diff options
author | rdivacky <rdivacky@FreeBSD.org> | 2009-10-14 17:57:32 +0000 |
---|---|---|
committer | rdivacky <rdivacky@FreeBSD.org> | 2009-10-14 17:57:32 +0000 |
commit | cd749a9c07f1de2fb8affde90537efa4bc3e7c54 (patch) | |
tree | b21f6de4e08b89bb7931806bab798fc2a5e3a686 /lib/Transforms/IPO/GlobalOpt.cpp | |
parent | 72621d11de5b873f1695f391eb95f0b336c3d2d4 (diff) | |
download | FreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.zip FreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.tar.gz |
Update llvm to r84119.
Diffstat (limited to 'lib/Transforms/IPO/GlobalOpt.cpp')
-rw-r--r-- | lib/Transforms/IPO/GlobalOpt.cpp | 838 |
1 files changed, 662 insertions, 176 deletions
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp index 7fe097c..a44386e 100644 --- a/lib/Transforms/IPO/GlobalOpt.cpp +++ b/lib/Transforms/IPO/GlobalOpt.cpp @@ -20,20 +20,23 @@ #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/MallocHelper.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include <algorithm> using namespace llvm; @@ -56,7 +59,6 @@ STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); namespace { struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass { virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<TargetData>(); } static char ID; // Pass identification, replacement for typeid GlobalOpt() : ModulePass(&ID) {} @@ -244,7 +246,8 @@ static bool AnalyzeGlobal(Value *V, GlobalStatus &GS, return false; } -static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) { +static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx, + LLVMContext &Context) { ConstantInt *CI = dyn_cast<ConstantInt>(Idx); if (!CI) return 0; unsigned IdxV = CI->getZExtValue(); @@ -280,7 +283,8 @@ static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) { /// users of the global, cleaning up the obvious ones. This is largely just a /// quick scan over the use list to clean up the easy and obvious cruft. This /// returns true if it made a change. -static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) { +static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, + LLVMContext &Context) { bool Changed = false; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { User *U = *UI++; @@ -301,11 +305,11 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) { Constant *SubInit = 0; if (Init) SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); - Changed |= CleanupConstantGlobalUsers(CE, SubInit); + Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context); } else if (CE->getOpcode() == Instruction::BitCast && isa<PointerType>(CE->getType())) { // Pointer cast, delete any stores and memsets to the global. - Changed |= CleanupConstantGlobalUsers(CE, 0); + Changed |= CleanupConstantGlobalUsers(CE, 0, Context); } if (CE->use_empty()) { @@ -319,11 +323,11 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) { Constant *SubInit = 0; if (!isa<ConstantExpr>(GEP->getOperand(0))) { ConstantExpr *CE = - dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP)); + dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context)); if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); } - Changed |= CleanupConstantGlobalUsers(GEP, SubInit); + Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context); if (GEP->use_empty()) { GEP->eraseFromParent(); @@ -341,7 +345,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) { if (SafeToDestroyConstant(C)) { C->destroyConstant(); // This could have invalidated UI, start over from scratch. - CleanupConstantGlobalUsers(V, Init); + CleanupConstantGlobalUsers(V, Init, Context); return true; } } @@ -423,13 +427,18 @@ static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { // Scalar replacing *just* the outer index of the array is probably not // going to be a win anyway, so just give up. for (++GEPI; // Skip array index. - GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI)); + GEPI != E; ++GEPI) { uint64_t NumElements; if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) NumElements = SubArrayTy->getNumElements(); - else - NumElements = cast<VectorType>(*GEPI)->getNumElements(); + else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) + NumElements = SubVectorTy->getNumElements(); + else { + assert(isa<StructType>(*GEPI) && + "Indexed GEP type is not array, vector, or struct!"); + continue; + } ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); if (!IdxVal || IdxVal->getZExtValue() >= NumElements) @@ -461,7 +470,8 @@ static bool GlobalUsersSafeToSRA(GlobalValue *GV) { /// behavior of the program in a more fine-grained way. We have determined that /// this transformation is safe already. We return the first global variable we /// insert so that the caller can reprocess it. -static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { +static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD, + LLVMContext &Context) { // Make sure this global only has simple uses that we can SRA. if (!GlobalUsersSafeToSRA(GV)) return 0; @@ -483,14 +493,15 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { const StructLayout &Layout = *TD.getStructLayout(STy); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { Constant *In = getAggregateConstantElement(Init, - ConstantInt::get(Type::Int32Ty, i)); + ConstantInt::get(Type::getInt32Ty(Context), i), + Context); assert(In && "Couldn't get element of initializer?"); - GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, + GlobalVariable *NGV = new GlobalVariable(Context, + STy->getElementType(i), false, GlobalVariable::InternalLinkage, - In, GV->getName()+"."+utostr(i), - (Module *)NULL, + In, GV->getName()+"."+Twine(i), GV->isThreadLocal(), - GV->getType()->getAddressSpace()); + GV->getType()->getAddressSpace()); Globals.insert(GV, NGV); NewGlobals.push_back(NGV); @@ -517,15 +528,16 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); for (unsigned i = 0, e = NumElements; i != e; ++i) { Constant *In = getAggregateConstantElement(Init, - ConstantInt::get(Type::Int32Ty, i)); + ConstantInt::get(Type::getInt32Ty(Context), i), + Context); assert(In && "Couldn't get element of initializer?"); - GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, + GlobalVariable *NGV = new GlobalVariable(Context, + STy->getElementType(), false, GlobalVariable::InternalLinkage, - In, GV->getName()+"."+utostr(i), - (Module *)NULL, + In, GV->getName()+"."+Twine(i), GV->isThreadLocal(), - GV->getType()->getAddressSpace()); + GV->getType()->getAddressSpace()); Globals.insert(GV, NGV); NewGlobals.push_back(NGV); @@ -541,9 +553,9 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { if (NewGlobals.empty()) return 0; - DOUT << "PERFORMING GLOBAL SRA ON: " << *GV; + DEBUG(errs() << "PERFORMING GLOBAL SRA ON: " << *GV); - Constant *NullInt = Constant::getNullValue(Type::Int32Ty); + Constant *NullInt = Constant::getNullValue(Type::getInt32Ty(Context)); // Loop over all of the uses of the global, replacing the constantexpr geps, // with smaller constantexpr geps or direct references. @@ -577,7 +589,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) Idxs.push_back(GEPI->getOperand(i)); NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(), - GEPI->getName()+"."+utostr(Val), GEPI); + GEPI->getName()+"."+Twine(Val),GEPI); } } GEP->replaceAllUsesWith(NewPtr); @@ -667,7 +679,8 @@ static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) { return true; } -static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { +static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV, + LLVMContext &Context) { bool Changed = false; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { Instruction *I = cast<Instruction>(*UI++); @@ -700,7 +713,7 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { } else if (CastInst *CI = dyn_cast<CastInst>(I)) { Changed |= OptimizeAwayTrappingUsesOfValue(CI, ConstantExpr::getCast(CI->getOpcode(), - NewV, CI->getType())); + NewV, CI->getType()), Context); if (CI->use_empty()) { Changed = true; CI->eraseFromParent(); @@ -717,8 +730,8 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { break; if (Idxs.size() == GEPI->getNumOperands()-1) Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, - ConstantExpr::getGetElementPtr(NewV, &Idxs[0], - Idxs.size())); + ConstantExpr::getGetElementPtr(NewV, &Idxs[0], + Idxs.size()), Context); if (GEPI->use_empty()) { Changed = true; GEPI->eraseFromParent(); @@ -734,7 +747,8 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { /// value stored into it. If there are uses of the loaded value that would trap /// if the loaded value is dynamically null, then we know that they cannot be /// reachable with a null optimize away the load. -static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) { +static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, + LLVMContext &Context) { bool Changed = false; // Keep track of whether we are able to remove all the uses of the global @@ -745,7 +759,7 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) { for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ User *GlobalUser = *GUI++; if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { - Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); + Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context); // If we were able to delete all uses of the loads if (LI->use_empty()) { LI->eraseFromParent(); @@ -768,15 +782,15 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) { } if (Changed) { - DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV; + DEBUG(errs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); ++NumGlobUses; } // If we nuked all of the loads, then none of the stores are needed either, // nor is the global. if (AllNonStoreUsesGone) { - DOUT << " *** GLOBAL NOW DEAD!\n"; - CleanupConstantGlobalUsers(GV, 0); + DEBUG(errs() << " *** GLOBAL NOW DEAD!\n"); + CleanupConstantGlobalUsers(GV, 0, Context); if (GV->use_empty()) { GV->eraseFromParent(); ++NumDeleted; @@ -788,10 +802,10 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) { /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the /// instructions that are foldable. -static void ConstantPropUsersOf(Value *V) { +static void ConstantPropUsersOf(Value *V, LLVMContext &Context) { for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) if (Instruction *I = dyn_cast<Instruction>(*UI++)) - if (Constant *NewC = ConstantFoldInstruction(I)) { + if (Constant *NewC = ConstantFoldInstruction(I, Context)) { I->replaceAllUsesWith(NewC); // Advance UI to the next non-I use to avoid invalidating it! @@ -808,8 +822,9 @@ static void ConstantPropUsersOf(Value *V) { /// malloc, there is no reason to actually DO the malloc. Instead, turn the /// malloc into a global, and any loads of GV as uses of the new global. static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, - MallocInst *MI) { - DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI; + MallocInst *MI, + LLVMContext &Context) { + DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI); ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize()); if (NElements->getZExtValue() != 1) { @@ -818,10 +833,10 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, Type *NewTy = ArrayType::get(MI->getAllocatedType(), NElements->getZExtValue()); MallocInst *NewMI = - new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty), + new MallocInst(NewTy, Constant::getNullValue(Type::getInt32Ty(Context)), MI->getAlignment(), MI->getName(), MI); Value* Indices[2]; - Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty); + Indices[0] = Indices[1] = Constant::getNullValue(Type::getInt32Ty(Context)); Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2, NewMI->getName()+".el0", MI); MI->replaceAllUsesWith(NewGEP); @@ -831,17 +846,17 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, // Create the new global variable. The contents of the malloc'd memory is // undefined, so initialize with an undef value. + // FIXME: This new global should have the alignment returned by malloc. Code + // could depend on malloc returning large alignment (on the mac, 16 bytes) but + // this would only guarantee some lower alignment. Constant *Init = UndefValue::get(MI->getAllocatedType()); - GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false, + GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), + MI->getAllocatedType(), false, GlobalValue::InternalLinkage, Init, GV->getName()+".body", - (Module *)NULL, + GV, GV->isThreadLocal()); - // FIXME: This new global should have the alignment returned by malloc. Code - // could depend on malloc returning large alignment (on the mac, 16 bytes) but - // this would only guarantee some lower alignment. - GV->getParent()->getGlobalList().insert(GV, NewGV); - + // Anything that used the malloc now uses the global directly. MI->replaceAllUsesWith(NewGV); @@ -853,9 +868,10 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, // If there is a comparison against null, we will insert a global bool to // keep track of whether the global was initialized yet or not. GlobalVariable *InitBool = - new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage, - ConstantInt::getFalse(), GV->getName()+".init", - (Module *)NULL, GV->isThreadLocal()); + new GlobalVariable(Context, Type::getInt1Ty(Context), false, + GlobalValue::InternalLinkage, + ConstantInt::getFalse(Context), GV->getName()+".init", + GV->isThreadLocal()); bool InitBoolUsed = false; // Loop over all uses of GV, processing them in turn. @@ -872,10 +888,10 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI); InitBoolUsed = true; switch (CI->getPredicate()) { - default: assert(0 && "Unknown ICmp Predicate!"); + default: llvm_unreachable("Unknown ICmp Predicate!"); case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: - LV = ConstantInt::getFalse(); // X < null -> always false + LV = ConstantInt::getFalse(Context); // X < null -> always false break; case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_SLE: @@ -897,7 +913,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, } else { StoreInst *SI = cast<StoreInst>(GV->use_back()); // The global is initialized when the store to it occurs. - new StoreInst(ConstantInt::getTrue(), InitBool, SI); + new StoreInst(ConstantInt::getTrue(Context), InitBool, SI); SI->eraseFromParent(); } @@ -917,9 +933,141 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, // To further other optimizations, loop over all users of NewGV and try to // constant prop them. This will promote GEP instructions with constant // indices into GEP constant-exprs, which will allow global-opt to hack on it. - ConstantPropUsersOf(NewGV); + ConstantPropUsersOf(NewGV, Context); if (RepValue != NewGV) - ConstantPropUsersOf(RepValue); + ConstantPropUsersOf(RepValue, Context); + + return NewGV; +} + +/// OptimizeGlobalAddressOfMalloc - This function takes the specified global +/// variable, and transforms the program as if it always contained the result of +/// the specified malloc. Because it is always the result of the specified +/// malloc, there is no reason to actually DO the malloc. Instead, turn the +/// malloc into a global, and any loads of GV as uses of the new global. +static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, + CallInst *CI, + BitCastInst *BCI, + LLVMContext &Context, + TargetData* TD) { + const Type *IntPtrTy = TD->getIntPtrType(Context); + + DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *CI); + + ConstantInt *NElements = cast<ConstantInt>(getMallocArraySize(CI, + Context, TD)); + if (NElements->getZExtValue() != 1) { + // If we have an array allocation, transform it to a single element + // allocation to make the code below simpler. + Type *NewTy = ArrayType::get(getMallocAllocatedType(CI), + NElements->getZExtValue()); + Value* NewM = CallInst::CreateMalloc(CI, IntPtrTy, NewTy); + Instruction* NewMI = cast<Instruction>(NewM); + Value* Indices[2]; + Indices[0] = Indices[1] = Constant::getNullValue(IntPtrTy); + Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2, + NewMI->getName()+".el0", CI); + BCI->replaceAllUsesWith(NewGEP); + BCI->eraseFromParent(); + CI->eraseFromParent(); + BCI = cast<BitCastInst>(NewMI); + CI = extractMallocCallFromBitCast(NewMI); + } + + // Create the new global variable. The contents of the malloc'd memory is + // undefined, so initialize with an undef value. + // FIXME: This new global should have the alignment returned by malloc. Code + // could depend on malloc returning large alignment (on the mac, 16 bytes) but + // this would only guarantee some lower alignment. + const Type *MAT = getMallocAllocatedType(CI); + Constant *Init = UndefValue::get(MAT); + GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), + MAT, false, + GlobalValue::InternalLinkage, Init, + GV->getName()+".body", + GV, + GV->isThreadLocal()); + + // Anything that used the malloc now uses the global directly. + BCI->replaceAllUsesWith(NewGV); + + Constant *RepValue = NewGV; + if (NewGV->getType() != GV->getType()->getElementType()) + RepValue = ConstantExpr::getBitCast(RepValue, + GV->getType()->getElementType()); + + // If there is a comparison against null, we will insert a global bool to + // keep track of whether the global was initialized yet or not. + GlobalVariable *InitBool = + new GlobalVariable(Context, Type::getInt1Ty(Context), false, + GlobalValue::InternalLinkage, + ConstantInt::getFalse(Context), GV->getName()+".init", + GV->isThreadLocal()); + bool InitBoolUsed = false; + + // Loop over all uses of GV, processing them in turn. + std::vector<StoreInst*> Stores; + while (!GV->use_empty()) + if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) { + while (!LI->use_empty()) { + Use &LoadUse = LI->use_begin().getUse(); + if (!isa<ICmpInst>(LoadUse.getUser())) + LoadUse = RepValue; + else { + ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser()); + // Replace the cmp X, 0 with a use of the bool value. + Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI); + InitBoolUsed = true; + switch (ICI->getPredicate()) { + default: llvm_unreachable("Unknown ICmp Predicate!"); + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_SLT: + LV = ConstantInt::getFalse(Context); // X < null -> always false + break; + case ICmpInst::ICMP_ULE: + case ICmpInst::ICMP_SLE: + case ICmpInst::ICMP_EQ: + LV = BinaryOperator::CreateNot(LV, "notinit", ICI); + break; + case ICmpInst::ICMP_NE: + case ICmpInst::ICMP_UGE: + case ICmpInst::ICMP_SGE: + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_SGT: + break; // no change. + } + ICI->replaceAllUsesWith(LV); + ICI->eraseFromParent(); + } + } + LI->eraseFromParent(); + } else { + StoreInst *SI = cast<StoreInst>(GV->use_back()); + // The global is initialized when the store to it occurs. + new StoreInst(ConstantInt::getTrue(Context), InitBool, SI); + SI->eraseFromParent(); + } + + // If the initialization boolean was used, insert it, otherwise delete it. + if (!InitBoolUsed) { + while (!InitBool->use_empty()) // Delete initializations + cast<Instruction>(InitBool->use_back())->eraseFromParent(); + delete InitBool; + } else + GV->getParent()->getGlobalList().insert(GV, InitBool); + + + // Now the GV is dead, nuke it and the malloc. + GV->eraseFromParent(); + BCI->eraseFromParent(); + CI->eraseFromParent(); + + // To further other optimizations, loop over all users of NewGV and try to + // constant prop them. This will promote GEP instructions with constant + // indices into GEP constant-exprs, which will allow global-opt to hack on it. + ConstantPropUsersOf(NewGV, Context); + if (RepValue != NewGV) + ConstantPropUsersOf(RepValue, Context); return NewGV; } @@ -1071,7 +1219,7 @@ static bool LoadUsesSimpleEnoughForHeapSRA(Value *V, /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from /// GV are simple enough to perform HeapSRA, return true. static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV, - MallocInst *MI) { + Instruction *StoredVal) { SmallPtrSet<PHINode*, 32> LoadUsingPHIs; SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad; for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E; @@ -1095,7 +1243,7 @@ static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV, Value *InVal = PN->getIncomingValue(op); // PHI of the stored value itself is ok. - if (InVal == MI) continue; + if (InVal == StoredVal) continue; if (PHINode *InPN = dyn_cast<PHINode>(InVal)) { // One of the PHIs in our set is (optimistically) ok. @@ -1121,7 +1269,8 @@ static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV, static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, - std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { + std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite, + LLVMContext &Context) { std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; if (FieldNo >= FieldVals.size()) @@ -1139,19 +1288,20 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, // a new Load of the scalarized global. Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, InsertedScalarizedValues, - PHIsToRewrite), - LI->getName()+".f" + utostr(FieldNo), LI); + PHIsToRewrite, Context), + LI->getName()+".f"+Twine(FieldNo), LI); } else if (PHINode *PN = dyn_cast<PHINode>(V)) { // PN's type is pointer to struct. Make a new PHI of pointer to struct // field. const StructType *ST = cast<StructType>(cast<PointerType>(PN->getType())->getElementType()); - Result =PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), - PN->getName()+".f"+utostr(FieldNo), PN); + Result = + PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), + PN->getName()+".f"+Twine(FieldNo), PN); PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); } else { - assert(0 && "Unknown usable value"); + llvm_unreachable("Unknown usable value"); Result = 0; } @@ -1162,18 +1312,20 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, /// the load, rewrite the derived value to use the HeapSRoA'd load. static void RewriteHeapSROALoadUser(Instruction *LoadUser, DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, - std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { + std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite, + LLVMContext &Context) { // If this is a comparison against null, handle it. if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { assert(isa<ConstantPointerNull>(SCI->getOperand(1))); // If we have a setcc of the loaded pointer, we can use a setcc of any // field. Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, - InsertedScalarizedValues, PHIsToRewrite); + InsertedScalarizedValues, PHIsToRewrite, + Context); - Value *New = new ICmpInst(SCI->getPredicate(), NPtr, - Constant::getNullValue(NPtr->getType()), - SCI->getName(), SCI); + Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, + Constant::getNullValue(NPtr->getType()), + SCI->getName()); SCI->replaceAllUsesWith(New); SCI->eraseFromParent(); return; @@ -1187,7 +1339,8 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser, // Load the pointer for this field. unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, - InsertedScalarizedValues, PHIsToRewrite); + InsertedScalarizedValues, PHIsToRewrite, + Context); // Create the new GEP idx vector. SmallVector<Value*, 8> GEPIdx; @@ -1219,7 +1372,8 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser, // users. for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { Instruction *User = cast<Instruction>(*UI++); - RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); + RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite, + Context); } } @@ -1229,11 +1383,13 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser, /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, - std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { + std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite, + LLVMContext &Context) { for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); UI != E; ) { Instruction *User = cast<Instruction>(*UI++); - RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); + RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite, + Context); } if (Load->use_empty()) { @@ -1244,8 +1400,9 @@ static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, /// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break /// it up into multiple allocations of arrays of the fields. -static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ - DOUT << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI; +static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI, + LLVMContext &Context){ + DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI); const StructType *STy = cast<StructType>(MI->getAllocatedType()); // There is guaranteed to be at least one use of the malloc (storing @@ -1264,14 +1421,15 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ const Type *PFieldTy = PointerType::getUnqual(FieldTy); GlobalVariable *NGV = - new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage, + new GlobalVariable(*GV->getParent(), + PFieldTy, false, GlobalValue::InternalLinkage, Constant::getNullValue(PFieldTy), - GV->getName() + ".f" + utostr(FieldNo), GV, + GV->getName() + ".f" + Twine(FieldNo), GV, GV->isThreadLocal()); FieldGlobals.push_back(NGV); MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(), - MI->getName() + ".f" + utostr(FieldNo),MI); + MI->getName() + ".f" + Twine(FieldNo), MI); FieldMallocs.push_back(NMI); new StoreInst(NMI, NGV, MI); } @@ -1290,9 +1448,9 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ // } Value *RunningOr = 0; for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { - Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i], - Constant::getNullValue(FieldMallocs[i]->getType()), - "isnull", MI); + Value *Cond = new ICmpInst(MI, ICmpInst::ICMP_EQ, FieldMallocs[i], + Constant::getNullValue(FieldMallocs[i]->getType()), + "isnull"); if (!RunningOr) RunningOr = Cond; // First seteq else @@ -1305,7 +1463,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ // Create the block to check the first condition. Put all these blocks at the // end of the function as they are unlikely to be executed. - BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null", + BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null", OrigBB->getParent()); // Remove the uncond branch from OrigBB to ContBB, turning it into a cond @@ -1317,11 +1475,13 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ // pointer, because some may be null while others are not. for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); - Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal, + Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, Constant::getNullValue(GVVal->getType()), - "tmp", NullPtrBlock); - BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent()); - BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent()); + "tmp"); + BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it", + OrigBB->getParent()); + BasicBlock *NextBlock = BasicBlock::Create(Context, "next", + OrigBB->getParent()); BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock); // Fill in FreeBlock. @@ -1353,7 +1513,8 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ Instruction *User = cast<Instruction>(*UI++); if (LoadInst *LI = dyn_cast<LoadInst>(User)) { - RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); + RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite, + Context); continue; } @@ -1384,7 +1545,192 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *InVal = PN->getIncomingValue(i); InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, - PHIsToRewrite); + PHIsToRewrite, Context); + FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); + } + } + + // Drop all inter-phi links and any loads that made it this far. + for (DenseMap<Value*, std::vector<Value*> >::iterator + I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); + I != E; ++I) { + if (PHINode *PN = dyn_cast<PHINode>(I->first)) + PN->dropAllReferences(); + else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) + LI->dropAllReferences(); + } + + // Delete all the phis and loads now that inter-references are dead. + for (DenseMap<Value*, std::vector<Value*> >::iterator + I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); + I != E; ++I) { + if (PHINode *PN = dyn_cast<PHINode>(I->first)) + PN->eraseFromParent(); + else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) + LI->eraseFromParent(); + } + + // The old global is now dead, remove it. + GV->eraseFromParent(); + + ++NumHeapSRA; + return cast<GlobalVariable>(FieldGlobals[0]); +} + +/// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break +/// it up into multiple allocations of arrays of the fields. +static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, + CallInst *CI, BitCastInst* BCI, + LLVMContext &Context, + TargetData *TD){ + DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC CALL = " << *CI + << " BITCAST = " << *BCI << '\n'); + const Type* MAT = getMallocAllocatedType(CI); + const StructType *STy = cast<StructType>(MAT); + + // There is guaranteed to be at least one use of the malloc (storing + // it into GV). If there are other uses, change them to be uses of + // the global to simplify later code. This also deletes the store + // into GV. + ReplaceUsesOfMallocWithGlobal(BCI, GV); + + // Okay, at this point, there are no users of the malloc. Insert N + // new mallocs at the same place as CI, and N globals. + std::vector<Value*> FieldGlobals; + std::vector<Value*> FieldMallocs; + + for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ + const Type *FieldTy = STy->getElementType(FieldNo); + const PointerType *PFieldTy = PointerType::getUnqual(FieldTy); + + GlobalVariable *NGV = + new GlobalVariable(*GV->getParent(), + PFieldTy, false, GlobalValue::InternalLinkage, + Constant::getNullValue(PFieldTy), + GV->getName() + ".f" + Twine(FieldNo), GV, + GV->isThreadLocal()); + FieldGlobals.push_back(NGV); + + Value *NMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context), FieldTy, + getMallocArraySize(CI, Context, TD), + BCI->getName() + ".f" + Twine(FieldNo)); + FieldMallocs.push_back(NMI); + new StoreInst(NMI, NGV, BCI); + } + + // The tricky aspect of this transformation is handling the case when malloc + // fails. In the original code, malloc failing would set the result pointer + // of malloc to null. In this case, some mallocs could succeed and others + // could fail. As such, we emit code that looks like this: + // F0 = malloc(field0) + // F1 = malloc(field1) + // F2 = malloc(field2) + // if (F0 == 0 || F1 == 0 || F2 == 0) { + // if (F0) { free(F0); F0 = 0; } + // if (F1) { free(F1); F1 = 0; } + // if (F2) { free(F2); F2 = 0; } + // } + Value *RunningOr = 0; + for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { + Value *Cond = new ICmpInst(BCI, ICmpInst::ICMP_EQ, FieldMallocs[i], + Constant::getNullValue(FieldMallocs[i]->getType()), + "isnull"); + if (!RunningOr) + RunningOr = Cond; // First seteq + else + RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", BCI); + } + + // Split the basic block at the old malloc. + BasicBlock *OrigBB = BCI->getParent(); + BasicBlock *ContBB = OrigBB->splitBasicBlock(BCI, "malloc_cont"); + + // Create the block to check the first condition. Put all these blocks at the + // end of the function as they are unlikely to be executed. + BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null", + OrigBB->getParent()); + + // Remove the uncond branch from OrigBB to ContBB, turning it into a cond + // branch on RunningOr. + OrigBB->getTerminator()->eraseFromParent(); + BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); + + // Within the NullPtrBlock, we need to emit a comparison and branch for each + // pointer, because some may be null while others are not. + for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { + Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); + Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, + Constant::getNullValue(GVVal->getType()), + "tmp"); + BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it", + OrigBB->getParent()); + BasicBlock *NextBlock = BasicBlock::Create(Context, "next", + OrigBB->getParent()); + BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock); + + // Fill in FreeBlock. + new FreeInst(GVVal, FreeBlock); + new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], + FreeBlock); + BranchInst::Create(NextBlock, FreeBlock); + + NullPtrBlock = NextBlock; + } + + BranchInst::Create(ContBB, NullPtrBlock); + + // CI and BCI are no longer needed, remove them. + BCI->eraseFromParent(); + CI->eraseFromParent(); + + /// InsertedScalarizedLoads - As we process loads, if we can't immediately + /// update all uses of the load, keep track of what scalarized loads are + /// inserted for a given load. + DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; + InsertedScalarizedValues[GV] = FieldGlobals; + + std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; + + // Okay, the malloc site is completely handled. All of the uses of GV are now + // loads, and all uses of those loads are simple. Rewrite them to use loads + // of the per-field globals instead. + for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { + Instruction *User = cast<Instruction>(*UI++); + + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite, + Context); + continue; + } + + // Must be a store of null. + StoreInst *SI = cast<StoreInst>(User); + assert(isa<ConstantPointerNull>(SI->getOperand(0)) && + "Unexpected heap-sra user!"); + + // Insert a store of null into each global. + for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { + const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); + Constant *Null = Constant::getNullValue(PT->getElementType()); + new StoreInst(Null, FieldGlobals[i], SI); + } + // Erase the original store. + SI->eraseFromParent(); + } + + // While we have PHIs that are interesting to rewrite, do it. + while (!PHIsToRewrite.empty()) { + PHINode *PN = PHIsToRewrite.back().first; + unsigned FieldNo = PHIsToRewrite.back().second; + PHIsToRewrite.pop_back(); + PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); + assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); + + // Add all the incoming values. This can materialize more phis. + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *InVal = PN->getIncomingValue(i); + InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, + PHIsToRewrite, Context); FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); } } @@ -1422,7 +1768,8 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, MallocInst *MI, Module::global_iterator &GVI, - TargetData &TD) { + TargetData *TD, + LLVMContext &Context) { // If this is a malloc of an abstract type, don't touch it. if (!MI->getAllocatedType()->isSized()) return false; @@ -1456,9 +1803,10 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, // Restrict this transformation to only working on small allocations // (2048 bytes currently), as we don't want to introduce a 16M global or // something. - if (NElements->getZExtValue()* - TD.getTypeAllocSize(MI->getAllocatedType()) < 2048) { - GVI = OptimizeGlobalAddressOfMalloc(GV, MI); + if (TD && + NElements->getZExtValue()* + TD->getTypeAllocSize(MI->getAllocatedType()) < 2048) { + GVI = OptimizeGlobalAddressOfMalloc(GV, MI, Context); return true; } } @@ -1485,7 +1833,8 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) { MallocInst *NewMI = new MallocInst(AllocSTy, - ConstantInt::get(Type::Int32Ty, AT->getNumElements()), + ConstantInt::get(Type::getInt32Ty(Context), + AT->getNumElements()), "", MI); NewMI->takeName(MI); Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI); @@ -1494,7 +1843,100 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, MI = NewMI; } - GVI = PerformHeapAllocSRoA(GV, MI); + GVI = PerformHeapAllocSRoA(GV, MI, Context); + return true; + } + } + + return false; +} + +/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a +/// pointer global variable with a single value stored it that is a malloc or +/// cast of malloc. +static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, + CallInst *CI, + BitCastInst *BCI, + Module::global_iterator &GVI, + TargetData *TD, + LLVMContext &Context) { + // If we can't figure out the type being malloced, then we can't optimize. + const Type *AllocTy = getMallocAllocatedType(CI); + assert(AllocTy); + + // If this is a malloc of an abstract type, don't touch it. + if (!AllocTy->isSized()) + return false; + + // We can't optimize this global unless all uses of it are *known* to be + // of the malloc value, not of the null initializer value (consider a use + // that compares the global's value against zero to see if the malloc has + // been reached). To do this, we check to see if all uses of the global + // would trap if the global were null: this proves that they must all + // happen after the malloc. + if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) + return false; + + // We can't optimize this if the malloc itself is used in a complex way, + // for example, being stored into multiple globals. This allows the + // malloc to be stored into the specified global, loaded setcc'd, and + // GEP'd. These are all things we could transform to using the global + // for. + { + SmallPtrSet<PHINode*, 8> PHIs; + if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) + return false; + } + + // If we have a global that is only initialized with a fixed size malloc, + // transform the program to use global memory instead of malloc'd memory. + // This eliminates dynamic allocation, avoids an indirection accessing the + // data, and exposes the resultant global to further GlobalOpt. + if (ConstantInt *NElements = + dyn_cast<ConstantInt>(getMallocArraySize(CI, Context, TD))) { + // Restrict this transformation to only working on small allocations + // (2048 bytes currently), as we don't want to introduce a 16M global or + // something. + if (TD && + NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { + GVI = OptimizeGlobalAddressOfMalloc(GV, CI, BCI, Context, TD); + return true; + } + } + + // If the allocation is an array of structures, consider transforming this + // into multiple malloc'd arrays, one for each field. This is basically + // SRoA for malloc'd memory. + + // If this is an allocation of a fixed size array of structs, analyze as a + // variable size array. malloc [100 x struct],1 -> malloc struct, 100 + if (!isArrayMalloc(CI, Context, TD)) + if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) + AllocTy = AT->getElementType(); + + if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) { + // This the structure has an unreasonable number of fields, leave it + // alone. + if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && + AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, BCI)) { + + // If this is a fixed size array, transform the Malloc to be an alloc of + // structs. malloc [100 x struct],1 -> malloc struct, 100 + if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) { + Value* NumElements = ConstantInt::get(Type::getInt32Ty(Context), + AT->getNumElements()); + Value* NewMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context), + AllocSTy, NumElements, + BCI->getName()); + Value *Cast = new BitCastInst(NewMI, getMallocType(CI), "tmp", CI); + BCI->replaceAllUsesWith(Cast); + BCI->eraseFromParent(); + CI->eraseFromParent(); + BCI = cast<BitCastInst>(NewMI); + CI = extractMallocCallFromBitCast(NewMI); + } + + GVI = PerformHeapAllocSRoA(GV, CI, BCI, Context, TD); return true; } } @@ -1506,7 +1948,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, // that only one value (besides its initializer) is ever stored to the global. static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, Module::global_iterator &GVI, - TargetData &TD) { + TargetData *TD, LLVMContext &Context) { // Ignore no-op GEPs and bitcasts. StoredOnceVal = StoredOnceVal->stripPointerCasts(); @@ -1518,14 +1960,25 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, GV->getInitializer()->isNullValue()) { if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { if (GV->getInitializer()->getType() != SOVC->getType()) - SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); + SOVC = + ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); // Optimize away any trapping uses of the loaded value. - if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC)) + if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context)) return true; } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) { - if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD)) + if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD, Context)) return true; + } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) { + if (getMallocAllocatedType(CI)) { + BitCastInst* BCI = NULL; + for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); + UI != E; ) + BCI = dyn_cast<BitCastInst>(cast<Instruction>(*UI++)); + if (BCI && + TryToOptimizeStoreOfMallocToGlobal(GV, CI, BCI, GVI, TD, Context)) + return true; + } } } @@ -1536,7 +1989,8 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, /// two values ever stored into GV are its initializer and OtherVal. See if we /// can shrink the global into a boolean and select between the two values /// whenever it is used. This exposes the values to other scalar optimizations. -static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { +static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal, + LLVMContext &Context) { const Type *GVElType = GV->getType()->getElementType(); // If GVElType is already i1, it is already shrunk. If the type of the GV is @@ -1544,7 +1998,7 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { // between them is very expensive and unlikely to lead to later // simplification. In these cases, we typically end up with "cond ? v1 : v2" // where v1 and v2 both require constant pool loads, a big loss. - if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() || + if (GVElType == Type::getInt1Ty(Context) || GVElType->isFloatingPoint() || isa<PointerType>(GVElType) || isa<VectorType>(GVElType)) return false; @@ -1554,18 +2008,19 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) return false; - DOUT << " *** SHRINKING TO BOOL: " << *GV; + DEBUG(errs() << " *** SHRINKING TO BOOL: " << *GV); // Create the new global, initializing it to false. - GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false, - GlobalValue::InternalLinkage, ConstantInt::getFalse(), + GlobalVariable *NewGV = new GlobalVariable(Context, + Type::getInt1Ty(Context), false, + GlobalValue::InternalLinkage, ConstantInt::getFalse(Context), GV->getName()+".b", - (Module *)NULL, GV->isThreadLocal()); GV->getParent()->getGlobalList().insert(GV, NewGV); Constant *InitVal = GV->getInitializer(); - assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!"); + assert(InitVal->getType() != Type::getInt1Ty(Context) && + "No reason to shrink to bool!"); // If initialized to zero and storing one into the global, we can use a cast // instead of a select to synthesize the desired value. @@ -1581,7 +2036,7 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { // Only do this if we weren't storing a loaded value. Value *StoreVal; if (StoringOther || SI->getOperand(0) == InitVal) - StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther); + StoreVal = ConstantInt::get(Type::getInt1Ty(Context), StoringOther); else { // Otherwise, we are storing a previously loaded copy. To do this, // change the copy from copying the original value to just copying the @@ -1632,7 +2087,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, GV->removeDeadConstantUsers(); if (GV->use_empty()) { - DOUT << "GLOBAL DEAD: " << *GV; + DEBUG(errs() << "GLOBAL DEAD: " << *GV); GV->eraseFromParent(); ++NumDeleted; return true; @@ -1675,7 +2130,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, GS.AccessingFunction->getName() == "main" && GS.AccessingFunction->hasExternalLinkage() && GV->getType()->getAddressSpace() == 0) { - DOUT << "LOCALIZING GLOBAL: " << *GV; + DEBUG(errs() << "LOCALIZING GLOBAL: " << *GV); Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin(); const Type* ElemTy = GV->getType()->getElementType(); // FIXME: Pass Global's alignment when globals have alignment @@ -1692,11 +2147,12 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, // If the global is never loaded (but may be stored to), it is dead. // Delete it now. if (!GS.isLoaded) { - DOUT << "GLOBAL NEVER LOADED: " << *GV; + DEBUG(errs() << "GLOBAL NEVER LOADED: " << *GV); // Delete any stores we can find to the global. We may not be able to // make it completely dead though. - bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer()); + bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), + GV->getContext()); // If the global is dead now, delete it. if (GV->use_empty()) { @@ -1707,16 +2163,16 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, return Changed; } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { - DOUT << "MARKING CONSTANT: " << *GV; + DEBUG(errs() << "MARKING CONSTANT: " << *GV); GV->setConstant(true); // Clean up any obviously simplifiable users now. - CleanupConstantGlobalUsers(GV, GV->getInitializer()); + CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext()); // If the global is dead now, just nuke it. if (GV->use_empty()) { - DOUT << " *** Marking constant allowed us to simplify " - << "all users and delete global!\n"; + DEBUG(errs() << " *** Marking constant allowed us to simplify " + << "all users and delete global!\n"); GV->eraseFromParent(); ++NumDeleted; } @@ -1724,11 +2180,12 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, ++NumMarked; return true; } else if (!GV->getInitializer()->getType()->isSingleValueType()) { - if (GlobalVariable *FirstNewGV = SRAGlobal(GV, - getAnalysis<TargetData>())) { - GVI = FirstNewGV; // Don't skip the newly produced globals! - return true; - } + if (TargetData *TD = getAnalysisIfAvailable<TargetData>()) + if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD, + GV->getContext())) { + GVI = FirstNewGV; // Don't skip the newly produced globals! + return true; + } } else if (GS.StoredType == GlobalStatus::isStoredOnce) { // If the initial value for the global was an undef value, and if only // one other value was stored into it, we can just change the @@ -1740,11 +2197,12 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, GV->setInitializer(SOVConstant); // Clean up any obviously simplifiable users now. - CleanupConstantGlobalUsers(GV, GV->getInitializer()); + CleanupConstantGlobalUsers(GV, GV->getInitializer(), + GV->getContext()); if (GV->use_empty()) { - DOUT << " *** Substituting initializer allowed us to " - << "simplify all users and delete global!\n"; + DEBUG(errs() << " *** Substituting initializer allowed us to " + << "simplify all users and delete global!\n"); GV->eraseFromParent(); ++NumDeleted; } else { @@ -1757,13 +2215,14 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, // Try to optimize globals based on the knowledge that only one value // (besides its initializer) is ever stored to the global. if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI, - getAnalysis<TargetData>())) + getAnalysisIfAvailable<TargetData>(), + GV->getContext())) return true; // Otherwise, if the global was not a boolean, we can shrink it to be a // boolean. if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) - if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { + if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) { ++NumShrunkToBool; return true; } @@ -1866,16 +2325,16 @@ GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { if (!ATy) return 0; const StructType *STy = dyn_cast<StructType>(ATy->getElementType()); if (!STy || STy->getNumElements() != 2 || - STy->getElementType(0) != Type::Int32Ty) return 0; + STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0; const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1)); if (!PFTy) return 0; const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType()); - if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() || - FTy->getNumParams() != 0) + if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) || + FTy->isVarArg() || FTy->getNumParams() != 0) return 0; // Verify that the initializer is simple enough for us to handle. - if (!I->hasInitializer()) return 0; + if (!I->hasDefinitiveInitializer()) return 0; ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer()); if (!CA) return 0; for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) @@ -1916,10 +2375,11 @@ static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the /// specified array, returning the new global to use. static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, - const std::vector<Function*> &Ctors) { + const std::vector<Function*> &Ctors, + LLVMContext &Context) { // If we made a change, reassemble the initializer list. std::vector<Constant*> CSVals; - CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535)); + CSVals.push_back(ConstantInt::get(Type::getInt32Ty(Context), 65535)); CSVals.push_back(0); // Create the new init list. @@ -1928,19 +2388,19 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, if (Ctors[i]) { CSVals[1] = Ctors[i]; } else { - const Type *FTy = FunctionType::get(Type::VoidTy, false); + const Type *FTy = FunctionType::get(Type::getVoidTy(Context), false); const PointerType *PFTy = PointerType::getUnqual(FTy); CSVals[1] = Constant::getNullValue(PFTy); - CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647); + CSVals[0] = ConstantInt::get(Type::getInt32Ty(Context), 2147483647); } - CAList.push_back(ConstantStruct::get(CSVals)); + CAList.push_back(ConstantStruct::get(Context, CSVals, false)); } // Create the array initializer. const Type *StructTy = - cast<ArrayType>(GCL->getType()->getElementType())->getElementType(); - Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()), - CAList); + cast<ArrayType>(GCL->getType()->getElementType())->getElementType(); + Constant *CA = ConstantArray::get(ArrayType::get(StructTy, + CAList.size()), CAList); // If we didn't change the number of elements, don't create a new GV. if (CA->getType() == GCL->getInitializer()->getType()) { @@ -1949,9 +2409,9 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, } // Create the new global and insert it next to the existing list. - GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), + GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(), + GCL->isConstant(), GCL->getLinkage(), CA, "", - (Module *)NULL, GCL->isThreadLocal()); GCL->getParent()->getGlobalList().insert(GCL, NGV); NGV->takeName(GCL); @@ -1984,21 +2444,38 @@ static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, /// enough for us to understand. In particular, if it is a cast of something, /// we punt. We basically just support direct accesses to globals and GEP's of /// globals. This should be kept up to date with CommitValueTo. -static bool isSimpleEnoughPointerToCommit(Constant *C) { - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { - if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage()) - return false; // do not allow weak/linkonce/dllimport/dllexport linkage. - return !GV->isDeclaration(); // reject external globals. - } +static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) { + // Conservatively, avoid aggregate types. This is because we don't + // want to worry about them partially overlapping other stores. + if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) + return false; + + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) + // Do not allow weak/linkonce/dllimport/dllexport linkage or + // external globals. + return GV->hasDefinitiveInitializer(); + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) // Handle a constantexpr gep. if (CE->getOpcode() == Instruction::GetElementPtr && - isa<GlobalVariable>(CE->getOperand(0))) { + isa<GlobalVariable>(CE->getOperand(0)) && + cast<GEPOperator>(CE)->isInBounds()) { GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); - if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage()) - return false; // do not allow weak/linkonce/dllimport/dllexport linkage. - return GV->hasInitializer() && - ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); + // Do not allow weak/linkonce/dllimport/dllexport linkage or + // external globals. + if (!GV->hasDefinitiveInitializer()) + return false; + + // The first index must be zero. + ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin())); + if (!CI || !CI->isZero()) return false; + + // The remaining indices must be compile-time known integers within the + // notional bounds of the corresponding static array types. + if (!CE->isGEPWithNoNotionalOverIndexing()) + return false; + + return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); } return false; } @@ -2007,7 +2484,8 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) { /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, - ConstantExpr *Addr, unsigned OpNo) { + ConstantExpr *Addr, unsigned OpNo, + LLVMContext &Context) { // Base case of the recursion. if (OpNo == Addr->getNumOperands()) { assert(Val->getType() == Init->getType() && "Type mismatch!"); @@ -2028,7 +2506,7 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) Elts.push_back(UndefValue::get(STy->getElementType(i))); } else { - assert(0 && "This code is out of sync with " + llvm_unreachable("This code is out of sync with " " ConstantFoldLoadThroughGEPConstantExpr"); } @@ -2036,10 +2514,10 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); unsigned Idx = CU->getZExtValue(); assert(Idx < STy->getNumElements() && "Struct index out of range!"); - Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); + Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context); // Return the modified struct. - return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked()); + return ConstantStruct::get(Context, &Elts[0], Elts.size(), STy->isPacked()); } else { ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); const ArrayType *ATy = cast<ArrayType>(Init->getType()); @@ -2056,20 +2534,21 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, Constant *Elt = UndefValue::get(ATy->getElementType()); Elts.assign(ATy->getNumElements(), Elt); } else { - assert(0 && "This code is out of sync with " + llvm_unreachable("This code is out of sync with " " ConstantFoldLoadThroughGEPConstantExpr"); } assert(CI->getZExtValue() < ATy->getNumElements()); Elts[CI->getZExtValue()] = - EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); + EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context); return ConstantArray::get(ATy, Elts); } } /// CommitValueTo - We have decided that Addr (which satisfies the predicate /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. -static void CommitValueTo(Constant *Val, Constant *Addr) { +static void CommitValueTo(Constant *Val, Constant *Addr, + LLVMContext &Context) { if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { assert(GV->hasInitializer()); GV->setInitializer(Val); @@ -2080,7 +2559,7 @@ static void CommitValueTo(Constant *Val, Constant *Addr) { GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); Constant *Init = GV->getInitializer(); - Init = EvaluateStoreInto(Init, Val, CE, 2); + Init = EvaluateStoreInto(Init, Val, CE, 2, Context); GV->setInitializer(Init); } @@ -2088,7 +2567,8 @@ static void CommitValueTo(Constant *Val, Constant *Addr) { /// P after the stores reflected by 'memory' have been performed. If we can't /// decide, return null. static Constant *ComputeLoadResult(Constant *P, - const DenseMap<Constant*, Constant*> &Memory) { + const DenseMap<Constant*, Constant*> &Memory, + LLVMContext &Context) { // If this memory location has been recently stored, use the stored value: it // is the most up-to-date. DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P); @@ -2096,7 +2576,7 @@ static Constant *ComputeLoadResult(Constant *P, // Access it. if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { - if (GV->hasInitializer()) + if (GV->hasDefinitiveInitializer()) return GV->getInitializer(); return 0; } @@ -2106,7 +2586,7 @@ static Constant *ComputeLoadResult(Constant *P, if (CE->getOpcode() == Instruction::GetElementPtr && isa<GlobalVariable>(CE->getOperand(0))) { GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); - if (GV->hasInitializer()) + if (GV->hasDefinitiveInitializer()) return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); } @@ -2117,7 +2597,7 @@ static Constant *ComputeLoadResult(Constant *P, /// successful, false if we can't evaluate it. ActualArgs contains the formal /// arguments for the function. static bool EvaluateFunction(Function *F, Constant *&RetVal, - const std::vector<Constant*> &ActualArgs, + const SmallVectorImpl<Constant*> &ActualArgs, std::vector<Function*> &CallStack, DenseMap<Constant*, Constant*> &MutatedMemory, std::vector<GlobalVariable*> &AllocaTmps) { @@ -2126,6 +2606,8 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal, if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) return false; + LLVMContext &Context = F->getContext(); + CallStack.push_back(F); /// Values - As we compute SSA register values, we store their contents here. @@ -2152,7 +2634,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal, if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { if (SI->isVolatile()) return false; // no volatile accesses. Constant *Ptr = getVal(Values, SI->getOperand(1)); - if (!isSimpleEnoughPointerToCommit(Ptr)) + if (!isSimpleEnoughPointerToCommit(Ptr, Context)) // If this is too complex for us to commit, reject it. return false; Constant *Val = getVal(Values, SI->getOperand(0)); @@ -2170,7 +2652,8 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal, getVal(Values, CI->getOperand(0)), CI->getType()); } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { - InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)), + InstResult = + ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)), getVal(Values, SI->getOperand(1)), getVal(Values, SI->getOperand(2))); } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { @@ -2179,16 +2662,18 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal, for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; ++i) GEPOps.push_back(getVal(Values, *i)); - InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size()); + InstResult = cast<GEPOperator>(GEP)->isInBounds() ? + ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) : + ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size()); } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { if (LI->isVolatile()) return false; // no volatile accesses. InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)), - MutatedMemory); + MutatedMemory, Context); if (InstResult == 0) return false; // Could not evaluate load. } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { if (AI->isArrayAllocation()) return false; // Cannot handle array allocs. const Type *Ty = AI->getType()->getElementType(); - AllocaTmps.push_back(new GlobalVariable(Ty, false, + AllocaTmps.push_back(new GlobalVariable(Context, Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), AI->getName())); @@ -2208,14 +2693,14 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal, Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0))); if (!Callee) return false; // Cannot resolve. - std::vector<Constant*> Formals; + SmallVector<Constant*, 8> Formals; for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end(); i != e; ++i) Formals.push_back(getVal(Values, *i)); - + if (Callee->isDeclaration()) { // If this is a function we can constant fold, do it. - if (Constant *C = ConstantFoldCall(Callee, &Formals[0], + if (Constant *C = ConstantFoldCall(Callee, Formals.data(), Formals.size())) { InstResult = C; } else { @@ -2310,16 +2795,17 @@ static bool EvaluateStaticConstructor(Function *F) { // Call the function. Constant *RetValDummy; - bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(), - CallStack, MutatedMemory, AllocaTmps); + bool EvalSuccess = EvaluateFunction(F, RetValDummy, + SmallVector<Constant*, 0>(), CallStack, + MutatedMemory, AllocaTmps); if (EvalSuccess) { // We succeeded at evaluation: commit the result. - DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" - << F->getName() << "' to " << MutatedMemory.size() - << " stores.\n"; + DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" + << F->getName() << "' to " << MutatedMemory.size() + << " stores.\n"); for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(), E = MutatedMemory.end(); I != E; ++I) - CommitValueTo(I->second, I->first); + CommitValueTo(I->second, I->first, F->getContext()); } // At this point, we are done interpreting. If we created any 'alloca' @@ -2376,7 +2862,7 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { if (!MadeChange) return false; - GCL = InstallGlobalCtors(GCL, Ctors); + GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext()); return true; } |