diff options
author | dim <dim@FreeBSD.org> | 2011-05-02 19:34:44 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2011-05-02 19:34:44 +0000 |
commit | 2b066988909948dc3d53d01760bc2d71d32f3feb (patch) | |
tree | fc5f365fb9035b2d0c622bbf06c9bbe8627d7279 /lib/Target/X86 | |
parent | c80ac9d286b8fcc6d1ee5d76048134cf80aa9edc (diff) | |
download | FreeBSD-src-2b066988909948dc3d53d01760bc2d71d32f3feb.zip FreeBSD-src-2b066988909948dc3d53d01760bc2d71d32f3feb.tar.gz |
Vendor import of llvm trunk r130700:
http://llvm.org/svn/llvm-project/llvm/trunk@130700
Diffstat (limited to 'lib/Target/X86')
47 files changed, 2372 insertions, 1240 deletions
diff --git a/lib/Target/X86/AsmParser/X86AsmParser.cpp b/lib/Target/X86/AsmParser/X86AsmParser.cpp index 8fe549b..c352bfc 100644 --- a/lib/Target/X86/AsmParser/X86AsmParser.cpp +++ b/lib/Target/X86/AsmParser/X86AsmParser.cpp @@ -53,6 +53,14 @@ private: SmallVectorImpl<MCParsedAsmOperand*> &Operands, MCStreamer &Out); + /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi) + /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode. + bool isSrcOp(X86Operand &Op); + + /// isDstOp - Returns true if operand is either %es:(%rdi) in 64bit mode + /// or %es:(%edi) in 32bit mode. + bool isDstOp(X86Operand &Op); + /// @name Auto-generated Matcher Functions /// { @@ -356,6 +364,24 @@ struct X86Operand : public MCParsedAsmOperand { } // end anonymous namespace. +bool X86ATTAsmParser::isSrcOp(X86Operand &Op) { + unsigned basereg = Is64Bit ? X86::RSI : X86::ESI; + + return (Op.isMem() && + (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) && + isa<MCConstantExpr>(Op.Mem.Disp) && + cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && + Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0); +} + +bool X86ATTAsmParser::isDstOp(X86Operand &Op) { + unsigned basereg = Is64Bit ? X86::RDI : X86::EDI; + + return Op.isMem() && Op.Mem.SegReg == X86::ES && + isa<MCConstantExpr>(Op.Mem.Disp) && + cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && + Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0; +} bool X86ATTAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { @@ -788,7 +814,106 @@ ParseInstruction(StringRef Name, SMLoc NameLoc, delete &Op; } } - + // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]" + if (Name.startswith("ins") && Operands.size() == 3 && + (Name == "insb" || Name == "insw" || Name == "insl")) { + X86Operand &Op = *(X86Operand*)Operands.begin()[1]; + X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; + if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) { + Operands.pop_back(); + Operands.pop_back(); + delete &Op; + delete &Op2; + } + } + + // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]" + if (Name.startswith("outs") && Operands.size() == 3 && + (Name == "outsb" || Name == "outsw" || Name == "outsl")) { + X86Operand &Op = *(X86Operand*)Operands.begin()[1]; + X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; + if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) { + Operands.pop_back(); + Operands.pop_back(); + delete &Op; + delete &Op2; + } + } + + // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]" + if (Name.startswith("movs") && Operands.size() == 3 && + (Name == "movsb" || Name == "movsw" || Name == "movsl" || + (Is64Bit && Name == "movsq"))) { + X86Operand &Op = *(X86Operand*)Operands.begin()[1]; + X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; + if (isSrcOp(Op) && isDstOp(Op2)) { + Operands.pop_back(); + Operands.pop_back(); + delete &Op; + delete &Op2; + } + } + // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]" + if (Name.startswith("lods") && Operands.size() == 3 && + (Name == "lods" || Name == "lodsb" || Name == "lodsw" || + Name == "lodsl" || (Is64Bit && Name == "lodsq"))) { + X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); + X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]); + if (isSrcOp(*Op1) && Op2->isReg()) { + const char *ins; + unsigned reg = Op2->getReg(); + bool isLods = Name == "lods"; + if (reg == X86::AL && (isLods || Name == "lodsb")) + ins = "lodsb"; + else if (reg == X86::AX && (isLods || Name == "lodsw")) + ins = "lodsw"; + else if (reg == X86::EAX && (isLods || Name == "lodsl")) + ins = "lodsl"; + else if (reg == X86::RAX && (isLods || Name == "lodsq")) + ins = "lodsq"; + else + ins = NULL; + if (ins != NULL) { + Operands.pop_back(); + Operands.pop_back(); + delete Op1; + delete Op2; + if (Name != ins) + static_cast<X86Operand*>(Operands[0])->setTokenValue(ins); + } + } + } + // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]" + if (Name.startswith("stos") && Operands.size() == 3 && + (Name == "stos" || Name == "stosb" || Name == "stosw" || + Name == "stosl" || (Is64Bit && Name == "stosq"))) { + X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); + X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]); + if (isDstOp(*Op2) && Op1->isReg()) { + const char *ins; + unsigned reg = Op1->getReg(); + bool isStos = Name == "stos"; + if (reg == X86::AL && (isStos || Name == "stosb")) + ins = "stosb"; + else if (reg == X86::AX && (isStos || Name == "stosw")) + ins = "stosw"; + else if (reg == X86::EAX && (isStos || Name == "stosl")) + ins = "stosl"; + else if (reg == X86::RAX && (isStos || Name == "stosq")) + ins = "stosq"; + else + ins = NULL; + if (ins != NULL) { + Operands.pop_back(); + Operands.pop_back(); + delete Op1; + delete Op2; + if (Name != ins) + static_cast<X86Operand*>(Operands[0])->setTokenValue(ins); + } + } + } + // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to // "shift <op>". if ((Name.startswith("shr") || Name.startswith("sar") || @@ -803,6 +928,18 @@ ParseInstruction(StringRef Name, SMLoc NameLoc, Operands.erase(Operands.begin() + 1); } } + + // Transforms "int $3" into "int3" as a size optimization. We can't write an + // instalias with an immediate operand yet. + if (Name == "int" && Operands.size() == 2) { + X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); + if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && + cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) { + delete Operands[1]; + Operands.erase(Operands.begin() + 1); + static_cast<X86Operand*>(Operands[0])->setTokenValue("int3"); + } + } return false; } diff --git a/lib/Target/X86/Disassembler/X86Disassembler.cpp b/lib/Target/X86/Disassembler/X86Disassembler.cpp index f777756..d8a105e 100644 --- a/lib/Target/X86/Disassembler/X86Disassembler.cpp +++ b/lib/Target/X86/Disassembler/X86Disassembler.cpp @@ -409,6 +409,7 @@ static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, case TYPE_XMM32: case TYPE_XMM64: case TYPE_XMM128: + case TYPE_XMM256: case TYPE_DEBUGREG: case TYPE_CONTROLREG: return translateRMRegister(mcInst, insn); @@ -418,6 +419,7 @@ static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, case TYPE_M32: case TYPE_M64: case TYPE_M128: + case TYPE_M256: case TYPE_M512: case TYPE_Mv: case TYPE_M32FP: @@ -500,6 +502,9 @@ static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, case ENCODING_Rv: translateRegister(mcInst, insn.opcodeRegister); return false; + case ENCODING_VVVV: + translateRegister(mcInst, insn.vvvv); + return false; case ENCODING_DUP: return translateOperand(mcInst, insn.spec->operands[operand.type - TYPE_DUP0], diff --git a/lib/Target/X86/Disassembler/X86DisassemblerDecoder.c b/lib/Target/X86/Disassembler/X86DisassemblerDecoder.c index b6546fc..de1610b 100644 --- a/lib/Target/X86/Disassembler/X86DisassemblerDecoder.c +++ b/lib/Target/X86/Disassembler/X86DisassemblerDecoder.c @@ -75,6 +75,12 @@ static int modRMRequired(OpcodeType type, case THREEBYTE_3A: decision = &THREEBYTE3A_SYM; break; + case THREEBYTE_A6: + decision = &THREEBYTEA6_SYM; + break; + case THREEBYTE_A7: + decision = &THREEBYTEA7_SYM; + break; } return decision->opcodeDecisions[insnContext].modRMDecisions[opcode]. @@ -115,6 +121,12 @@ static InstrUID decode(OpcodeType type, case THREEBYTE_3A: dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; break; + case THREEBYTE_A6: + dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + case THREEBYTE_A7: + dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; } switch (dec->modrm_type) { @@ -368,29 +380,109 @@ static int readPrefixes(struct InternalInstruction* insn) { if (isPrefix) dbgprintf(insn, "Found prefix 0x%hhx", byte); } + + insn->vexSize = 0; - if (insn->mode == MODE_64BIT) { - if ((byte & 0xf0) == 0x40) { - uint8_t opcodeByte; + if (byte == 0xc4) { + uint8_t byte1; - if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) { - dbgprintf(insn, "Redundant REX prefix"); - return -1; + if (lookAtByte(insn, &byte1)) { + dbgprintf(insn, "Couldn't read second byte of VEX"); + return -1; + } + + if (insn->mode == MODE_64BIT || byte1 & 0x8) { + insn->vexSize = 3; + insn->necessaryPrefixLocation = insn->readerCursor - 1; + } + else { + unconsumeByte(insn); + insn->necessaryPrefixLocation = insn->readerCursor - 1; + } + + if (insn->vexSize == 3) { + insn->vexPrefix[0] = byte; + consumeByte(insn, &insn->vexPrefix[1]); + consumeByte(insn, &insn->vexPrefix[2]); + + /* We simulate the REX prefix for simplicity's sake */ + + insn->rexPrefix = 0x40 + | (wFromVEX3of3(insn->vexPrefix[2]) << 3) + | (rFromVEX2of3(insn->vexPrefix[1]) << 2) + | (xFromVEX2of3(insn->vexPrefix[1]) << 1) + | (bFromVEX2of3(insn->vexPrefix[1]) << 0); + + switch (ppFromVEX3of3(insn->vexPrefix[2])) + { + default: + break; + case VEX_PREFIX_66: + hasOpSize = TRUE; + break; } + + dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]); + } + } + else if (byte == 0xc5) { + uint8_t byte1; + + if (lookAtByte(insn, &byte1)) { + dbgprintf(insn, "Couldn't read second byte of VEX"); + return -1; + } - insn->rexPrefix = byte; - insn->necessaryPrefixLocation = insn->readerCursor - 2; - - dbgprintf(insn, "Found REX prefix 0x%hhx", byte); - } else { + if (insn->mode == MODE_64BIT || byte1 & 0x8) { + insn->vexSize = 2; + } + else { + unconsumeByte(insn); + } + + if (insn->vexSize == 2) { + insn->vexPrefix[0] = byte; + consumeByte(insn, &insn->vexPrefix[1]); + + insn->rexPrefix = 0x40 + | (rFromVEX2of2(insn->vexPrefix[1]) << 2); + + switch (ppFromVEX2of2(insn->vexPrefix[1])) + { + default: + break; + case VEX_PREFIX_66: + hasOpSize = TRUE; + break; + } + + dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]); + } + } + else { + if (insn->mode == MODE_64BIT) { + if ((byte & 0xf0) == 0x40) { + uint8_t opcodeByte; + + if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) { + dbgprintf(insn, "Redundant REX prefix"); + return -1; + } + + insn->rexPrefix = byte; + insn->necessaryPrefixLocation = insn->readerCursor - 2; + + dbgprintf(insn, "Found REX prefix 0x%hhx", byte); + } else { + unconsumeByte(insn); + insn->necessaryPrefixLocation = insn->readerCursor - 1; + } + } else { unconsumeByte(insn); insn->necessaryPrefixLocation = insn->readerCursor - 1; } - } else { - unconsumeByte(insn); - insn->necessaryPrefixLocation = insn->readerCursor - 1; } - + if (insn->mode == MODE_16BIT) { insn->registerSize = (hasOpSize ? 4 : 2); insn->addressSize = (hasAdSize ? 4 : 2); @@ -438,6 +530,39 @@ static int readOpcode(struct InternalInstruction* insn) { dbgprintf(insn, "readOpcode()"); insn->opcodeType = ONEBYTE; + + if (insn->vexSize == 3) + { + switch (mmmmmFromVEX2of3(insn->vexPrefix[1])) + { + default: + dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1])); + return -1; + case 0: + break; + case VEX_LOB_0F: + insn->twoByteEscape = 0x0f; + insn->opcodeType = TWOBYTE; + return consumeByte(insn, &insn->opcode); + case VEX_LOB_0F38: + insn->twoByteEscape = 0x0f; + insn->threeByteEscape = 0x38; + insn->opcodeType = THREEBYTE_38; + return consumeByte(insn, &insn->opcode); + case VEX_LOB_0F3A: + insn->twoByteEscape = 0x0f; + insn->threeByteEscape = 0x3a; + insn->opcodeType = THREEBYTE_3A; + return consumeByte(insn, &insn->opcode); + } + } + else if (insn->vexSize == 2) + { + insn->twoByteEscape = 0x0f; + insn->opcodeType = TWOBYTE; + return consumeByte(insn, &insn->opcode); + } + if (consumeByte(insn, ¤t)) return -1; @@ -467,6 +592,24 @@ static int readOpcode(struct InternalInstruction* insn) { return -1; insn->opcodeType = THREEBYTE_3A; + } else if (current == 0xa6) { + dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); + + insn->threeByteEscape = current; + + if (consumeByte(insn, ¤t)) + return -1; + + insn->opcodeType = THREEBYTE_A6; + } else if (current == 0xa7) { + dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); + + insn->threeByteEscape = current; + + if (consumeByte(insn, ¤t)) + return -1; + + insn->opcodeType = THREEBYTE_A7; } else { dbgprintf(insn, "Didn't find a three-byte escape prefix"); @@ -600,20 +743,64 @@ static int getID(struct InternalInstruction* insn) { dbgprintf(insn, "getID()"); attrMask = ATTR_NONE; - + if (insn->mode == MODE_64BIT) attrMask |= ATTR_64BIT; - - if (insn->rexPrefix & 0x08) - attrMask |= ATTR_REXW; - - if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) - attrMask |= ATTR_OPSIZE; - else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation)) - attrMask |= ATTR_XS; - else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation)) - attrMask |= ATTR_XD; - + + if (insn->vexSize) { + attrMask |= ATTR_VEX; + + if (insn->vexSize == 3) { + switch (ppFromVEX3of3(insn->vexPrefix[2])) { + case VEX_PREFIX_66: + attrMask |= ATTR_OPSIZE; + break; + case VEX_PREFIX_F3: + attrMask |= ATTR_XS; + break; + case VEX_PREFIX_F2: + attrMask |= ATTR_XD; + break; + } + + if (wFromVEX3of3(insn->vexPrefix[2])) + attrMask |= ATTR_REXW; + if (lFromVEX3of3(insn->vexPrefix[2])) + attrMask |= ATTR_VEXL; + } + else if (insn->vexSize == 2) { + switch (ppFromVEX2of2(insn->vexPrefix[1])) { + case VEX_PREFIX_66: + attrMask |= ATTR_OPSIZE; + break; + case VEX_PREFIX_F3: + attrMask |= ATTR_XS; + break; + case VEX_PREFIX_F2: + attrMask |= ATTR_XD; + break; + } + + if (lFromVEX2of2(insn->vexPrefix[1])) + attrMask |= ATTR_VEXL; + } + else { + return -1; + } + } + else { + if (insn->rexPrefix & 0x08) + attrMask |= ATTR_REXW; + + if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) + attrMask |= ATTR_OPSIZE; + else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation)) + attrMask |= ATTR_XS; + else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation)) + attrMask |= ATTR_XD; + + } + if (getIDWithAttrMask(&instructionID, insn, attrMask)) return -1; @@ -749,7 +936,7 @@ static int readSIB(struct InternalInstruction* insn) { insn->sibIndex = SIB_INDEX_NONE; break; default: - insn->sibIndex = (EABase)(sibIndexBase + index); + insn->sibIndex = (SIBIndex)(sibIndexBase + index); if (insn->sibIndex == SIB_INDEX_sib || insn->sibIndex == SIB_INDEX_sib64) insn->sibIndex = SIB_INDEX_NONE; @@ -796,7 +983,7 @@ static int readSIB(struct InternalInstruction* insn) { } break; default: - insn->sibBase = (EABase)(sibBaseBase + base); + insn->sibBase = (SIBBase)(sibBaseBase + base); break; } @@ -1012,6 +1199,8 @@ static int readModRM(struct InternalInstruction* insn) { return prefix##_EAX + index; \ case TYPE_R64: \ return prefix##_RAX + index; \ + case TYPE_XMM256: \ + return prefix##_YMM0 + index; \ case TYPE_XMM128: \ case TYPE_XMM64: \ case TYPE_XMM32: \ @@ -1073,6 +1262,14 @@ static int fixupReg(struct InternalInstruction *insn, default: debug("Expected a REG or R/M encoding in fixupReg"); return -1; + case ENCODING_VVVV: + insn->vvvv = (Reg)fixupRegValue(insn, + (OperandType)op->type, + insn->vvvv, + &valid); + if (!valid) + return -1; + break; case ENCODING_REG: insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, @@ -1237,6 +1434,27 @@ static int readImmediate(struct InternalInstruction* insn, uint8_t size) { } /* + * readVVVV - Consumes an immediate operand from an instruction, given the + * desired operand size. + * + * @param insn - The instruction whose operand is to be read. + * @return - 0 if the immediate was successfully consumed; nonzero + * otherwise. + */ +static int readVVVV(struct InternalInstruction* insn) { + dbgprintf(insn, "readVVVV()"); + + if (insn->vexSize == 3) + insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]); + else if (insn->vexSize == 2) + insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]); + else + return -1; + + return 0; +} + +/* * readOperands - Consults the specifier for an instruction and consumes all * operands for that instruction, interpreting them as it goes. * @@ -1317,6 +1535,13 @@ static int readOperands(struct InternalInstruction* insn) { case ENCODING_I: if (readOpcodeModifier(insn)) return -1; + break; + case ENCODING_VVVV: + if (readVVVV(insn)) + return -1; + if (fixupReg(insn, &insn->spec->operands[index])) + return -1; + break; case ENCODING_DUP: break; default: diff --git a/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h b/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h index d0dc8b5..a9c90f8 100644 --- a/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h +++ b/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h @@ -34,16 +34,30 @@ extern "C" { /* * Accessor functions for various fields of an Intel instruction */ -#define modFromModRM(modRM) ((modRM & 0xc0) >> 6) -#define regFromModRM(modRM) ((modRM & 0x38) >> 3) -#define rmFromModRM(modRM) (modRM & 0x7) -#define scaleFromSIB(sib) ((sib & 0xc0) >> 6) -#define indexFromSIB(sib) ((sib & 0x38) >> 3) -#define baseFromSIB(sib) (sib & 0x7) -#define wFromREX(rex) ((rex & 0x8) >> 3) -#define rFromREX(rex) ((rex & 0x4) >> 2) -#define xFromREX(rex) ((rex & 0x2) >> 1) -#define bFromREX(rex) (rex & 0x1) +#define modFromModRM(modRM) (((modRM) & 0xc0) >> 6) +#define regFromModRM(modRM) (((modRM) & 0x38) >> 3) +#define rmFromModRM(modRM) ((modRM) & 0x7) +#define scaleFromSIB(sib) (((sib) & 0xc0) >> 6) +#define indexFromSIB(sib) (((sib) & 0x38) >> 3) +#define baseFromSIB(sib) ((sib) & 0x7) +#define wFromREX(rex) (((rex) & 0x8) >> 3) +#define rFromREX(rex) (((rex) & 0x4) >> 2) +#define xFromREX(rex) (((rex) & 0x2) >> 1) +#define bFromREX(rex) ((rex) & 0x1) + +#define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7) +#define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6) +#define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5) +#define mmmmmFromVEX2of3(vex) ((vex) & 0x1f) +#define wFromVEX3of3(vex) (((vex) & 0x80) >> 7) +#define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3) +#define lFromVEX3of3(vex) (((vex) & 0x4) >> 2) +#define ppFromVEX3of3(vex) ((vex) & 0x3) + +#define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7) +#define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3) +#define lFromVEX2of2(vex) (((vex) & 0x4) >> 2) +#define ppFromVEX2of2(vex) ((vex) & 0x3) /* * These enums represent Intel registers for use by the decoder. @@ -206,7 +220,25 @@ extern "C" { ENTRY(XMM13) \ ENTRY(XMM14) \ ENTRY(XMM15) - + +#define REGS_YMM \ + ENTRY(YMM0) \ + ENTRY(YMM1) \ + ENTRY(YMM2) \ + ENTRY(YMM3) \ + ENTRY(YMM4) \ + ENTRY(YMM5) \ + ENTRY(YMM6) \ + ENTRY(YMM7) \ + ENTRY(YMM8) \ + ENTRY(YMM9) \ + ENTRY(YMM10) \ + ENTRY(YMM11) \ + ENTRY(YMM12) \ + ENTRY(YMM13) \ + ENTRY(YMM14) \ + ENTRY(YMM15) + #define REGS_SEGMENT \ ENTRY(ES) \ ENTRY(CS) \ @@ -252,6 +284,7 @@ extern "C" { REGS_64BIT \ REGS_MMX \ REGS_XMM \ + REGS_YMM \ REGS_SEGMENT \ REGS_DEBUG \ REGS_CONTROL \ @@ -332,6 +365,27 @@ typedef enum { SEG_OVERRIDE_GS, SEG_OVERRIDE_max } SegmentOverride; + +/* + * VEXLeadingOpcodeByte - Possible values for the VEX.m-mmmm field + */ + +typedef enum { + VEX_LOB_0F = 0x1, + VEX_LOB_0F38 = 0x2, + VEX_LOB_0F3A = 0x3 +} VEXLeadingOpcodeByte; + +/* + * VEXPrefixCode - Possible values for the VEX.pp field + */ + +typedef enum { + VEX_PREFIX_NONE = 0x0, + VEX_PREFIX_66 = 0x1, + VEX_PREFIX_F3 = 0x2, + VEX_PREFIX_F2 = 0x3 +} VEXPrefixCode; typedef uint8_t BOOL; @@ -389,10 +443,12 @@ struct InternalInstruction { uint8_t prefixPresent[0x100]; /* contains the location (for use with the reader) of the prefix byte */ uint64_t prefixLocations[0x100]; + /* The value of the VEX prefix, if present */ + uint8_t vexPrefix[3]; + /* The length of the VEX prefix (0 if not present) */ + uint8_t vexSize; /* The value of the REX prefix, if present */ uint8_t rexPrefix; - /* The location of the REX prefix */ - uint64_t rexLocation; /* The location where a mandatory prefix would have to be (i.e., right before the opcode, or right before the REX prefix if one is present) */ uint64_t necessaryPrefixLocation; @@ -428,6 +484,10 @@ struct InternalInstruction { /* state for additional bytes, consumed during operand decode. Pattern: consumed___ indicates that the byte was already consumed and does not need to be consumed again */ + + /* The VEX.vvvv field, which contains a third register operand for some AVX + instructions */ + Reg vvvv; /* The ModR/M byte, which contains most register operands and some portion of all memory operands */ diff --git a/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h b/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h index 1425b86..70315ed 100644 --- a/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h +++ b/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h @@ -30,6 +30,8 @@ #define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes #define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes #define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes +#define THREEBYTEA6_SYM x86DisassemblerThreeByteA6Opcodes +#define THREEBYTEA7_SYM x86DisassemblerThreeByteA7Opcodes #define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers" #define CONTEXTS_STR "x86DisassemblerContexts" @@ -37,6 +39,8 @@ #define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes" #define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes" #define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes" +#define THREEBYTEA6_STR "x86DisassemblerThreeByteA6Opcodes" +#define THREEBYTEA7_STR "x86DisassemblerThreeByteA7Opcodes" /* * Attributes of an instruction that must be known before the opcode can be @@ -49,7 +53,9 @@ ENUM_ENTRY(ATTR_XS, 0x02) \ ENUM_ENTRY(ATTR_XD, 0x04) \ ENUM_ENTRY(ATTR_REXW, 0x08) \ - ENUM_ENTRY(ATTR_OPSIZE, 0x10) + ENUM_ENTRY(ATTR_OPSIZE, 0x10) \ + ENUM_ENTRY(ATTR_VEX, 0x20) \ + ENUM_ENTRY(ATTR_VEXL, 0x40) #define ENUM_ENTRY(n, v) n = v, enum attributeBits { @@ -87,7 +93,20 @@ enum attributeBits { "IC_64BIT_REXW_XS") \ ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \ "else because this changes most " \ - "operands' meaning") + "operands' meaning") \ + ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \ + ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \ + ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \ + ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \ + ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \ + ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \ + ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \ + ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \ + ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \ + ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\ + ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XS prefix")\ + ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") + #define ENUM_ENTRY(n, r, d) n, typedef enum { @@ -104,7 +123,9 @@ typedef enum { ONEBYTE = 0, TWOBYTE = 1, THREEBYTE_38 = 2, - THREEBYTE_3A = 3 + THREEBYTE_3A = 3, + THREEBYTE_A6 = 4, + THREEBYTE_A7 = 5 } OpcodeType; /* @@ -183,6 +204,7 @@ struct ContextDecision { ENUM_ENTRY(ENCODING_NONE, "") \ ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \ ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \ + ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \ ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \ ENUM_ENTRY(ENCODING_CW, "2-byte") \ ENUM_ENTRY(ENCODING_CD, "4-byte") \ @@ -278,6 +300,7 @@ struct ContextDecision { ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \ ENUM_ENTRY(TYPE_XMM64, "8-byte") \ ENUM_ENTRY(TYPE_XMM128, "16-byte") \ + ENUM_ENTRY(TYPE_XMM256, "32-byte") \ ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \ ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \ ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \ diff --git a/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp b/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp index d6950f4..dd6e353 100644 --- a/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp +++ b/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp @@ -15,6 +15,7 @@ #define DEBUG_TYPE "asm-printer" #include "X86ATTInstPrinter.h" #include "X86InstComments.h" +#include "X86Subtarget.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" @@ -22,24 +23,38 @@ #include "llvm/Support/Format.h" #include "llvm/Support/FormattedStream.h" #include "X86GenInstrNames.inc" +#include <map> using namespace llvm; // Include the auto-generated portion of the assembly writer. #define GET_INSTRUCTION_NAME +#define PRINT_ALIAS_INSTR +#include "X86GenRegisterNames.inc" #include "X86GenAsmWriter.inc" +#undef PRINT_ALIAS_INSTR +#undef GET_INSTRUCTION_NAME + +X86ATTInstPrinter::X86ATTInstPrinter(TargetMachine &TM, const MCAsmInfo &MAI) + : MCInstPrinter(MAI) { + // Initialize the set of available features. + setAvailableFeatures(ComputeAvailableFeatures( + &TM.getSubtarget<X86Subtarget>())); +} void X86ATTInstPrinter::printInst(const MCInst *MI, raw_ostream &OS) { - printInstruction(MI, OS); + // Try to print any aliases first. + if (!printAliasInstr(MI, OS)) + printInstruction(MI, OS); // If verbose assembly is enabled, we can print some informative comments. if (CommentStream) EmitAnyX86InstComments(MI, *CommentStream, getRegisterName); } + StringRef X86ATTInstPrinter::getOpcodeName(unsigned Opcode) const { return getInstructionName(Opcode); } - void X86ATTInstPrinter::printSSECC(const MCInst *MI, unsigned Op, raw_ostream &O) { switch (MI->getOperand(Op).getImm()) { diff --git a/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h b/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h index eb98664..8d69391 100644 --- a/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h +++ b/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h @@ -17,16 +17,24 @@ #include "llvm/MC/MCInstPrinter.h" namespace llvm { - class MCOperand; + +class MCOperand; +class X86Subtarget; +class TargetMachine; class X86ATTInstPrinter : public MCInstPrinter { public: - X86ATTInstPrinter(const MCAsmInfo &MAI) : MCInstPrinter(MAI) {} - + X86ATTInstPrinter(TargetMachine &TM, const MCAsmInfo &MAI); virtual void printInst(const MCInst *MI, raw_ostream &OS); virtual StringRef getOpcodeName(unsigned Opcode) const; + // Methods used to print the alias of an instruction. + unsigned ComputeAvailableFeatures(const X86Subtarget *Subtarget) const; + // Autogenerated by tblgen, returns true if we successfully printed an + // alias. + bool printAliasInstr(const MCInst *MI, raw_ostream &OS); + // Autogenerated by tblgen. void printInstruction(const MCInst *MI, raw_ostream &OS); static const char *getRegisterName(unsigned RegNo); diff --git a/lib/Target/X86/InstPrinter/X86InstComments.cpp b/lib/Target/X86/InstPrinter/X86InstComments.cpp index 12144e3..c642acc 100644 --- a/lib/Target/X86/InstPrinter/X86InstComments.cpp +++ b/lib/Target/X86/InstPrinter/X86InstComments.cpp @@ -111,28 +111,28 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, // FALL THROUGH. case X86::PUNPCKLBWrm: Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodePUNPCKLMask(16, ShuffleMask); + DecodePUNPCKLBWMask(16, ShuffleMask); break; case X86::PUNPCKLWDrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::PUNPCKLWDrm: Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodePUNPCKLMask(8, ShuffleMask); + DecodePUNPCKLWDMask(8, ShuffleMask); break; case X86::PUNPCKLDQrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::PUNPCKLDQrm: Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodePUNPCKLMask(4, ShuffleMask); + DecodePUNPCKLDQMask(4, ShuffleMask); break; case X86::PUNPCKLQDQrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::PUNPCKLQDQrm: Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodePUNPCKLMask(2, ShuffleMask); + DecodePUNPCKLQDQMask(2, ShuffleMask); break; case X86::SHUFPDrri: @@ -153,16 +153,44 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::UNPCKLPDrm: - DecodeUNPCKLPMask(2, ShuffleMask); + DecodeUNPCKLPDMask(2, ShuffleMask); Src1Name = getRegName(MI->getOperand(0).getReg()); break; + case X86::VUNPCKLPDrr: + Src2Name = getRegName(MI->getOperand(2).getReg()); + // FALL THROUGH. + case X86::VUNPCKLPDrm: + DecodeUNPCKLPDMask(2, ShuffleMask); + Src1Name = getRegName(MI->getOperand(1).getReg()); + break; + case X86::VUNPCKLPDYrr: + Src2Name = getRegName(MI->getOperand(2).getReg()); + // FALL THROUGH. + case X86::VUNPCKLPDYrm: + DecodeUNPCKLPDMask(4, ShuffleMask); + Src1Name = getRegName(MI->getOperand(1).getReg()); + break; case X86::UNPCKLPSrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::UNPCKLPSrm: - DecodeUNPCKLPMask(4, ShuffleMask); + DecodeUNPCKLPSMask(4, ShuffleMask); Src1Name = getRegName(MI->getOperand(0).getReg()); break; + case X86::VUNPCKLPSrr: + Src2Name = getRegName(MI->getOperand(2).getReg()); + // FALL THROUGH. + case X86::VUNPCKLPSrm: + DecodeUNPCKLPSMask(4, ShuffleMask); + Src1Name = getRegName(MI->getOperand(1).getReg()); + break; + case X86::VUNPCKLPSYrr: + Src2Name = getRegName(MI->getOperand(2).getReg()); + // FALL THROUGH. + case X86::VUNPCKLPSYrm: + DecodeUNPCKLPSMask(8, ShuffleMask); + Src1Name = getRegName(MI->getOperand(1).getReg()); + break; case X86::UNPCKHPDrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. diff --git a/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp b/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp index 0484529..47253eb 100644 --- a/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp +++ b/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp @@ -15,6 +15,7 @@ #define DEBUG_TYPE "asm-printer" #include "X86IntelInstPrinter.h" #include "X86InstComments.h" +#include "X86Subtarget.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" diff --git a/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h b/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h index 6f12032..ca99dc0 100644 --- a/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h +++ b/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h @@ -18,13 +18,15 @@ #include "llvm/Support/raw_ostream.h" namespace llvm { - class MCOperand; + +class MCOperand; +class TargetMachine; class X86IntelInstPrinter : public MCInstPrinter { public: - X86IntelInstPrinter(const MCAsmInfo &MAI) + X86IntelInstPrinter(TargetMachine &TM, const MCAsmInfo &MAI) : MCInstPrinter(MAI) {} - + virtual void printInst(const MCInst *MI, raw_ostream &OS); virtual StringRef getOpcodeName(unsigned Opcode) const; @@ -33,7 +35,6 @@ public: static const char *getRegisterName(unsigned RegNo); static const char *getInstructionName(unsigned Opcode); - void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O); void printMemReference(const MCInst *MI, unsigned Op, raw_ostream &O); void printSSECC(const MCInst *MI, unsigned Op, raw_ostream &O); diff --git a/lib/Target/X86/README-X86-64.txt b/lib/Target/X86/README-X86-64.txt index e21d69a..e7429a3 100644 --- a/lib/Target/X86/README-X86-64.txt +++ b/lib/Target/X86/README-X86-64.txt @@ -36,7 +36,7 @@ _conv: cmovb %rcx, %rax ret -Seems like the jb branch has high likelyhood of being taken. It would have +Seems like the jb branch has high likelihood of being taken. It would have saved a few instructions. //===---------------------------------------------------------------------===// diff --git a/lib/Target/X86/README.txt b/lib/Target/X86/README.txt index abd1515..ea3014e 100644 --- a/lib/Target/X86/README.txt +++ b/lib/Target/X86/README.txt @@ -7,14 +7,6 @@ copy (3-addr bswap + memory support?) This is available on Atom processors. //===---------------------------------------------------------------------===// -CodeGen/X86/lea-3.ll:test3 should be a single LEA, not a shift/move. The X86 -backend knows how to three-addressify this shift, but it appears the register -allocator isn't even asking it to do so in this case. We should investigate -why this isn't happening, it could have significant impact on other important -cases for X86 as well. - -//===---------------------------------------------------------------------===// - This should be one DIV/IDIV instruction, not a libcall: unsigned test(unsigned long long X, unsigned Y) { @@ -1572,7 +1564,7 @@ Implement processor-specific optimizations for parity with GCC on these processors. GCC does two optimizations: 1. ix86_pad_returns inserts a noop before ret instructions if immediately - preceeded by a conditional branch or is the target of a jump. + preceded by a conditional branch or is the target of a jump. 2. ix86_avoid_jump_misspredicts inserts noops in cases where a 16-byte block of code contains more than 3 branches. @@ -1656,28 +1648,61 @@ information to add the "lock" prefix. //===---------------------------------------------------------------------===// -_Bool bar(int *x) { return *x & 1; } +struct B { + unsigned char y0 : 1; +}; -define zeroext i1 @bar(i32* nocapture %x) nounwind readonly { -entry: - %tmp1 = load i32* %x ; <i32> [#uses=1] - %and = and i32 %tmp1, 1 ; <i32> [#uses=1] - %tobool = icmp ne i32 %and, 0 ; <i1> [#uses=1] - ret i1 %tobool +int bar(struct B* a) { return a->y0; } + +define i32 @bar(%struct.B* nocapture %a) nounwind readonly optsize { + %1 = getelementptr inbounds %struct.B* %a, i64 0, i32 0 + %2 = load i8* %1, align 1 + %3 = and i8 %2, 1 + %4 = zext i8 %3 to i32 + ret i32 %4 } -bar: # @bar -# BB#0: # %entry - movl 4(%esp), %eax - movb (%eax), %al - andb $1, %al - movzbl %al, %eax - ret +bar: # @bar +# BB#0: + movb (%rdi), %al + andb $1, %al + movzbl %al, %eax + ret Missed optimization: should be movl+andl. //===---------------------------------------------------------------------===// +The x86_64 abi says: + +Booleans, when stored in a memory object, are stored as single byte objects the +value of which is always 0 (false) or 1 (true). + +We are not using this fact: + +int bar(_Bool *a) { return *a; } + +define i32 @bar(i8* nocapture %a) nounwind readonly optsize { + %1 = load i8* %a, align 1, !tbaa !0 + %tmp = and i8 %1, 1 + %2 = zext i8 %tmp to i32 + ret i32 %2 +} + +bar: + movb (%rdi), %al + andb $1, %al + movzbl %al, %eax + ret + +GCC produces + +bar: + movzbl (%rdi), %eax + ret + +//===---------------------------------------------------------------------===// + Consider the following two functions compiled with clang: _Bool foo(int *x) { return !(*x & 4); } unsigned bar(int *x) { return !(*x & 4); } @@ -1703,26 +1728,6 @@ are functionally identical. //===---------------------------------------------------------------------===// Take the following C code: -int x(int y) { return (y & 63) << 14; } - -Code produced by gcc: - andl $63, %edi - sall $14, %edi - movl %edi, %eax - ret - -Code produced by clang: - shll $14, %edi - movl %edi, %eax - andl $1032192, %eax - ret - -The code produced by gcc is 3 bytes shorter. This sort of construct often -shows up with bitfields. - -//===---------------------------------------------------------------------===// - -Take the following C code: int f(int a, int b) { return (unsigned char)a == (unsigned char)b; } We generate the following IR with clang: @@ -1947,3 +1952,91 @@ which is "perfect". //===---------------------------------------------------------------------===// +For the branch in the following code: +int a(); +int b(int x, int y) { + if (x & (1<<(y&7))) + return a(); + return y; +} + +We currently generate: + movb %sil, %al + andb $7, %al + movzbl %al, %eax + btl %eax, %edi + jae .LBB0_2 + +movl+andl would be shorter than the movb+andb+movzbl sequence. + +//===---------------------------------------------------------------------===// + +For the following: +struct u1 { + float x, y; +}; +float foo(struct u1 u) { + return u.x + u.y; +} + +We currently generate: + movdqa %xmm0, %xmm1 + pshufd $1, %xmm0, %xmm0 # xmm0 = xmm0[1,0,0,0] + addss %xmm1, %xmm0 + ret + +We could save an instruction here by commuting the addss. + +//===---------------------------------------------------------------------===// + +This (from PR9661): + +float clamp_float(float a) { + if (a > 1.0f) + return 1.0f; + else if (a < 0.0f) + return 0.0f; + else + return a; +} + +Could compile to: + +clamp_float: # @clamp_float + movss .LCPI0_0(%rip), %xmm1 + minss %xmm1, %xmm0 + pxor %xmm1, %xmm1 + maxss %xmm1, %xmm0 + ret + +with -ffast-math. + +//===---------------------------------------------------------------------===// + +This function (from PR9803): + +int clamp2(int a) { + if (a > 5) + a = 5; + if (a < 0) + return 0; + return a; +} + +Compiles to: + +_clamp2: ## @clamp2 + pushq %rbp + movq %rsp, %rbp + cmpl $5, %edi + movl $5, %ecx + cmovlel %edi, %ecx + testl %ecx, %ecx + movl $0, %eax + cmovnsl %ecx, %eax + popq %rbp + ret + +The move of 0 could be scheduled above the test to make it is xor reg,reg. + +//===---------------------------------------------------------------------===// diff --git a/lib/Target/X86/Utils/X86ShuffleDecode.cpp b/lib/Target/X86/Utils/X86ShuffleDecode.cpp index 1287977..cd06060 100644 --- a/lib/Target/X86/Utils/X86ShuffleDecode.cpp +++ b/lib/Target/X86/Utils/X86ShuffleDecode.cpp @@ -1,4 +1,4 @@ -//===-- X86ShuffleDecode.h - X86 shuffle decode logic ---------------------===// +//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// // // The LLVM Compiler Infrastructure // @@ -95,12 +95,29 @@ void DecodePSHUFLWMask(unsigned Imm, ShuffleMask.push_back(7); } -void DecodePUNPCKLMask(unsigned NElts, +void DecodePUNPCKLBWMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask) { + DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i8, NElts), ShuffleMask); +} + +void DecodePUNPCKLWDMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask) { + DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i16, NElts), ShuffleMask); +} + +void DecodePUNPCKLDQMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask) { + DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask); +} + +void DecodePUNPCKLQDQMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask) { + DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask); +} + +void DecodePUNPCKLMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) { - for (unsigned i = 0; i != NElts/2; ++i) { - ShuffleMask.push_back(i); - ShuffleMask.push_back(i+NElts); - } + DecodeUNPCKLPMask(VT, ShuffleMask); } void DecodePUNPCKHMask(unsigned NElts, @@ -133,15 +150,40 @@ void DecodeUNPCKHPMask(unsigned NElts, } } +void DecodeUNPCKLPSMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask) { + DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask); +} + +void DecodeUNPCKLPDMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask) { + DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask); +} /// DecodeUNPCKLPMask - This decodes the shuffle masks for unpcklps/unpcklpd -/// etc. NElts indicates the number of elements in the vector allowing it to -/// handle different datatypes and vector widths. -void DecodeUNPCKLPMask(unsigned NElts, +/// etc. VT indicates the type of the vector allowing it to handle different +/// datatypes and vector widths. +void DecodeUNPCKLPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) { - for (unsigned i = 0; i != NElts/2; ++i) { - ShuffleMask.push_back(i); // Reads from dest - ShuffleMask.push_back(i+NElts); // Reads from src + unsigned NumElts = VT.getVectorNumElements(); + + // Handle vector lengths > 128 bits. Define a "section" as a set of + // 128 bits. AVX defines UNPCK* to operate independently on 128-bit + // sections. + unsigned NumSections = VT.getSizeInBits() / 128; + if (NumSections == 0 ) NumSections = 1; // Handle MMX + unsigned NumSectionElts = NumElts / NumSections; + + unsigned Start = 0; + unsigned End = NumSectionElts / 2; + for (unsigned s = 0; s < NumSections; ++s) { + for (unsigned i = Start; i != End; ++i) { + ShuffleMask.push_back(i); // Reads from dest/src1 + ShuffleMask.push_back(i+NumSectionElts); // Reads from src/src2 + } + // Process the next 128 bits. + Start += NumSectionElts; + End += NumSectionElts; } } diff --git a/lib/Target/X86/Utils/X86ShuffleDecode.h b/lib/Target/X86/Utils/X86ShuffleDecode.h index 50d9ccb..b18f670 100644 --- a/lib/Target/X86/Utils/X86ShuffleDecode.h +++ b/lib/Target/X86/Utils/X86ShuffleDecode.h @@ -16,6 +16,7 @@ #define X86_SHUFFLE_DECODE_H #include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/ValueTypes.h" //===----------------------------------------------------------------------===// // Vector Mask Decoding @@ -45,7 +46,19 @@ void DecodePSHUFHWMask(unsigned Imm, void DecodePSHUFLWMask(unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask); -void DecodePUNPCKLMask(unsigned NElts, +void DecodePUNPCKLBWMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask); + +void DecodePUNPCKLWDMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask); + +void DecodePUNPCKLDQMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask); + +void DecodePUNPCKLQDQMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask); + +void DecodePUNPCKLMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask); void DecodePUNPCKHMask(unsigned NElts, @@ -57,11 +70,16 @@ void DecodeSHUFPSMask(unsigned NElts, unsigned Imm, void DecodeUNPCKHPMask(unsigned NElts, SmallVectorImpl<unsigned> &ShuffleMask); +void DecodeUNPCKLPSMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask); + +void DecodeUNPCKLPDMask(unsigned NElts, + SmallVectorImpl<unsigned> &ShuffleMask); /// DecodeUNPCKLPMask - This decodes the shuffle masks for unpcklps/unpcklpd -/// etc. NElts indicates the number of elements in the vector allowing it to -/// handle different datatypes and vector widths. -void DecodeUNPCKLPMask(unsigned NElts, +/// etc. VT indicates the type of the vector allowing it to handle different +/// datatypes and vector widths. +void DecodeUNPCKLPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask); } // llvm namespace diff --git a/lib/Target/X86/X86.td b/lib/Target/X86/X86.td index efb6c8c..25b8d3e 100644 --- a/lib/Target/X86/X86.td +++ b/lib/Target/X86/X86.td @@ -1,13 +1,13 @@ //===- X86.td - Target definition file for the Intel X86 ---*- tablegen -*-===// -// +// // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. -// +// //===----------------------------------------------------------------------===// // -// This is a target description file for the Intel i386 architecture, refered to +// This is a target description file for the Intel i386 architecture, referred to // here as the "X86" architecture. // //===----------------------------------------------------------------------===// @@ -32,7 +32,7 @@ def FeatureMMX : SubtargetFeature<"mmx","X86SSELevel", "MMX", def FeatureSSE1 : SubtargetFeature<"sse", "X86SSELevel", "SSE1", "Enable SSE instructions", // SSE codegen depends on cmovs, and all - // SSE1+ processors support them. + // SSE1+ processors support them. [FeatureMMX, FeatureCMOV]>; def FeatureSSE2 : SubtargetFeature<"sse2", "X86SSELevel", "SSE2", "Enable SSE2 instructions", @@ -50,7 +50,8 @@ def FeatureSSE42 : SubtargetFeature<"sse42", "X86SSELevel", "SSE42", "Enable SSE 4.2 instructions", [FeatureSSE41, FeaturePOPCNT]>; def Feature3DNow : SubtargetFeature<"3dnow", "X863DNowLevel", "ThreeDNow", - "Enable 3DNow! instructions">; + "Enable 3DNow! instructions", + [FeatureMMX]>; def Feature3DNowA : SubtargetFeature<"3dnowa", "X863DNowLevel", "ThreeDNowA", "Enable 3DNow! Athlon instructions", [Feature3DNow]>; @@ -125,10 +126,10 @@ def : Proc<"sandybridge", [FeatureSSE42, Feature64Bit, FeatureAES, FeatureCLMUL]>; def : Proc<"k6", [FeatureMMX]>; -def : Proc<"k6-2", [FeatureMMX, Feature3DNow]>; -def : Proc<"k6-3", [FeatureMMX, Feature3DNow]>; -def : Proc<"athlon", [FeatureMMX, Feature3DNowA, FeatureSlowBTMem]>; -def : Proc<"athlon-tbird", [FeatureMMX, Feature3DNowA, FeatureSlowBTMem]>; +def : Proc<"k6-2", [Feature3DNow]>; +def : Proc<"k6-3", [Feature3DNow]>; +def : Proc<"athlon", [Feature3DNowA, FeatureSlowBTMem]>; +def : Proc<"athlon-tbird", [Feature3DNowA, FeatureSlowBTMem]>; def : Proc<"athlon-4", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem]>; def : Proc<"athlon-xp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem]>; def : Proc<"athlon-mp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem]>; @@ -156,8 +157,8 @@ def : Proc<"shanghai", [Feature3DNowA, Feature64Bit, FeatureSSE4A, Feature3DNowA]>; def : Proc<"winchip-c6", [FeatureMMX]>; -def : Proc<"winchip2", [FeatureMMX, Feature3DNow]>; -def : Proc<"c3", [FeatureMMX, Feature3DNow]>; +def : Proc<"winchip2", [Feature3DNow]>; +def : Proc<"c3", [Feature3DNow]>; def : Proc<"c3-2", [FeatureSSE1]>; //===----------------------------------------------------------------------===// diff --git a/lib/Target/X86/X86AsmBackend.cpp b/lib/Target/X86/X86AsmBackend.cpp index da5f5b1..4d7d96d 100644 --- a/lib/Target/X86/X86AsmBackend.cpp +++ b/lib/Target/X86/X86AsmBackend.cpp @@ -21,6 +21,7 @@ #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Object/MachOFormat.h" +#include "llvm/Support/CommandLine.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" @@ -28,6 +29,13 @@ #include "llvm/Target/TargetAsmBackend.h" using namespace llvm; +// Option to allow disabling arithmetic relaxation to workaround PR9807, which +// is useful when running bitwise comparison experiments on Darwin. We should be +// able to remove this once PR9807 is resolved. +static cl::opt<bool> +MCDisableArithRelaxation("mc-x86-disable-arith-relaxation", + cl::desc("Disable relaxation of arithmetic instruction for X86")); + static unsigned getFixupKindLog2Size(unsigned Kind) { switch (Kind) { default: assert(0 && "invalid fixup kind!"); @@ -201,6 +209,9 @@ bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const { if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode()) return true; + if (MCDisableArithRelaxation) + return false; + // Check if this instruction is ever relaxable. if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode()) return false; @@ -307,10 +318,13 @@ public: : ELFX86AsmBackend(T, OSType) {} MCObjectWriter *createObjectWriter(raw_ostream &OS) const { - return createELFObjectWriter(new X86ELFObjectWriter(false, OSType, - ELF::EM_386, false), + return createELFObjectWriter(createELFObjectTargetWriter(), OS, /*IsLittleEndian*/ true); } + + MCELFObjectTargetWriter *createELFObjectTargetWriter() const { + return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false); + } }; class ELFX86_64AsmBackend : public ELFX86AsmBackend { @@ -319,10 +333,13 @@ public: : ELFX86AsmBackend(T, OSType) {} MCObjectWriter *createObjectWriter(raw_ostream &OS) const { - return createELFObjectWriter(new X86ELFObjectWriter(true, OSType, - ELF::EM_X86_64, true), + return createELFObjectWriter(createELFObjectTargetWriter(), OS, /*IsLittleEndian*/ true); } + + MCELFObjectTargetWriter *createELFObjectTargetWriter() const { + return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true); + } }; class WindowsX86AsmBackend : public X86AsmBackend { @@ -408,34 +425,26 @@ public: TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T, const std::string &TT) { - switch (Triple(TT).getOS()) { - case Triple::Darwin: + Triple TheTriple(TT); + + if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) return new DarwinX86_32AsmBackend(T); - case Triple::MinGW32: - case Triple::Cygwin: - case Triple::Win32: - if (Triple(TT).getEnvironment() == Triple::MachO) - return new DarwinX86_32AsmBackend(T); - else - return new WindowsX86AsmBackend(T, false); - default: - return new ELFX86_32AsmBackend(T, Triple(TT).getOS()); - } + + if (TheTriple.isOSWindows()) + return new WindowsX86AsmBackend(T, false); + + return new ELFX86_32AsmBackend(T, TheTriple.getOS()); } TargetAsmBackend *llvm::createX86_64AsmBackend(const Target &T, const std::string &TT) { - switch (Triple(TT).getOS()) { - case Triple::Darwin: + Triple TheTriple(TT); + + if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) return new DarwinX86_64AsmBackend(T); - case Triple::MinGW32: - case Triple::Cygwin: - case Triple::Win32: - if (Triple(TT).getEnvironment() == Triple::MachO) - return new DarwinX86_64AsmBackend(T); - else - return new WindowsX86AsmBackend(T, true); - default: - return new ELFX86_64AsmBackend(T, Triple(TT).getOS()); - } + + if (TheTriple.isOSWindows()) + return new WindowsX86AsmBackend(T, true); + + return new ELFX86_64AsmBackend(T, TheTriple.getOS()); } diff --git a/lib/Target/X86/X86AsmPrinter.cpp b/lib/Target/X86/X86AsmPrinter.cpp index 99b4479..c2d53c4 100644 --- a/lib/Target/X86/X86AsmPrinter.cpp +++ b/lib/Target/X86/X86AsmPrinter.cpp @@ -709,12 +709,13 @@ void X86AsmPrinter::PrintDebugValueComment(const MachineInstr *MI, //===----------------------------------------------------------------------===// static MCInstPrinter *createX86MCInstPrinter(const Target &T, + TargetMachine &TM, unsigned SyntaxVariant, const MCAsmInfo &MAI) { if (SyntaxVariant == 0) - return new X86ATTInstPrinter(MAI); + return new X86ATTInstPrinter(TM, MAI); if (SyntaxVariant == 1) - return new X86IntelInstPrinter(MAI); + return new X86IntelInstPrinter(TM, MAI); return 0; } diff --git a/lib/Target/X86/X86CallingConv.td b/lib/Target/X86/X86CallingConv.td index a44fb69..5635175 100644 --- a/lib/Target/X86/X86CallingConv.td +++ b/lib/Target/X86/X86CallingConv.td @@ -215,6 +215,13 @@ def CC_X86_Win64_C : CallingConv<[ // The first 4 integer arguments are passed in integer registers. CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], [XMM0, XMM1, XMM2, XMM3]>>, + + // Do not pass the sret argument in RCX, the Win64 thiscall calling + // convention requires "this" to be passed in RCX. + CCIfCC<"CallingConv::X86_ThisCall", + CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ], + [XMM1, XMM2, XMM3]>>>>, + CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], [XMM0, XMM1, XMM2, XMM3]>>, diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp index 60d9d4a..421e221 100644 --- a/lib/Target/X86/X86CodeEmitter.cpp +++ b/lib/Target/X86/X86CodeEmitter.cpp @@ -652,6 +652,8 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI, case X86II::TB: // Two-byte opcode prefix case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A + case X86II::A6: // 0F A6 + case X86II::A7: // 0F A7 Need0FPrefix = true; break; case X86II::TF: // F2 0F 38 @@ -695,6 +697,12 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI, case X86II::TA: // 0F 3A MCE.emitByte(0x3A); break; + case X86II::A6: // 0F A6 + MCE.emitByte(0xA6); + break; + case X86II::A7: // 0F A7 + MCE.emitByte(0xA7); + break; } // If this is a two-address instruction, skip one of the register operands. diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp index 6fa9284..1382f18 100644 --- a/lib/Target/X86/X86FastISel.cpp +++ b/lib/Target/X86/X86FastISel.cpp @@ -23,6 +23,7 @@ #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" +#include "llvm/Operator.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" @@ -77,10 +78,8 @@ private: bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR); - bool X86FastEmitStore(EVT VT, const Value *Val, - const X86AddressMode &AM); - bool X86FastEmitStore(EVT VT, unsigned Val, - const X86AddressMode &AM); + bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM); + bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM); bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg); @@ -125,6 +124,8 @@ private: unsigned TargetMaterializeAlloca(const AllocaInst *C); + unsigned TargetMaterializeFloatZero(const ConstantFP *CF); + /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is /// computed in an SSE register, not on the X87 floating point stack. bool isScalarFPTypeInSSEReg(EVT VT) const { @@ -133,6 +134,9 @@ private: } bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false); + + bool TryEmitSmallMemcpy(X86AddressMode DestAM, + X86AddressMode SrcAM, uint64_t Len); }; } // end anonymous namespace. @@ -224,8 +228,7 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, /// and a displacement offset, or a GlobalAddress, /// i.e. V. Return true if it is possible. bool -X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, - const X86AddressMode &AM) { +X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) { // Get opcode and regclass of the output for the given store instruction. unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { @@ -395,37 +398,45 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { const Value *Op = *i; if (const StructType *STy = dyn_cast<StructType>(*GTI)) { const StructLayout *SL = TD.getStructLayout(STy); - unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); - Disp += SL->getElementOffset(Idx); - } else { - uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); - SmallVector<const Value *, 4> Worklist; - Worklist.push_back(Op); - do { - Op = Worklist.pop_back_val(); - if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { - // Constant-offset addressing. - Disp += CI->getSExtValue() * S; - } else if (isa<AddOperator>(Op) && - isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { - // An add with a constant operand. Fold the constant. - ConstantInt *CI = - cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); - Disp += CI->getSExtValue() * S; - // Add the other operand back to the work list. - Worklist.push_back(cast<AddOperator>(Op)->getOperand(0)); - } else if (IndexReg == 0 && - (!AM.GV || !Subtarget->isPICStyleRIPRel()) && - (S == 1 || S == 2 || S == 4 || S == 8)) { - // Scaled-index addressing. - Scale = S; - IndexReg = getRegForGEPIndex(Op).first; - if (IndexReg == 0) - return false; - } else - // Unsupported. - goto unsupported_gep; - } while (!Worklist.empty()); + Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); + continue; + } + + // A array/variable index is always of the form i*S where S is the + // constant scale size. See if we can push the scale into immediates. + uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); + for (;;) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + // Constant-offset addressing. + Disp += CI->getSExtValue() * S; + break; + } + if (isa<AddOperator>(Op) && + (!isa<Instruction>(Op) || + FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()] + == FuncInfo.MBB) && + isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { + // An add (in the same block) with a constant operand. Fold the + // constant. + ConstantInt *CI = + cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); + Disp += CI->getSExtValue() * S; + // Iterate on the other operand. + Op = cast<AddOperator>(Op)->getOperand(0); + continue; + } + if (IndexReg == 0 && + (!AM.GV || !Subtarget->isPICStyleRIPRel()) && + (S == 1 || S == 2 || S == 4 || S == 8)) { + // Scaled-index addressing. + Scale = S; + IndexReg = getRegForGEPIndex(Op).first; + if (IndexReg == 0) + return false; + break; + } + // Unsupported. + goto unsupported_gep; } } // Check for displacement overflow. @@ -439,7 +450,7 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { if (X86SelectAddress(U->getOperand(0), AM)) return true; - // If we couldn't merge the sub value into this addr mode, revert back to + // If we couldn't merge the gep value into this addr mode, revert back to // our address and just match the value instead of completely failing. AM = SavedAM; break; @@ -451,91 +462,91 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { // Handle constant address. if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - // Can't handle alternate code models yet. + // Can't handle alternate code models or TLS yet. if (TM.getCodeModel() != CodeModel::Small) return false; - // RIP-relative addresses can't have additional register operands. - if (Subtarget->isPICStyleRIPRel() && - (AM.Base.Reg != 0 || AM.IndexReg != 0)) - return false; - - // Can't handle TLS yet. if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) if (GVar->isThreadLocal()) return false; + + // RIP-relative addresses can't have additional register operands, so if + // we've already folded stuff into the addressing mode, just force the + // global value into its own register, which we can use as the basereg. + if (!Subtarget->isPICStyleRIPRel() || + (AM.Base.Reg == 0 && AM.IndexReg == 0)) { + // Okay, we've committed to selecting this global. Set up the address. + AM.GV = GV; + + // Allow the subtarget to classify the global. + unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); + + // If this reference is relative to the pic base, set it now. + if (isGlobalRelativeToPICBase(GVFlags)) { + // FIXME: How do we know Base.Reg is free?? + AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + } - // Okay, we've committed to selecting this global. Set up the basic address. - AM.GV = GV; - - // Allow the subtarget to classify the global. - unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); - - // If this reference is relative to the pic base, set it now. - if (isGlobalRelativeToPICBase(GVFlags)) { - // FIXME: How do we know Base.Reg is free?? - AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - } - - // Unless the ABI requires an extra load, return a direct reference to - // the global. - if (!isGlobalStubReference(GVFlags)) { - if (Subtarget->isPICStyleRIPRel()) { - // Use rip-relative addressing if we can. Above we verified that the - // base and index registers are unused. - assert(AM.Base.Reg == 0 && AM.IndexReg == 0); - AM.Base.Reg = X86::RIP; + // Unless the ABI requires an extra load, return a direct reference to + // the global. + if (!isGlobalStubReference(GVFlags)) { + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } + AM.GVOpFlags = GVFlags; + return true; } - AM.GVOpFlags = GVFlags; - return true; - } - // Ok, we need to do a load from a stub. If we've already loaded from this - // stub, reuse the loaded pointer, otherwise emit the load now. - DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V); - unsigned LoadReg; - if (I != LocalValueMap.end() && I->second != 0) { - LoadReg = I->second; - } else { - // Issue load from stub. - unsigned Opc = 0; - const TargetRegisterClass *RC = NULL; - X86AddressMode StubAM; - StubAM.Base.Reg = AM.Base.Reg; - StubAM.GV = GV; - StubAM.GVOpFlags = GVFlags; - - // Prepare for inserting code in the local-value area. - SavePoint SaveInsertPt = enterLocalValueArea(); - - if (TLI.getPointerTy() == MVT::i64) { - Opc = X86::MOV64rm; - RC = X86::GR64RegisterClass; - - if (Subtarget->isPICStyleRIPRel()) - StubAM.Base.Reg = X86::RIP; + // Ok, we need to do a load from a stub. If we've already loaded from + // this stub, reuse the loaded pointer, otherwise emit the load now. + DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V); + unsigned LoadReg; + if (I != LocalValueMap.end() && I->second != 0) { + LoadReg = I->second; } else { - Opc = X86::MOV32rm; - RC = X86::GR32RegisterClass; - } + // Issue load from stub. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + X86AddressMode StubAM; + StubAM.Base.Reg = AM.Base.Reg; + StubAM.GV = GV; + StubAM.GVOpFlags = GVFlags; + + // Prepare for inserting code in the local-value area. + SavePoint SaveInsertPt = enterLocalValueArea(); + + if (TLI.getPointerTy() == MVT::i64) { + Opc = X86::MOV64rm; + RC = X86::GR64RegisterClass; + + if (Subtarget->isPICStyleRIPRel()) + StubAM.Base.Reg = X86::RIP; + } else { + Opc = X86::MOV32rm; + RC = X86::GR32RegisterClass; + } - LoadReg = createResultReg(RC); - MachineInstrBuilder LoadMI = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); - addFullAddress(LoadMI, StubAM); + LoadReg = createResultReg(RC); + MachineInstrBuilder LoadMI = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); + addFullAddress(LoadMI, StubAM); - // Ok, back to normal mode. - leaveLocalValueArea(SaveInsertPt); + // Ok, back to normal mode. + leaveLocalValueArea(SaveInsertPt); - // Prevent loading GV stub multiple times in same MBB. - LocalValueMap[V] = LoadReg; - } + // Prevent loading GV stub multiple times in same MBB. + LocalValueMap[V] = LoadReg; + } - // Now construct the final address. Note that the Disp, Scale, - // and Index values may already be set here. - AM.Base.Reg = LoadReg; - AM.GV = 0; - return true; + // Now construct the final address. Note that the Disp, Scale, + // and Index values may already be set here. + AM.Base.Reg = LoadReg; + AM.GV = 0; + return true; + } } // If all else fails, try to materialize the value in a register. @@ -856,12 +867,9 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { unsigned NEReg = createResultReg(&X86::GR8RegClass); unsigned PReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::SETNEr), NEReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::SETPr), PReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::OR8rr), ResultReg) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg) .addReg(PReg).addReg(NEReg); UpdateValueMap(I, ResultReg); return true; @@ -1059,14 +1067,49 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { } } } + } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { + // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which + // typically happen for _Bool and C++ bools. + MVT SourceVT; + if (TI->hasOneUse() && TI->getParent() == I->getParent() && + isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { + unsigned TestOpc = 0; + switch (SourceVT.SimpleTy) { + default: break; + case MVT::i8: TestOpc = X86::TEST8ri; break; + case MVT::i16: TestOpc = X86::TEST16ri; break; + case MVT::i32: TestOpc = X86::TEST32ri; break; + case MVT::i64: TestOpc = X86::TEST64ri32; break; + } + if (TestOpc) { + unsigned OpReg = getRegForValue(TI->getOperand(0)); + if (OpReg == 0) return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc)) + .addReg(OpReg).addImm(1); + + unsigned JmpOpc = X86::JNE_4; + if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { + std::swap(TrueMBB, FalseMBB); + JmpOpc = X86::JE_4; + } + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc)) + .addMBB(TrueMBB); + FastEmitBranch(FalseMBB, DL); + FuncInfo.MBB->addSuccessor(TrueMBB); + return true; + } + } } // Otherwise do a clumsy setcc and re-test it. + // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used + // in an explicit cast, so make sure to handle that correctly. unsigned OpReg = getRegForValue(BI->getCondition()); if (OpReg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) - .addReg(OpReg).addReg(OpReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri)) + .addReg(OpReg).addImm(1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4)) .addMBB(TrueMBB); FastEmitBranch(FalseMBB, DL); @@ -1075,42 +1118,42 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { } bool X86FastISel::X86SelectShift(const Instruction *I) { - unsigned CReg = 0, OpReg = 0, OpImm = 0; + unsigned CReg = 0, OpReg = 0; const TargetRegisterClass *RC = NULL; if (I->getType()->isIntegerTy(8)) { CReg = X86::CL; RC = &X86::GR8RegClass; switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break; - case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break; - case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break; + case Instruction::LShr: OpReg = X86::SHR8rCL; break; + case Instruction::AShr: OpReg = X86::SAR8rCL; break; + case Instruction::Shl: OpReg = X86::SHL8rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(16)) { CReg = X86::CX; RC = &X86::GR16RegClass; switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break; - case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break; - case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break; + case Instruction::LShr: OpReg = X86::SHR16rCL; break; + case Instruction::AShr: OpReg = X86::SAR16rCL; break; + case Instruction::Shl: OpReg = X86::SHL16rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(32)) { CReg = X86::ECX; RC = &X86::GR32RegClass; switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break; - case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break; - case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break; + case Instruction::LShr: OpReg = X86::SHR32rCL; break; + case Instruction::AShr: OpReg = X86::SAR32rCL; break; + case Instruction::Shl: OpReg = X86::SHL32rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(64)) { CReg = X86::RCX; RC = &X86::GR64RegClass; switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break; - case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break; - case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break; + case Instruction::LShr: OpReg = X86::SHR64rCL; break; + case Instruction::AShr: OpReg = X86::SAR64rCL; break; + case Instruction::Shl: OpReg = X86::SHL64rCL; break; default: return false; } } else { @@ -1124,15 +1167,6 @@ bool X86FastISel::X86SelectShift(const Instruction *I) { unsigned Op0Reg = getRegForValue(I->getOperand(0)); if (Op0Reg == 0) return false; - // Fold immediate in shl(x,3). - if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm), - ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff); - UpdateValueMap(I, ResultReg); - return true; - } - unsigned Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), @@ -1294,10 +1328,61 @@ bool X86FastISel::X86SelectExtractValue(const Instruction *I) { return false; } +bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, + X86AddressMode SrcAM, uint64_t Len) { + // Make sure we don't bloat code by inlining very large memcpy's. + bool i64Legal = TLI.isTypeLegal(MVT::i64); + if (Len > (i64Legal ? 32 : 16)) return false; + + // We don't care about alignment here since we just emit integer accesses. + while (Len) { + MVT VT; + if (Len >= 8 && i64Legal) + VT = MVT::i64; + else if (Len >= 4) + VT = MVT::i32; + else if (Len >= 2) + VT = MVT::i16; + else { + assert(Len == 1); + VT = MVT::i8; + } + + unsigned Reg; + bool RV = X86FastEmitLoad(VT, SrcAM, Reg); + RV &= X86FastEmitStore(VT, Reg, DestAM); + assert(RV && "Failed to emit load or store??"); + + unsigned Size = VT.getSizeInBits()/8; + Len -= Size; + DestAM.Disp += Size; + SrcAM.Disp += Size; + } + + return true; +} + bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { // FIXME: Handle more intrinsics. switch (I.getIntrinsicID()) { default: return false; + case Intrinsic::memcpy: { + const MemCpyInst &MCI = cast<MemCpyInst>(I); + // Don't handle volatile or variable length memcpys. + if (MCI.isVolatile() || !isa<ConstantInt>(MCI.getLength())) + return false; + + uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue(); + + // Get the address of the dest and source addresses. + X86AddressMode DestAM, SrcAM; + if (!X86SelectAddress(MCI.getRawDest(), DestAM) || + !X86SelectAddress(MCI.getRawSource(), SrcAM)) + return false; + + return TryEmitSmallMemcpy(DestAM, SrcAM, Len); + } + case Intrinsic::stackprotector: { // Emit code inline code to store the stack guard onto the stack. EVT PtrTy = TLI.getPointerTy(); @@ -1308,17 +1393,14 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { // Grab the frame index. X86AddressMode AM; if (!X86SelectAddress(Slot, AM)) return false; - if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; - return true; } case Intrinsic::objectsize: { - ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); + // FIXME: This should be moved to generic code! + ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); const Type *Ty = I.getCalledFunction()->getReturnType(); - assert(CI && "Non-constant type in Intrinsic::objectsize?"); - MVT VT; if (!isTypeLegal(Ty, VT)) return false; @@ -1356,6 +1438,8 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { } case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: { + // FIXME: Should fold immediates. + // Replace "add with overflow" intrinsics with an "add" instruction followed // by a seto/setc instruction. Later on, when the "extractvalue" // instructions are encountered, we use the fact that two registers were @@ -1427,8 +1511,7 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { // Handle only C and fastcc calling conventions for now. ImmutableCallSite CS(CI); CallingConv::ID CC = CS.getCallingConv(); - if (CC != CallingConv::C && - CC != CallingConv::Fast && + if (CC != CallingConv::C && CC != CallingConv::Fast && CC != CallingConv::X86_FastCall) return false; @@ -1437,14 +1520,17 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (CC == CallingConv::Fast && GuaranteedTailCallOpt) return false; - // Let SDISel handle vararg functions. const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); - if (FTy->isVarArg()) + bool isVarArg = FTy->isVarArg(); + + // Don't know how to handle Win64 varargs yet. Nothing special needed for + // x86-32. Special handling for x86-64 is implemented. + if (isVarArg && Subtarget->isTargetWin64()) return false; // Fast-isel doesn't know about callee-pop yet. - if (Subtarget->IsCalleePop(FTy->isVarArg(), CC)) + if (Subtarget->IsCalleePop(isVarArg, CC)) return false; // Handle *simple* calls for now. @@ -1487,9 +1573,7 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { ArgFlags.reserve(CS.arg_size()); for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) { - unsigned Arg = getRegForValue(*i); - if (Arg == 0) - return false; + Value *ArgVal = *i; ISD::ArgFlagsTy Flags; unsigned AttrInd = i - CS.arg_begin() + 1; if (CS.paramHasAttr(AttrInd, Attribute::SExt)) @@ -1497,34 +1581,67 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) Flags.setZExt(); + // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra + // instruction. This is safe because it is common to all fastisel supported + // calling conventions on x86. + if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) { + if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 || + CI->getBitWidth() == 16) { + if (Flags.isSExt()) + ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext())); + else + ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext())); + } + } + + unsigned ArgReg; + + // Passing bools around ends up doing a trunc to i1 and passing it. + // Codegen this as an argument + "and 1". + if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) && + cast<TruncInst>(ArgVal)->getParent() == I->getParent() && + ArgVal->hasOneUse()) { + ArgVal = cast<TruncInst>(ArgVal)->getOperand(0); + ArgReg = getRegForValue(ArgVal); + if (ArgReg == 0) return false; + + MVT ArgVT; + if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false; + + ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg, + ArgVal->hasOneUse(), 1); + } else { + ArgReg = getRegForValue(ArgVal); + } + + if (ArgReg == 0) return false; + // FIXME: Only handle *easy* calls for now. if (CS.paramHasAttr(AttrInd, Attribute::InReg) || - CS.paramHasAttr(AttrInd, Attribute::StructRet) || CS.paramHasAttr(AttrInd, Attribute::Nest) || CS.paramHasAttr(AttrInd, Attribute::ByVal)) return false; - const Type *ArgTy = (*i)->getType(); + const Type *ArgTy = ArgVal->getType(); MVT ArgVT; if (!isTypeLegal(ArgTy, ArgVT)) return false; unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); Flags.setOrigAlign(OriginalAlignment); - Args.push_back(Arg); - ArgVals.push_back(*i); + Args.push_back(ArgReg); + ArgVals.push_back(ArgVal); ArgVTs.push_back(ArgVT); ArgFlags.push_back(Flags); } // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext()); + CCState CCInfo(CC, isVarArg, TM, ArgLocs, I->getParent()->getContext()); // Allocate shadow area for Win64 - if (Subtarget->isTargetWin64()) { + if (Subtarget->isTargetWin64()) CCInfo.AllocateStack(32, 8); - } CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86); @@ -1618,6 +1735,17 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { X86::EBX).addReg(Base); } + if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) { + // Count the number of XMM registers allocated. + static const unsigned XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri), + X86::AL).addImm(NumXMMRegs); + } + // Issue the call. MachineInstrBuilder MIB; if (CalleeOp) { @@ -1656,7 +1784,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (GV->isDeclaration() || GV->isWeakForLinker()) && - Subtarget->getDarwinVers() < 9) { + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. @@ -1672,14 +1801,20 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (Subtarget->isPICStyleGOT()) MIB.addReg(X86::EBX); + if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) + MIB.addReg(X86::AL); + // Add implicit physical register uses to the call. for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) MIB.addReg(RegArgs[i]); // Issue CALLSEQ_END unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode(); + unsigned NumBytesCallee = 0; + if (!Subtarget->is64Bit() && CS.paramHasAttr(1, Attribute::StructRet)) + NumBytesCallee = 4; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp)) - .addImm(NumBytes).addImm(0); + .addImm(NumBytes).addImm(NumBytesCallee); // Now handle call return value (if any). SmallVector<unsigned, 4> UsedRegs; @@ -1850,10 +1985,13 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { if (isa<GlobalValue>(C)) { X86AddressMode AM; if (X86SelectAddress(C, AM)) { - if (TLI.getPointerTy() == MVT::i32) - Opc = X86::LEA32r; - else - Opc = X86::LEA64r; + // If the expression is just a basereg, then we're done, otherwise we need + // to emit an LEA. + if (AM.BaseType == X86AddressMode::RegBase && + AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0) + return AM.Base.Reg; + + Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r; unsigned ResultReg = createResultReg(RC); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg), AM); @@ -1915,6 +2053,45 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { return ResultReg; } +unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) { + MVT VT; + if (!isTypeLegal(CF->getType(), VT)) + return false; + + // Get opcode and regclass for the given zero. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + switch (VT.SimpleTy) { + default: return false; + case MVT::f32: + if (Subtarget->hasSSE1()) { + Opc = X86::FsFLD0SS; + RC = X86::FR32RegisterClass; + } else { + Opc = X86::LD_Fp032; + RC = X86::RFP32RegisterClass; + } + break; + case MVT::f64: + if (Subtarget->hasSSE2()) { + Opc = X86::FsFLD0SD; + RC = X86::FR64RegisterClass; + } else { + Opc = X86::LD_Fp064; + RC = X86::RFP64RegisterClass; + } + break; + case MVT::f80: + // No f80 support yet. + return false; + } + + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); + return ResultReg; +} + + /// TryToFoldLoad - The specified machine instr operand is a vreg, and that /// vreg is being provided by the specified load instruction. If possible, /// try to fold the load as an operand to the instruction, returning true if diff --git a/lib/Target/X86/X86FloatingPoint.cpp b/lib/Target/X86/X86FloatingPoint.cpp index 3aaa693..325d061 100644 --- a/lib/Target/X86/X86FloatingPoint.cpp +++ b/lib/Target/X86/X86FloatingPoint.cpp @@ -1307,7 +1307,7 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { // set up by FpSET_ST0, and our StackTop is off by one because of it. unsigned Op0 = getFPReg(MI->getOperand(0)); // Restore the actual StackTop from before Fp_SET_ST0. - // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we + // Note we can't handle Fp_SET_ST1 without a preceding Fp_SET_ST0, and we // are not enforcing the constraint. ++StackTop; unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0). diff --git a/lib/Target/X86/X86FrameLowering.cpp b/lib/Target/X86/X86FrameLowering.cpp index 0a3f931..06d12fc 100644 --- a/lib/Target/X86/X86FrameLowering.cpp +++ b/lib/Target/X86/X86FrameLowering.cpp @@ -22,6 +22,7 @@ #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/MC/MCAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" @@ -296,7 +297,7 @@ void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF, // FIXME: This is dirty hack. The code itself is pretty mess right now. // It should be rewritten from scratch and generalized sometimes. - // Determine maximum offset (minumum due to stack growth). + // Determine maximum offset (minimum due to stack growth). int64_t MaxOffset = 0; for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) @@ -551,65 +552,71 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const { // responsible for adjusting the stack pointer. Touching the stack at 4K // increments is necessary to ensure that the guard pages used by the OS // virtual memory manager are allocated in correct sequence. - if (NumBytes >= 4096 && - (STI.isTargetCygMing() || STI.isTargetWin32()) && - !STI.isTargetEnvMacho()) { + if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) { + const char *StackProbeSymbol; + bool isSPUpdateNeeded = false; + + if (Is64Bit) { + if (STI.isTargetCygMing()) + StackProbeSymbol = "___chkstk"; + else { + StackProbeSymbol = "__chkstk"; + isSPUpdateNeeded = true; + } + } else if (STI.isTargetCygMing()) + StackProbeSymbol = "_alloca"; + else + StackProbeSymbol = "_chkstk"; + // Check whether EAX is livein for this function. bool isEAXAlive = isEAXLiveIn(MF); - const char *StackProbeSymbol = - STI.isTargetWindows() ? "_chkstk" : "_alloca"; - if (Is64Bit && STI.isTargetCygMing()) - StackProbeSymbol = "__chkstk"; - unsigned CallOp = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32; - if (!isEAXAlive) { - BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) - .addImm(NumBytes); - BuildMI(MBB, MBBI, DL, TII.get(CallOp)) - .addExternalSymbol(StackProbeSymbol) - .addReg(StackPtr, RegState::Define | RegState::Implicit) - .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); - } else { + if (isEAXAlive) { + // Sanity check that EAX is not livein for this function. + // It should not be, so throw an assert. + assert(!Is64Bit && "EAX is livein in x64 case!"); + // Save EAX BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) .addReg(X86::EAX, RegState::Kill); + } - // Allocate NumBytes-4 bytes on stack. We'll also use 4 already - // allocated bytes for EAX. + if (Is64Bit) { + // Handle the 64-bit Windows ABI case where we need to call __chkstk. + // Function prologue is responsible for adjusting the stack pointer. + BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) + .addImm(NumBytes); + } else { + // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. + // We'll also use 4 already allocated bytes for EAX. BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) - .addImm(NumBytes - 4); - BuildMI(MBB, MBBI, DL, TII.get(CallOp)) - .addExternalSymbol(StackProbeSymbol) - .addReg(StackPtr, RegState::Define | RegState::Implicit) - .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); - - // Restore EAX - MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), - X86::EAX), - StackPtr, false, NumBytes - 4); - MBB.insert(MBBI, MI); + .addImm(isEAXAlive ? NumBytes - 4 : NumBytes); + } + + BuildMI(MBB, MBBI, DL, + TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32)) + .addExternalSymbol(StackProbeSymbol) + .addReg(StackPtr, RegState::Define | RegState::Implicit) + .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + + // MSVC x64's __chkstk needs to adjust %rsp. + // FIXME: %rax preserves the offset and should be available. + if (isSPUpdateNeeded) + emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, + TII, *RegInfo); + + if (isEAXAlive) { + // Restore EAX + MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), + X86::EAX), + StackPtr, false, NumBytes - 4); + MBB.insert(MBBI, MI); } - } else if (NumBytes >= 4096 && - STI.isTargetWin64() && - !STI.isTargetEnvMacho()) { - // Sanity check that EAX is not livein for this function. It should - // not be, so throw an assert. - assert(!isEAXLiveIn(MF) && "EAX is livein in the Win64 case!"); - - // Handle the 64-bit Windows ABI case where we need to call __chkstk. - // Function prologue is responsible for adjusting the stack pointer. - BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) - .addImm(NumBytes); - BuildMI(MBB, MBBI, DL, TII.get(X86::WINCALL64pcrel32)) - .addExternalSymbol("__chkstk") - .addReg(StackPtr, RegState::Define | RegState::Implicit); - emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, - TII, *RegInfo); } else if (NumBytes) emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII, *RegInfo); - if ((NumBytes || PushedRegs) && needsFrameMoves) { + if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) { // Mark end of stack pointer adjustment. MCSymbol *Label = MMI.getContext().CreateTempSymbol(); BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label); @@ -779,7 +786,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF, assert(Offset >= 0 && "Offset should never be negative"); if (Offset) { - // Check for possible merge with preceeding ADD instruction. + // Check for possible merge with preceding ADD instruction. Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII, *RegInfo); } @@ -823,7 +830,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF, int delta = -1*X86FI->getTCReturnAddrDelta(); MBBI = MBB.getLastNonDebugInstr(); - // Check for possible merge with preceeding ADD instruction. + // Check for possible merge with preceding ADD instruction. delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII, *RegInfo); } @@ -892,7 +899,6 @@ bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineFunction &MF = *MBB.getParent(); - bool isWin64 = STI.isTargetWin64(); unsigned SlotSize = STI.is64Bit() ? 8 : 4; unsigned FPReg = TRI->getFrameRegister(MF); unsigned CalleeFrameSize = 0; @@ -900,25 +906,39 @@ bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); + // Push GPRs. It increases frame size. unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); + if (!X86::GR64RegClass.contains(Reg) && + !X86::GR32RegClass.contains(Reg)) + continue; // Add the callee-saved register as live-in. It's killed at the spill. MBB.addLiveIn(Reg); if (Reg == FPReg) // X86RegisterInfo::emitPrologue will handle spilling of frame register. continue; - if (!X86::VR128RegClass.contains(Reg) && !isWin64) { - CalleeFrameSize += SlotSize; - BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill); - } else { - const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); - TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), - RC, TRI); - } + CalleeFrameSize += SlotSize; + BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill); } X86FI->setCalleeSavedFrameSize(CalleeFrameSize); + + // Make XMM regs spilled. X86 does not have ability of push/pop XMM. + // It can be done by spilling XMMs to stack frame. + // Note that only Win64 ABI might spill XMMs. + for (unsigned i = CSI.size(); i != 0; --i) { + unsigned Reg = CSI[i-1].getReg(); + if (X86::GR64RegClass.contains(Reg) || + X86::GR32RegClass.contains(Reg)) + continue; + // Add the callee-saved register as live-in. It's killed at the spill. + MBB.addLiveIn(Reg); + const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); + TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), + RC, TRI); + } + return true; } @@ -933,21 +953,30 @@ bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); + + // Reload XMMs from stack frame. + for (unsigned i = 0, e = CSI.size(); i != e; ++i) { + unsigned Reg = CSI[i].getReg(); + if (X86::GR64RegClass.contains(Reg) || + X86::GR32RegClass.contains(Reg)) + continue; + const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); + TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), + RC, TRI); + } + + // POP GPRs. unsigned FPReg = TRI->getFrameRegister(MF); - bool isWin64 = STI.isTargetWin64(); unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); + if (!X86::GR64RegClass.contains(Reg) && + !X86::GR32RegClass.contains(Reg)) + continue; if (Reg == FPReg) // X86RegisterInfo::emitEpilogue will handle restoring of frame register. continue; - if (!X86::VR128RegClass.contains(Reg) && !isWin64) { - BuildMI(MBB, MI, DL, TII.get(Opc), Reg); - } else { - const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); - TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), - RC, TRI); - } + BuildMI(MBB, MI, DL, TII.get(Opc), Reg); } return true; } diff --git a/lib/Target/X86/X86ISelDAGToDAG.cpp b/lib/Target/X86/X86ISelDAGToDAG.cpp index 9b0ec6e..4534e85 100644 --- a/lib/Target/X86/X86ISelDAGToDAG.cpp +++ b/lib/Target/X86/X86ISelDAGToDAG.cpp @@ -1580,6 +1580,81 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) { return RetVal; break; } + case ISD::AND: + case ISD::OR: + case ISD::XOR: { + // For operations of the form (x << C1) op C2, check if we can use a smaller + // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. + SDValue N0 = Node->getOperand(0); + SDValue N1 = Node->getOperand(1); + + if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) + break; + + // i8 is unshrinkable, i16 should be promoted to i32. + if (NVT != MVT::i32 && NVT != MVT::i64) + break; + + ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); + ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); + if (!Cst || !ShlCst) + break; + + int64_t Val = Cst->getSExtValue(); + uint64_t ShlVal = ShlCst->getZExtValue(); + + // Make sure that we don't change the operation by removing bits. + // This only matters for OR and XOR, AND is unaffected. + if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val) + break; + + unsigned ShlOp, Op = 0; + EVT CstVT = NVT; + + // Check the minimum bitwidth for the new constant. + // TODO: AND32ri is the same as AND64ri32 with zext imm. + // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr + // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. + if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) + CstVT = MVT::i8; + else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) + CstVT = MVT::i32; + + // Bail if there is no smaller encoding. + if (NVT == CstVT) + break; + + switch (NVT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i32: + assert(CstVT == MVT::i8); + ShlOp = X86::SHL32ri; + + switch (Opcode) { + case ISD::AND: Op = X86::AND32ri8; break; + case ISD::OR: Op = X86::OR32ri8; break; + case ISD::XOR: Op = X86::XOR32ri8; break; + } + break; + case MVT::i64: + assert(CstVT == MVT::i8 || CstVT == MVT::i32); + ShlOp = X86::SHL64ri; + + switch (Opcode) { + case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; + case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; + case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; + } + break; + } + + // Emit the smaller op and the shift. + SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT); + SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); + return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), + getI8Imm(ShlVal)); + break; + } case X86ISD::UMUL: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp index 2f49dbc..703c01d 100644 --- a/lib/Target/X86/X86ISelLowering.cpp +++ b/lib/Target/X86/X86ISelLowering.cpp @@ -45,6 +45,7 @@ #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/VectorExtras.h" +#include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" @@ -221,7 +222,13 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) // X86 is weird, it always uses i8 for shift amounts and setcc results. setBooleanContents(ZeroOrOneBooleanContent); - setSchedulingPreference(Sched::RegPressure); + + // For 64-bit since we have so many registers use the ILP scheduler, for + // 32-bit code use the register pressure specific scheduling. + if (Subtarget->is64Bit()) + setSchedulingPreference(Sched::ILP); + else + setSchedulingPreference(Sched::RegPressure); setStackPointerRegisterToSaveRestore(X86StackPtr); if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) { @@ -543,12 +550,11 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); - if (Subtarget->is64Bit()) - setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); - if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) - setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); - else - setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, + (Subtarget->is64Bit() ? MVT::i64 : MVT::i32), + (Subtarget->isTargetCOFF() + && !Subtarget->isTargetEnvMacho() + ? Custom : Expand)); if (!UseSoftFloat && X86ScalarSSEf64) { // f32 and f64 use SSE. @@ -921,6 +927,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) // Can turn SHL into an integer multiply. setOperationAction(ISD::SHL, MVT::v4i32, Custom); setOperationAction(ISD::SHL, MVT::v16i8, Custom); + setOperationAction(ISD::SRL, MVT::v4i32, Legal); // i8 and i16 vectors are custom , because the source register and source // source memory operand types are not the same width. f32 vectors are @@ -1271,27 +1278,6 @@ X86TargetLowering::findRepresentativeClass(EVT VT) const{ return std::make_pair(RRC, Cost); } -// FIXME: Why this routine is here? Move to RegInfo! -unsigned -X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC, - MachineFunction &MF) const { - const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); - - unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0; - switch (RC->getID()) { - default: - return 0; - case X86::GR32RegClassID: - return 4 - FPDiff; - case X86::GR64RegClassID: - return 8 - FPDiff; - case X86::VR128RegClassID: - return Subtarget->is64Bit() ? 10 : 4; - case X86::VR64RegClassID: - return 4; - } -} - bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const { if (!Subtarget->isTargetLinux()) @@ -1463,6 +1449,20 @@ bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const { return HasRet; } +EVT +X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, + ISD::NodeType ExtendKind) const { + MVT ReturnMVT; + // TODO: Is this also valid on 32-bit? + if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) + ReturnMVT = MVT::i8; + else + ReturnMVT = MVT::i32; + + EVT MinVT = getRegisterType(Context, ReturnMVT); + return VT.bitsLT(MinVT) ? MinVT : VT; +} + /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. /// @@ -1595,6 +1595,18 @@ static bool IsTailCallConvention(CallingConv::ID CC) { return (CC == CallingConv::Fast || CC == CallingConv::GHC); } +bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { + if (!CI->isTailCall()) + return false; + + CallSite CS(CI); + CallingConv::ID CalleeCC = CS.getCallingConv(); + if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) + return false; + + return true; +} + /// FuncIsMadeTailCallSafe - Return true if the function is being made into /// a tailcall target by changing its ABI. static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) { @@ -1627,8 +1639,9 @@ X86TargetLowering::LowerMemArgument(SDValue Chain, // In case of tail call optimization mark all arguments mutable. Since they // could be overwritten by lowering of arguments in case of a tail call. if (Flags.isByVal()) { - int FI = MFI->CreateFixedObject(Flags.getByValSize(), - VA.getLocMemOffset(), isImmutable); + unsigned Bytes = Flags.getByValSize(); + if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. + int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); return DAG.getFrameIndex(FI, getPointerTy()); } else { int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, @@ -1765,8 +1778,8 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { - if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall && - CallConv != CallingConv::X86_ThisCall))) { + if (Is64Bit || (CallConv != CallingConv::X86_FastCall && + CallConv != CallingConv::X86_ThisCall)) { FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true)); } if (Is64Bit) { @@ -1818,7 +1831,9 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, int HomeOffset = TFI.getOffsetOfLocalArea() + 8; FuncInfo->setRegSaveFrameIndex( MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); - FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); + // Fixup to set vararg frame on shadow area (4 x i64). + if (NumIntRegs < 4) + FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); } else { // For X86-64, if there are vararg parameters that are passed via // registers, then we must store them to their spots on the stack so they @@ -1937,7 +1952,7 @@ X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, return SDValue(OutRetAddr.getNode(), 1); } -/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call +/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call /// optimization is performed and it is required (FPDiff!=0). static SDValue EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, @@ -2028,7 +2043,7 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); SDValue RetAddrFrIdx; - // Load return adress for tail calls. + // Load return address for tail calls. if (isTailCall && FPDiff) Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit, FPDiff, dl); @@ -2185,7 +2200,7 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, SmallVector<SDValue, 8> MemOpChains2; SDValue FIN; int FI = 0; - // Do not flag preceeding copytoreg stuff together with the following stuff. + // Do not flag preceding copytoreg stuff together with the following stuff. InFlag = SDValue(); if (GuaranteedTailCallOpt) { for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { @@ -2266,7 +2281,8 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (GV->isDeclaration() || GV->isWeakForLinker()) && - Subtarget->getDarwinVers() < 9) { + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. @@ -2285,7 +2301,8 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, getTargetMachine().getRelocationModel() == Reloc::PIC_) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && - Subtarget->getDarwinVers() < 9) { + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. @@ -3173,7 +3190,8 @@ bool X86::isMOVLPMask(ShuffleVectorSDNode *N) { bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) { unsigned NumElems = N->getValueType(0).getVectorNumElements(); - if (NumElems != 2 && NumElems != 4) + if ((NumElems != 2 && NumElems != 4) + || N->getValueType(0).getSizeInBits() > 128) return false; for (unsigned i = 0; i < NumElems/2; ++i) @@ -3195,19 +3213,36 @@ static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT, if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) return false; - for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { - int BitI = Mask[i]; - int BitI1 = Mask[i+1]; - if (!isUndefOrEqual(BitI, j)) - return false; - if (V2IsSplat) { - if (!isUndefOrEqual(BitI1, NumElts)) - return false; - } else { - if (!isUndefOrEqual(BitI1, j + NumElts)) + // Handle vector lengths > 128 bits. Define a "section" as a set of + // 128 bits. AVX defines UNPCK* to operate independently on 128-bit + // sections. + unsigned NumSections = VT.getSizeInBits() / 128; + if (NumSections == 0 ) NumSections = 1; // Handle MMX + unsigned NumSectionElts = NumElts / NumSections; + + unsigned Start = 0; + unsigned End = NumSectionElts; + for (unsigned s = 0; s < NumSections; ++s) { + for (unsigned i = Start, j = s * NumSectionElts; + i != End; + i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + if (!isUndefOrEqual(BitI, j)) return false; + if (V2IsSplat) { + if (!isUndefOrEqual(BitI1, NumElts)) + return false; + } else { + if (!isUndefOrEqual(BitI1, j + NumElts)) + return false; + } } + // Process the next 128 bits. + Start += NumSectionElts; + End += NumSectionElts; } + return true; } @@ -3255,14 +3290,27 @@ static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; - for (int i = 0, j = 0; i != NumElems; i += 2, ++j) { - int BitI = Mask[i]; - int BitI1 = Mask[i+1]; - if (!isUndefOrEqual(BitI, j)) - return false; - if (!isUndefOrEqual(BitI1, j)) - return false; + // Handle vector lengths > 128 bits. Define a "section" as a set of + // 128 bits. AVX defines UNPCK* to operate independently on 128-bit + // sections. + unsigned NumSections = VT.getSizeInBits() / 128; + if (NumSections == 0 ) NumSections = 1; // Handle MMX + unsigned NumSectionElts = NumElems / NumSections; + + for (unsigned s = 0; s < NumSections; ++s) { + for (unsigned i = s * NumSectionElts, j = s * NumSectionElts; + i != NumSectionElts * (s + 1); + i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + + if (!isUndefOrEqual(BitI, j)) + return false; + if (!isUndefOrEqual(BitI1, j)) + return false; + } } + return true; } @@ -3846,8 +3894,8 @@ static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, /// getShuffleScalarElt - Returns the scalar element that will make up the ith /// element of the result of the vector shuffle. -SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG, - unsigned Depth) { +static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG, + unsigned Depth) { if (Depth == 6) return SDValue(); // Limit search depth. @@ -3895,11 +3943,15 @@ SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG, case X86ISD::PUNPCKLWD: case X86ISD::PUNPCKLDQ: case X86ISD::PUNPCKLQDQ: - DecodePUNPCKLMask(NumElems, ShuffleMask); + DecodePUNPCKLMask(VT, ShuffleMask); break; case X86ISD::UNPCKLPS: case X86ISD::UNPCKLPD: - DecodeUNPCKLPMask(NumElems, ShuffleMask); + case X86ISD::VUNPCKLPS: + case X86ISD::VUNPCKLPD: + case X86ISD::VUNPCKLPSY: + case X86ISD::VUNPCKLPDY: + DecodeUNPCKLPMask(VT, ShuffleMask); break; case X86ISD::MOVHLPS: DecodeMOVHLPSMask(NumElems, ShuffleMask); @@ -3968,7 +4020,7 @@ SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG, /// getNumOfConsecutiveZeros - Return the number of elements of a vector /// shuffle operation which come from a consecutively from a zero. The -/// search can start in two diferent directions, from left or right. +/// search can start in two different directions, from left or right. static unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems, bool ZerosFromLeft, SelectionDAG &DAG) { @@ -5263,6 +5315,7 @@ LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { // Break it into (shuffle shuffle_hi, shuffle_lo). Locs.clear(); + Locs.resize(4); SmallVector<int,8> LoMask(4U, -1); SmallVector<int,8> HiMask(4U, -1); @@ -5508,12 +5561,16 @@ SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) { X86::getShuffleSHUFImmediate(SVOp), DAG); } -static inline unsigned getUNPCKLOpcode(EVT VT) { +static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) { switch(VT.getSimpleVT().SimpleTy) { case MVT::v4i32: return X86ISD::PUNPCKLDQ; case MVT::v2i64: return X86ISD::PUNPCKLQDQ; - case MVT::v4f32: return X86ISD::UNPCKLPS; - case MVT::v2f64: return X86ISD::UNPCKLPD; + case MVT::v4f32: + return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS; + case MVT::v2f64: + return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD; + case MVT::v8f32: return X86ISD::VUNPCKLPSY; + case MVT::v4f64: return X86ISD::VUNPCKLPDY; case MVT::v16i8: return X86ISD::PUNPCKLBW; case MVT::v8i16: return X86ISD::PUNPCKLWD; default: @@ -5641,7 +5698,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { // unpckh_undef). Only use pshufd if speed is more important than size. if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp)) if (VT != MVT::v2i64 && VT != MVT::v2f64) - return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG); + return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG); if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp)) if (VT != MVT::v2i64 && VT != MVT::v2f64) return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG); @@ -5762,7 +5819,8 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { } if (X86::isUNPCKLMask(SVOp)) - return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG); + return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), + dl, VT, V1, V2, DAG); if (X86::isUNPCKHMask(SVOp)) return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG); @@ -5789,7 +5847,8 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp); if (X86::isUNPCKLMask(NewSVOp)) - return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG); + return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), + dl, VT, V2, V1, DAG); if (X86::isUNPCKHMask(NewSVOp)) return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG); @@ -5812,8 +5871,11 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) && SVOp->getSplatIndex() == 0 && V2IsUndef) { - if (VT == MVT::v2f64) - return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG); + if (VT == MVT::v2f64) { + X86ISD::NodeType Opcode = + getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD; + return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG); + } if (VT == MVT::v2i64) return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG); } @@ -5840,7 +5902,8 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { if (X86::isUNPCKL_v_undef_Mask(SVOp)) if (VT != MVT::v2i64 && VT != MVT::v2f64) - return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG); + return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), + dl, VT, V1, V1, DAG); if (X86::isUNPCKH_v_undef_Mask(SVOp)) if (VT != MVT::v2i64 && VT != MVT::v2f64) return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG); @@ -7868,6 +7931,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) && "This should be used only on Windows targets"); + assert(!Subtarget->isTargetEnvMacho()); DebugLoc dl = Op.getDebugLoc(); // Get the inputs. @@ -7878,8 +7942,9 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SDValue Flag; EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; + unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX); - Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag); + Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); Flag = Chain.getValue(1); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); @@ -8809,8 +8874,8 @@ SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { case ISD::SADDO: // A subtract of one will be selected as a INC. Note that INC doesn't // set CF, so we can't do this for UADDO. - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) - if (C->getAPIntValue() == 1) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) + if (C->isOne()) { BaseOp = X86ISD::INC; Cond = X86::COND_O; break; @@ -8825,8 +8890,8 @@ SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { case ISD::SSUBO: // A subtract of one will be selected as a DEC. Note that DEC doesn't // set CF, so we can't do this for USUBO. - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) - if (C->getAPIntValue() == 1) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) + if (C->isOne()) { BaseOp = X86ISD::DEC; Cond = X86::COND_O; break; @@ -10351,21 +10416,48 @@ X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); + assert(!Subtarget->isTargetEnvMacho()); + // The lowering is pretty easy: we're just emitting the call to _alloca. The // non-trivial part is impdef of ESP. - // FIXME: The code should be tweaked as soon as we'll try to do codegen for - // mingw-w64. - const char *StackProbeSymbol = + if (Subtarget->isTargetWin64()) { + if (Subtarget->isTargetCygMing()) { + // ___chkstk(Mingw64): + // Clobbers R10, R11, RAX and EFLAGS. + // Updates RSP. + BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) + .addExternalSymbol("___chkstk") + .addReg(X86::RAX, RegState::Implicit) + .addReg(X86::RSP, RegState::Implicit) + .addReg(X86::RAX, RegState::Define | RegState::Implicit) + .addReg(X86::RSP, RegState::Define | RegState::Implicit) + .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + } else { + // __chkstk(MSVCRT): does not update stack pointer. + // Clobbers R10, R11 and EFLAGS. + // FIXME: RAX(allocated size) might be reused and not killed. + BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) + .addExternalSymbol("__chkstk") + .addReg(X86::RAX, RegState::Implicit) + .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + // RAX has the offset to subtracted from RSP. + BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP) + .addReg(X86::RSP) + .addReg(X86::RAX); + } + } else { + const char *StackProbeSymbol = Subtarget->isTargetWindows() ? "_chkstk" : "_alloca"; - BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) - .addExternalSymbol(StackProbeSymbol) - .addReg(X86::EAX, RegState::Implicit) - .addReg(X86::ESP, RegState::Implicit) - .addReg(X86::EAX, RegState::Define | RegState::Implicit) - .addReg(X86::ESP, RegState::Define | RegState::Implicit) - .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) + .addExternalSymbol(StackProbeSymbol) + .addReg(X86::EAX, RegState::Implicit) + .addReg(X86::ESP, RegState::Implicit) + .addReg(X86::EAX, RegState::Define | RegState::Implicit) + .addReg(X86::ESP, RegState::Define | RegState::Implicit) + .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + } MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; @@ -12126,7 +12218,7 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { AsmPieces.clear(); SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace. - // FIXME: this should verify that we are targetting a 486 or better. If not, + // FIXME: this should verify that we are targeting a 486 or better. If not, // we will turn this bswap into something that will be lowered to logical ops // instead of emitting the bswap asm. For now, we don't support 486 or lower // so don't worry about this. diff --git a/lib/Target/X86/X86ISelLowering.h b/lib/Target/X86/X86ISelLowering.h index 6ec4a7d..6301057 100644 --- a/lib/Target/X86/X86ISelLowering.h +++ b/lib/Target/X86/X86ISelLowering.h @@ -677,9 +677,6 @@ namespace llvm { /// getFunctionAlignment - Return the Log2 alignment of this function. virtual unsigned getFunctionAlignment(const Function *F) const; - unsigned getRegPressureLimit(const TargetRegisterClass *RC, - MachineFunction &MF) const; - /// getStackCookieLocation - Return true if the target stores stack /// protector cookies at a fixed offset in some non-standard address /// space, and populates the address space and offset as @@ -846,6 +843,12 @@ namespace llvm { virtual bool isUsedByReturnOnly(SDNode *N) const; + virtual bool mayBeEmittedAsTailCall(CallInst *CI) const; + + virtual EVT + getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, + ISD::NodeType ExtendKind) const; + virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, diff --git a/lib/Target/X86/X86Instr3DNow.td b/lib/Target/X86/X86Instr3DNow.td index 45d1c6b..dd4f6a5 100644 --- a/lib/Target/X86/X86Instr3DNow.td +++ b/lib/Target/X86/X86Instr3DNow.td @@ -12,66 +12,91 @@ // //===----------------------------------------------------------------------===// -// FIXME: We don't support any intrinsics for these instructions yet. +class I3DNow<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pat> + : I<o, F, outs, ins, asm, pat>, TB, Requires<[Has3DNow]> { +} -class I3DNow<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern> - : I<o, F, outs, ins, asm, pattern>, TB, Requires<[Has3DNow]> { +class I3DNow_binop<bits<8> o, Format F, dag ins, string Mnemonic, list<dag> pat> + : I3DNow<o, F, (outs VR64:$dst), ins, + !strconcat(Mnemonic, "\t{$src2, $dst|$dst, $src2}"), pat>, + Has3DNow0F0FOpcode { + // FIXME: The disassembler doesn't support Has3DNow0F0FOpcode yet. + let isAsmParserOnly = 1; + let Constraints = "$src1 = $dst"; } -class I3DNow_binop<bits<8> o, Format F, dag ins, string Mnemonic> - : I<o, F, (outs VR64:$dst), ins, - !strconcat(Mnemonic, "\t{$src2, $dst|$dst, $src2}"), []>, - TB, Requires<[Has3DNow]>, Has3DNow0F0FOpcode { +class I3DNow_conv<bits<8> o, Format F, dag ins, string Mnemonic, list<dag> pat> + : I3DNow<o, F, (outs VR64:$dst), ins, + !strconcat(Mnemonic, "\t{$src, $dst|$dst, $src}"), pat>, + Has3DNow0F0FOpcode { // FIXME: The disassembler doesn't support Has3DNow0F0FOpcode yet. let isAsmParserOnly = 1; } +multiclass I3DNow_binop_rm<bits<8> opc, string Mn> { + def rr : I3DNow_binop<opc, MRMSrcReg, (ins VR64:$src1, VR64:$src2), Mn, []>; + def rm : I3DNow_binop<opc, MRMSrcMem, (ins VR64:$src1, i64mem:$src2), Mn, []>; +} + +multiclass I3DNow_binop_rm_int<bits<8> opc, string Mn, string Ver = ""> { + def rr : I3DNow_binop<opc, MRMSrcReg, (ins VR64:$src1, VR64:$src2), Mn, + [(set VR64:$dst, (!cast<Intrinsic>( + !strconcat("int_x86_3dnow", Ver, "_", Mn)) VR64:$src1, VR64:$src2))]>; + def rm : I3DNow_binop<opc, MRMSrcMem, (ins VR64:$src1, i64mem:$src2), Mn, + [(set VR64:$dst, (!cast<Intrinsic>( + !strconcat("int_x86_3dnow", Ver, "_", Mn)) VR64:$src1, + (bitconvert (load_mmx addr:$src2))))]>; +} + +multiclass I3DNow_conv_rm<bits<8> opc, string Mn> { + def rr : I3DNow_conv<opc, MRMSrcReg, (ins VR64:$src1), Mn, []>; + def rm : I3DNow_conv<opc, MRMSrcMem, (ins i64mem:$src1), Mn, []>; +} -let Constraints = "$src1 = $dst" in { - // MMXI_binop_rm_int - Simple MMX binary operator based on intrinsic. - // When this is cleaned up, remove the FIXME from X86RecognizableInstr.cpp. - multiclass I3DNow_binop_rm<bits<8> opc, string Mn> { - def rr : I3DNow_binop<opc, MRMSrcReg, (ins VR64:$src1, VR64:$src2), Mn>; - def rm : I3DNow_binop<opc, MRMSrcMem, (ins VR64:$src1, i64mem:$src2), Mn>; - } +multiclass I3DNow_conv_rm_int<bits<8> opc, string Mn, string Ver = ""> { + def rr : I3DNow_conv<opc, MRMSrcReg, (ins VR64:$src), Mn, + [(set VR64:$dst, (!cast<Intrinsic>( + !strconcat("int_x86_3dnow", Ver, "_", Mn)) VR64:$src))]>; + def rm : I3DNow_conv<opc, MRMSrcMem, (ins i64mem:$src), Mn, + [(set VR64:$dst, (!cast<Intrinsic>( + !strconcat("int_x86_3dnow", Ver, "_", Mn)) + (bitconvert (load_mmx addr:$src))))]>; } -defm PAVGUSB : I3DNow_binop_rm<0xBF, "pavgusb">; -defm PF2ID : I3DNow_binop_rm<0x1D, "pf2id">; -defm PFACC : I3DNow_binop_rm<0xAE, "pfacc">; -defm PFADD : I3DNow_binop_rm<0x9E, "pfadd">; -defm PFCMPEQ : I3DNow_binop_rm<0xB0, "pfcmpeq">; -defm PFCMPGE : I3DNow_binop_rm<0x90, "pfcmpge">; -defm PFCMPGT : I3DNow_binop_rm<0xA0, "pfcmpgt">; -defm PFMAX : I3DNow_binop_rm<0xA4, "pfmax">; -defm PFMIN : I3DNow_binop_rm<0x94, "pfmin">; -defm PFMUL : I3DNow_binop_rm<0xB4, "pfmul">; -defm PFRCP : I3DNow_binop_rm<0x96, "pfrcp">; -defm PFRCPIT1 : I3DNow_binop_rm<0xA6, "pfrcpit1">; -defm PFRCPIT2 : I3DNow_binop_rm<0xB6, "pfrcpit2">; -defm PFRSQIT1 : I3DNow_binop_rm<0xA7, "pfrsqit1">; -defm PFRSQRT : I3DNow_binop_rm<0x97, "pfrsqrt">; -defm PFSUB : I3DNow_binop_rm<0x9A, "pfsub">; -defm PFSUBR : I3DNow_binop_rm<0xAA, "pfsubr">; -defm PI2FD : I3DNow_binop_rm<0x0D, "pi2fd">; -defm PMULHRW : I3DNow_binop_rm<0xB7, "pmulhrw">; +defm PAVGUSB : I3DNow_binop_rm_int<0xBF, "pavgusb">; +defm PF2ID : I3DNow_conv_rm_int<0x1D, "pf2id">; +defm PFACC : I3DNow_binop_rm_int<0xAE, "pfacc">; +defm PFADD : I3DNow_binop_rm_int<0x9E, "pfadd">; +defm PFCMPEQ : I3DNow_binop_rm_int<0xB0, "pfcmpeq">; +defm PFCMPGE : I3DNow_binop_rm_int<0x90, "pfcmpge">; +defm PFCMPGT : I3DNow_binop_rm_int<0xA0, "pfcmpgt">; +defm PFMAX : I3DNow_binop_rm_int<0xA4, "pfmax">; +defm PFMIN : I3DNow_binop_rm_int<0x94, "pfmin">; +defm PFMUL : I3DNow_binop_rm_int<0xB4, "pfmul">; +defm PFRCP : I3DNow_conv_rm_int<0x96, "pfrcp">; +defm PFRCPIT1 : I3DNow_binop_rm_int<0xA6, "pfrcpit1">; +defm PFRCPIT2 : I3DNow_binop_rm_int<0xB6, "pfrcpit2">; +defm PFRSQIT1 : I3DNow_binop_rm_int<0xA7, "pfrsqit1">; +defm PFRSQRT : I3DNow_conv_rm_int<0x97, "pfrsqrt">; +defm PFSUB : I3DNow_binop_rm_int<0x9A, "pfsub">; +defm PFSUBR : I3DNow_binop_rm_int<0xAA, "pfsubr">; +defm PI2FD : I3DNow_conv_rm_int<0x0D, "pi2fd">; +defm PMULHRW : I3DNow_binop_rm_int<0xB7, "pmulhrw">; def FEMMS : I3DNow<0x0E, RawFrm, (outs), (ins), "femms", [(int_x86_mmx_femms)]>; def PREFETCH : I3DNow<0x0D, MRM0m, (outs), (ins i32mem:$addr), "prefetch $addr", []>; - + // FIXME: Diassembler gets a bogus decode conflict. -let isAsmParserOnly = 1 in { +let isAsmParserOnly = 1 in def PREFETCHW : I3DNow<0x0D, MRM1m, (outs), (ins i16mem:$addr), "prefetchw $addr", []>; -} // "3DNowA" instructions -defm PF2IW : I3DNow_binop_rm<0x1C, "pf2iw">; -defm PI2FW : I3DNow_binop_rm<0x0C, "pi2fw">; -defm PFNACC : I3DNow_binop_rm<0x8A, "pfnacc">; -defm PFPNACC : I3DNow_binop_rm<0x8E, "pfpnacc">; -defm PSWAPD : I3DNow_binop_rm<0xBB, "pswapd">; +defm PF2IW : I3DNow_conv_rm_int<0x1C, "pf2iw", "a">; +defm PI2FW : I3DNow_conv_rm_int<0x0C, "pi2fw", "a">; +defm PFNACC : I3DNow_binop_rm_int<0x8A, "pfnacc", "a">; +defm PFPNACC : I3DNow_binop_rm_int<0x8E, "pfpnacc", "a">; +defm PSWAPD : I3DNow_conv_rm_int<0xBB, "pswapd", "a">; diff --git a/lib/Target/X86/X86InstrArithmetic.td b/lib/Target/X86/X86InstrArithmetic.td index f0ea068..9f7a4b0 100644 --- a/lib/Target/X86/X86InstrArithmetic.td +++ b/lib/Target/X86/X86InstrArithmetic.td @@ -163,7 +163,7 @@ def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), } // Defs = [EFLAGS] -// Suprisingly enough, these are not two address instructions! +// Surprisingly enough, these are not two address instructions! let Defs = [EFLAGS] in { // Register-Integer Signed Integer Multiply def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 diff --git a/lib/Target/X86/X86InstrControl.td b/lib/Target/X86/X86InstrControl.td index 77f4725..c228a0ae 100644 --- a/lib/Target/X86/X86InstrControl.td +++ b/lib/Target/X86/X86InstrControl.td @@ -263,6 +263,16 @@ let isCall = 1, isCodeGenOnly = 1 in Requires<[IsWin64]>; } +let isCall = 1, isCodeGenOnly = 1 in + // __chkstk(MSVC): clobber R10, R11 and EFLAGS. + // ___chkstk(Mingw64): clobber R10, R11, RAX and EFLAGS, and update RSP. + let Defs = [RAX, R10, R11, RSP, EFLAGS], + Uses = [RSP] in { + def W64ALLOCA : Ii32PCRel<0xE8, RawFrm, + (outs), (ins i64i32imm_pcrel:$dst, variable_ops), + "call{q}\t$dst", []>, + Requires<[IsWin64]>; + } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, isCodeGenOnly = 1 in diff --git a/lib/Target/X86/X86InstrFormats.td b/lib/Target/X86/X86InstrFormats.td index 0660072..7daa264 100644 --- a/lib/Target/X86/X86InstrFormats.td +++ b/lib/Target/X86/X86InstrFormats.td @@ -91,21 +91,23 @@ class REX_W { bit hasREX_WPrefix = 1; } class LOCK { bit hasLockPrefix = 1; } class SegFS { bits<2> SegOvrBits = 1; } class SegGS { bits<2> SegOvrBits = 2; } -class TB { bits<4> Prefix = 1; } -class REP { bits<4> Prefix = 2; } -class D8 { bits<4> Prefix = 3; } -class D9 { bits<4> Prefix = 4; } -class DA { bits<4> Prefix = 5; } -class DB { bits<4> Prefix = 6; } -class DC { bits<4> Prefix = 7; } -class DD { bits<4> Prefix = 8; } -class DE { bits<4> Prefix = 9; } -class DF { bits<4> Prefix = 10; } -class XD { bits<4> Prefix = 11; } -class XS { bits<4> Prefix = 12; } -class T8 { bits<4> Prefix = 13; } -class TA { bits<4> Prefix = 14; } -class TF { bits<4> Prefix = 15; } +class TB { bits<5> Prefix = 1; } +class REP { bits<5> Prefix = 2; } +class D8 { bits<5> Prefix = 3; } +class D9 { bits<5> Prefix = 4; } +class DA { bits<5> Prefix = 5; } +class DB { bits<5> Prefix = 6; } +class DC { bits<5> Prefix = 7; } +class DD { bits<5> Prefix = 8; } +class DE { bits<5> Prefix = 9; } +class DF { bits<5> Prefix = 10; } +class XD { bits<5> Prefix = 11; } +class XS { bits<5> Prefix = 12; } +class T8 { bits<5> Prefix = 13; } +class TA { bits<5> Prefix = 14; } +class A6 { bits<5> Prefix = 15; } +class A7 { bits<5> Prefix = 16; } +class TF { bits<5> Prefix = 17; } class VEX { bit hasVEXPrefix = 1; } class VEX_W { bit hasVEX_WPrefix = 1; } class VEX_4V : VEX { bit hasVEX_4VPrefix = 1; } @@ -136,7 +138,7 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins, bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix? bit hasAdSizePrefix = 0; // Does this inst have a 0x67 prefix? - bits<4> Prefix = 0; // Which prefix byte does this inst have? + bits<5> Prefix = 0; // Which prefix byte does this inst have? bit hasREX_WPrefix = 0; // Does this inst require the REX.W prefix? FPFormat FPForm = NotFP; // What flavor of FP instruction is this? bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix? @@ -154,20 +156,20 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins, let TSFlags{5-0} = FormBits; let TSFlags{6} = hasOpSizePrefix; let TSFlags{7} = hasAdSizePrefix; - let TSFlags{11-8} = Prefix; - let TSFlags{12} = hasREX_WPrefix; - let TSFlags{15-13} = ImmT.Value; - let TSFlags{18-16} = FPForm.Value; - let TSFlags{19} = hasLockPrefix; - let TSFlags{21-20} = SegOvrBits; - let TSFlags{23-22} = ExeDomain.Value; - let TSFlags{31-24} = Opcode; - let TSFlags{32} = hasVEXPrefix; - let TSFlags{33} = hasVEX_WPrefix; - let TSFlags{34} = hasVEX_4VPrefix; - let TSFlags{35} = hasVEX_i8ImmReg; - let TSFlags{36} = hasVEX_L; - let TSFlags{37} = has3DNow0F0FOpcode; + let TSFlags{12-8} = Prefix; + let TSFlags{13} = hasREX_WPrefix; + let TSFlags{16-14} = ImmT.Value; + let TSFlags{19-17} = FPForm.Value; + let TSFlags{20} = hasLockPrefix; + let TSFlags{22-21} = SegOvrBits; + let TSFlags{24-23} = ExeDomain.Value; + let TSFlags{32-25} = Opcode; + let TSFlags{33} = hasVEXPrefix; + let TSFlags{34} = hasVEX_WPrefix; + let TSFlags{35} = hasVEX_4VPrefix; + let TSFlags{36} = hasVEX_i8ImmReg; + let TSFlags{37} = hasVEX_L; + let TSFlags{38} = has3DNow0F0FOpcode; } class PseudoI<dag oops, dag iops, list<dag> pattern> @@ -319,7 +321,7 @@ class VSSI<bits<8> o, Format F, dag outs, dag ins, string asm, Requires<[HasAVX]>; class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern> - : I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedSingle>, + : I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedSingle>, TB, Requires<[HasAVX]>; // SSE2 Instruction Templates: @@ -353,7 +355,7 @@ class VSDI<bits<8> o, Format F, dag outs, dag ins, string asm, Requires<[HasAVX]>; class VPDI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern> - : I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedDouble>, + : I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedDouble>, TB, OpSize, Requires<[HasAVX]>; // SSE3 Instruction Templates: diff --git a/lib/Target/X86/X86InstrFragmentsSIMD.td b/lib/Target/X86/X86InstrFragmentsSIMD.td index 5016c0f..3cbfac1 100644 --- a/lib/Target/X86/X86InstrFragmentsSIMD.td +++ b/lib/Target/X86/X86InstrFragmentsSIMD.td @@ -132,6 +132,8 @@ def X86Movlpd : SDNode<"X86ISD::MOVLPD", SDTShuff2Op>; def X86Unpcklps : SDNode<"X86ISD::UNPCKLPS", SDTShuff2Op>; def X86Unpcklpd : SDNode<"X86ISD::UNPCKLPD", SDTShuff2Op>; +def X86Unpcklpsy : SDNode<"X86ISD::VUNPCKLPSY", SDTShuff2Op>; +def X86Unpcklpdy : SDNode<"X86ISD::VUNPCKLPDY", SDTShuff2Op>; def X86Unpckhps : SDNode<"X86ISD::UNPCKHPS", SDTShuff2Op>; def X86Unpckhpd : SDNode<"X86ISD::UNPCKHPD", SDTShuff2Op>; diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp index 76a9b12..83f0260 100644 --- a/lib/Target/X86/X86InstrInfo.cpp +++ b/lib/Target/X86/X86InstrInfo.cpp @@ -232,7 +232,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?"); RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U); - // If this is not a reversable operation (because there is a many->one) + // If this is not a reversible operation (because there is a many->one) // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE) continue; @@ -335,7 +335,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?"); RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align); - // If this is not a reversable operation (because there is a many->one) + // If this is not a reversible operation (because there is a many->one) // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. if (OpTbl0[i][1] & TB_NOT_REVERSABLE) continue; @@ -460,7 +460,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries"); RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align); - // If this is not a reversable operation (because there is a many->one) + // If this is not a reversible operation (because there is a many->one) // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. if (OpTbl1[i][1] & TB_NOT_REVERSABLE) continue; @@ -682,7 +682,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!"); RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align); - // If this is not a reversable operation (because there is a many->one) + // If this is not a reversible operation (because there is a many->one) // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. if (OpTbl2[i][1] & TB_NOT_REVERSABLE) continue; @@ -916,7 +916,6 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: - case X86::MOVUPSrm_Int: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::MMX_MOVD64rm: @@ -2241,6 +2240,12 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, bool isTwoAddr = NumOps > 1 && MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1; + // FIXME: AsmPrinter doesn't know how to handle + // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. + if (MI->getOpcode() == X86::ADD32ri && + MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) + return NULL; + MachineInstr *NewMI = NULL; // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires @@ -2535,6 +2540,12 @@ bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, case X86::TEST32rr: case X86::TEST64rr: return true; + case X86::ADD32ri: + // FIXME: AsmPrinter doesn't know how to handle + // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. + if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) + return false; + break; } } @@ -2845,11 +2856,9 @@ X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, case X86::FsMOVAPDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: - case X86::MOVUPSrm_Int: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: - case X86::MOVDQUrm_Int: break; } switch (Opc2) { @@ -2869,11 +2878,9 @@ X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, case X86::FsMOVAPDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: - case X86::MOVUPSrm_Int: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: - case X86::MOVDQUrm_Int: break; } @@ -3085,12 +3092,8 @@ void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(X86::NOOP); } -bool X86InstrInfo:: -hasHighOperandLatency(const InstrItineraryData *ItinData, - const MachineRegisterInfo *MRI, - const MachineInstr *DefMI, unsigned DefIdx, - const MachineInstr *UseMI, unsigned UseIdx) const { - switch (DefMI->getOpcode()) { +bool X86InstrInfo::isHighLatencyDef(int opc) const { + switch (opc) { default: return false; case X86::DIVSDrm: case X86::DIVSDrm_Int: @@ -3120,6 +3123,14 @@ hasHighOperandLatency(const InstrItineraryData *ItinData, } } +bool X86InstrInfo:: +hasHighOperandLatency(const InstrItineraryData *ItinData, + const MachineRegisterInfo *MRI, + const MachineInstr *DefMI, unsigned DefIdx, + const MachineInstr *UseMI, unsigned UseIdx) const { + return isHighLatencyDef(DefMI->getOpcode()); +} + namespace { /// CGBR - Create Global Base Reg pass. This initializes the PIC /// global base register for x86-32. diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h index fcb5a25..8da68b5 100644 --- a/lib/Target/X86/X86InstrInfo.h +++ b/lib/Target/X86/X86InstrInfo.h @@ -33,15 +33,15 @@ namespace X86 { AddrScaleAmt = 1, AddrIndexReg = 2, AddrDisp = 3, - + /// AddrSegmentReg - The operand # of the segment in the memory operand. AddrSegmentReg = 4, /// AddrNumOperands - Total number of operands in a memory reference. AddrNumOperands = 5 }; - - + + // X86 specific condition code. These correspond to X86_*_COND in // X86InstrInfo.td. They must be kept in synch. enum CondCode { @@ -72,16 +72,16 @@ namespace X86 { COND_INVALID }; - + // Turn condition code into conditional branch opcode. unsigned GetCondBranchFromCond(CondCode CC); - + /// GetOppositeBranchCondition - Return the inverse of the specified cond, /// e.g. turning COND_E to COND_NE. CondCode GetOppositeBranchCondition(X86::CondCode CC); } - + /// X86II - This namespace holds all of the target specific flags that /// instruction info tracks. /// @@ -90,14 +90,14 @@ namespace X86II { enum TOF { //===------------------------------------------------------------------===// // X86 Specific MachineOperand flags. - + MO_NO_FLAG, - + /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a /// relocation of: /// SYMBOL_LABEL + [. - PICBASELABEL] MO_GOT_ABSOLUTE_ADDRESS, - + /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the /// immediate should get the value of the symbol minus the PIC base label: /// SYMBOL_LABEL - PICBASELABEL @@ -106,77 +106,77 @@ namespace X86II { /// MO_GOT - On a symbol operand this indicates that the immediate is the /// offset to the GOT entry for the symbol name from the base of the GOT. /// - /// See the X86-64 ELF ABI supplement for more details. + /// See the X86-64 ELF ABI supplement for more details. /// SYMBOL_LABEL @GOT MO_GOT, - + /// MO_GOTOFF - On a symbol operand this indicates that the immediate is - /// the offset to the location of the symbol name from the base of the GOT. + /// the offset to the location of the symbol name from the base of the GOT. /// - /// See the X86-64 ELF ABI supplement for more details. + /// See the X86-64 ELF ABI supplement for more details. /// SYMBOL_LABEL @GOTOFF MO_GOTOFF, - + /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is /// offset to the GOT entry for the symbol name from the current code - /// location. + /// location. /// - /// See the X86-64 ELF ABI supplement for more details. + /// See the X86-64 ELF ABI supplement for more details. /// SYMBOL_LABEL @GOTPCREL MO_GOTPCREL, - + /// MO_PLT - On a symbol operand this indicates that the immediate is - /// offset to the PLT entry of symbol name from the current code location. + /// offset to the PLT entry of symbol name from the current code location. /// - /// See the X86-64 ELF ABI supplement for more details. + /// See the X86-64 ELF ABI supplement for more details. /// SYMBOL_LABEL @PLT MO_PLT, - + /// MO_TLSGD - On a symbol operand this indicates that the immediate is /// some TLS offset. /// - /// See 'ELF Handling for Thread-Local Storage' for more details. + /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @TLSGD MO_TLSGD, - + /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is /// some TLS offset. /// - /// See 'ELF Handling for Thread-Local Storage' for more details. + /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @GOTTPOFF MO_GOTTPOFF, - + /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is /// some TLS offset. /// - /// See 'ELF Handling for Thread-Local Storage' for more details. + /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @INDNTPOFF MO_INDNTPOFF, - + /// MO_TPOFF - On a symbol operand this indicates that the immediate is /// some TLS offset. /// - /// See 'ELF Handling for Thread-Local Storage' for more details. + /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @TPOFF MO_TPOFF, - + /// MO_NTPOFF - On a symbol operand this indicates that the immediate is /// some TLS offset. /// - /// See 'ELF Handling for Thread-Local Storage' for more details. + /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @NTPOFF MO_NTPOFF, - + /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the /// reference is actually to the "__imp_FOO" symbol. This is used for /// dllimport linkage on windows. MO_DLLIMPORT, - + /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the /// reference is actually to the "FOO$stub" symbol. This is used for calls /// and jumps to external functions on Tiger and earlier. MO_DARWIN_STUB, - + /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. @@ -186,19 +186,19 @@ namespace X86II { /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. MO_DARWIN_NONLAZY_PIC_BASE, - + /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE", /// which is a PIC-base-relative reference to a hidden dyld lazy pointer /// stub. MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE, - + /// MO_TLVP - On a symbol operand this indicates that the immediate is /// some TLS offset. /// /// This is the TLS offset for the Darwin TLS mechanism. MO_TLVP, - + /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate /// is some TLS offset from the picbase. /// @@ -239,7 +239,7 @@ inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { return false; } } - + /// X86II - This namespace holds all of the target specific flags that /// instruction info tracks. /// @@ -299,7 +299,7 @@ namespace X86II { // MRMInitReg - This form is used for instructions whose source and // destinations are the same register. MRMInitReg = 32, - + //// MRM_C1 - A mod/rm byte of exactly 0xC1. MRM_C1 = 33, MRM_C2 = 34, @@ -318,7 +318,7 @@ namespace X86II { /// immediates, the first of which is a 16-bit immediate (specified by /// the imm encoding) and the second is a 8-bit fixed value. RawFrmImm8 = 43, - + /// RawFrmImm16 - This is used for CALL FAR instructions, which have two /// immediates, the first of which is a 16 or 32-bit immediate (specified by /// the imm encoding) and the second is a 16-bit fixed value. In the AMD @@ -347,7 +347,7 @@ namespace X86II { // set, there is no prefix byte for obtaining a multibyte opcode. // Op0Shift = 8, - Op0Mask = 0xF << Op0Shift, + Op0Mask = 0x1F << Op0Shift, // TB - TwoByte - Set if this instruction has a two byte opcode, which // starts with a 0x0F byte before the real opcode. @@ -368,11 +368,12 @@ namespace X86II { // floating point operations performed in the SSE registers. XD = 11 << Op0Shift, XS = 12 << Op0Shift, - // T8, TA - Prefix after the 0x0F prefix. + // T8, TA, A6, A7 - Prefix after the 0x0F prefix. T8 = 13 << Op0Shift, TA = 14 << Op0Shift, - + A6 = 15 << Op0Shift, A7 = 16 << Op0Shift, + // TF - Prefix before and after 0x0F - TF = 15 << Op0Shift, + TF = 17 << Op0Shift, //===------------------------------------------------------------------===// // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. @@ -380,13 +381,13 @@ namespace X86II { // etc. We only cares about REX.W and REX.R bits and only the former is // statically determined. // - REXShift = 12, + REXShift = Op0Shift + 5, REX_W = 1 << REXShift, //===------------------------------------------------------------------===// // This three-bit field describes the size of an immediate operand. Zero is // unused so that we can tell if we forgot to set a value. - ImmShift = 13, + ImmShift = REXShift + 1, ImmMask = 7 << ImmShift, Imm8 = 1 << ImmShift, Imm8PCRel = 2 << ImmShift, @@ -400,7 +401,7 @@ namespace X86II { // FP Instruction Classification... Zero is non-fp instruction. // FPTypeMask - Mask for all of the FP types... - FPTypeShift = 16, + FPTypeShift = ImmShift + 3, FPTypeMask = 7 << FPTypeShift, // NotFP - The default, set for instructions that do not use FP registers. @@ -433,25 +434,26 @@ namespace X86II { SpecialFP = 7 << FPTypeShift, // Lock prefix - LOCKShift = 19, + LOCKShift = FPTypeShift + 3, LOCK = 1 << LOCKShift, // Segment override prefixes. Currently we just need ability to address // stuff in gs and fs segments. - SegOvrShift = 20, + SegOvrShift = LOCKShift + 1, SegOvrMask = 3 << SegOvrShift, FS = 1 << SegOvrShift, GS = 2 << SegOvrShift, - // Execution domain for SSE instructions in bits 22, 23. - // 0 in bits 22-23 means normal, non-SSE instruction. - SSEDomainShift = 22, + // Execution domain for SSE instructions in bits 23, 24. + // 0 in bits 23-24 means normal, non-SSE instruction. + SSEDomainShift = SegOvrShift + 2, - OpcodeShift = 24, - OpcodeMask = 0xFF << OpcodeShift, + OpcodeShift = SSEDomainShift + 2, + OpcodeMask = 0xFFULL << OpcodeShift, //===------------------------------------------------------------------===// /// VEX - The opcode prefix used by AVX instructions + VEXShift = OpcodeShift + 8, VEX = 1U << 0, /// VEX_W - Has a opcode specific functionality, but is used in the same @@ -473,7 +475,7 @@ namespace X86II { /// if a VR256 register is used, but some AVX instructions also have this /// field marked when using a f256 memory references. VEX_L = 1U << 4, - + /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction @@ -482,18 +484,18 @@ namespace X86II { /// this flag to indicate that the encoder should do the wacky 3DNow! thing. Has3DNow0F0FOpcode = 1U << 5 }; - + // getBaseOpcodeFor - This function returns the "base" X86 opcode for the // specified machine instruction. // static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) { return TSFlags >> X86II::OpcodeShift; } - + static inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; } - + /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field /// of the specified instruction. static inline unsigned getSizeOfImm(uint64_t TSFlags) { @@ -508,7 +510,7 @@ namespace X86II { case X86II::Imm64: return 8; } } - + /// isImmPCRel - Return true if the immediate of the specified instruction's /// TSFlags indicates that it is pc relative. static inline unsigned isImmPCRel(uint64_t TSFlags) { @@ -525,7 +527,7 @@ namespace X86II { return false; } } - + /// getMemoryOperandNo - The function returns the MCInst operand # for the /// first field of the memory operand. If the instruction doesn't have a /// memory operand, this returns -1. @@ -549,11 +551,11 @@ namespace X86II { case X86II::MRMDestMem: return 0; case X86II::MRMSrcMem: { - bool HasVEX_4V = (TSFlags >> 32) & X86II::VEX_4V; + bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; unsigned FirstMemOp = 1; if (HasVEX_4V) ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV). - + // FIXME: Maybe lea should have its own form? This is a horrible hack. //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || // Opcode == X86::LEA16r || Opcode == X86::LEA32r) @@ -613,7 +615,7 @@ inline static bool isMem(const MachineInstr *MI, unsigned Op) { class X86InstrInfo : public TargetInstrInfoImpl { X86TargetMachine &TM; const X86RegisterInfo RI; - + /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, /// RegOp2MemOpTable2 - Load / store folding opcode maps. /// @@ -621,7 +623,7 @@ class X86InstrInfo : public TargetInstrInfoImpl { DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable0; DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable1; DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2; - + /// MemOp2RegOpTable - Load / store unfolding opcode map. /// DenseMap<unsigned, std::pair<unsigned, unsigned> > MemOp2RegOpTable; @@ -795,7 +797,7 @@ public: virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex = 0) const; - + /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler /// to determine if two loads are loading from the same base address. It /// should only return true if the base pointers are the same and the @@ -805,7 +807,7 @@ public: int64_t &Offset1, int64_t &Offset2) const; /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to - /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should + /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should /// be scheduled togther. On some targets if two loads are loading from /// addresses in the same cache line, it's better if they are scheduled /// together. This function takes two integers that represent the load offsets @@ -829,7 +831,7 @@ public: return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL || reg == X86::DIL); } - + static bool isX86_64ExtendedReg(const MachineOperand &MO) { if (!MO.isReg()) return false; return isX86_64ExtendedReg(MO.getReg()); @@ -858,11 +860,13 @@ public: const SmallVectorImpl<MachineOperand> &MOs, unsigned Size, unsigned Alignment) const; + bool isHighLatencyDef(int opc) const; + bool hasHighOperandLatency(const InstrItineraryData *ItinData, const MachineRegisterInfo *MRI, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const; - + private: MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, MachineFunction::iterator &MFI, diff --git a/lib/Target/X86/X86InstrInfo.td b/lib/Target/X86/X86InstrInfo.td index f832a7c..03a0b0c 100644 --- a/lib/Target/X86/X86InstrInfo.td +++ b/lib/Target/X86/X86InstrInfo.td @@ -459,7 +459,7 @@ def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">; include "X86InstrFormats.td" //===----------------------------------------------------------------------===// -// Pattern fragments... +// Pattern fragments. // // X86 specific condition code. These correspond to CondCode in @@ -481,21 +481,21 @@ def X86_COND_O : PatLeaf<(i8 13)>; def X86_COND_P : PatLeaf<(i8 14)>; // alt. COND_PE def X86_COND_S : PatLeaf<(i8 15)>; -def immSext8 : PatLeaf<(imm), [{ return immSext8(N); }]>; +let FastIselShouldIgnore = 1 in { // FastIsel should ignore all simm8 instrs. + def i16immSExt8 : ImmLeaf<i16, [{ return Imm == (int8_t)Imm; }]>; + def i32immSExt8 : ImmLeaf<i32, [{ return Imm == (int8_t)Imm; }]>; + def i64immSExt8 : ImmLeaf<i64, [{ return Imm == (int8_t)Imm; }]>; +} -def i16immSExt8 : PatLeaf<(i16 immSext8)>; -def i32immSExt8 : PatLeaf<(i32 immSext8)>; -def i64immSExt8 : PatLeaf<(i64 immSext8)>; -def i64immSExt32 : PatLeaf<(i64 imm), [{ return i64immSExt32(N); }]>; -def i64immZExt32 : PatLeaf<(i64 imm), [{ - // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit - // unsignedsign extended field. - return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue(); -}]>; +def i64immSExt32 : ImmLeaf<i64, [{ return Imm == (int32_t)Imm; }]>; + + +// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit +// unsigned field. +def i64immZExt32 : ImmLeaf<i64, [{ return (uint64_t)Imm == (uint32_t)Imm; }]>; -def i64immZExt32SExt8 : PatLeaf<(i64 imm), [{ - uint64_t v = N->getZExtValue(); - return v == (uint32_t)v && (int32_t)v == (int8_t)v; +def i64immZExt32SExt8 : ImmLeaf<i64, [{ + return (uint64_t)Imm == (uint32_t)Imm && (int32_t)Imm == (int8_t)Imm; }]>; // Helper fragments for loads. @@ -1437,7 +1437,7 @@ def : InstAlias<"idivq $src, %rax", (IDIV64m i64mem:$src)>; // Various unary fpstack operations default to operating on on ST1. // For example, "fxch" -> "fxch %st(1)" -def : InstAlias<"faddp", (ADD_FPrST0 ST1)>; +def : InstAlias<"faddp", (ADD_FPrST0 ST1), 0>; def : InstAlias<"fsubp", (SUBR_FPrST0 ST1)>; def : InstAlias<"fsubrp", (SUB_FPrST0 ST1)>; def : InstAlias<"fmulp", (MUL_FPrST0 ST1)>; @@ -1455,13 +1455,15 @@ def : InstAlias<"fucompi", (UCOM_FIPr ST1)>; // For example, "fadd %st(4), %st(0)" -> "fadd %st(4)". We also disambiguate // instructions like "fadd %st(0), %st(0)" as "fadd %st(0)" for consistency with // gas. -multiclass FpUnaryAlias<string Mnemonic, Instruction Inst> { - def : InstAlias<!strconcat(Mnemonic, " $op, %st(0)"), (Inst RST:$op)>; - def : InstAlias<!strconcat(Mnemonic, " %st(0), %st(0)"), (Inst ST0)>; +multiclass FpUnaryAlias<string Mnemonic, Instruction Inst, bit EmitAlias = 1> { + def : InstAlias<!strconcat(Mnemonic, " $op, %st(0)"), + (Inst RST:$op), EmitAlias>; + def : InstAlias<!strconcat(Mnemonic, " %st(0), %st(0)"), + (Inst ST0), EmitAlias>; } defm : FpUnaryAlias<"fadd", ADD_FST0r>; -defm : FpUnaryAlias<"faddp", ADD_FPrST0>; +defm : FpUnaryAlias<"faddp", ADD_FPrST0, 0>; defm : FpUnaryAlias<"fsub", SUB_FST0r>; defm : FpUnaryAlias<"fsubp", SUBR_FPrST0>; defm : FpUnaryAlias<"fsubr", SUBR_FST0r>; @@ -1472,8 +1474,8 @@ defm : FpUnaryAlias<"fdiv", DIV_FST0r>; defm : FpUnaryAlias<"fdivp", DIVR_FPrST0>; defm : FpUnaryAlias<"fdivr", DIVR_FST0r>; defm : FpUnaryAlias<"fdivrp", DIV_FPrST0>; -defm : FpUnaryAlias<"fcomi", COM_FIr>; -defm : FpUnaryAlias<"fucomi", UCOM_FIr>; +defm : FpUnaryAlias<"fcomi", COM_FIr, 0>; +defm : FpUnaryAlias<"fucomi", UCOM_FIr, 0>; defm : FpUnaryAlias<"fcompi", COM_FIPr>; defm : FpUnaryAlias<"fucompi", UCOM_FIPr>; @@ -1481,7 +1483,7 @@ defm : FpUnaryAlias<"fucompi", UCOM_FIPr>; // Handle "f{mulp,addp} st(0), $op" the same as "f{mulp,addp} $op", since they // commute. We also allow fdiv[r]p/fsubrp even though they don't commute, // solely because gas supports it. -def : InstAlias<"faddp %st(0), $op", (ADD_FPrST0 RST:$op)>; +def : InstAlias<"faddp %st(0), $op", (ADD_FPrST0 RST:$op), 0>; def : InstAlias<"fmulp %st(0), $op", (MUL_FPrST0 RST:$op)>; def : InstAlias<"fsubrp %st(0), $op", (SUB_FPrST0 RST:$op)>; def : InstAlias<"fdivp %st(0), $op", (DIVR_FPrST0 RST:$op)>; @@ -1534,29 +1536,31 @@ def : InstAlias<"mov $seg, $mem", (MOV32ms i32mem:$mem, SEGMENT_REG:$seg)>; def : InstAlias<"movq $imm, $reg", (MOV64ri GR64:$reg, i64imm:$imm)>; // Match 'movq GR64, MMX' as an alias for movd. -def : InstAlias<"movq $src, $dst", (MMX_MOVD64to64rr VR64:$dst, GR64:$src)>; -def : InstAlias<"movq $src, $dst", (MMX_MOVD64from64rr GR64:$dst, VR64:$src)>; +def : InstAlias<"movq $src, $dst", + (MMX_MOVD64to64rr VR64:$dst, GR64:$src), 0>; +def : InstAlias<"movq $src, $dst", + (MMX_MOVD64from64rr GR64:$dst, VR64:$src), 0>; // movsd with no operands (as opposed to the SSE scalar move of a double) is an // alias for movsl. (as in rep; movsd) def : InstAlias<"movsd", (MOVSD)>; // movsx aliases -def : InstAlias<"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8:$src)>; -def : InstAlias<"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)>; -def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8:$src)>; -def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16:$src)>; -def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8:$src)>; -def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16:$src)>; -def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32:$src)>; +def : InstAlias<"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8:$src), 0>; +def : InstAlias<"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src), 0>; +def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8:$src), 0>; +def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16:$src), 0>; +def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8:$src), 0>; +def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16:$src), 0>; +def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32:$src), 0>; // movzx aliases -def : InstAlias<"movzx $src, $dst", (MOVZX16rr8W GR16:$dst, GR8:$src)>; -def : InstAlias<"movzx $src, $dst", (MOVZX16rm8W GR16:$dst, i8mem:$src)>; -def : InstAlias<"movzx $src, $dst", (MOVZX32rr8 GR32:$dst, GR8:$src)>; -def : InstAlias<"movzx $src, $dst", (MOVZX32rr16 GR32:$dst, GR16:$src)>; -def : InstAlias<"movzx $src, $dst", (MOVZX64rr8_Q GR64:$dst, GR8:$src)>; -def : InstAlias<"movzx $src, $dst", (MOVZX64rr16_Q GR64:$dst, GR16:$src)>; +def : InstAlias<"movzx $src, $dst", (MOVZX16rr8W GR16:$dst, GR8:$src), 0>; +def : InstAlias<"movzx $src, $dst", (MOVZX16rm8W GR16:$dst, i8mem:$src), 0>; +def : InstAlias<"movzx $src, $dst", (MOVZX32rr8 GR32:$dst, GR8:$src), 0>; +def : InstAlias<"movzx $src, $dst", (MOVZX32rr16 GR32:$dst, GR16:$src), 0>; +def : InstAlias<"movzx $src, $dst", (MOVZX64rr8_Q GR64:$dst, GR8:$src), 0>; +def : InstAlias<"movzx $src, $dst", (MOVZX64rr16_Q GR64:$dst, GR16:$src), 0>; // Note: No GR32->GR64 movzx form. // outb %dx -> outb %al, %dx diff --git a/lib/Target/X86/X86InstrSSE.td b/lib/Target/X86/X86InstrSSE.td index b912949..cde3f6b 100644 --- a/lib/Target/X86/X86InstrSSE.td +++ b/lib/Target/X86/X86InstrSSE.td @@ -135,18 +135,16 @@ class sse12_move_rm<RegisterClass RC, X86MemOperand x86memop, // is used instead. Register-to-register movss/movsd is not modeled as an // INSERT_SUBREG because INSERT_SUBREG requires that the insert be implementable // in terms of a copy, and just mentioned, we don't use movss/movsd for copies. -let isAsmParserOnly = 1 in { - def VMOVSSrr : sse12_move_rr<FR32, v4f32, - "movss\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XS, VEX_4V; - def VMOVSDrr : sse12_move_rr<FR64, v2f64, - "movsd\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XD, VEX_4V; +def VMOVSSrr : sse12_move_rr<FR32, v4f32, + "movss\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XS, VEX_4V; +def VMOVSDrr : sse12_move_rr<FR64, v2f64, + "movsd\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XD, VEX_4V; - let canFoldAsLoad = 1, isReMaterializable = 1 in { - def VMOVSSrm : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS, VEX; +let canFoldAsLoad = 1, isReMaterializable = 1 in { + def VMOVSSrm : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS, VEX; - let AddedComplexity = 20 in - def VMOVSDrm : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD, VEX; - } + let AddedComplexity = 20 in + def VMOVSDrm : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD, VEX; } let Constraints = "$src1 = $dst" in { @@ -218,14 +216,12 @@ def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), "movsd\t{$src, $dst|$dst, $src}", [(store FR64:$src, addr:$dst)]>; -let isAsmParserOnly = 1 in { def VMOVSSmr : SI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), "movss\t{$src, $dst|$dst, $src}", [(store FR32:$src, addr:$dst)]>, XS, VEX; def VMOVSDmr : SI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), "movsd\t{$src, $dst|$dst, $src}", [(store FR64:$src, addr:$dst)]>, XD, VEX; -} // Extract and store. def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), @@ -251,7 +247,6 @@ let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in [(set RC:$dst, (ld_frag addr:$src))], d>; } -let isAsmParserOnly = 1 in { defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", SSEPackedSingle>, VEX; defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, @@ -269,7 +264,6 @@ defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32, "movups", SSEPackedSingle>, VEX; defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64, "movupd", SSEPackedDouble, 0>, OpSize, VEX; -} defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", SSEPackedSingle>, TB; defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, @@ -279,7 +273,6 @@ defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", SSEPackedDouble, 0>, TB, OpSize; -let isAsmParserOnly = 1 in { def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>, VEX; @@ -304,7 +297,6 @@ def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v4f64 VR256:$src), addr:$dst)]>, VEX; -} def : Pat<(int_x86_avx_loadu_ps_256 addr:$src), (VMOVUPSYrm addr:$src)>; def : Pat<(int_x86_avx_storeu_ps_256 addr:$dst, VR256:$src), @@ -328,32 +320,14 @@ def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), [(store (v2f64 VR128:$src), addr:$dst)]>; // Intrinsic forms of MOVUPS/D load and store -let isAsmParserOnly = 1 in { - let canFoldAsLoad = 1, isReMaterializable = 1 in - def VMOVUPSrm_Int : VPSI<0x10, MRMSrcMem, (outs VR128:$dst), - (ins f128mem:$src), - "movups\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>, VEX; - def VMOVUPDrm_Int : VPDI<0x10, MRMSrcMem, (outs VR128:$dst), - (ins f128mem:$src), - "movupd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>, VEX; - def VMOVUPSmr_Int : VPSI<0x11, MRMDestMem, (outs), - (ins f128mem:$dst, VR128:$src), - "movups\t{$src, $dst|$dst, $src}", - [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>, VEX; - def VMOVUPDmr_Int : VPDI<0x11, MRMDestMem, (outs), - (ins f128mem:$dst, VR128:$src), - "movupd\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>, VEX; -} -let canFoldAsLoad = 1, isReMaterializable = 1 in -def MOVUPSrm_Int : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "movups\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>; -def MOVUPDrm_Int : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "movupd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>; +def VMOVUPSmr_Int : VPSI<0x11, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movups\t{$src, $dst|$dst, $src}", + [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>, VEX; +def VMOVUPDmr_Int : VPDI<0x11, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>, VEX; def MOVUPSmr_Int : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", @@ -382,7 +356,7 @@ multiclass sse12_mov_hilo_packed<bits<8>opc, RegisterClass RC, SSEPackedDouble>, TB, OpSize; } -let isAsmParserOnly = 1, AddedComplexity = 20 in { +let AddedComplexity = 20 in { defm VMOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp", "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V; defm VMOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp", @@ -395,7 +369,6 @@ let Constraints = "$src1 = $dst", AddedComplexity = 20 in { "\t{$src2, $dst|$dst, $src2}">; } -let isAsmParserOnly = 1 in { def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), @@ -404,7 +377,6 @@ def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX; -} def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), @@ -416,7 +388,6 @@ def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), // v2f64 extract element 1 is always custom lowered to unpack high to low // and extract element 0 so the non-store version isn't too horrible. -let isAsmParserOnly = 1 in { def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract @@ -429,7 +400,6 @@ def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), (v2f64 (unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst)]>, VEX; -} def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract @@ -441,7 +411,7 @@ def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), (v2f64 (unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst)]>; -let isAsmParserOnly = 1, AddedComplexity = 20 in { +let AddedComplexity = 20 in { def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", @@ -516,7 +486,6 @@ multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>; } -let isAsmParserOnly = 1 in { defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, "cvttss2si\t{$src, $dst|$dst, $src}">, XS, VEX; defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32, @@ -542,7 +511,6 @@ defm VCVTSI2SDL : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}">, XD, VEX_4V; defm VCVTSI2SD64 : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}">, XD, VEX_4V, VEX_W; -} defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, "cvttss2si\t{$src, $dst|$dst, $src}">, XS; @@ -591,27 +559,25 @@ multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC, [(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))]>; } -let isAsmParserOnly = 1 in { - defm Int_VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, - f32mem, load, "cvtss2si">, XS, VEX; - defm Int_VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, - int_x86_sse_cvtss2si64, f32mem, load, "cvtss2si">, - XS, VEX, VEX_W; - defm Int_VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, - f128mem, load, "cvtsd2si">, XD, VEX; - defm Int_VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, - int_x86_sse2_cvtsd2si64, f128mem, load, "cvtsd2si">, - XD, VEX, VEX_W; - - // FIXME: The asm matcher has a hack to ignore instructions with _Int and Int_ - // Get rid of this hack or rename the intrinsics, there are several - // intructions that only match with the intrinsic form, why create duplicates - // to let them be recognized by the assembler? - defm VCVTSD2SI_alt : sse12_cvt_s_np<0x2D, FR64, GR32, f64mem, - "cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX; - defm VCVTSD2SI64 : sse12_cvt_s_np<0x2D, FR64, GR64, f64mem, - "cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX, VEX_W; -} +defm Int_VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, + f32mem, load, "cvtss2si">, XS, VEX; +defm Int_VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, + int_x86_sse_cvtss2si64, f32mem, load, "cvtss2si">, + XS, VEX, VEX_W; +defm Int_VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, + f128mem, load, "cvtsd2si">, XD, VEX; +defm Int_VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, + int_x86_sse2_cvtsd2si64, f128mem, load, "cvtsd2si">, + XD, VEX, VEX_W; + +// FIXME: The asm matcher has a hack to ignore instructions with _Int and Int_ +// Get rid of this hack or rename the intrinsics, there are several +// intructions that only match with the intrinsic form, why create duplicates +// to let them be recognized by the assembler? +defm VCVTSD2SI_alt : sse12_cvt_s_np<0x2D, FR64, GR32, f64mem, + "cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX; +defm VCVTSD2SI64 : sse12_cvt_s_np<0x2D, FR64, GR64, f64mem, + "cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX, VEX_W; defm Int_CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, f32mem, load, "cvtss2si">, XS; defm Int_CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64, @@ -622,18 +588,16 @@ defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64, f128mem, load, "cvtsd2si{q}">, XD, REX_W; -let isAsmParserOnly = 1 in { - defm Int_VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, - int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss", 0>, XS, VEX_4V; - defm Int_VCVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, - int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss", 0>, XS, VEX_4V, - VEX_W; - defm Int_VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, - int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd", 0>, XD, VEX_4V; - defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, - int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd", 0>, XD, - VEX_4V, VEX_W; -} +defm Int_VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, + int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss", 0>, XS, VEX_4V; +defm Int_VCVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, + int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss", 0>, XS, VEX_4V, + VEX_W; +defm Int_VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, + int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd", 0>, XD, VEX_4V; +defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, + int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd", 0>, XD, + VEX_4V, VEX_W; let Constraints = "$src1 = $dst" in { defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, @@ -653,7 +617,6 @@ let Constraints = "$src1 = $dst" in { /// SSE 1 Only // Aliases for intrinsics -let isAsmParserOnly = 1 in { defm Int_VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, f32mem, load, "cvttss2si">, XS, VEX; defm Int_VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, @@ -664,7 +627,6 @@ defm Int_VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, defm Int_VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse2_cvttsd2si64, f128mem, load, "cvttsd2si">, XD, VEX, VEX_W; -} defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, f32mem, load, "cvttss2si">, XS; defm Int_CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, @@ -676,7 +638,7 @@ defm Int_CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse2_cvttsd2si64, f128mem, load, "cvttsd2si{q}">, XD, REX_W; -let isAsmParserOnly = 1, Pattern = []<dag> in { +let Pattern = []<dag> in { defm VCVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load, "cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS, VEX; defm VCVTSS2SI64 : sse12_cvt_s<0x2D, FR32, GR64, undef, f32mem, load, @@ -702,7 +664,6 @@ defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, i128mem, load /*dummy*/, /// SSE 2 Only // Convert scalar double to scalar single -let isAsmParserOnly = 1 in { def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src1, FR64:$src2), "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, @@ -711,7 +672,6 @@ def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins FR64:$src1, f64mem:$src2), "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XD, Requires<[HasAVX, OptForSize]>, VEX_4V; -} def : Pat<(f32 (fround FR64:$src)), (VCVTSD2SSrr FR64:$src, FR64:$src)>, Requires<[HasAVX]>; @@ -723,7 +683,6 @@ def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), [(set FR32:$dst, (fround (loadf64 addr:$src)))]>, XD, Requires<[HasSSE2, OptForSize]>; -let isAsmParserOnly = 1 in defm Int_VCVTSD2SS: sse12_cvt_sint_3addr<0x5A, VR128, VR128, int_x86_sse2_cvtsd2ss, f64mem, load, "cvtsd2ss", 0>, XS, VEX_4V; @@ -732,7 +691,7 @@ defm Int_CVTSD2SS: sse12_cvt_sint_3addr<0x5A, VR128, VR128, int_x86_sse2_cvtsd2ss, f64mem, load, "cvtsd2ss">, XS; // Convert scalar single to scalar double -let isAsmParserOnly = 1 in { // SSE2 instructions with XS prefix +// SSE2 instructions with XS prefix def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src1, FR32:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", @@ -741,7 +700,6 @@ def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins FR32:$src1, f32mem:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XS, VEX_4V, Requires<[HasAVX, OptForSize]>; -} def : Pat<(f64 (fextend FR32:$src)), (VCVTSS2SDrr FR32:$src, FR32:$src)>, Requires<[HasAVX]>; @@ -754,7 +712,6 @@ def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src), [(set FR64:$dst, (extloadf32 addr:$src))]>, XS, Requires<[HasSSE2, OptForSize]>; -let isAsmParserOnly = 1 in { def Int_VCVTSS2SDrr: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", @@ -767,7 +724,6 @@ def Int_VCVTSS2SDrm: I<0x5A, MRMSrcMem, [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, (load addr:$src2)))]>, XS, VEX_4V, Requires<[HasAVX]>; -} let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), @@ -788,7 +744,7 @@ def : Pat<(extloadf32 addr:$src), Requires<[HasSSE2, OptForSpeed]>; // Convert doubleword to packed single/double fp -let isAsmParserOnly = 1 in { // SSE2 instructions without OpSize prefix +// SSE2 instructions without OpSize prefix def Int_VCVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>, @@ -798,7 +754,6 @@ def Int_VCVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), [(set VR128:$dst, (int_x86_sse2_cvtdq2ps (bitconvert (memopv2i64 addr:$src))))]>, TB, VEX, Requires<[HasAVX]>; -} def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>, @@ -810,7 +765,7 @@ def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), TB, Requires<[HasSSE2]>; // FIXME: why the non-intrinsic version is described as SSE3? -let isAsmParserOnly = 1 in { // SSE2 instructions with XS prefix +// SSE2 instructions with XS prefix def Int_VCVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>, @@ -820,7 +775,6 @@ def Int_VCVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), [(set VR128:$dst, (int_x86_sse2_cvtdq2pd (bitconvert (memopv2i64 addr:$src))))]>, XS, VEX, Requires<[HasAVX]>; -} def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>, @@ -833,7 +787,6 @@ def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), // Convert packed single/double fp to doubleword -let isAsmParserOnly = 1 in { def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), @@ -842,13 +795,11 @@ def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; -} def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>; def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>; -let isAsmParserOnly = 1 in { def Int_VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>, @@ -858,7 +809,6 @@ def Int_VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq (memop addr:$src)))]>, VEX; -} def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>; @@ -867,7 +817,7 @@ def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), [(set VR128:$dst, (int_x86_sse2_cvtps2dq (memop addr:$src)))]>; -let isAsmParserOnly = 1 in { // SSE2 packed instructions with XD prefix +// SSE2 packed instructions with XD prefix def Int_VCVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, @@ -877,7 +827,6 @@ def Int_VCVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), [(set VR128:$dst, (int_x86_sse2_cvtpd2dq (memop addr:$src)))]>, XD, VEX, Requires<[HasAVX]>; -} def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, @@ -890,7 +839,7 @@ def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), // Convert with truncation packed single/double fp to doubleword -let isAsmParserOnly = 1 in { // SSE2 packed instructions with XS prefix +// SSE2 packed instructions with XS prefix def VCVTTPS2DQrr : VSSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPS2DQrm : VSSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), @@ -899,7 +848,6 @@ def VCVTTPS2DQYrr : VSSI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPS2DQYrm : VSSI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; -} def CVTTPS2DQrr : SSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -910,7 +858,6 @@ def CVTTPS2DQrm : SSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), (int_x86_sse2_cvttps2dq (memop addr:$src)))]>; -let isAsmParserOnly = 1 in { def Int_VCVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -921,9 +868,7 @@ def Int_VCVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), [(set VR128:$dst, (int_x86_sse2_cvttps2dq (memop addr:$src)))]>, XS, VEX, Requires<[HasAVX]>; -} -let isAsmParserOnly = 1 in { def Int_VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", @@ -934,7 +879,6 @@ def Int_VCVTTPD2DQrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (memop addr:$src)))]>, VEX; -} def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>; @@ -943,7 +887,6 @@ def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src), [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (memop addr:$src)))]>; -let isAsmParserOnly = 1 in { // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. @@ -963,10 +906,9 @@ def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvttpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "cvttpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L; -} // Convert packed single to packed double -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { // SSE2 instructions without OpSize prefix def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX; @@ -982,7 +924,6 @@ def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB; -let isAsmParserOnly = 1 in { def Int_VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>, @@ -992,7 +933,6 @@ def Int_VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), [(set VR128:$dst, (int_x86_sse2_cvtps2pd (load addr:$src)))]>, VEX, Requires<[HasAVX]>; -} def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>, @@ -1004,7 +944,6 @@ def Int_CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), TB, Requires<[HasSSE2]>; // Convert packed double to packed single -let isAsmParserOnly = 1 in { // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. @@ -1024,14 +963,12 @@ def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvtpd2psy\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "cvtpd2psy\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L; -} def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>; def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>; -let isAsmParserOnly = 1 in { def Int_VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>; @@ -1040,7 +977,6 @@ def Int_VCVTPD2PSrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps (memop addr:$src)))]>; -} def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>; @@ -1089,26 +1025,27 @@ def : Pat<(int_x86_avx_cvtt_ps2dq_256 (memopv8f32 addr:$src)), // sse12_cmp_scalar - sse 1 & 2 compare scalar instructions multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop, string asm, string asm_alt> { - def rr : SIi8<0xC2, MRMSrcReg, - (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), - asm, []>; - let mayLoad = 1 in - def rm : SIi8<0xC2, MRMSrcMem, - (outs RC:$dst), (ins RC:$src1, x86memop:$src, SSECC:$cc), - asm, []>; - // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1 in { - def rr_alt : SIi8<0xC2, MRMSrcReg, - (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), - asm_alt, []>; + def rr : SIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), + asm, []>; let mayLoad = 1 in - def rm_alt : SIi8<0xC2, MRMSrcMem, - (outs RC:$dst), (ins RC:$src1, x86memop:$src, i8imm:$src2), - asm_alt, []>; + def rm : SIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src, SSECC:$cc), + asm, []>; } + + // Accept explicit immediate argument form instead of comparison code. + def rr_alt : SIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), + asm_alt, []>; + let mayLoad = 1 in + def rm_alt : SIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src, i8imm:$src2), + asm_alt, []>; } -let neverHasSideEffects = 1, isAsmParserOnly = 1 in { +let neverHasSideEffects = 1 in { defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}", "cmpss\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}">, @@ -1141,14 +1078,12 @@ multiclass sse12_cmp_scalar_int<RegisterClass RC, X86MemOperand x86memop, } // Aliases to match intrinsics which expect XMM operand(s). -let isAsmParserOnly = 1 in { - defm Int_VCMPSS : sse12_cmp_scalar_int<VR128, f32mem, int_x86_sse_cmp_ss, - "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}">, - XS, VEX_4V; - defm Int_VCMPSD : sse12_cmp_scalar_int<VR128, f64mem, int_x86_sse2_cmp_sd, - "cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}">, - XD, VEX_4V; -} +defm Int_VCMPSS : sse12_cmp_scalar_int<VR128, f32mem, int_x86_sse_cmp_ss, + "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}">, + XS, VEX_4V; +defm Int_VCMPSD : sse12_cmp_scalar_int<VR128, f64mem, int_x86_sse2_cmp_sd, + "cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}">, + XD, VEX_4V; let Constraints = "$src1 = $dst" in { defm Int_CMPSS : sse12_cmp_scalar_int<VR128, f32mem, int_x86_sse_cmp_ss, "cmp${cc}ss\t{$src, $dst|$dst, $src}">, XS; @@ -1171,28 +1106,26 @@ multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode, } let Defs = [EFLAGS] in { - let isAsmParserOnly = 1 in { - defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, - "ucomiss", SSEPackedSingle>, VEX; - defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, - "ucomisd", SSEPackedDouble>, OpSize, VEX; - let Pattern = []<dag> in { - defm VCOMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load, - "comiss", SSEPackedSingle>, VEX; - defm VCOMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load, - "comisd", SSEPackedDouble>, OpSize, VEX; - } - - defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem, - load, "ucomiss", SSEPackedSingle>, VEX; - defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem, - load, "ucomisd", SSEPackedDouble>, OpSize, VEX; - - defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, - load, "comiss", SSEPackedSingle>, VEX; - defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, - load, "comisd", SSEPackedDouble>, OpSize, VEX; + defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, + "ucomiss", SSEPackedSingle>, VEX; + defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, + "ucomisd", SSEPackedDouble>, OpSize, VEX; + let Pattern = []<dag> in { + defm VCOMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load, + "comiss", SSEPackedSingle>, VEX; + defm VCOMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load, + "comisd", SSEPackedDouble>, OpSize, VEX; } + + defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem, + load, "ucomiss", SSEPackedSingle>, VEX; + defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem, + load, "ucomisd", SSEPackedDouble>, OpSize, VEX; + + defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, + load, "comiss", SSEPackedSingle>, VEX; + defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, + load, "comisd", SSEPackedDouble>, OpSize, VEX; defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, "ucomiss", SSEPackedSingle>, TB; defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, @@ -1220,41 +1153,40 @@ let Defs = [EFLAGS] in { multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop, Intrinsic Int, string asm, string asm_alt, Domain d> { - def rri : PIi8<0xC2, MRMSrcReg, - (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), asm, - [(set RC:$dst, (Int RC:$src1, RC:$src, imm:$cc))], d>; - def rmi : PIi8<0xC2, MRMSrcMem, - (outs RC:$dst), (ins RC:$src1, f128mem:$src, SSECC:$cc), asm, - [(set RC:$dst, (Int RC:$src1, (memop addr:$src), imm:$cc))], d>; - // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1 in { - def rri_alt : PIi8<0xC2, MRMSrcReg, - (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), - asm_alt, [], d>; - def rmi_alt : PIi8<0xC2, MRMSrcMem, - (outs RC:$dst), (ins RC:$src1, f128mem:$src, i8imm:$src2), - asm_alt, [], d>; + def rri : PIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), asm, + [(set RC:$dst, (Int RC:$src1, RC:$src, imm:$cc))], d>; + def rmi : PIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, f128mem:$src, SSECC:$cc), asm, + [(set RC:$dst, (Int RC:$src1, (memop addr:$src), imm:$cc))], d>; } -} -let isAsmParserOnly = 1 in { - defm VCMPPS : sse12_cmp_packed<VR128, f128mem, int_x86_sse_cmp_ps, - "cmp${cc}ps\t{$src, $src1, $dst|$dst, $src1, $src}", - "cmpps\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", - SSEPackedSingle>, VEX_4V; - defm VCMPPD : sse12_cmp_packed<VR128, f128mem, int_x86_sse2_cmp_pd, - "cmp${cc}pd\t{$src, $src1, $dst|$dst, $src1, $src}", - "cmppd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", - SSEPackedDouble>, OpSize, VEX_4V; - defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, int_x86_avx_cmp_ps_256, - "cmp${cc}ps\t{$src, $src1, $dst|$dst, $src1, $src}", - "cmpps\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", - SSEPackedSingle>, VEX_4V; - defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, int_x86_avx_cmp_pd_256, - "cmp${cc}pd\t{$src, $src1, $dst|$dst, $src1, $src}", - "cmppd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", - SSEPackedDouble>, OpSize, VEX_4V; -} + // Accept explicit immediate argument form instead of comparison code. + def rri_alt : PIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), + asm_alt, [], d>; + def rmi_alt : PIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, f128mem:$src, i8imm:$src2), + asm_alt, [], d>; +} + +defm VCMPPS : sse12_cmp_packed<VR128, f128mem, int_x86_sse_cmp_ps, + "cmp${cc}ps\t{$src, $src1, $dst|$dst, $src1, $src}", + "cmpps\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", + SSEPackedSingle>, VEX_4V; +defm VCMPPD : sse12_cmp_packed<VR128, f128mem, int_x86_sse2_cmp_pd, + "cmp${cc}pd\t{$src, $src1, $dst|$dst, $src1, $src}", + "cmppd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; +defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, int_x86_avx_cmp_ps_256, + "cmp${cc}ps\t{$src, $src1, $dst|$dst, $src1, $src}", + "cmpps\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", + SSEPackedSingle>, VEX_4V; +defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, int_x86_avx_cmp_pd_256, + "cmp${cc}pd\t{$src, $src1, $dst|$dst, $src1, $src}", + "cmppd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; let Constraints = "$src1 = $dst" in { defm CMPPS : sse12_cmp_packed<VR128, f128mem, int_x86_sse_cmp_ps, "cmp${cc}ps\t{$src, $dst|$dst, $src}", @@ -1294,20 +1226,18 @@ multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop, (vt (shufp:$src3 RC:$src1, RC:$src2)))], d>; } -let isAsmParserOnly = 1 in { - defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32, - "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", - memopv4f32, SSEPackedSingle>, VEX_4V; - defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32, - "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", - memopv8f32, SSEPackedSingle>, VEX_4V; - defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64, - "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src2, $src2, $src3}", - memopv2f64, SSEPackedDouble>, OpSize, VEX_4V; - defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64, - "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src2, $src2, $src3}", - memopv4f64, SSEPackedDouble>, OpSize, VEX_4V; -} +defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32, + "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + memopv4f32, SSEPackedSingle>, TB, VEX_4V; +defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32, + "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + memopv8f32, SSEPackedSingle>, TB, VEX_4V; +defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64, + "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src2, $src2, $src3}", + memopv2f64, SSEPackedDouble>, TB, OpSize, VEX_4V; +defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64, + "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src2, $src2, $src3}", + memopv4f64, SSEPackedDouble>, TB, OpSize, VEX_4V; let Constraints = "$src1 = $dst" in { defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32, @@ -1340,33 +1270,31 @@ multiclass sse12_unpack_interleave<bits<8> opc, PatFrag OpNode, ValueType vt, } let AddedComplexity = 10 in { - let isAsmParserOnly = 1 in { - defm VUNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, - VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", - SSEPackedSingle>, VEX_4V; - defm VUNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64, - VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", - SSEPackedDouble>, OpSize, VEX_4V; - defm VUNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32, - VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", - SSEPackedSingle>, VEX_4V; - defm VUNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64, - VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", - SSEPackedDouble>, OpSize, VEX_4V; - - defm VUNPCKHPSY: sse12_unpack_interleave<0x15, unpckh, v8f32, memopv8f32, - VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", - SSEPackedSingle>, VEX_4V; - defm VUNPCKHPDY: sse12_unpack_interleave<0x15, unpckh, v4f64, memopv4f64, - VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", - SSEPackedDouble>, OpSize, VEX_4V; - defm VUNPCKLPSY: sse12_unpack_interleave<0x14, unpckl, v8f32, memopv8f32, - VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", - SSEPackedSingle>, VEX_4V; - defm VUNPCKLPDY: sse12_unpack_interleave<0x14, unpckl, v4f64, memopv4f64, - VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", - SSEPackedDouble>, OpSize, VEX_4V; - } + defm VUNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, + VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedSingle>, VEX_4V; + defm VUNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64, + VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; + defm VUNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32, + VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedSingle>, VEX_4V; + defm VUNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64, + VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; + + defm VUNPCKHPSY: sse12_unpack_interleave<0x15, unpckh, v8f32, memopv8f32, + VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedSingle>, VEX_4V; + defm VUNPCKHPDY: sse12_unpack_interleave<0x15, unpckh, v4f64, memopv4f64, + VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; + defm VUNPCKLPSY: sse12_unpack_interleave<0x14, unpckl, v8f32, memopv8f32, + VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedSingle>, VEX_4V; + defm VUNPCKLPDY: sse12_unpack_interleave<0x14, unpckl, v4f64, memopv4f64, + VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; let Constraints = "$src1 = $dst" in { defm UNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, @@ -1404,30 +1332,28 @@ defm MOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, "movmskps", defm MOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, "movmskpd", SSEPackedDouble>, TB, OpSize; -let isAsmParserOnly = 1 in { - defm VMOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, - "movmskps", SSEPackedSingle>, VEX; - defm VMOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, - "movmskpd", SSEPackedDouble>, OpSize, - VEX; - defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_ps_256, - "movmskps", SSEPackedSingle>, VEX; - defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_pd_256, - "movmskpd", SSEPackedDouble>, OpSize, - VEX; +defm VMOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, + "movmskps", SSEPackedSingle>, VEX; +defm VMOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, + "movmskpd", SSEPackedDouble>, OpSize, + VEX; +defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_ps_256, + "movmskps", SSEPackedSingle>, VEX; +defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_pd_256, + "movmskpd", SSEPackedDouble>, OpSize, + VEX; - // Assembler Only - def VMOVMSKPSr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), - "movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX; - def VMOVMSKPDr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), - "movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize, - VEX; - def VMOVMSKPSYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src), - "movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX; - def VMOVMSKPDYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src), - "movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize, - VEX; -} +// Assembler Only +def VMOVMSKPSr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), + "movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX; +def VMOVMSKPDr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), + "movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize, + VEX; +def VMOVMSKPSYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src), + "movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX; +def VMOVMSKPDYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src), + "movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize, + VEX; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Misc aliasing of packed SSE 1 & 2 instructions @@ -1482,13 +1408,11 @@ def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src), /// multiclass sse12_fp_alias_pack_logical<bits<8> opc, string OpcodeStr, SDNode OpNode> { - let isAsmParserOnly = 1 in { - defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, - FR32, f32, f128mem, memopfsf32, SSEPackedSingle, 0>, VEX_4V; + defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, + FR32, f32, f128mem, memopfsf32, SSEPackedSingle, 0>, VEX_4V; - defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, - FR64, f64, f128mem, memopfsf64, SSEPackedDouble, 0>, OpSize, VEX_4V; - } + defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, + FR64, f64, f128mem, memopfsf64, SSEPackedDouble, 0>, OpSize, VEX_4V; let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, FR32, @@ -1514,7 +1438,7 @@ let neverHasSideEffects = 1, Pattern = []<dag>, isCommutable = 0 in multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr, SDNode OpNode, int HasPat = 0, list<list<dag>> Pattern = []> { - let isAsmParserOnly = 1, Pattern = []<dag> in { + let Pattern = []<dag> in { defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle, !strconcat(OpcodeStr, "ps"), f128mem, !if(HasPat, Pattern[0], // rr @@ -1561,7 +1485,6 @@ multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr, /// sse12_fp_packed_logical_y - AVX 256-bit SSE 1 & 2 logical ops forms /// -let isAsmParserOnly = 1 in { multiclass sse12_fp_packed_logical_y<bits<8> opc, string OpcodeStr> { defm PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle, !strconcat(OpcodeStr, "ps"), f256mem, [], [], 0>, VEX_4V; @@ -1569,7 +1492,6 @@ multiclass sse12_fp_packed_logical_y<bits<8> opc, string OpcodeStr> { defm PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble, !strconcat(OpcodeStr, "pd"), f256mem, [], [], 0>, OpSize, VEX_4V; } -} // AVX 256-bit packed logical ops forms defm VAND : sse12_fp_packed_logical_y<0x54, "and">; @@ -1667,38 +1589,36 @@ multiclass basic_sse12_fp_binop_p_y_int<bits<8> opc, string OpcodeStr> { } // Binary Arithmetic instructions -let isAsmParserOnly = 1 in { - defm VADD : basic_sse12_fp_binop_s<0x58, "add", fadd, 0>, - basic_sse12_fp_binop_s_int<0x58, "add", 0>, - basic_sse12_fp_binop_p<0x58, "add", fadd, 0>, - basic_sse12_fp_binop_p_y<0x58, "add", fadd>, VEX_4V; - defm VMUL : basic_sse12_fp_binop_s<0x59, "mul", fmul, 0>, - basic_sse12_fp_binop_s_int<0x59, "mul", 0>, - basic_sse12_fp_binop_p<0x59, "mul", fmul, 0>, - basic_sse12_fp_binop_p_y<0x59, "mul", fmul>, VEX_4V; +defm VADD : basic_sse12_fp_binop_s<0x58, "add", fadd, 0>, + basic_sse12_fp_binop_s_int<0x58, "add", 0>, + basic_sse12_fp_binop_p<0x58, "add", fadd, 0>, + basic_sse12_fp_binop_p_y<0x58, "add", fadd>, VEX_4V; +defm VMUL : basic_sse12_fp_binop_s<0x59, "mul", fmul, 0>, + basic_sse12_fp_binop_s_int<0x59, "mul", 0>, + basic_sse12_fp_binop_p<0x59, "mul", fmul, 0>, + basic_sse12_fp_binop_p_y<0x59, "mul", fmul>, VEX_4V; - let isCommutable = 0 in { - defm VSUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub, 0>, - basic_sse12_fp_binop_s_int<0x5C, "sub", 0>, - basic_sse12_fp_binop_p<0x5C, "sub", fsub, 0>, - basic_sse12_fp_binop_p_y<0x5C, "sub", fsub>, VEX_4V; - defm VDIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv, 0>, - basic_sse12_fp_binop_s_int<0x5E, "div", 0>, - basic_sse12_fp_binop_p<0x5E, "div", fdiv, 0>, - basic_sse12_fp_binop_p_y<0x5E, "div", fdiv>, VEX_4V; - defm VMAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax, 0>, - basic_sse12_fp_binop_s_int<0x5F, "max", 0>, - basic_sse12_fp_binop_p<0x5F, "max", X86fmax, 0>, - basic_sse12_fp_binop_p_int<0x5F, "max", 0>, - basic_sse12_fp_binop_p_y<0x5F, "max", X86fmax>, - basic_sse12_fp_binop_p_y_int<0x5F, "max">, VEX_4V; - defm VMIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin, 0>, - basic_sse12_fp_binop_s_int<0x5D, "min", 0>, - basic_sse12_fp_binop_p<0x5D, "min", X86fmin, 0>, - basic_sse12_fp_binop_p_int<0x5D, "min", 0>, - basic_sse12_fp_binop_p_y_int<0x5D, "min">, - basic_sse12_fp_binop_p_y<0x5D, "min", X86fmin>, VEX_4V; - } +let isCommutable = 0 in { + defm VSUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub, 0>, + basic_sse12_fp_binop_s_int<0x5C, "sub", 0>, + basic_sse12_fp_binop_p<0x5C, "sub", fsub, 0>, + basic_sse12_fp_binop_p_y<0x5C, "sub", fsub>, VEX_4V; + defm VDIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv, 0>, + basic_sse12_fp_binop_s_int<0x5E, "div", 0>, + basic_sse12_fp_binop_p<0x5E, "div", fdiv, 0>, + basic_sse12_fp_binop_p_y<0x5E, "div", fdiv>, VEX_4V; + defm VMAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax, 0>, + basic_sse12_fp_binop_s_int<0x5F, "max", 0>, + basic_sse12_fp_binop_p<0x5F, "max", X86fmax, 0>, + basic_sse12_fp_binop_p_int<0x5F, "max", 0>, + basic_sse12_fp_binop_p_y<0x5F, "max", X86fmax>, + basic_sse12_fp_binop_p_y_int<0x5F, "max">, VEX_4V; + defm VMIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin, 0>, + basic_sse12_fp_binop_s_int<0x5D, "min", 0>, + basic_sse12_fp_binop_p<0x5D, "min", X86fmin, 0>, + basic_sse12_fp_binop_p_int<0x5D, "min", 0>, + basic_sse12_fp_binop_p_y_int<0x5D, "min">, + basic_sse12_fp_binop_p_y<0x5D, "min", X86fmin>, VEX_4V; } let Constraints = "$src1 = $dst" in { @@ -1899,7 +1819,7 @@ multiclass sse2_fp_unop_p_y_int<bits<8> opc, string OpcodeStr, [(set VR256:$dst, (V2F64Int (memopv4f64 addr:$src)))]>; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { // Square root. defm VSQRT : sse1_fp_unop_s_avx<0x51, "vsqrt", fsqrt, int_x86_sse_sqrt_ss>, sse2_fp_unop_s_avx<0x51, "vsqrt", fsqrt, int_x86_sse2_sqrt_sd>, @@ -1955,67 +1875,65 @@ defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss>, // SSE 1 & 2 - Non-temporal stores //===----------------------------------------------------------------------===// -let isAsmParserOnly = 1 in { - def VMOVNTPSmr_Int : VPSI<0x2B, MRMDestMem, (outs), - (ins i128mem:$dst, VR128:$src), - "movntps\t{$src, $dst|$dst, $src}", - [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>, VEX; - def VMOVNTPDmr_Int : VPDI<0x2B, MRMDestMem, (outs), - (ins i128mem:$dst, VR128:$src), - "movntpd\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>, VEX; +def VMOVNTPSmr_Int : VPSI<0x2B, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>, VEX; +def VMOVNTPDmr_Int : VPDI<0x2B, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>, VEX; - let ExeDomain = SSEPackedInt in - def VMOVNTDQmr_Int : VPDI<0xE7, MRMDestMem, (outs), +let ExeDomain = SSEPackedInt in + def VMOVNTDQmr_Int : VPDI<0xE7, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>, VEX; + +let AddedComplexity = 400 in { // Prefer non-temporal versions + def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), + addr:$dst)]>, VEX; + def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movntdq\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>, VEX; - - let AddedComplexity = 400 in { // Prefer non-temporal versions - def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs), - (ins f128mem:$dst, VR128:$src), - "movntps\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4f32 VR128:$src), - addr:$dst)]>, VEX; - def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs), - (ins f128mem:$dst, VR128:$src), - "movntpd\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v2f64 VR128:$src), - addr:$dst)]>, VEX; - def VMOVNTDQ_64mr : VPDI<0xE7, MRMDestMem, (outs), - (ins f128mem:$dst, VR128:$src), - "movntdq\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v2f64 VR128:$src), - addr:$dst)]>, VEX; - let ExeDomain = SSEPackedInt in - def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2f64 VR128:$src), + addr:$dst)]>, VEX; + def VMOVNTDQ_64mr : VPDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4f32 VR128:$src), + [(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>, VEX; - - def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs), - (ins f256mem:$dst, VR256:$src), - "movntps\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v8f32 VR256:$src), - addr:$dst)]>, VEX; - def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs), - (ins f256mem:$dst, VR256:$src), - "movntpd\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4f64 VR256:$src), - addr:$dst)]>, VEX; - def VMOVNTDQY_64mr : VPDI<0xE7, MRMDestMem, (outs), - (ins f256mem:$dst, VR256:$src), - "movntdq\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4f64 VR256:$src), - addr:$dst)]>, VEX; - let ExeDomain = SSEPackedInt in - def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs), + let ExeDomain = SSEPackedInt in + def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), + addr:$dst)]>, VEX; + + def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v8f32 VR256:$src), + addr:$dst)]>, VEX; + def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f64 VR256:$src), + addr:$dst)]>, VEX; + def VMOVNTDQY_64mr : VPDI<0xE7, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movntdq\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v8f32 VR256:$src), + [(alignednontemporalstore (v4f64 VR256:$src), addr:$dst)]>, VEX; - } + let ExeDomain = SSEPackedInt in + def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v8f32 VR256:$src), + addr:$dst)]>, VEX; } def : Pat<(int_x86_avx_movnt_dq_256 addr:$dst, VR256:$src), @@ -2138,12 +2056,10 @@ def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), // SSE 1 & 2 - Load/Store XCSR register //===----------------------------------------------------------------------===// -let isAsmParserOnly = 1 in { - def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src), - "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, VEX; - def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), - "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, VEX; -} +def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src), + "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, VEX; +def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), + "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, VEX; def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>; @@ -2156,45 +2072,43 @@ def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), let ExeDomain = SSEPackedInt in { // SSE integer instructions -let isAsmParserOnly = 1 in { - let neverHasSideEffects = 1 in { - def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; - def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), - "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; - } - def VMOVDQUrr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX; - def VMOVDQUYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), - "movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX; - - let canFoldAsLoad = 1, mayLoad = 1 in { - def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), - "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; - def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), - "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; - let Predicates = [HasAVX] in { - def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), - "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; - def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), - "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; - } - } +let neverHasSideEffects = 1 in { +def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; +def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; +} +def VMOVDQUrr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX; +def VMOVDQUYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX; - let mayStore = 1 in { - def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs), - (ins i128mem:$dst, VR128:$src), - "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; - def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs), - (ins i256mem:$dst, VR256:$src), - "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; - let Predicates = [HasAVX] in { - def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), +let canFoldAsLoad = 1, mayLoad = 1 in { +def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; +def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; +let Predicates = [HasAVX] in { + def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; - def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), + def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; - } - } +} +} + +let mayStore = 1 in { +def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; +def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs), + (ins i256mem:$dst, VR256:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; +let Predicates = [HasAVX] in { +def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; +def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), + "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; +} } let neverHasSideEffects = 1 in @@ -2226,23 +2140,11 @@ def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), } // Intrinsic forms of MOVDQU load and store -let isAsmParserOnly = 1 in { -let canFoldAsLoad = 1 in -def VMOVDQUrm_Int : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), - "vmovdqu\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_loadu_dq addr:$src))]>, - XS, VEX, Requires<[HasAVX]>; def VMOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "vmovdqu\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>, XS, VEX, Requires<[HasAVX]>; -} -let canFoldAsLoad = 1 in -def MOVDQUrm_Int : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), - "movdqu\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_loadu_dq addr:$src))]>, - XS, Requires<[HasSSE2]>; def MOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>, @@ -2347,7 +2249,7 @@ multiclass PDI_binop_rm_v2i64<bits<8> opc, string OpcodeStr, SDNode OpNode, // 128-bit Integer Arithmetic -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPADDB : PDI_binop_rm<0xFC, "vpaddb", add, v16i8, 1, 0 /*3addr*/>, VEX_4V; defm VPADDW : PDI_binop_rm<0xFD, "vpaddw", add, v8i16, 1, 0>, VEX_4V; defm VPADDD : PDI_binop_rm<0xFE, "vpaddd", add, v4i32, 1, 0>, VEX_4V; @@ -2437,7 +2339,7 @@ defm PSADBW : PDI_binop_rm_int<0xF6, "psadbw", int_x86_sse2_psad_bw, 1>; // SSE2 - Packed Integer Logical Instructions //===---------------------------------------------------------------------===// -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "vpsllw", int_x86_sse2_psll_w, int_x86_sse2_pslli_w, 0>, VEX_4V; @@ -2584,7 +2486,7 @@ let Predicates = [HasSSE2] in { // SSE2 - Packed Integer Comparison Instructions //===---------------------------------------------------------------------===// -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPCMPEQB : PDI_binop_rm_int<0x74, "vpcmpeqb", int_x86_sse2_pcmpeq_b, 1, 0>, VEX_4V; defm VPCMPEQW : PDI_binop_rm_int<0x75, "vpcmpeqw", int_x86_sse2_pcmpeq_w, 1, @@ -2638,7 +2540,7 @@ def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, (memop addr:$src2))), // SSE2 - Packed Integer Pack Instructions //===---------------------------------------------------------------------===// -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPACKSSWB : PDI_binop_rm_int<0x63, "vpacksswb", int_x86_sse2_packsswb_128, 0, 0>, VEX_4V; defm VPACKSSDW : PDI_binop_rm_int<0x6B, "vpackssdw", int_x86_sse2_packssdw_128, @@ -2676,7 +2578,7 @@ def mi : Ii8<0x70, MRMSrcMem, } } // ExeDomain = SSEPackedInt -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { let AddedComplexity = 5 in defm VPSHUFD : sse2_pshuffle<"vpshufd", v4i32, pshufd, bc_v4i32>, OpSize, VEX; @@ -2724,7 +2626,7 @@ multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt, addr:$src2))))]>; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, unpckl, bc_v16i8, 0>, VEX_4V; defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, unpckl, bc_v8i16, @@ -2834,7 +2736,7 @@ multiclass sse2_pinsrw<bit Is2Addr = 1> { } // Extract -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in def VPEXTRWri : Ii8<0xC5, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), "vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", @@ -2847,7 +2749,7 @@ def PEXTRWri : PDIi8<0xC5, MRMSrcReg, imm:$src2))]>; // Insert -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPINSRW : sse2_pinsrw<0>, OpSize, VEX_4V; def VPINSRWrr64i : Ii8<0xC4, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR64:$src2, i32i8imm:$src3), @@ -2866,13 +2768,11 @@ let Constraints = "$src1 = $dst" in let ExeDomain = SSEPackedInt in { -let isAsmParserOnly = 1 in { def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>, VEX; def VPMOVMSKBr64r : VPDI<0xD7, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", []>, VEX; -} def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>; @@ -2885,7 +2785,6 @@ def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), let ExeDomain = SSEPackedInt in { -let isAsmParserOnly = 1 in { let Uses = [EDI] in def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), @@ -2896,7 +2795,6 @@ def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>, VEX; -} let Uses = [EDI] in def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), @@ -2914,7 +2812,6 @@ def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), //===---------------------------------------------------------------------===// // Move Int Doubleword to Packed Double Int -let isAsmParserOnly = 1 in { def VMOVDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -2924,7 +2821,6 @@ def VMOVDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>, VEX; -} def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -2943,7 +2839,6 @@ def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), // Move Int Doubleword to Single Scalar -let isAsmParserOnly = 1 in { def VMOVDI2SSrr : VPDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>, VEX; @@ -2952,7 +2847,6 @@ def VMOVDI2SSrm : VPDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>, VEX; -} def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>; @@ -2962,7 +2856,6 @@ def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>; // Move Packed Doubleword Int to Packed Double Int -let isAsmParserOnly = 1 in { def VMOVPDI2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), @@ -2972,7 +2865,6 @@ def VMOVPDI2DImr : VPDI<0x7E, MRMDestMem, (outs), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (vector_extract (v4i32 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX; -} def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), @@ -2998,14 +2890,12 @@ def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>; // Move Scalar Single to Double Int -let isAsmParserOnly = 1 in { def VMOVSS2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>, VEX; def VMOVSS2DImr : VPDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>, VEX; -} def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>; @@ -3014,7 +2904,7 @@ def MOVSS2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>; // movd / movq to XMM register zero-extends -let AddedComplexity = 15, isAsmParserOnly = 1 in { +let AddedComplexity = 15 in { def VMOVZDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86vzmovl @@ -3038,7 +2928,6 @@ def MOVZQI2PQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), } let AddedComplexity = 20 in { -let isAsmParserOnly = 1 in def VMOVZDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -3064,7 +2953,6 @@ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))), //===---------------------------------------------------------------------===// // Move Quadword Int to Packed Quadword Int -let isAsmParserOnly = 1 in def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -3077,7 +2965,6 @@ def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), Requires<[HasSSE2]>; // SSE2 instruction with XS Prefix // Move Packed Quadword Int to Quadword Int -let isAsmParserOnly = 1 in def VMOVPQI2QImr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (vector_extract (v2i64 VR128:$src), @@ -3091,7 +2978,6 @@ def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), (f64 (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; // Store / copy lower 64-bits of a XMM register. -let isAsmParserOnly = 1 in def VMOVLQ128mr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>, VEX; @@ -3099,7 +2985,7 @@ def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>; -let AddedComplexity = 20, isAsmParserOnly = 1 in +let AddedComplexity = 20 in def VMOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -3124,7 +3010,7 @@ def : Pat<(v2i64 (X86vzload addr:$src)), (MOVZQI2PQIrm addr:$src)>; // Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in // IA32 document. movq xmm1, xmm2 does clear the high bits. -let isAsmParserOnly = 1, AddedComplexity = 15 in +let AddedComplexity = 15 in def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, @@ -3135,7 +3021,7 @@ def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, XS, Requires<[HasSSE2]>; -let AddedComplexity = 20, isAsmParserOnly = 1 in +let AddedComplexity = 20 in def VMOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl @@ -3153,7 +3039,6 @@ def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4i32 addr:$src)))), } // Instructions to match in the assembler -let isAsmParserOnly = 1 in { def VMOVQs64rr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W; def VMOVQd64rr : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), @@ -3161,13 +3046,12 @@ def VMOVQd64rr : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), // Recognize "movd" with GR64 destination, but encode as a "movq" def VMOVQd64rr_alt : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W; -} // Instructions for the disassembler // xr = XMM register // xm = mem64 -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in def VMOVQxrxr: I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vmovq\t{$src, $dst|$dst, $src}", []>, VEX, XS; def MOVQxrxr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), @@ -3209,7 +3093,7 @@ let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, //===---------------------------------------------------------------------===// // Convert Packed Double FP to Packed DW Integers -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. @@ -3237,7 +3121,7 @@ def CVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; // Convert Packed DW Integers to Packed Double FP -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { def VCVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), @@ -3288,7 +3172,7 @@ def rm : S3SI<op, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { // FIXME: Merge above classes when we have patterns for the ymm version defm VMOVSHDUP : sse3_replicate_sfp<0x16, movshdup, "vmovshdup">, VEX; defm VMOVSLDUP : sse3_replicate_sfp<0x12, movsldup, "vmovsldup">, VEX; @@ -3319,7 +3203,7 @@ def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), []>; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { // FIXME: Merge above classes when we have patterns for the ymm version defm VMOVDDUP : sse3_replicate_dfp<"vmovddup">, VEX; defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup">, VEX; @@ -3327,7 +3211,7 @@ let isAsmParserOnly = 1, Predicates = [HasAVX] in { defm MOVDDUP : sse3_replicate_dfp<"movddup">; // Move Unaligned Integer -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vlddqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, VEX; @@ -3391,21 +3275,21 @@ multiclass sse3_addsub<Intrinsic Int, string OpcodeStr, RegisterClass RC, [(set RC:$dst, (Int RC:$src1, (memop addr:$src2)))]>; } -let isAsmParserOnly = 1, Predicates = [HasAVX], +let Predicates = [HasAVX], ExeDomain = SSEPackedDouble in { defm VADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "vaddsubps", VR128, - f128mem, 0>, XD, VEX_4V; + f128mem, 0>, TB, XD, VEX_4V; defm VADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "vaddsubpd", VR128, - f128mem, 0>, OpSize, VEX_4V; + f128mem, 0>, TB, OpSize, VEX_4V; defm VADDSUBPSY : sse3_addsub<int_x86_avx_addsub_ps_256, "vaddsubps", VR256, - f256mem, 0>, XD, VEX_4V; + f256mem, 0>, TB, XD, VEX_4V; defm VADDSUBPDY : sse3_addsub<int_x86_avx_addsub_pd_256, "vaddsubpd", VR256, - f256mem, 0>, OpSize, VEX_4V; + f256mem, 0>, TB, OpSize, VEX_4V; } let Constraints = "$src1 = $dst", Predicates = [HasSSE3], ExeDomain = SSEPackedDouble in { defm ADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "addsubps", VR128, - f128mem>, XD; + f128mem>, TB, XD; defm ADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "addsubpd", VR128, f128mem>, TB, OpSize; } @@ -3444,7 +3328,7 @@ multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC, [(set RC:$dst, (vt (IntId RC:$src1, (memop addr:$src2))))]>; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem, int_x86_sse3_hadd_ps, 0>, VEX_4V; defm VHADDPD : S3_Int <0x7C, "vhaddpd", v2f64, VR128, f128mem, @@ -3496,7 +3380,7 @@ multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr, (bitconvert (mem_frag128 addr:$src))))]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPABSB : SS3I_unop_rm_int<0x1C, "vpabsb", memopv16i8, int_x86_ssse3_pabs_b_128>, VEX; defm VPABSW : SS3I_unop_rm_int<0x1D, "vpabsw", memopv8i16, @@ -3538,7 +3422,7 @@ multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr, (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { let isCommutable = 0 in { defm VPHADDW : SS3I_binop_rm_int<0x01, "vphaddw", memopv8i16, int_x86_ssse3_phadd_w_128, 0>, VEX_4V; @@ -3630,7 +3514,7 @@ multiclass ssse3_palign<string asm, bit Is2Addr = 1> { []>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPALIGN : ssse3_palign<"vpalignr", 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PALIGN : ssse3_palign<"palignr">; @@ -3985,7 +3869,7 @@ multiclass SS41I_binop_rm_int8<bits<8> opc, string OpcodeStr, Intrinsic IntId> { OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPMOVSXBW : SS41I_binop_rm_int8<0x20, "vpmovsxbw", int_x86_sse41_pmovsxbw>, VEX; defm VPMOVSXWD : SS41I_binop_rm_int8<0x23, "vpmovsxwd", int_x86_sse41_pmovsxwd>, @@ -4051,7 +3935,7 @@ multiclass SS41I_binop_rm_int4<bits<8> opc, string OpcodeStr, Intrinsic IntId> { OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPMOVSXBD : SS41I_binop_rm_int4<0x21, "vpmovsxbd", int_x86_sse41_pmovsxbd>, VEX; defm VPMOVSXWQ : SS41I_binop_rm_int4<0x24, "vpmovsxwq", int_x86_sse41_pmovsxwq>, @@ -4092,7 +3976,7 @@ multiclass SS41I_binop_rm_int2<bits<8> opc, string OpcodeStr, Intrinsic IntId> { OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPMOVSXBQ : SS41I_binop_rm_int2<0x22, "vpmovsxbq", int_x86_sse41_pmovsxbq>, VEX; defm VPMOVZXBQ : SS41I_binop_rm_int2<0x32, "vpmovzxbq", int_x86_sse41_pmovzxbq>, @@ -4134,7 +4018,7 @@ multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> { // (store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX; def VPEXTRBrr64 : SS4AIi8<0x14, MRMDestReg, (outs GR64:$dst), (ins VR128:$src1, i32i8imm:$src2), @@ -4156,7 +4040,7 @@ multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> { // (store (i16 (trunc (X86pextrw (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX; defm PEXTRW : SS41I_extract16<0x15, "pextrw">; @@ -4178,7 +4062,7 @@ multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> { addr:$dst)]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX; defm PEXTRD : SS41I_extract32<0x16, "pextrd">; @@ -4199,7 +4083,7 @@ multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> { addr:$dst)]>, OpSize, REX_W; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W; defm PEXTRQ : SS41I_extract64<0x16, "pextrq">; @@ -4222,7 +4106,7 @@ multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr> { addr:$dst)]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX; def VEXTRACTPSrr64 : SS4AIi8<0x17, MRMDestReg, (outs GR64:$dst), (ins VR128:$src1, i32i8imm:$src2), @@ -4262,7 +4146,7 @@ multiclass SS41I_insert8<bits<8> opc, string asm, bit Is2Addr = 1> { imm:$src3))]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PINSRB : SS41I_insert8<0x20, "pinsrb">; @@ -4288,7 +4172,7 @@ multiclass SS41I_insert32<bits<8> opc, string asm, bit Is2Addr = 1> { imm:$src3)))]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PINSRD : SS41I_insert32<0x22, "pinsrd">; @@ -4314,7 +4198,7 @@ multiclass SS41I_insert64<bits<8> opc, string asm, bit Is2Addr = 1> { imm:$src3)))]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W; let Constraints = "$src1 = $dst" in defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W; @@ -4347,7 +4231,7 @@ multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1> { let Constraints = "$src1 = $dst" in defm INSERTPS : SS41I_insertf32<0x21, "insertps">; -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>, VEX_4V; def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3), @@ -4517,7 +4401,7 @@ multiclass sse41_fp_binop_rm_avx_s<bits<8> opcss, bits<8> opcsd, } // FP round - roundss, roundps, roundsd, roundpd -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { // Intrinsic form defm VROUND : sse41_fp_unop_rm<0x08, 0x09, "vround", f128mem, VR128, memopv4f32, memopv2f64, @@ -4552,7 +4436,7 @@ defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round", // ptest instruction we'll lower to this in X86ISelLowering primarily from // the intel intrinsic that corresponds to this. -let Defs = [EFLAGS], isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Defs = [EFLAGS], Predicates = [HasAVX] in { def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, (v4f32 VR128:$src2)))]>, @@ -4595,7 +4479,7 @@ multiclass avx_bittest<bits<8> opc, string OpcodeStr, RegisterClass RC, OpSize, VEX; } -let Defs = [EFLAGS], isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Defs = [EFLAGS], Predicates = [HasAVX] in { defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, memopv4f32, v4f32>; defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, memopv8f32, v8f32>; defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, memopv2f64, v2f64>; @@ -4644,7 +4528,7 @@ multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr, (bitconvert (memopv8i16 addr:$src))))]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "vphminposuw", int_x86_sse41_phminposuw>, VEX; defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw", @@ -4670,7 +4554,7 @@ multiclass SS41I_binop_rm_int<bits<8> opc, string OpcodeStr, (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { let isCommutable = 0 in defm VPACKUSDW : SS41I_binop_rm_int<0x2B, "vpackusdw", int_x86_sse41_packusdw, 0>, VEX_4V; @@ -4737,7 +4621,7 @@ multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32>; @@ -4769,7 +4653,7 @@ multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { let isCommutable = 0 in { defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps, VR128, memopv16i8, i128mem, 0>, VEX_4V; @@ -4810,7 +4694,7 @@ let Constraints = "$src1 = $dst" in { } /// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, PatFrag mem_frag, Intrinsic IntId> { @@ -4870,7 +4754,7 @@ defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>; def : Pat<(X86pblendv VR128:$src1, VR128:$src2, XMM0), (PBLENDVBrr0 VR128:$src1, VR128:$src2)>; -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>, @@ -4904,7 +4788,7 @@ multiclass SS42I_binop_rm_int<bits<8> opc, string OpcodeStr, (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; } -let isAsmParserOnly = 1, Predicates = [HasAVX] in +let Predicates = [HasAVX] in defm VPCMPGTQ : SS42I_binop_rm_int<0x37, "vpcmpgtq", int_x86_sse42_pcmpgtq, 0>, VEX_4V; let Constraints = "$src1 = $dst" in @@ -4936,8 +4820,7 @@ let Defs = [EFLAGS], usesCustomInserter = 1 in { defm VPCMPISTRM128 : pseudo_pcmpistrm<"#VPCMPISTRM128">, Requires<[HasAVX]>; } -let Defs = [XMM0, EFLAGS], isAsmParserOnly = 1, - Predicates = [HasAVX] in { +let Defs = [XMM0, EFLAGS], Predicates = [HasAVX] in { def VPCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "vpcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize, VEX; @@ -4972,7 +4855,7 @@ let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in { defm VPCMPESTRM128 : pseudo_pcmpestrm<"#VPCMPESTRM128">, Requires<[HasAVX]>; } -let isAsmParserOnly = 1, Predicates = [HasAVX], +let Predicates = [HasAVX], Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in { def VPCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src3, i8imm:$src5), @@ -5007,7 +4890,7 @@ let Defs = [ECX, EFLAGS] in { } } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPCMPISTRI : SS42AI_pcmpistri<int_x86_sse42_pcmpistri128, "vpcmpistri">, VEX; defm VPCMPISTRIA : SS42AI_pcmpistri<int_x86_sse42_pcmpistria128, "vpcmpistri">, @@ -5046,7 +4929,7 @@ let Defs = [ECX, EFLAGS], Uses = [EAX, EDX] in { } } -let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let Predicates = [HasAVX] in { defm VPCMPESTRI : SS42AI_pcmpestri<int_x86_sse42_pcmpestri128, "vpcmpestri">, VEX; defm VPCMPESTRIA : SS42AI_pcmpestri<int_x86_sse42_pcmpestria128, "vpcmpestri">, @@ -5165,7 +5048,7 @@ multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr, } // Perform One Round of an AES Encryption/Decryption Flow -let isAsmParserOnly = 1, Predicates = [HasAVX, HasAES] in { +let Predicates = [HasAVX, HasAES] in { defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc", int_x86_aesni_aesenc, 0>, VEX_4V; defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast", @@ -5205,7 +5088,7 @@ def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, (memop addr:$src2))), (AESDECLASTrm VR128:$src1, addr:$src2)>; // Perform the AES InvMixColumn Transformation -let isAsmParserOnly = 1, Predicates = [HasAVX, HasAES] in { +let Predicates = [HasAVX, HasAES] in { def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1), "vaesimc\t{$src1, $dst|$dst, $src1}", @@ -5233,7 +5116,7 @@ def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), OpSize; // AES Round Key Generation Assist -let isAsmParserOnly = 1, Predicates = [HasAVX, HasAES] in { +let Predicates = [HasAVX, HasAES] in { def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", @@ -5269,7 +5152,6 @@ def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), // Only the AVX version of CLMUL instructions are described here. // Carry-less Multiplication instructions -let isAsmParserOnly = 1 in { def VPCLMULQDQrr : CLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", @@ -5295,13 +5177,10 @@ defm VPCLMULHQLQDQ : avx_vpclmul<"vpclmulhqlqdq">; defm VPCLMULLQHQDQ : avx_vpclmul<"vpclmullqhqdq">; defm VPCLMULLQLQDQ : avx_vpclmul<"vpclmullqlqdq">; -} // isAsmParserOnly - //===----------------------------------------------------------------------===// // AVX Instructions //===----------------------------------------------------------------------===// -let isAsmParserOnly = 1 in { // Load from memory and broadcast to all elements of the destination operand class avx_broadcast<bits<8> opc, string OpcodeStr, RegisterClass RC, @@ -5435,8 +5314,6 @@ def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall", def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper", [(int_x86_avx_vzeroupper)]>, VEX, Requires<[HasAVX]>; -} // isAsmParserOnly - def : Pat<(int_x86_avx_vinsertf128_pd_256 VR256:$src1, VR128:$src2, imm:$src3), (VINSERTF128rr VR256:$src1, VR128:$src2, imm:$src3)>; def : Pat<(int_x86_avx_vinsertf128_ps_256 VR256:$src1, VR128:$src2, imm:$src3), @@ -5622,11 +5499,15 @@ def : Pat<(X86Movddup (bc_v2f64 // Shuffle with UNPCKLPS def : Pat<(v4f32 (X86Unpcklps VR128:$src1, (memopv4f32 addr:$src2))), (VUNPCKLPSrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>; +def : Pat<(v8f32 (X86Unpcklpsy VR256:$src1, (memopv8f32 addr:$src2))), + (VUNPCKLPSYrm VR256:$src1, addr:$src2)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86Unpcklps VR128:$src1, (memopv4f32 addr:$src2))), (UNPCKLPSrm VR128:$src1, addr:$src2)>; def : Pat<(v4f32 (X86Unpcklps VR128:$src1, VR128:$src2)), (VUNPCKLPSrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>; +def : Pat<(v8f32 (X86Unpcklpsy VR256:$src1, VR256:$src2)), + (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86Unpcklps VR128:$src1, VR128:$src2)), (UNPCKLPSrr VR128:$src1, VR128:$src2)>; @@ -5644,11 +5525,15 @@ def : Pat<(v4f32 (X86Unpckhps VR128:$src1, VR128:$src2)), // Shuffle with UNPCKLPD def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (memopv2f64 addr:$src2))), (VUNPCKLPDrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>; +def : Pat<(v4f64 (X86Unpcklpdy VR256:$src1, (memopv4f64 addr:$src2))), + (VUNPCKLPDYrm VR256:$src1, addr:$src2)>, Requires<[HasAVX]>; def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (memopv2f64 addr:$src2))), (UNPCKLPDrm VR128:$src1, addr:$src2)>; def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, VR128:$src2)), (VUNPCKLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>; +def : Pat<(v4f64 (X86Unpcklpdy VR256:$src1, VR256:$src2)), + (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>, Requires<[HasAVX]>; def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, VR128:$src2)), (UNPCKLPDrr VR128:$src1, VR128:$src2)>; diff --git a/lib/Target/X86/X86InstrSystem.td b/lib/Target/X86/X86InstrSystem.td index 6a24d14..f73cff3 100644 --- a/lib/Target/X86/X86InstrSystem.td +++ b/lib/Target/X86/X86InstrSystem.td @@ -34,9 +34,16 @@ let Uses = [EFLAGS] in def INTO : I<0xce, RawFrm, (outs), (ins), "into", []>; def INT3 : I<0xcc, RawFrm, (outs), (ins), "int3", [(int_x86_int (i8 3))]>; + +// The long form of "int $3" turns into int3 as a size optimization. +// FIXME: This doesn't work because InstAlias can't match immediate constants. +//def : InstAlias<"int\t$3", (INT3)>; + + def INT : Ii8<0xcd, RawFrm, (outs), (ins i8imm:$trap), "int\t$trap", [(int_x86_int imm:$trap)]>; + def SYSCALL : I<0x05, RawFrm, (outs), (ins), "syscall", []>, TB; def SYSRETL : I<0x07, RawFrm, (outs), (ins), "sysretl", []>, TB; def SYSRETQ :RI<0x07, RawFrm, (outs), (ins), "sysretq", []>, TB, @@ -207,10 +214,15 @@ def LSL64rr : RI<0x03, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), def INVLPG : I<0x01, MRM7m, (outs), (ins i8mem:$addr), "invlpg\t$addr", []>, TB; -def STRr : I<0x00, MRM1r, (outs GR16:$dst), (ins), - "str{w}\t{$dst}", []>, TB; -def STRm : I<0x00, MRM1m, (outs i16mem:$dst), (ins), - "str{w}\t{$dst}", []>, TB; +def STR16r : I<0x00, MRM1r, (outs GR16:$dst), (ins), + "str{w}\t{$dst}", []>, TB, OpSize; +def STR32r : I<0x00, MRM1r, (outs GR32:$dst), (ins), + "str{l}\t{$dst}", []>, TB; +def STR64r : RI<0x00, MRM1r, (outs GR64:$dst), (ins), + "str{q}\t{$dst}", []>, TB; +def STRm : I<0x00, MRM1m, (outs i16mem:$dst), (ins), + "str{w}\t{$dst}", []>, TB; + def LTRr : I<0x00, MRM3r, (outs), (ins GR16:$src), "ltr{w}\t{$src}", []>, TB; def LTRm : I<0x00, MRM3m, (outs), (ins i16mem:$src), @@ -393,3 +405,23 @@ let Defs = [RDX, RAX], Uses = [RCX] in let Uses = [RDX, RAX, RCX] in def XSETBV : I<0x01, MRM_D1, (outs), (ins), "xsetbv", []>, TB; + +//===----------------------------------------------------------------------===// +// VIA PadLock crypto instructions +let Defs = [RAX, RDI], Uses = [RDX, RDI] in + def XSTORE : I<0xc0, RawFrm, (outs), (ins), "xstore", []>, A7; + +let Defs = [RSI, RDI], Uses = [RBX, RDX, RSI, RDI] in { + def XCRYPTECB : I<0xc8, RawFrm, (outs), (ins), "xcryptecb", []>, A7; + def XCRYPTCBC : I<0xd0, RawFrm, (outs), (ins), "xcryptcbc", []>, A7; + def XCRYPTCTR : I<0xd8, RawFrm, (outs), (ins), "xcryptctr", []>, A7; + def XCRYPTCFB : I<0xe0, RawFrm, (outs), (ins), "xcryptcfb", []>, A7; + def XCRYPTOFB : I<0xe8, RawFrm, (outs), (ins), "xcryptofb", []>, A7; +} + +let Defs = [RAX, RSI, RDI], Uses = [RAX, RSI, RDI] in { + def XSHA1 : I<0xc8, RawFrm, (outs), (ins), "xsha1", []>, A6; + def XSHA256 : I<0xd0, RawFrm, (outs), (ins), "xsha256", []>, A6; +} +let Defs = [RAX, RDX, RSI], Uses = [RAX, RSI] in + def MONTMUL : I<0xc0, RawFrm, (outs), (ins), "montmul", []>, A6; diff --git a/lib/Target/X86/X86MCAsmInfo.cpp b/lib/Target/X86/X86MCAsmInfo.cpp index 6686214..83bba52 100644 --- a/lib/Target/X86/X86MCAsmInfo.cpp +++ b/lib/Target/X86/X86MCAsmInfo.cpp @@ -15,7 +15,9 @@ #include "X86TargetMachine.h" #include "llvm/ADT/Triple.h" #include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSectionELF.h" +#include "llvm/MC/MCStreamer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ELF.h" using namespace llvm; @@ -69,7 +71,22 @@ X86MCAsmInfoDarwin::X86MCAsmInfoDarwin(const Triple &Triple) { DwarfUsesInlineInfoSection = true; // Exceptions handling - ExceptionsType = ExceptionHandling::DwarfTable; + ExceptionsType = ExceptionHandling::DwarfCFI; +} + +const MCExpr * +X86_64MCAsmInfoDarwin::getExprForPersonalitySymbol(const MCSymbol *Sym, + unsigned Encoding, + MCStreamer &Streamer) const { + MCContext &Context = Streamer.getContext(); + const MCExpr *Res = + MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOTPCREL, Context); + const MCExpr *Four = MCConstantExpr::Create(4, Context); + return MCBinaryExpr::CreateAdd(Res, Four, Context); +} + +X86_64MCAsmInfoDarwin::X86_64MCAsmInfoDarwin(const Triple &Triple) + : X86MCAsmInfoDarwin(Triple) { } X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &T) { @@ -89,7 +106,9 @@ X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &T) { SupportsDebugInformation = true; // Exceptions handling - ExceptionsType = ExceptionHandling::DwarfTable; + ExceptionsType = ExceptionHandling::DwarfCFI; + + DwarfRequiresFrameSection = false; // OpenBSD has buggy support for .quad in 32-bit mode, just split into two // .words. diff --git a/lib/Target/X86/X86MCAsmInfo.h b/lib/Target/X86/X86MCAsmInfo.h index 5815225..2cd4c8e 100644 --- a/lib/Target/X86/X86MCAsmInfo.h +++ b/lib/Target/X86/X86MCAsmInfo.h @@ -25,6 +25,14 @@ namespace llvm { explicit X86MCAsmInfoDarwin(const Triple &Triple); }; + struct X86_64MCAsmInfoDarwin : public X86MCAsmInfoDarwin { + explicit X86_64MCAsmInfoDarwin(const Triple &Triple); + virtual const MCExpr * + getExprForPersonalitySymbol(const MCSymbol *Sym, + unsigned Encoding, + MCStreamer &Streamer) const; + }; + struct X86ELFMCAsmInfo : public MCAsmInfo { explicit X86ELFMCAsmInfo(const Triple &Triple); virtual const MCSection *getNonexecutableStackSection(MCContext &Ctx) const; diff --git a/lib/Target/X86/X86MCCodeEmitter.cpp b/lib/Target/X86/X86MCCodeEmitter.cpp index 0e3b571..f195a67 100644 --- a/lib/Target/X86/X86MCCodeEmitter.cpp +++ b/lib/Target/X86/X86MCCodeEmitter.cpp @@ -382,7 +382,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, const TargetInstrDesc &Desc, raw_ostream &OS) const { bool HasVEX_4V = false; - if ((TSFlags >> 32) & X86II::VEX_4V) + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V) HasVEX_4V = true; // VEX_R: opcode externsion equivalent to REX.R in @@ -446,10 +446,10 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, if (TSFlags & X86II::OpSize) VEX_PP = 0x01; - if ((TSFlags >> 32) & X86II::VEX_W) + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W) VEX_W = 1; - if ((TSFlags >> 32) & X86II::VEX_L) + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) VEX_L = 1; switch (TSFlags & X86II::Op0Mask) { @@ -470,6 +470,8 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, case X86II::XD: // F2 0F VEX_PP = 0x3; break; + case X86II::A6: // Bypass: Not used by VEX + case X86II::A7: // Bypass: Not used by VEX case X86II::TB: // Bypass: Not used by VEX case 0: break; // No prefix! @@ -512,13 +514,13 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, } // To only check operands before the memory address ones, start - // the search from the begining + // the search from the beginning if (IsDestMem) CurOp = 0; // If the last register should be encoded in the immediate field // do not use any bit from VEX prefix to this register, ignore it - if ((TSFlags >> 32) & X86II::VEX_I8IMM) + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) NumOps--; for (; CurOp != NumOps; ++CurOp) { @@ -742,6 +744,8 @@ void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, case X86II::TB: // Two-byte opcode prefix case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A + case X86II::A6: // 0F A6 + case X86II::A7: // 0F A7 Need0FPrefix = true; break; case X86II::TF: // F2 0F 38 @@ -786,6 +790,12 @@ void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, case X86II::TA: // 0F 3A EmitByte(0x3A, CurByte, OS); break; + case X86II::A6: // 0F A6 + EmitByte(0xA6, CurByte, OS); + break; + case X86II::A7: // 0F A7 + EmitByte(0xA7, CurByte, OS); + break; } } @@ -819,9 +829,9 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, // It uses the VEX.VVVV field? bool HasVEX_4V = false; - if ((TSFlags >> 32) & X86II::VEX) + if ((TSFlags >> X86II::VEXShift) & X86II::VEX) HasVEXPrefix = true; - if ((TSFlags >> 32) & X86II::VEX_4V) + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V) HasVEX_4V = true; @@ -837,7 +847,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); - if ((TSFlags >> 32) & X86II::Has3DNow0F0FOpcode) + if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode) BaseOpcode = 0x0F; // Weird 3DNow! encoding. unsigned SrcRegNum = 0; @@ -994,7 +1004,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, if (CurOp != NumOps) { // The last source register of a 4 operand instruction in AVX is encoded // in bits[7:4] of a immediate byte, and bits[3:0] are ignored. - if ((TSFlags >> 32) & X86II::VEX_I8IMM) { + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) { const MCOperand &MO = MI.getOperand(CurOp++); bool IsExtReg = X86InstrInfo::isX86_64ExtendedReg(MO.getReg()); @@ -1017,7 +1027,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, } } - if ((TSFlags >> 32) & X86II::Has3DNow0F0FOpcode) + if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode) EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS); diff --git a/lib/Target/X86/X86RegisterInfo.cpp b/lib/Target/X86/X86RegisterInfo.cpp index 2f6bd88..37fb0fe 100644 --- a/lib/Target/X86/X86RegisterInfo.cpp +++ b/lib/Target/X86/X86RegisterInfo.cpp @@ -308,6 +308,33 @@ X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, return 0; } +const TargetRegisterClass* +X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC) const{ + const TargetRegisterClass *Super = RC; + TargetRegisterClass::sc_iterator I = RC->superclasses_begin(); + do { + switch (Super->getID()) { + case X86::GR8RegClassID: + case X86::GR16RegClassID: + case X86::GR32RegClassID: + case X86::GR64RegClassID: + case X86::FR32RegClassID: + case X86::FR64RegClassID: + case X86::RFP32RegClassID: + case X86::RFP64RegClassID: + case X86::RFP80RegClassID: + case X86::VR128RegClassID: + case X86::VR256RegClassID: + // Don't return a super-class that would shrink the spill size. + // That can happen with the vector and float classes. + if (Super->getSize() == RC->getSize()) + return Super; + } + Super = *I++; + } while (Super); + return RC; +} + const TargetRegisterClass * X86RegisterInfo::getPointerRegClass(unsigned Kind) const { switch (Kind) { @@ -337,7 +364,27 @@ X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { else return &X86::GR32RegClass; } - return NULL; + return RC; +} + +unsigned +X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, + MachineFunction &MF) const { + const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); + + unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0; + switch (RC->getID()) { + default: + return 0; + case X86::GR32RegClassID: + return 4 - FPDiff; + case X86::GR64RegClassID: + return 12 - FPDiff; + case X86::VR128RegClassID: + return TM.getSubtarget<X86Subtarget>().is64Bit() ? 10 : 4; + case X86::VR64RegClassID: + return 4; + } } const unsigned * @@ -450,7 +497,7 @@ bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { // FIXME: It's more complicated than this... if (0 && requiresRealignment && MFI->hasVarSizedObjects()) report_fatal_error( - "Stack realignment in presense of dynamic allocas is not supported"); + "Stack realignment in presence of dynamic allocas is not supported"); // If we've requested that we force align the stack do so now. if (ForceStackAlign) diff --git a/lib/Target/X86/X86RegisterInfo.h b/lib/Target/X86/X86RegisterInfo.h index 064be64..9970c52 100644 --- a/lib/Target/X86/X86RegisterInfo.h +++ b/lib/Target/X86/X86RegisterInfo.h @@ -91,6 +91,9 @@ public: getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const; + const TargetRegisterClass* + getLargestLegalSuperClass(const TargetRegisterClass *RC) const; + /// getPointerRegClass - Returns a TargetRegisterClass used for pointer /// values. const TargetRegisterClass *getPointerRegClass(unsigned Kind = 0) const; @@ -101,6 +104,9 @@ public: const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const; + unsigned getRegPressureLimit(const TargetRegisterClass *RC, + MachineFunction &MF) const; + /// getCalleeSavedRegs - Return a null-terminated list of all of the /// callee-save registers on this target. const unsigned *getCalleeSavedRegs(const MachineFunction* MF = 0) const; diff --git a/lib/Target/X86/X86RegisterInfo.td b/lib/Target/X86/X86RegisterInfo.td index 612fac2..fd7a247 100644 --- a/lib/Target/X86/X86RegisterInfo.td +++ b/lib/Target/X86/X86RegisterInfo.td @@ -46,7 +46,8 @@ let Namespace = "X86" in { def CL : Register<"cl">, DwarfRegNum<[2, 1, 1]>; def BL : Register<"bl">, DwarfRegNum<[3, 3, 3]>; - // X86-64 only + // X86-64 only, requires REX. + let CostPerUse = 1 in { def SIL : Register<"sil">, DwarfRegNum<[4, 6, 6]>; def DIL : Register<"dil">, DwarfRegNum<[5, 7, 7]>; def BPL : Register<"bpl">, DwarfRegNum<[6, 4, 5]>; @@ -59,6 +60,7 @@ let Namespace = "X86" in { def R13B : Register<"r13b">, DwarfRegNum<[13, -2, -2]>; def R14B : Register<"r14b">, DwarfRegNum<[14, -2, -2]>; def R15B : Register<"r15b">, DwarfRegNum<[15, -2, -2]>; + } // High registers. On x86-64, these cannot be used in any instruction // with a REX prefix. @@ -82,8 +84,8 @@ let Namespace = "X86" in { } def IP : Register<"ip">, DwarfRegNum<[16]>; - // X86-64 only - let SubRegIndices = [sub_8bit] in { + // X86-64 only, requires REX. + let SubRegIndices = [sub_8bit], CostPerUse = 1 in { def R8W : RegisterWithSubRegs<"r8w", [R8B]>, DwarfRegNum<[8, -2, -2]>; def R9W : RegisterWithSubRegs<"r9w", [R9B]>, DwarfRegNum<[9, -2, -2]>; def R10W : RegisterWithSubRegs<"r10w", [R10B]>, DwarfRegNum<[10, -2, -2]>; @@ -105,7 +107,8 @@ let Namespace = "X86" in { def ESP : RegisterWithSubRegs<"esp", [SP]>, DwarfRegNum<[7, 5, 4]>; def EIP : RegisterWithSubRegs<"eip", [IP]>, DwarfRegNum<[16, 8, 8]>; - // X86-64 only + // X86-64 only, requires REX + let CostPerUse = 1 in { def R8D : RegisterWithSubRegs<"r8d", [R8W]>, DwarfRegNum<[8, -2, -2]>; def R9D : RegisterWithSubRegs<"r9d", [R9W]>, DwarfRegNum<[9, -2, -2]>; def R10D : RegisterWithSubRegs<"r10d", [R10W]>, DwarfRegNum<[10, -2, -2]>; @@ -114,7 +117,7 @@ let Namespace = "X86" in { def R13D : RegisterWithSubRegs<"r13d", [R13W]>, DwarfRegNum<[13, -2, -2]>; def R14D : RegisterWithSubRegs<"r14d", [R14W]>, DwarfRegNum<[14, -2, -2]>; def R15D : RegisterWithSubRegs<"r15d", [R15W]>, DwarfRegNum<[15, -2, -2]>; - } + }} // 64-bit registers, X86-64 only let SubRegIndices = [sub_32bit] in { @@ -127,6 +130,8 @@ let Namespace = "X86" in { def RBP : RegisterWithSubRegs<"rbp", [EBP]>, DwarfRegNum<[6, -2, -2]>; def RSP : RegisterWithSubRegs<"rsp", [ESP]>, DwarfRegNum<[7, -2, -2]>; + // These also require REX. + let CostPerUse = 1 in { def R8 : RegisterWithSubRegs<"r8", [R8D]>, DwarfRegNum<[8, -2, -2]>; def R9 : RegisterWithSubRegs<"r9", [R9D]>, DwarfRegNum<[9, -2, -2]>; def R10 : RegisterWithSubRegs<"r10", [R10D]>, DwarfRegNum<[10, -2, -2]>; @@ -136,7 +141,7 @@ let Namespace = "X86" in { def R14 : RegisterWithSubRegs<"r14", [R14D]>, DwarfRegNum<[14, -2, -2]>; def R15 : RegisterWithSubRegs<"r15", [R15D]>, DwarfRegNum<[15, -2, -2]>; def RIP : RegisterWithSubRegs<"rip", [EIP]>, DwarfRegNum<[16, -2, -2]>; - } + }} // MMX Registers. These are actually aliased to ST0 .. ST7 def MM0 : Register<"mm0">, DwarfRegNum<[41, 29, 29]>; @@ -170,6 +175,7 @@ let Namespace = "X86" in { def XMM7: Register<"xmm7">, DwarfRegNum<[24, 28, 28]>; // X86-64 only + let CostPerUse = 1 in { def XMM8: Register<"xmm8">, DwarfRegNum<[25, -2, -2]>; def XMM9: Register<"xmm9">, DwarfRegNum<[26, -2, -2]>; def XMM10: Register<"xmm10">, DwarfRegNum<[27, -2, -2]>; @@ -178,7 +184,7 @@ let Namespace = "X86" in { def XMM13: Register<"xmm13">, DwarfRegNum<[30, -2, -2]>; def XMM14: Register<"xmm14">, DwarfRegNum<[31, -2, -2]>; def XMM15: Register<"xmm15">, DwarfRegNum<[32, -2, -2]>; - } + }} // YMM Registers, used by AVX instructions let SubRegIndices = [sub_xmm] in { diff --git a/lib/Target/X86/X86SelectionDAGInfo.cpp b/lib/Target/X86/X86SelectionDAGInfo.cpp index 42e8193..02754f9 100644 --- a/lib/Target/X86/X86SelectionDAGInfo.cpp +++ b/lib/Target/X86/X86SelectionDAGInfo.cpp @@ -178,7 +178,7 @@ X86SelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { - // This requires the copy size to be a constant, preferrably + // This requires the copy size to be a constant, preferably // within a subtarget-specific limit. ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); if (!ConstantSize) diff --git a/lib/Target/X86/X86Subtarget.cpp b/lib/Target/X86/X86Subtarget.cpp index 1ee7312..ba5864e 100644 --- a/lib/Target/X86/X86Subtarget.cpp +++ b/lib/Target/X86/X86Subtarget.cpp @@ -144,7 +144,8 @@ ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { /// passed as the second argument. Otherwise it returns null. const char *X86Subtarget::getBZeroEntry() const { // Darwin 10 has a __bzero entry point for this purpose. - if (getDarwinVers() >= 10) + if (getTargetTriple().isMacOSX() && + !getTargetTriple().isMacOSXVersionLT(10, 6)) return "__bzero"; return 0; diff --git a/lib/Target/X86/X86Subtarget.h b/lib/Target/X86/X86Subtarget.h index 0a62a02..286a798 100644 --- a/lib/Target/X86/X86Subtarget.h +++ b/lib/Target/X86/X86Subtarget.h @@ -165,9 +165,15 @@ public: bool isUnalignedMemAccessFast() const { return IsUAMemFast; } bool hasVectorUAMem() const { return HasVectorUAMem; } - bool isTargetDarwin() const { return TargetTriple.getOS() == Triple::Darwin; } - bool isTargetFreeBSD() const { return TargetTriple.getOS() == Triple::FreeBSD; } - bool isTargetSolaris() const { return TargetTriple.getOS() == Triple::Solaris; } + const Triple &getTargetTriple() const { return TargetTriple; } + + bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } + bool isTargetFreeBSD() const { + return TargetTriple.getOS() == Triple::FreeBSD; + } + bool isTargetSolaris() const { + return TargetTriple.getOS() == Triple::Solaris; + } // ELF is a reasonably sane default and the only other X86 targets we // support are Darwin and Windows. Just use "not those". @@ -215,13 +221,6 @@ public: return PICStyle == PICStyles::StubDynamicNoPIC || PICStyle == PICStyles::StubPIC; } - /// getDarwinVers - Return the darwin version number, 8 = Tiger, 9 = Leopard, - /// 10 = Snow Leopard, etc. - unsigned getDarwinVers() const { - if (isTargetDarwin()) return TargetTriple.getDarwinMajorNumber(); - return 0; - } - /// ClassifyGlobalReference - Classify a global variable reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp index 889c824..7483329 100644 --- a/lib/Target/X86/X86TargetMachine.cpp +++ b/lib/Target/X86/X86TargetMachine.cpp @@ -26,19 +26,18 @@ using namespace llvm; static MCAsmInfo *createMCAsmInfo(const Target &T, StringRef TT) { Triple TheTriple(TT); - switch (TheTriple.getOS()) { - case Triple::Darwin: - return new X86MCAsmInfoDarwin(TheTriple); - case Triple::MinGW32: - case Triple::Cygwin: - case Triple::Win32: - if (TheTriple.getEnvironment() == Triple::MachO) - return new X86MCAsmInfoDarwin(TheTriple); + + if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) { + if (TheTriple.getArch() == Triple::x86_64) + return new X86_64MCAsmInfoDarwin(TheTriple); else - return new X86MCAsmInfoCOFF(TheTriple); - default: - return new X86ELFMCAsmInfo(TheTriple); + return new X86MCAsmInfoDarwin(TheTriple); } + + if (TheTriple.isOSWindows()) + return new X86MCAsmInfoCOFF(TheTriple); + + return new X86ELFMCAsmInfo(TheTriple); } static MCStreamer *createMCStreamer(const Target &T, const std::string &TT, @@ -48,19 +47,14 @@ static MCStreamer *createMCStreamer(const Target &T, const std::string &TT, bool RelaxAll, bool NoExecStack) { Triple TheTriple(TT); - switch (TheTriple.getOS()) { - case Triple::Darwin: + + if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) return createMachOStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll); - case Triple::MinGW32: - case Triple::Cygwin: - case Triple::Win32: - if (TheTriple.getEnvironment() == Triple::MachO) - return createMachOStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll); - else - return createWinCOFFStreamer(Ctx, TAB, *_Emitter, _OS, RelaxAll); - default: - return createELFStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll, NoExecStack); - } + + if (TheTriple.isOSWindows()) + return createWinCOFFStreamer(Ctx, TAB, *_Emitter, _OS, RelaxAll); + + return createELFStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll, NoExecStack); } extern "C" void LLVMInitializeX86Target() { @@ -96,11 +90,11 @@ X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT, const std::string &FS) : X86TargetMachine(T, TT, FS, false), DataLayout(getSubtargetImpl()->isTargetDarwin() ? - "e-p:32:32-f64:32:64-i64:32:64-f80:128:128-n8:16:32" : + "e-p:32:32-f64:32:64-i64:32:64-f80:128:128-f128:128:128-n8:16:32" : (getSubtargetImpl()->isTargetCygMing() || getSubtargetImpl()->isTargetWindows()) ? - "e-p:32:32-f64:64:64-i64:64:64-f80:32:32-n8:16:32" : - "e-p:32:32-f64:32:64-i64:32:64-f80:32:32-n8:16:32"), + "e-p:32:32-f64:64:64-i64:64:64-f80:32:32-f128:128:128-n8:16:32" : + "e-p:32:32-f64:32:64-i64:32:64-f80:32:32-f128:128:128-n8:16:32"), InstrInfo(*this), TSInfo(*this), TLInfo(*this), @@ -111,7 +105,7 @@ X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT, X86_64TargetMachine::X86_64TargetMachine(const Target &T, const std::string &TT, const std::string &FS) : X86TargetMachine(T, TT, FS, true), - DataLayout("e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-n8:16:32:64"), + DataLayout("e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-f128:128:128-n8:16:32:64"), InstrInfo(*this), TSInfo(*this), TLInfo(*this), diff --git a/lib/Target/X86/X86TargetObjectFile.cpp b/lib/Target/X86/X86TargetObjectFile.cpp index c15dfbb..1231798 100644 --- a/lib/Target/X86/X86TargetObjectFile.cpp +++ b/lib/Target/X86/X86TargetObjectFile.cpp @@ -38,6 +38,12 @@ getExprForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang, getExprForDwarfGlobalReference(GV, Mang, MMI, Encoding, Streamer); } +MCSymbol *X8664_MachoTargetObjectFile:: +getCFIPersonalitySymbol(const GlobalValue *GV, Mangler *Mang, + MachineModuleInfo *MMI) const { + return Mang->getSymbol(GV); +} + unsigned X8632_ELFTargetObjectFile::getPersonalityEncoding() const { if (TM.getRelocationModel() == Reloc::PIC_) return DW_EH_PE_indirect | DW_EH_PE_pcrel | DW_EH_PE_sdata4; @@ -52,7 +58,7 @@ unsigned X8632_ELFTargetObjectFile::getLSDAEncoding() const { return DW_EH_PE_absptr; } -unsigned X8632_ELFTargetObjectFile::getFDEEncoding() const { +unsigned X8632_ELFTargetObjectFile::getFDEEncoding(bool FDE) const { if (TM.getRelocationModel() == Reloc::PIC_) return DW_EH_PE_pcrel | DW_EH_PE_sdata4; else @@ -91,17 +97,14 @@ unsigned X8664_ELFTargetObjectFile::getLSDAEncoding() const { return DW_EH_PE_absptr; } -unsigned X8664_ELFTargetObjectFile::getFDEEncoding() const { - CodeModel::Model Model = TM.getCodeModel(); - if (TM.getRelocationModel() == Reloc::PIC_) - return DW_EH_PE_pcrel | (Model == CodeModel::Small || - Model == CodeModel::Medium ? - DW_EH_PE_sdata4 : DW_EH_PE_sdata8); +unsigned X8664_ELFTargetObjectFile::getFDEEncoding(bool CFI) const { + if (CFI) + return DW_EH_PE_pcrel | DW_EH_PE_sdata4; - if (Model == CodeModel::Small || Model == CodeModel::Medium) - return DW_EH_PE_udata4; + if (TM.getRelocationModel() == Reloc::PIC_) + return DW_EH_PE_pcrel | DW_EH_PE_sdata4; - return DW_EH_PE_absptr; + return DW_EH_PE_udata4; } unsigned X8664_ELFTargetObjectFile::getTTypeEncoding() const { diff --git a/lib/Target/X86/X86TargetObjectFile.h b/lib/Target/X86/X86TargetObjectFile.h index f2fd49c..e21b5bf 100644 --- a/lib/Target/X86/X86TargetObjectFile.h +++ b/lib/Target/X86/X86TargetObjectFile.h @@ -25,6 +25,12 @@ namespace llvm { getExprForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang, MachineModuleInfo *MMI, unsigned Encoding, MCStreamer &Streamer) const; + + // getCFIPersonalitySymbol - The symbol that gets passed to + // .cfi_personality. + virtual MCSymbol * + getCFIPersonalitySymbol(const GlobalValue *GV, Mangler *Mang, + MachineModuleInfo *MMI) const; }; class X8632_ELFTargetObjectFile : public TargetLoweringObjectFileELF { @@ -34,7 +40,7 @@ namespace llvm { :TM(tm) { } virtual unsigned getPersonalityEncoding() const; virtual unsigned getLSDAEncoding() const; - virtual unsigned getFDEEncoding() const; + virtual unsigned getFDEEncoding(bool CFI) const; virtual unsigned getTTypeEncoding() const; }; @@ -45,7 +51,7 @@ namespace llvm { :TM(tm) { } virtual unsigned getPersonalityEncoding() const; virtual unsigned getLSDAEncoding() const; - virtual unsigned getFDEEncoding() const; + virtual unsigned getFDEEncoding(bool CFI) const; virtual unsigned getTTypeEncoding() const; }; |