summaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86FastISel.cpp
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2009-10-14 17:57:32 +0000
committerrdivacky <rdivacky@FreeBSD.org>2009-10-14 17:57:32 +0000
commitcd749a9c07f1de2fb8affde90537efa4bc3e7c54 (patch)
treeb21f6de4e08b89bb7931806bab798fc2a5e3a686 /lib/Target/X86/X86FastISel.cpp
parent72621d11de5b873f1695f391eb95f0b336c3d2d4 (diff)
downloadFreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.zip
FreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.tar.gz
Update llvm to r84119.
Diffstat (limited to 'lib/Target/X86/X86FastISel.cpp')
-rw-r--r--lib/Target/X86/X86FastISel.cpp415
1 files changed, 273 insertions, 142 deletions
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index b336d78..3401df0 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -29,6 +29,7 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
@@ -78,19 +79,20 @@ public:
#include "X86GenFastISel.inc"
private:
- bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
+ bool X86FastEmitCompare(Value *LHS, Value *RHS, EVT VT);
- bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
+ bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
- bool X86FastEmitStore(MVT VT, Value *Val,
+ bool X86FastEmitStore(EVT VT, Value *Val,
const X86AddressMode &AM);
- bool X86FastEmitStore(MVT VT, unsigned Val,
+ bool X86FastEmitStore(EVT VT, unsigned Val,
const X86AddressMode &AM);
- bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
+ bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
unsigned &ResultReg);
- bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall);
+ bool X86SelectAddress(Value *V, X86AddressMode &AM);
+ bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
bool X86SelectLoad(Instruction *I);
@@ -116,7 +118,7 @@ private:
bool X86VisitIntrinsicCall(IntrinsicInst &I);
bool X86SelectCall(Instruction *I);
- CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
+ CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
const X86InstrInfo *getInstrInfo() const {
return getTargetMachine()->getInstrInfo();
@@ -131,17 +133,17 @@ private:
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
/// computed in an SSE register, not on the X87 floating point stack.
- bool isScalarFPTypeInSSEReg(MVT VT) const {
+ bool isScalarFPTypeInSSEReg(EVT VT) const {
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
}
- bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
+ bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
};
} // end anonymous namespace.
-bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
+bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
@@ -167,7 +169,8 @@ bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
/// convention.
-CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
+CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
+ bool isTaillCall) {
if (Subtarget->is64Bit()) {
if (Subtarget->isTargetWin64())
return CC_X86_Win64_C;
@@ -186,13 +189,14 @@ CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
/// Return true and the result register by reference if it is possible.
-bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
+bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
unsigned &ResultReg) {
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return false;
+ case MVT::i1:
case MVT::i8:
Opc = X86::MOV8rm;
RC = X86::GR8RegisterClass;
@@ -243,13 +247,21 @@ bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
/// and a displacement offset, or a GlobalAddress,
/// i.e. V. Return true if it is possible.
bool
-X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
+X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
const X86AddressMode &AM) {
// Get opcode and regclass of the output for the given store instruction.
unsigned Opc = 0;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
case MVT::f80: // No f80 support yet.
default: return false;
+ case MVT::i1: {
+ // Mask out all but lowest bit.
+ unsigned AndResult = createResultReg(X86::GR8RegisterClass);
+ BuildMI(MBB, DL,
+ TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
+ Val = AndResult;
+ }
+ // FALLTHROUGH, handling i1 as i8.
case MVT::i8: Opc = X86::MOV8mr; break;
case MVT::i16: Opc = X86::MOV16mr; break;
case MVT::i32: Opc = X86::MOV32mr; break;
@@ -266,17 +278,19 @@ X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
return true;
}
-bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
+bool X86FastISel::X86FastEmitStore(EVT VT, Value *Val,
const X86AddressMode &AM) {
// Handle 'null' like i32/i64 0.
if (isa<ConstantPointerNull>(Val))
- Val = Constant::getNullValue(TD.getIntPtrType());
+ Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
// If this is a store of a simple constant, fold the constant into the store.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
unsigned Opc = 0;
- switch (VT.getSimpleVT()) {
+ bool Signed = true;
+ switch (VT.getSimpleVT().SimpleTy) {
default: break;
+ case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
case MVT::i8: Opc = X86::MOV8mi; break;
case MVT::i16: Opc = X86::MOV16mi; break;
case MVT::i32: Opc = X86::MOV32mi; break;
@@ -289,7 +303,8 @@ bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
if (Opc) {
addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
- .addImm(CI->getSExtValue());
+ .addImm(Signed ? CI->getSExtValue() :
+ CI->getZExtValue());
return true;
}
}
@@ -304,8 +319,8 @@ bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
/// ISD::SIGN_EXTEND).
-bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
- unsigned Src, MVT SrcVT,
+bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
+ unsigned Src, EVT SrcVT,
unsigned &ResultReg) {
unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
@@ -318,7 +333,7 @@ bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
/// X86SelectAddress - Attempt to fill in an address from the given value.
///
-bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
+bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
User *U = NULL;
unsigned Opcode = Instruction::UserOp1;
if (Instruction *I = dyn_cast<Instruction>(V)) {
@@ -333,22 +348,21 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
default: break;
case Instruction::BitCast:
// Look past bitcasts.
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
case Instruction::IntToPtr:
// Look past no-op inttoptrs.
if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
break;
case Instruction::PtrToInt:
// Look past no-op ptrtoints.
if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
break;
case Instruction::Alloca: {
- if (isCall) break;
// Do static allocas.
const AllocaInst *A = cast<AllocaInst>(V);
DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
@@ -361,21 +375,19 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
}
case Instruction::Add: {
- if (isCall) break;
// Adds of constants are common and easy enough.
if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
// They have to fit in the 32-bit signed displacement field though.
if (isInt32(Disp)) {
AM.Disp = (uint32_t)Disp;
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
}
}
break;
}
case Instruction::GetElementPtr: {
- if (isCall) break;
// Pattern-match simple GEPs.
uint64_t Disp = (int32_t)AM.Disp;
unsigned IndexReg = AM.IndexReg;
@@ -416,7 +428,7 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
AM.IndexReg = IndexReg;
AM.Scale = Scale;
AM.Disp = (uint32_t)Disp;
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
unsupported_gep:
// Ok, the GEP indices weren't all covered.
break;
@@ -426,8 +438,7 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
// Handle constant address.
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Can't handle alternate code models yet.
- if (TM.getCodeModel() != CodeModel::Default &&
- TM.getCodeModel() != CodeModel::Small)
+ if (TM.getCodeModel() != CodeModel::Small)
return false;
// RIP-relative addresses can't have additional register operands.
@@ -440,63 +451,149 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
if (GVar->isThreadLocal())
return false;
- // Set up the basic address.
+ // Okay, we've committed to selecting this global. Set up the basic address.
AM.GV = GV;
- if (!isCall &&
- TM.getRelocationModel() == Reloc::PIC_ &&
- !Subtarget->is64Bit())
- AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
+ // Allow the subtarget to classify the global.
+ unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
- // Emit an extra load if the ABI requires it.
- if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
- // Check to see if we've already materialized this
- // value in a register in this block.
- DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
- if (I != LocalValueMap.end() && I->second != 0) {
- AM.Base.Reg = I->second;
- AM.GV = 0;
- return true;
+ // If this reference is relative to the pic base, set it now.
+ if (isGlobalRelativeToPICBase(GVFlags)) {
+ // FIXME: How do we know Base.Reg is free??
+ AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
+ }
+
+ // Unless the ABI requires an extra load, return a direct reference to
+ // the global.
+ if (!isGlobalStubReference(GVFlags)) {
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
}
-
+ AM.GVOpFlags = GVFlags;
+ return true;
+ }
+
+ // Ok, we need to do a load from a stub. If we've already loaded from this
+ // stub, reuse the loaded pointer, otherwise emit the load now.
+ DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
+ unsigned LoadReg;
+ if (I != LocalValueMap.end() && I->second != 0) {
+ LoadReg = I->second;
+ } else {
// Issue load from stub.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
X86AddressMode StubAM;
StubAM.Base.Reg = AM.Base.Reg;
- StubAM.GV = AM.GV;
-
- if (TLI.getPointerTy() == MVT::i32) {
- Opc = X86::MOV32rm;
- RC = X86::GR32RegisterClass;
-
- if (Subtarget->isPICStyleGOT() &&
- TM.getRelocationModel() == Reloc::PIC_)
- StubAM.GVOpFlags = X86II::MO_GOT;
-
- } else {
+ StubAM.GV = GV;
+ StubAM.GVOpFlags = GVFlags;
+
+ if (TLI.getPointerTy() == MVT::i64) {
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
- if (TM.getRelocationModel() != Reloc::Static) {
- StubAM.GVOpFlags = X86II::MO_GOTPCREL;
+ if (Subtarget->isPICStyleRIPRel())
StubAM.Base.Reg = X86::RIP;
- }
+ } else {
+ Opc = X86::MOV32rm;
+ RC = X86::GR32RegisterClass;
}
+
+ LoadReg = createResultReg(RC);
+ addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
+
+ // Prevent loading GV stub multiple times in same MBB.
+ LocalValueMap[V] = LoadReg;
+ }
+
+ // Now construct the final address. Note that the Disp, Scale,
+ // and Index values may already be set here.
+ AM.Base.Reg = LoadReg;
+ AM.GV = 0;
+ return true;
+ }
- unsigned ResultReg = createResultReg(RC);
- addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), StubAM);
+ // If all else fails, try to materialize the value in a register.
+ if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+ if (AM.Base.Reg == 0) {
+ AM.Base.Reg = getRegForValue(V);
+ return AM.Base.Reg != 0;
+ }
+ if (AM.IndexReg == 0) {
+ assert(AM.Scale == 1 && "Scale with no index!");
+ AM.IndexReg = getRegForValue(V);
+ return AM.IndexReg != 0;
+ }
+ }
- // Now construct the final address. Note that the Disp, Scale,
- // and Index values may already be set here.
- AM.Base.Reg = ResultReg;
- AM.GV = 0;
+ return false;
+}
- // Prevent loading GV stub multiple times in same MBB.
- LocalValueMap[V] = AM.Base.Reg;
- } else if (Subtarget->isPICStyleRIPRel()) {
- // Use rip-relative addressing if we can.
+/// X86SelectCallAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
+ User *U = NULL;
+ unsigned Opcode = Instruction::UserOp1;
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ Opcode = I->getOpcode();
+ U = I;
+ } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts.
+ return X86SelectCallAddress(U->getOperand(0), AM);
+
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+ }
+
+ // Handle constant address.
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ // RIP-relative addresses can't have additional register operands.
+ if (Subtarget->isPICStyleRIPRel() &&
+ (AM.Base.Reg != 0 || AM.IndexReg != 0))
+ return false;
+
+ // Can't handle TLS or DLLImport.
+ if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
+ return false;
+
+ // Okay, we've committed to selecting this global. Set up the basic address.
+ AM.GV = GV;
+
+ // No ABI requires an extra load for anything other than DLLImport, which
+ // we rejected above. Return a direct reference to the global.
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
AM.Base.Reg = X86::RIP;
+ } else if (Subtarget->isPICStyleStubPIC()) {
+ AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
+ } else if (Subtarget->isPICStyleGOT()) {
+ AM.GVOpFlags = X86II::MO_GOTOFF;
}
return true;
@@ -518,14 +615,15 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
return false;
}
+
/// X86SelectStore - Select and emit code to implement store instructions.
bool X86FastISel::X86SelectStore(Instruction* I) {
- MVT VT;
- if (!isTypeLegal(I->getOperand(0)->getType(), VT))
+ EVT VT;
+ if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
return false;
X86AddressMode AM;
- if (!X86SelectAddress(I->getOperand(1), AM, false))
+ if (!X86SelectAddress(I->getOperand(1), AM))
return false;
return X86FastEmitStore(VT, I->getOperand(0), AM);
@@ -534,12 +632,12 @@ bool X86FastISel::X86SelectStore(Instruction* I) {
/// X86SelectLoad - Select and emit code to implement load instructions.
///
bool X86FastISel::X86SelectLoad(Instruction *I) {
- MVT VT;
- if (!isTypeLegal(I->getType(), VT))
+ EVT VT;
+ if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
return false;
X86AddressMode AM;
- if (!X86SelectAddress(I->getOperand(0), AM, false))
+ if (!X86SelectAddress(I->getOperand(0), AM))
return false;
unsigned ResultReg = 0;
@@ -550,8 +648,8 @@ bool X86FastISel::X86SelectLoad(Instruction *I) {
return false;
}
-static unsigned X86ChooseCmpOpcode(MVT VT) {
- switch (VT.getSimpleVT()) {
+static unsigned X86ChooseCmpOpcode(EVT VT) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return 0;
case MVT::i8: return X86::CMP8rr;
case MVT::i16: return X86::CMP16rr;
@@ -565,8 +663,8 @@ static unsigned X86ChooseCmpOpcode(MVT VT) {
/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
/// of the comparison, return an opcode that works for the compare (e.g.
/// CMP32ri) otherwise return 0.
-static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
- switch (VT.getSimpleVT()) {
+static unsigned X86ChooseCmpImmediateOpcode(EVT VT, ConstantInt *RHSC) {
+ switch (VT.getSimpleVT().SimpleTy) {
// Otherwise, we can't fold the immediate into this comparison.
default: return 0;
case MVT::i8: return X86::CMP8ri;
@@ -581,13 +679,13 @@ static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
}
}
-bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
+bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, EVT VT) {
unsigned Op0Reg = getRegForValue(Op0);
if (Op0Reg == 0) return false;
// Handle 'null' like i32/i64 0.
if (isa<ConstantPointerNull>(Op1))
- Op1 = Constant::getNullValue(TD.getIntPtrType());
+ Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
// We have two options: compare with register or immediate. If the RHS of
// the compare is an immediate that we can fold into this compare, use
@@ -613,7 +711,7 @@ bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
bool X86FastISel::X86SelectCmp(Instruction *I) {
CmpInst *CI = cast<CmpInst>(I);
- MVT VT;
+ EVT VT;
if (!isTypeLegal(I->getOperand(0)->getType(), VT))
return false;
@@ -688,8 +786,8 @@ bool X86FastISel::X86SelectCmp(Instruction *I) {
bool X86FastISel::X86SelectZExt(Instruction *I) {
// Handle zero-extension from i1 to i8, which is common.
- if (I->getType() == Type::Int8Ty &&
- I->getOperand(0)->getType() == Type::Int1Ty) {
+ if (I->getType() == Type::getInt8Ty(I->getContext()) &&
+ I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext())) {
unsigned ResultReg = getRegForValue(I->getOperand(0));
if (ResultReg == 0) return false;
// Set the high bits to zero.
@@ -713,7 +811,7 @@ bool X86FastISel::X86SelectBranch(Instruction *I) {
// Fold the common case of a conditional branch with a comparison.
if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
if (CI->hasOneUse()) {
- MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
+ EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
// Try to take advantage of fallthrough opportunities.
CmpInst::Predicate Predicate = CI->getPredicate();
@@ -850,7 +948,7 @@ bool X86FastISel::X86SelectBranch(Instruction *I) {
bool X86FastISel::X86SelectShift(Instruction *I) {
unsigned CReg = 0, OpReg = 0, OpImm = 0;
const TargetRegisterClass *RC = NULL;
- if (I->getType() == Type::Int8Ty) {
+ if (I->getType() == Type::getInt8Ty(I->getContext())) {
CReg = X86::CL;
RC = &X86::GR8RegClass;
switch (I->getOpcode()) {
@@ -859,7 +957,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
default: return false;
}
- } else if (I->getType() == Type::Int16Ty) {
+ } else if (I->getType() == Type::getInt16Ty(I->getContext())) {
CReg = X86::CX;
RC = &X86::GR16RegClass;
switch (I->getOpcode()) {
@@ -868,7 +966,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
default: return false;
}
- } else if (I->getType() == Type::Int32Ty) {
+ } else if (I->getType() == Type::getInt32Ty(I->getContext())) {
CReg = X86::ECX;
RC = &X86::GR32RegClass;
switch (I->getOpcode()) {
@@ -877,7 +975,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
default: return false;
}
- } else if (I->getType() == Type::Int64Ty) {
+ } else if (I->getType() == Type::getInt64Ty(I->getContext())) {
CReg = X86::RCX;
RC = &X86::GR64RegClass;
switch (I->getOpcode()) {
@@ -890,7 +988,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
return false;
}
- MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
+ EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
return false;
@@ -924,7 +1022,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
}
bool X86FastISel::X86SelectSelect(Instruction *I) {
- MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
+ EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
return false;
@@ -959,9 +1057,10 @@ bool X86FastISel::X86SelectSelect(Instruction *I) {
bool X86FastISel::X86SelectFPExt(Instruction *I) {
// fpext from float to double.
- if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
+ if (Subtarget->hasSSE2() &&
+ I->getType()->isDoubleTy()) {
Value *V = I->getOperand(0);
- if (V->getType() == Type::FloatTy) {
+ if (V->getType()->isFloatTy()) {
unsigned OpReg = getRegForValue(V);
if (OpReg == 0) return false;
unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
@@ -976,9 +1075,9 @@ bool X86FastISel::X86SelectFPExt(Instruction *I) {
bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
if (Subtarget->hasSSE2()) {
- if (I->getType() == Type::FloatTy) {
+ if (I->getType()->isFloatTy()) {
Value *V = I->getOperand(0);
- if (V->getType() == Type::DoubleTy) {
+ if (V->getType()->isDoubleTy()) {
unsigned OpReg = getRegForValue(V);
if (OpReg == 0) return false;
unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
@@ -996,8 +1095,8 @@ bool X86FastISel::X86SelectTrunc(Instruction *I) {
if (Subtarget->is64Bit())
// All other cases should be handled by the tblgen generated code.
return false;
- MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
- MVT DstVT = TLI.getValueType(I->getType());
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
// This code only handles truncation to byte right now.
if (DstVT != MVT::i8 && DstVT != MVT::i1)
@@ -1065,7 +1164,7 @@ bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
const Type *RetTy =
cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
- MVT VT;
+ EVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
@@ -1125,7 +1224,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Handle only C and fastcc calling conventions for now.
CallSite CS(CI);
- unsigned CC = CS.getCallingConv();
+ CallingConv::ID CC = CS.getCallingConv();
if (CC != CallingConv::C &&
CC != CallingConv::Fast &&
CC != CallingConv::X86_FastCall)
@@ -1144,8 +1243,8 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Handle *simple* calls for now.
const Type *RetTy = CS.getType();
- MVT RetVT;
- if (RetTy == Type::VoidTy)
+ EVT RetVT;
+ if (RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(RetTy, RetVT, true))
return false;
@@ -1153,7 +1252,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Materialize callee address in a register. FIXME: GV address can be
// handled with a CALLpcrel32 instead.
X86AddressMode CalleeAM;
- if (!X86SelectAddress(Callee, CalleeAM, true))
+ if (!X86SelectCallAddress(Callee, CalleeAM))
return false;
unsigned CalleeOp = 0;
GlobalValue *GV = 0;
@@ -1174,7 +1273,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Deal with call operands first.
SmallVector<Value*, 8> ArgVals;
SmallVector<unsigned, 8> Args;
- SmallVector<MVT, 8> ArgVTs;
+ SmallVector<EVT, 8> ArgVTs;
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
Args.reserve(CS.arg_size());
ArgVals.reserve(CS.arg_size());
@@ -1200,7 +1299,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
return false;
const Type *ArgTy = (*i)->getType();
- MVT ArgVT;
+ EVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT))
return false;
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
@@ -1214,7 +1313,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, false, TM, ArgLocs);
+ CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
@@ -1230,11 +1329,11 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
unsigned Arg = Args[VA.getValNo()];
- MVT ArgVT = ArgVTs[VA.getValNo()];
+ EVT ArgVT = ArgVTs[VA.getValNo()];
// Promote the value if needed.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt: {
bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
@@ -1266,6 +1365,14 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
ArgVT = VA.getLocVT();
break;
}
+ case CCValAssign::BCvt: {
+ unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
+ ISD::BIT_CONVERT, Arg);
+ assert(BC != 0 && "Failed to emit a bitcast!");
+ Arg = BC;
+ ArgVT = VA.getLocVT();
+ break;
+ }
}
if (VA.isRegLoc()) {
@@ -1294,28 +1401,53 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// ELF / PIC requires GOT in the EBX register before function calls via PLT
// GOT pointer.
- if (!Subtarget->is64Bit() &&
- TM.getRelocationModel() == Reloc::PIC_ &&
- Subtarget->isPICStyleGOT()) {
+ if (Subtarget->isPICStyleGOT()) {
TargetRegisterClass *RC = X86::GR32RegisterClass;
unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
Emitted = true;
}
-
+
// Issue the call.
- unsigned CallOpc = CalleeOp
- ? (Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r)
- : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
- MachineInstrBuilder MIB = CalleeOp
- ? BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp)
- : BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV);
+ MachineInstrBuilder MIB;
+ if (CalleeOp) {
+ // Register-indirect call.
+ unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
+ MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
+
+ } else {
+ // Direct call.
+ assert(GV && "Not a direct call");
+ unsigned CallOpc =
+ Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
+
+ // See if we need any target-specific flags on the GV operand.
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ TM.getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (GV->isDeclaration() || GV->isWeakForLinker()) &&
+ Subtarget->getDarwinVers() < 9) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+
+ MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
+ }
// Add an implicit use GOT pointer in EBX.
- if (!Subtarget->is64Bit() &&
- TM.getRelocationModel() == Reloc::PIC_ &&
- Subtarget->isPICStyleGOT())
+ if (Subtarget->isPICStyleGOT())
MIB.addReg(X86::EBX);
// Add implicit physical register uses to the call.
@@ -1327,14 +1459,14 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
// Now handle call return value (if any).
- if (RetVT.getSimpleVT() != MVT::isVoid) {
+ if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, false, TM, RVLocs);
+ CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
- MVT CopyVT = RVLocs[0].getValVT();
+ EVT CopyVT = RVLocs[0].getValVT();
TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
TargetRegisterClass *SrcRC = DstRC;
@@ -1358,7 +1490,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Round the F80 the right size, which also moves to the appropriate xmm
// register. This is accomplished by storing the F80 value in memory and
// then loading it back. Ewww...
- MVT ResVT = RVLocs[0].getValVT();
+ EVT ResVT = RVLocs[0].getValVT();
unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
unsigned MemSize = ResVT.getSizeInBits()/8;
int FI = MFI.CreateStackObject(MemSize, MemSize);
@@ -1418,8 +1550,8 @@ X86FastISel::TargetSelectInstruction(Instruction *I) {
return X86SelectExtractValue(I);
case Instruction::IntToPtr: // Deliberate fall-through.
case Instruction::PtrToInt: {
- MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
- MVT DstVT = TLI.getValueType(I->getType());
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
if (DstVT.bitsGT(SrcVT))
return X86SelectZExt(I);
if (DstVT.bitsLT(SrcVT))
@@ -1435,14 +1567,14 @@ X86FastISel::TargetSelectInstruction(Instruction *I) {
}
unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
- MVT VT;
+ EVT VT;
if (!isTypeLegal(C->getType(), VT))
return false;
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i8:
Opc = X86::MOV8rm;
@@ -1487,7 +1619,7 @@ unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
// Materialize addresses with LEA instructions.
if (isa<GlobalValue>(C)) {
X86AddressMode AM;
- if (X86SelectAddress(C, AM, false)) {
+ if (X86SelectAddress(C, AM)) {
if (TLI.getPointerTy() == MVT::i32)
Opc = X86::LEA32r;
else
@@ -1509,16 +1641,15 @@ unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
unsigned char OpFlag = 0;
- if (TM.getRelocationModel() == Reloc::PIC_) {
- if (Subtarget->isPICStyleStub()) {
- OpFlag = X86II::MO_PIC_BASE_OFFSET;
- PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
- } else if (Subtarget->isPICStyleGOT()) {
- OpFlag = X86II::MO_GOTOFF;
- PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
- } else if (Subtarget->isPICStyleRIPRel() &&
- TM.getCodeModel() == CodeModel::Small)
- PICBase = X86::RIP;
+ if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+ PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
+ } else if (Subtarget->isPICStyleGOT()) {
+ OpFlag = X86II::MO_GOTOFF;
+ PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
+ } else if (Subtarget->isPICStyleRIPRel() &&
+ TM.getCodeModel() == CodeModel::Small) {
+ PICBase = X86::RIP;
}
// Create the load from the constant pool.
@@ -1542,7 +1673,7 @@ unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
return 0;
X86AddressMode AM;
- if (!X86SelectAddress(C, AM, false))
+ if (!X86SelectAddress(C, AM))
return 0;
unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
OpenPOWER on IntegriCloud