summaryrefslogtreecommitdiffstats
path: root/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2009-10-14 17:57:32 +0000
committerrdivacky <rdivacky@FreeBSD.org>2009-10-14 17:57:32 +0000
commitcd749a9c07f1de2fb8affde90537efa4bc3e7c54 (patch)
treeb21f6de4e08b89bb7931806bab798fc2a5e3a686 /lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
parent72621d11de5b873f1695f391eb95f0b336c3d2d4 (diff)
downloadFreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.zip
FreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.tar.gz
Update llvm to r84119.
Diffstat (limited to 'lib/Target/SystemZ/SystemZISelDAGToDAG.cpp')
-rw-r--r--lib/Target/SystemZ/SystemZISelDAGToDAG.cpp829
1 files changed, 829 insertions, 0 deletions
diff --git a/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp b/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
new file mode 100644
index 0000000..028ee89
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
@@ -0,0 +1,829 @@
+//==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the SystemZ target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZ.h"
+#include "SystemZISelLowering.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+static const unsigned subreg_even32 = 1;
+static const unsigned subreg_odd32 = 2;
+static const unsigned subreg_even = 3;
+static const unsigned subreg_odd = 4;
+
+namespace {
+ /// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's
+ /// instead of register numbers for the leaves of the matched tree.
+ struct SystemZRRIAddressMode {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType;
+
+ struct { // This is really a union, discriminated by BaseType!
+ SDValue Reg;
+ int FrameIndex;
+ } Base;
+
+ SDValue IndexReg;
+ int64_t Disp;
+ bool isRI;
+
+ SystemZRRIAddressMode(bool RI = false)
+ : BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) {
+ }
+
+ void dump() {
+ errs() << "SystemZRRIAddressMode " << this << '\n';
+ if (BaseType == RegBase) {
+ errs() << "Base.Reg ";
+ if (Base.Reg.getNode() != 0)
+ Base.Reg.getNode()->dump();
+ else
+ errs() << "nul";
+ errs() << '\n';
+ } else {
+ errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
+ }
+ if (!isRI) {
+ errs() << "IndexReg ";
+ if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
+ else errs() << "nul";
+ }
+ errs() << " Disp " << Disp << '\n';
+ }
+ };
+}
+
+/// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+ class SystemZDAGToDAGISel : public SelectionDAGISel {
+ SystemZTargetLowering &Lowering;
+ const SystemZSubtarget &Subtarget;
+
+ void getAddressOperandsRI(const SystemZRRIAddressMode &AM,
+ SDValue &Base, SDValue &Disp);
+ void getAddressOperands(const SystemZRRIAddressMode &AM,
+ SDValue &Base, SDValue &Disp,
+ SDValue &Index);
+
+ public:
+ SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(TM, OptLevel),
+ Lowering(*TM.getTargetLowering()),
+ Subtarget(*TM.getSubtargetImpl()) { }
+
+ virtual void InstructionSelect();
+
+ virtual const char *getPassName() const {
+ return "SystemZ DAG->DAG Pattern Instruction Selection";
+ }
+
+ /// getI8Imm - Return a target constant with the specified value, of type
+ /// i8.
+ inline SDValue getI8Imm(uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i8);
+ }
+
+ /// getI16Imm - Return a target constant with the specified value, of type
+ /// i16.
+ inline SDValue getI16Imm(uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i16);
+ }
+
+ /// getI32Imm - Return a target constant with the specified value, of type
+ /// i32.
+ inline SDValue getI32Imm(uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ // Include the pieces autogenerated from the target description.
+ #include "SystemZGenDAGISel.inc"
+
+ private:
+ bool SelectAddrRI12Only(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp);
+ bool SelectAddrRI12(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp,
+ bool is12BitOnly = false);
+ bool SelectAddrRI(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp);
+ bool SelectAddrRRI12(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+ bool SelectAddrRRI20(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+ bool SelectLAAddr(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+
+ SDNode *Select(SDValue Op);
+
+ bool TryFoldLoad(SDValue P, SDValue N,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+
+ bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
+ bool is12Bit, unsigned Depth = 0);
+ bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM);
+ bool MatchAddressRI(SDValue N, SystemZRRIAddressMode &AM,
+ bool is12Bit);
+
+ #ifndef NDEBUG
+ unsigned Indent;
+ #endif
+ };
+} // end anonymous namespace
+
+/// createSystemZISelDag - This pass converts a legalized DAG into a
+/// SystemZ-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new SystemZDAGToDAGISel(TM, OptLevel);
+}
+
+/// isImmSExt20 - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 20-bit value. If so, this returns true and the
+/// immediate.
+static bool isImmSExt20(int64_t Val, int64_t &Imm) {
+ if (Val >= -524288 && Val <= 524287) {
+ Imm = Val;
+ return true;
+ }
+ return false;
+}
+
+/// isImmZExt12 - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// zero extension from a 12-bit value. If so, this returns true and the
+/// immediate.
+static bool isImmZExt12(int64_t Val, int64_t &Imm) {
+ if (Val >= 0 && Val <= 0xFFF) {
+ Imm = Val;
+ return true;
+ }
+ return false;
+}
+
+/// MatchAddress - Add the specified node to the specified addressing mode,
+/// returning true if it cannot be done. This just pattern matches for the
+/// addressing mode.
+bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
+ bool is12Bit, unsigned Depth) {
+ DebugLoc dl = N.getDebugLoc();
+ DEBUG(errs() << "MatchAddress: "; AM.dump());
+ // Limit recursion.
+ if (Depth > 5)
+ return MatchAddressBase(N, AM);
+
+ // FIXME: We can perform better here. If we have something like
+ // (shift (add A, imm), N), we can try to reassociate stuff and fold shift of
+ // imm into addressing mode.
+ switch (N.getOpcode()) {
+ default: break;
+ case ISD::Constant: {
+ int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
+ int64_t Imm = 0;
+ bool Match = (is12Bit ?
+ isImmZExt12(AM.Disp + Val, Imm) :
+ isImmSExt20(AM.Disp + Val, Imm));
+ if (Match) {
+ AM.Disp = Imm;
+ return false;
+ }
+ break;
+ }
+
+ case ISD::FrameIndex:
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
+ AM.Base.Reg.getNode() == 0) {
+ AM.BaseType = SystemZRRIAddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
+ return false;
+ }
+ break;
+
+ case ISD::SUB: {
+ // Given A-B, if A can be completely folded into the address and
+ // the index field with the index field unused, use -B as the index.
+ // This is a win if a has multiple parts that can be folded into
+ // the address. Also, this saves a mov if the base register has
+ // other uses, since it avoids a two-address sub instruction, however
+ // it costs an additional mov if the index register has other uses.
+
+ // Test if the LHS of the sub can be folded.
+ SystemZRRIAddressMode Backup = AM;
+ if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) {
+ AM = Backup;
+ break;
+ }
+ // Test if the index field is free for use.
+ if (AM.IndexReg.getNode() || AM.isRI) {
+ AM = Backup;
+ break;
+ }
+
+ // If the base is a register with multiple uses, this transformation may
+ // save a mov. Otherwise it's probably better not to do it.
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
+ (!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) {
+ AM = Backup;
+ break;
+ }
+
+ // Ok, the transformation is legal and appears profitable. Go for it.
+ SDValue RHS = N.getNode()->getOperand(1);
+ SDValue Zero = CurDAG->getConstant(0, N.getValueType());
+ SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
+ AM.IndexReg = Neg;
+
+ // Insert the new nodes into the topological ordering.
+ if (Zero.getNode()->getNodeId() == -1 ||
+ Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
+ CurDAG->RepositionNode(N.getNode(), Zero.getNode());
+ Zero.getNode()->setNodeId(N.getNode()->getNodeId());
+ }
+ if (Neg.getNode()->getNodeId() == -1 ||
+ Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
+ CurDAG->RepositionNode(N.getNode(), Neg.getNode());
+ Neg.getNode()->setNodeId(N.getNode()->getNodeId());
+ }
+ return false;
+ }
+
+ case ISD::ADD: {
+ SystemZRRIAddressMode Backup = AM;
+ if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) &&
+ !MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1))
+ return false;
+ AM = Backup;
+ if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) &&
+ !MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1))
+ return false;
+ AM = Backup;
+
+ // If we couldn't fold both operands into the address at the same time,
+ // see if we can just put each operand into a register and fold at least
+ // the add.
+ if (!AM.isRI &&
+ AM.BaseType == SystemZRRIAddressMode::RegBase &&
+ !AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) {
+ AM.Base.Reg = N.getNode()->getOperand(0);
+ AM.IndexReg = N.getNode()->getOperand(1);
+ return false;
+ }
+ break;
+ }
+
+ case ISD::OR:
+ // Handle "X | C" as "X + C" iff X is known to have C bits clear.
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ SystemZRRIAddressMode Backup = AM;
+ int64_t Offset = CN->getSExtValue();
+ int64_t Imm = 0;
+ bool MatchOffset = (is12Bit ?
+ isImmZExt12(AM.Disp + Offset, Imm) :
+ isImmSExt20(AM.Disp + Offset, Imm));
+ // The resultant disp must fit in 12 or 20-bits.
+ if (MatchOffset &&
+ // LHS should be an addr mode.
+ !MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) &&
+ // Check to see if the LHS & C is zero.
+ CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
+ AM.Disp = Imm;
+ return false;
+ }
+ AM = Backup;
+ }
+ break;
+ }
+
+ return MatchAddressBase(N, AM);
+}
+
+/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
+/// specified addressing mode without any further recursion.
+bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N,
+ SystemZRRIAddressMode &AM) {
+ // Is the base register already occupied?
+ if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) {
+ // If so, check to see if the index register is set.
+ if (AM.IndexReg.getNode() == 0 && !AM.isRI) {
+ AM.IndexReg = N;
+ return false;
+ }
+
+ // Otherwise, we cannot select it.
+ return true;
+ }
+
+ // Default, generate it as a register.
+ AM.BaseType = SystemZRRIAddressMode::RegBase;
+ AM.Base.Reg = N;
+ return false;
+}
+
+void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM,
+ SDValue &Base, SDValue &Disp) {
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase)
+ Base = AM.Base.Reg;
+ else
+ Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy());
+ Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64);
+}
+
+void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
+ SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ getAddressOperandsRI(AM, Base, Disp);
+ Index = AM.IndexReg;
+}
+
+/// Returns true if the address can be represented by a base register plus
+/// an unsigned 12-bit displacement [r+imm].
+bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp) {
+ return SelectAddrRI12(Op, Addr, Base, Disp, /*is12BitOnly*/true);
+}
+
+bool SystemZDAGToDAGISel::SelectAddrRI12(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp,
+ bool is12BitOnly) {
+ SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
+ bool Done = false;
+
+ if (!Addr.hasOneUse()) {
+ unsigned Opcode = Addr.getOpcode();
+ if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
+ // If we are able to fold N into addressing mode, then we'll allow it even
+ // if N has multiple uses. In general, addressing computation is used as
+ // addresses by all of its uses. But watch out for CopyToReg uses, that
+ // means the address computation is liveout. It will be computed by a LA
+ // so we want to avoid computing the address twice.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ MatchAddressBase(Addr, AM12);
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+ if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
+ return false;
+
+ // Check, whether we can match stuff using 20-bit displacements
+ if (!Done && !is12BitOnly &&
+ !MatchAddress(Addr, AM20, /* is12Bit */ false))
+ if (AM12.Disp == 0 && AM20.Disp != 0)
+ return false;
+
+ DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
+
+ EVT VT = Addr.getValueType();
+ if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
+ if (!AM12.Base.Reg.getNode())
+ AM12.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
+
+ getAddressOperandsRI(AM12, Base, Disp);
+
+ return true;
+}
+
+/// Returns true if the address can be represented by a base register plus
+/// a signed 20-bit displacement [r+imm].
+bool SystemZDAGToDAGISel::SelectAddrRI(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp) {
+ SystemZRRIAddressMode AM(/*isRI*/true);
+ bool Done = false;
+
+ if (!Addr.hasOneUse()) {
+ unsigned Opcode = Addr.getOpcode();
+ if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
+ // If we are able to fold N into addressing mode, then we'll allow it even
+ // if N has multiple uses. In general, addressing computation is used as
+ // addresses by all of its uses. But watch out for CopyToReg uses, that
+ // means the address computation is liveout. It will be computed by a LA
+ // so we want to avoid computing the address twice.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ MatchAddressBase(Addr, AM);
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+ if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
+ return false;
+
+ DEBUG(errs() << "MatchAddress (final): "; AM.dump());
+
+ EVT VT = Addr.getValueType();
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
+ if (!AM.Base.Reg.getNode())
+ AM.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
+
+ getAddressOperandsRI(AM, Base, Disp);
+
+ return true;
+}
+
+/// Returns true if the address can be represented by a base register plus
+/// index register plus an unsigned 12-bit displacement [base + idx + imm].
+bool SystemZDAGToDAGISel::SelectAddrRRI12(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index) {
+ SystemZRRIAddressMode AM20, AM12;
+ bool Done = false;
+
+ if (!Addr.hasOneUse()) {
+ unsigned Opcode = Addr.getOpcode();
+ if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
+ // If we are able to fold N into addressing mode, then we'll allow it even
+ // if N has multiple uses. In general, addressing computation is used as
+ // addresses by all of its uses. But watch out for CopyToReg uses, that
+ // means the address computation is liveout. It will be computed by a LA
+ // so we want to avoid computing the address twice.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ MatchAddressBase(Addr, AM12);
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+ if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
+ return false;
+
+ // Check, whether we can match stuff using 20-bit displacements
+ if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false))
+ if (AM12.Disp == 0 && AM20.Disp != 0)
+ return false;
+
+ DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
+
+ EVT VT = Addr.getValueType();
+ if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
+ if (!AM12.Base.Reg.getNode())
+ AM12.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ if (!AM12.IndexReg.getNode())
+ AM12.IndexReg = CurDAG->getRegister(0, VT);
+
+ getAddressOperands(AM12, Base, Disp, Index);
+
+ return true;
+}
+
+/// Returns true if the address can be represented by a base register plus
+/// index register plus a signed 20-bit displacement [base + idx + imm].
+bool SystemZDAGToDAGISel::SelectAddrRRI20(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index) {
+ SystemZRRIAddressMode AM;
+ bool Done = false;
+
+ if (!Addr.hasOneUse()) {
+ unsigned Opcode = Addr.getOpcode();
+ if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
+ // If we are able to fold N into addressing mode, then we'll allow it even
+ // if N has multiple uses. In general, addressing computation is used as
+ // addresses by all of its uses. But watch out for CopyToReg uses, that
+ // means the address computation is liveout. It will be computed by a LA
+ // so we want to avoid computing the address twice.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ MatchAddressBase(Addr, AM);
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+ if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
+ return false;
+
+ DEBUG(errs() << "MatchAddress (final): "; AM.dump());
+
+ EVT VT = Addr.getValueType();
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
+ if (!AM.Base.Reg.getNode())
+ AM.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ if (!AM.IndexReg.getNode())
+ AM.IndexReg = CurDAG->getRegister(0, VT);
+
+ getAddressOperands(AM, Base, Disp, Index);
+
+ return true;
+}
+
+/// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
+/// mode it matches can be cost effectively emitted as an LA/LAY instruction.
+bool SystemZDAGToDAGISel::SelectLAAddr(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index) {
+ SystemZRRIAddressMode AM;
+
+ if (MatchAddress(Addr, AM, false))
+ return false;
+
+ EVT VT = Addr.getValueType();
+ unsigned Complexity = 0;
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase)
+ if (AM.Base.Reg.getNode())
+ Complexity = 1;
+ else
+ AM.Base.Reg = CurDAG->getRegister(0, VT);
+ else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase)
+ Complexity = 4;
+
+ if (AM.IndexReg.getNode())
+ Complexity += 1;
+ else
+ AM.IndexReg = CurDAG->getRegister(0, VT);
+
+ if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
+ Complexity += 1;
+
+ if (Complexity > 2) {
+ getAddressOperands(AM, Base, Disp, Index);
+ return true;
+ }
+
+ return false;
+}
+
+bool SystemZDAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
+ SDValue &Base, SDValue &Disp, SDValue &Index) {
+ if (ISD::isNON_EXTLoad(N.getNode()) &&
+ N.hasOneUse() &&
+ IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
+ return SelectAddrRRI20(P, N.getOperand(1), Base, Disp, Index);
+ return false;
+}
+
+/// InstructionSelect - This callback is invoked by
+/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
+void SystemZDAGToDAGISel::InstructionSelect() {
+ DEBUG(BB->dump());
+
+ // Codegen the basic block.
+ DEBUG(errs() << "===== Instruction selection begins:\n");
+ DEBUG(Indent = 0);
+ SelectRoot(*CurDAG);
+ DEBUG(errs() << "===== Instruction selection ends:\n");
+
+ CurDAG->RemoveDeadNodes();
+}
+
+SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
+ SDNode *Node = Op.getNode();
+ EVT NVT = Node->getValueType(0);
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Opcode = Node->getOpcode();
+
+ // Dump information about the Node being selected
+ DEBUG(errs().indent(Indent) << "Selecting: ";
+ Node->dump(CurDAG);
+ errs() << "\n");
+ DEBUG(Indent += 2);
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs().indent(Indent-2) << "== ";
+ Node->dump(CurDAG);
+ errs() << "\n");
+ DEBUG(Indent -= 2);
+ return NULL; // Already selected.
+ }
+
+ switch (Opcode) {
+ default: break;
+ case ISD::SDIVREM: {
+ unsigned Opc, MOpc;
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ EVT ResVT;
+ bool is32Bit = false;
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: assert(0 && "Unsupported VT!");
+ case MVT::i32:
+ Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
+ ResVT = MVT::v2i64;
+ is32Bit = true;
+ break;
+ case MVT::i64:
+ Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
+ ResVT = MVT::v2i64;
+ break;
+ }
+
+ SDValue Tmp0, Tmp1, Tmp2;
+ bool foldedLoad = TryFoldLoad(Op, N1, Tmp0, Tmp1, Tmp2);
+
+ // Prepare the dividend
+ SDNode *Dividend;
+ if (is32Bit)
+ Dividend = CurDAG->getMachineNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0);
+ else
+ Dividend = N0.getNode();
+
+ // Insert prepared dividend into suitable 'subreg'
+ SDNode *Tmp = CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
+ dl, ResVT);
+ Dividend =
+ CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl, ResVT,
+ SDValue(Tmp, 0), SDValue(Dividend, 0),
+ CurDAG->getTargetConstant(subreg_odd, MVT::i32));
+
+ SDNode *Result;
+ SDValue DivVal = SDValue(Dividend, 0);
+ if (foldedLoad) {
+ SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
+ Result = CurDAG->getMachineNode(MOpc, dl, ResVT,
+ Ops, array_lengthof(Ops));
+ // Update the chain.
+ ReplaceUses(N1.getValue(1), SDValue(Result, 0));
+ } else {
+ Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
+ }
+
+ // Copy the division (odd subreg) result, if it is needed.
+ if (!Op.getValue(0).use_empty()) {
+ unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
+ SDNode *Div = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
+ dl, NVT,
+ SDValue(Result, 0),
+ CurDAG->getTargetConstant(SubRegIdx,
+ MVT::i32));
+
+ ReplaceUses(Op.getValue(0), SDValue(Div, 0));
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ Result->dump(CurDAG);
+ errs() << "\n");
+ }
+
+ // Copy the remainder (even subreg) result, if it is needed.
+ if (!Op.getValue(1).use_empty()) {
+ unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
+ SDNode *Rem = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
+ dl, NVT,
+ SDValue(Result, 0),
+ CurDAG->getTargetConstant(SubRegIdx,
+ MVT::i32));
+
+ ReplaceUses(Op.getValue(1), SDValue(Rem, 0));
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ Result->dump(CurDAG);
+ errs() << "\n");
+ }
+
+#ifndef NDEBUG
+ Indent -= 2;
+#endif
+
+ return NULL;
+ }
+ case ISD::UDIVREM: {
+ unsigned Opc, MOpc, ClrOpc;
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+ EVT ResVT;
+
+ bool is32Bit = false;
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: assert(0 && "Unsupported VT!");
+ case MVT::i32:
+ Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
+ ClrOpc = SystemZ::MOV64Pr0_even;
+ ResVT = MVT::v2i32;
+ is32Bit = true;
+ break;
+ case MVT::i64:
+ Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
+ ClrOpc = SystemZ::MOV128r0_even;
+ ResVT = MVT::v2i64;
+ break;
+ }
+
+ SDValue Tmp0, Tmp1, Tmp2;
+ bool foldedLoad = TryFoldLoad(Op, N1, Tmp0, Tmp1, Tmp2);
+
+ // Prepare the dividend
+ SDNode *Dividend = N0.getNode();
+
+ // Insert prepared dividend into suitable 'subreg'
+ SDNode *Tmp = CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
+ dl, ResVT);
+ {
+ unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
+ Dividend =
+ CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl, ResVT,
+ SDValue(Tmp, 0), SDValue(Dividend, 0),
+ CurDAG->getTargetConstant(SubRegIdx, MVT::i32));
+ }
+
+ // Zero out even subreg
+ Dividend = CurDAG->getMachineNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0));
+
+ SDValue DivVal = SDValue(Dividend, 0);
+ SDNode *Result;
+ if (foldedLoad) {
+ SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
+ Result = CurDAG->getMachineNode(MOpc, dl,ResVT,
+ Ops, array_lengthof(Ops));
+ // Update the chain.
+ ReplaceUses(N1.getValue(1), SDValue(Result, 0));
+ } else {
+ Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1);
+ }
+
+ // Copy the division (odd subreg) result, if it is needed.
+ if (!Op.getValue(0).use_empty()) {
+ unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
+ SDNode *Div = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
+ dl, NVT,
+ SDValue(Result, 0),
+ CurDAG->getTargetConstant(SubRegIdx,
+ MVT::i32));
+ ReplaceUses(Op.getValue(0), SDValue(Div, 0));
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ Result->dump(CurDAG);
+ errs() << "\n");
+ }
+
+ // Copy the remainder (even subreg) result, if it is needed.
+ if (!Op.getValue(1).use_empty()) {
+ unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
+ SDNode *Rem = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
+ dl, NVT,
+ SDValue(Result, 0),
+ CurDAG->getTargetConstant(SubRegIdx,
+ MVT::i32));
+ ReplaceUses(Op.getValue(1), SDValue(Rem, 0));
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ Result->dump(CurDAG);
+ errs() << "\n");
+ }
+
+#ifndef NDEBUG
+ Indent -= 2;
+#endif
+
+ return NULL;
+ }
+ }
+
+ // Select the default instruction
+ SDNode *ResNode = SelectCode(Op);
+
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ if (ResNode == NULL || ResNode == Op.getNode())
+ Op.getNode()->dump(CurDAG);
+ else
+ ResNode->dump(CurDAG);
+ errs() << "\n";
+ );
+ DEBUG(Indent -= 2);
+
+ return ResNode;
+}
OpenPOWER on IntegriCloud