripNonDebugSymbols::ID = 0;
INITIALIZE_PASS(StripNonDebugSymbols, "strip-nondebug",
"Strip all symbols, except dbg symbols, from a module",
- false, false);
+ false, false)
ModulePass *llvm::createStripNonDebugSymbolsPass() {
return new StripNonDebugSymbols();
@@ -107,7 +115,7 @@ ModulePass *llvm::createStripNonDebugSymbolsPass() {
char StripDebugDeclare::ID = 0;
INITIALIZE_PASS(StripDebugDeclare, "strip-debug-declare",
- "Strip all llvm.dbg.declare intrinsics", false, false);
+ "Strip all llvm.dbg.declare intrinsics", false, false)
ModulePass *llvm::createStripDebugDeclarePass() {
return new StripDebugDeclare();
@@ -115,7 +123,7 @@ ModulePass *llvm::createStripDebugDeclarePass() {
char StripDeadDebugInfo::ID = 0;
INITIALIZE_PASS(StripDeadDebugInfo, "strip-dead-debug-info",
- "Strip debug info for unused symbols", false, false);
+ "Strip debug info for unused symbols", false, false)
ModulePass *llvm::createStripDeadDebugInfoPass() {
return new StripDeadDebugInfo();
diff --git a/lib/Transforms/IPO/StructRetPromotion.cpp b/lib/Transforms/IPO/StructRetPromotion.cpp
index b82b03f..584deac 100644
--- a/lib/Transforms/IPO/StructRetPromotion.cpp
+++ b/lib/Transforms/IPO/StructRetPromotion.cpp
@@ -50,7 +50,9 @@ namespace {
virtual bool runOnSCC(CallGraphSCC &SCC);
static char ID; // Pass identification, replacement for typeid
- SRETPromotion() : CallGraphSCCPass(ID) {}
+ SRETPromotion() : CallGraphSCCPass(ID) {
+ initializeSRETPromotionPass(*PassRegistry::getPassRegistry());
+ }
private:
CallGraphNode *PromoteReturn(CallGraphNode *CGN);
@@ -61,8 +63,11 @@ namespace {
}
char SRETPromotion::ID = 0;
-INITIALIZE_PASS(SRETPromotion, "sretpromotion",
- "Promote sret arguments to multiple ret values", false, false);
+INITIALIZE_PASS_BEGIN(SRETPromotion, "sretpromotion",
+ "Promote sret arguments to multiple ret values", false, false)
+INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_END(SRETPromotion, "sretpromotion",
+ "Promote sret arguments to multiple ret values", false, false)
Pass *llvm::createStructRetPromotionPass() {
return new SRETPromotion();
OpenPOWER on IntegriCloud