diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /lib/Target/Mips/MipsISelLowering.cpp | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'lib/Target/Mips/MipsISelLowering.cpp')
-rw-r--r-- | lib/Target/Mips/MipsISelLowering.cpp | 1254 |
1 files changed, 1254 insertions, 0 deletions
diff --git a/lib/Target/Mips/MipsISelLowering.cpp b/lib/Target/Mips/MipsISelLowering.cpp new file mode 100644 index 0000000..9281940 --- /dev/null +++ b/lib/Target/Mips/MipsISelLowering.cpp @@ -0,0 +1,1254 @@ +//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that Mips uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "mips-lower" + +#include "MipsISelLowering.h" +#include "MipsMachineFunction.h" +#include "MipsTargetMachine.h" +#include "MipsSubtarget.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Intrinsics.h" +#include "llvm/CallingConv.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/Support/Debug.h" +using namespace llvm; + +const char *MipsTargetLowering:: +getTargetNodeName(unsigned Opcode) const +{ + switch (Opcode) + { + case MipsISD::JmpLink : return "MipsISD::JmpLink"; + case MipsISD::Hi : return "MipsISD::Hi"; + case MipsISD::Lo : return "MipsISD::Lo"; + case MipsISD::GPRel : return "MipsISD::GPRel"; + case MipsISD::Ret : return "MipsISD::Ret"; + case MipsISD::CMov : return "MipsISD::CMov"; + case MipsISD::SelectCC : return "MipsISD::SelectCC"; + case MipsISD::FPSelectCC : return "MipsISD::FPSelectCC"; + case MipsISD::FPBrcond : return "MipsISD::FPBrcond"; + case MipsISD::FPCmp : return "MipsISD::FPCmp"; + case MipsISD::FPRound : return "MipsISD::FPRound"; + default : return NULL; + } +} + +MipsTargetLowering:: +MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM) +{ + Subtarget = &TM.getSubtarget<MipsSubtarget>(); + + // Mips does not have i1 type, so use i32 for + // setcc operations results (slt, sgt, ...). + setBooleanContents(ZeroOrOneBooleanContent); + + // JumpTable targets must use GOT when using PIC_ + setUsesGlobalOffsetTable(true); + + // Set up the register classes + addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass); + addRegisterClass(MVT::f32, Mips::FGR32RegisterClass); + + // When dealing with single precision only, use libcalls + if (!Subtarget->isSingleFloat()) + if (!Subtarget->isFP64bit()) + addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass); + + // Legal fp constants + addLegalFPImmediate(APFloat(+0.0f)); + + // Load extented operations for i1 types must be promoted + setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); + setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); + + // Used by legalize types to correctly generate the setcc result. + // Without this, every float setcc comes with a AND/OR with the result, + // we don't want this, since the fpcmp result goes to a flag register, + // which is used implicitly by brcond and select operations. + AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); + + // Mips Custom Operations + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); + setOperationAction(ISD::RET, MVT::Other, Custom); + setOperationAction(ISD::JumpTable, MVT::i32, Custom); + setOperationAction(ISD::ConstantPool, MVT::i32, Custom); + setOperationAction(ISD::SELECT, MVT::f32, Custom); + setOperationAction(ISD::SELECT, MVT::i32, Custom); + setOperationAction(ISD::SETCC, MVT::f32, Custom); + setOperationAction(ISD::SETCC, MVT::f64, Custom); + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); + + // We custom lower AND/OR to handle the case where the DAG contain 'ands/ors' + // with operands comming from setcc fp comparions. This is necessary since + // the result from these setcc are in a flag registers (FCR31). + setOperationAction(ISD::AND, MVT::i32, Custom); + setOperationAction(ISD::OR, MVT::i32, Custom); + + // Operations not directly supported by Mips. + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BR_CC, MVT::Other, Expand); + setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + setOperationAction(ISD::CTPOP, MVT::i32, Expand); + setOperationAction(ISD::CTTZ, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); + setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); + setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + + // We don't have line number support yet. + setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); + setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); + setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand); + setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); + + // Use the default for now + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); + + if (Subtarget->isSingleFloat()) + setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); + + if (!Subtarget->hasSEInReg()) { + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); + } + + if (!Subtarget->hasBitCount()) + setOperationAction(ISD::CTLZ, MVT::i32, Expand); + + if (!Subtarget->hasSwap()) + setOperationAction(ISD::BSWAP, MVT::i32, Expand); + + setStackPointerRegisterToSaveRestore(Mips::SP); + computeRegisterProperties(); +} + + +MVT MipsTargetLowering::getSetCCResultType(MVT VT) const { + return MVT::i32; +} + + +SDValue MipsTargetLowering:: +LowerOperation(SDValue Op, SelectionDAG &DAG) +{ + switch (Op.getOpcode()) + { + case ISD::AND: return LowerANDOR(Op, DAG); + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::CALL: return LowerCALL(Op, DAG); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); + case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::OR: return LowerANDOR(Op, DAG); + case ISD::RET: return LowerRET(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + } + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Lower helper functions +//===----------------------------------------------------------------------===// + +// AddLiveIn - This helper function adds the specified physical register to the +// MachineFunction as a live in value. It also creates a corresponding +// virtual register for it. +static unsigned +AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC) +{ + assert(RC->contains(PReg) && "Not the correct regclass!"); + unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); + MF.getRegInfo().addLiveIn(PReg, VReg); + return VReg; +} + +// A address must be loaded from a small section if its size is less than the +// small section size threshold. Data in this section must be addressed using +// gp_rel operator. +bool MipsTargetLowering::IsInSmallSection(unsigned Size) { + return (Size > 0 && (Size <= Subtarget->getSSectionThreshold())); +} + +// Discover if this global address can be placed into small data/bss section. +bool MipsTargetLowering::IsGlobalInSmallSection(GlobalValue *GV) +{ + const TargetData *TD = getTargetData(); + const GlobalVariable *GVA = dyn_cast<GlobalVariable>(GV); + + if (!GVA) + return false; + + const Type *Ty = GV->getType()->getElementType(); + unsigned Size = TD->getTypeAllocSize(Ty); + + // if this is a internal constant string, there is a special + // section for it, but not in small data/bss. + if (GVA->hasInitializer() && GV->hasLocalLinkage()) { + Constant *C = GVA->getInitializer(); + const ConstantArray *CVA = dyn_cast<ConstantArray>(C); + if (CVA && CVA->isCString()) + return false; + } + + return IsInSmallSection(Size); +} + +// Get fp branch code (not opcode) from condition code. +static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) { + if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) + return Mips::BRANCH_T; + + if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) + return Mips::BRANCH_F; + + return Mips::BRANCH_INVALID; +} + +static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC) { + switch(BC) { + default: + assert(0 && "Unknown branch code"); + case Mips::BRANCH_T : return Mips::BC1T; + case Mips::BRANCH_F : return Mips::BC1F; + case Mips::BRANCH_TL : return Mips::BC1TL; + case Mips::BRANCH_FL : return Mips::BC1FL; + } +} + +static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) { + switch (CC) { + default: assert(0 && "Unknown fp condition code!"); + case ISD::SETEQ: + case ISD::SETOEQ: return Mips::FCOND_EQ; + case ISD::SETUNE: return Mips::FCOND_OGL; + case ISD::SETLT: + case ISD::SETOLT: return Mips::FCOND_OLT; + case ISD::SETGT: + case ISD::SETOGT: return Mips::FCOND_OGT; + case ISD::SETLE: + case ISD::SETOLE: return Mips::FCOND_OLE; + case ISD::SETGE: + case ISD::SETOGE: return Mips::FCOND_OGE; + case ISD::SETULT: return Mips::FCOND_ULT; + case ISD::SETULE: return Mips::FCOND_ULE; + case ISD::SETUGT: return Mips::FCOND_UGT; + case ISD::SETUGE: return Mips::FCOND_UGE; + case ISD::SETUO: return Mips::FCOND_UN; + case ISD::SETO: return Mips::FCOND_OR; + case ISD::SETNE: + case ISD::SETONE: return Mips::FCOND_NEQ; + case ISD::SETUEQ: return Mips::FCOND_UEQ; + } +} + +MachineBasicBlock * +MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) const { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + bool isFPCmp = false; + DebugLoc dl = MI->getDebugLoc(); + + switch (MI->getOpcode()) { + default: assert(false && "Unexpected instr type to insert"); + case Mips::Select_FCC: + case Mips::Select_FCC_S32: + case Mips::Select_FCC_D32: + isFPCmp = true; // FALL THROUGH + case Mips::Select_CC: + case Mips::Select_CC_S32: + case Mips::Select_CC_D32: { + // To "insert" a SELECT_CC instruction, we actually have to insert the + // diamond control-flow pattern. The incoming instruction knows the + // destination vreg to set, the condition code register to branch on, the + // true/false values to select between, and a branch opcode to use. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = BB; + ++It; + + // thisMBB: + // ... + // TrueVal = ... + // setcc r1, r2, r3 + // bNE r1, r0, copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + + // Emit the right instruction according to the type of the operands compared + if (isFPCmp) { + // Find the condiction code present in the setcc operation. + Mips::CondCode CC = (Mips::CondCode)MI->getOperand(4).getImm(); + // Get the branch opcode from the branch code. + unsigned Opc = FPBranchCodeToOpc(GetFPBranchCodeFromCond(CC)); + BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB); + } else + BuildMI(BB, dl, TII->get(Mips::BNE)).addReg(MI->getOperand(1).getReg()) + .addReg(Mips::ZERO).addMBB(sinkMBB); + + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + // Update machine-CFG edges by first adding all successors of the current + // block to the new block which will contain the Phi node for the select. + for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), + e = BB->succ_end(); i != e; ++i) + sinkMBB->addSuccessor(*i); + // Next, remove all successors of the current block, and add the true + // and fallthrough blocks as its successors. + while(!BB->succ_empty()) + BB->removeSuccessor(BB->succ_begin()); + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] + // ... + BB = sinkMBB; + BuildMI(BB, dl, TII->get(Mips::PHI), MI->getOperand(0).getReg()) + .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB) + .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB); + + F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + return BB; + } + } +} + +//===----------------------------------------------------------------------===// +// Misc Lower Operation implementation +//===----------------------------------------------------------------------===// + +SDValue MipsTargetLowering:: +LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) +{ + if (!Subtarget->isMips1()) + return Op; + + MachineFunction &MF = DAG.getMachineFunction(); + unsigned CCReg = AddLiveIn(MF, Mips::FCR31, Mips::CCRRegisterClass); + + SDValue Chain = DAG.getEntryNode(); + DebugLoc dl = Op.getDebugLoc(); + SDValue Src = Op.getOperand(0); + + // Set the condition register + SDValue CondReg = DAG.getCopyFromReg(Chain, dl, CCReg, MVT::i32); + CondReg = DAG.getCopyToReg(Chain, dl, Mips::AT, CondReg); + CondReg = DAG.getCopyFromReg(CondReg, dl, Mips::AT, MVT::i32); + + SDValue Cst = DAG.getConstant(3, MVT::i32); + SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, CondReg, Cst); + Cst = DAG.getConstant(2, MVT::i32); + SDValue Xor = DAG.getNode(ISD::XOR, dl, MVT::i32, Or, Cst); + + SDValue InFlag(0, 0); + CondReg = DAG.getCopyToReg(Chain, dl, Mips::FCR31, Xor, InFlag); + + // Emit the round instruction and bit convert to integer + SDValue Trunc = DAG.getNode(MipsISD::FPRound, dl, MVT::f32, + Src, CondReg.getValue(1)); + SDValue BitCvt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Trunc); + return BitCvt; +} + +SDValue MipsTargetLowering:: +LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) +{ + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + + // Get a reference from Mips stack pointer + SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32); + + // Subtract the dynamic size from the actual stack size to + // obtain the new stack size. + SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size); + + // The Sub result contains the new stack start address, so it + // must be placed in the stack pointer register. + Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub); + + // This node always has two return values: a new stack pointer + // value and a chain + SDValue Ops[2] = { Sub, Chain }; + return DAG.getMergeValues(Ops, 2, dl); +} + +SDValue MipsTargetLowering:: +LowerANDOR(SDValue Op, SelectionDAG &DAG) +{ + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + + if (LHS.getOpcode() != MipsISD::FPCmp || RHS.getOpcode() != MipsISD::FPCmp) + return Op; + + SDValue True = DAG.getConstant(1, MVT::i32); + SDValue False = DAG.getConstant(0, MVT::i32); + + SDValue LSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(), + LHS, True, False, LHS.getOperand(2)); + SDValue RSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(), + RHS, True, False, RHS.getOperand(2)); + + return DAG.getNode(Op.getOpcode(), dl, MVT::i32, LSEL, RSEL); +} + +SDValue MipsTargetLowering:: +LowerBRCOND(SDValue Op, SelectionDAG &DAG) +{ + // The first operand is the chain, the second is the condition, the third is + // the block to branch to if the condition is true. + SDValue Chain = Op.getOperand(0); + SDValue Dest = Op.getOperand(2); + DebugLoc dl = Op.getDebugLoc(); + + if (Op.getOperand(1).getOpcode() != MipsISD::FPCmp) + return Op; + + SDValue CondRes = Op.getOperand(1); + SDValue CCNode = CondRes.getOperand(2); + Mips::CondCode CC = + (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); + SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32); + + return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode, + Dest, CondRes); +} + +SDValue MipsTargetLowering:: +LowerSETCC(SDValue Op, SelectionDAG &DAG) +{ + // The operands to this are the left and right operands to compare (ops #0, + // and #1) and the condition code to compare them with (op #2) as a + // CondCodeSDNode. + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + return DAG.getNode(MipsISD::FPCmp, dl, Op.getValueType(), LHS, RHS, + DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32)); +} + +SDValue MipsTargetLowering:: +LowerSELECT(SDValue Op, SelectionDAG &DAG) +{ + SDValue Cond = Op.getOperand(0); + SDValue True = Op.getOperand(1); + SDValue False = Op.getOperand(2); + DebugLoc dl = Op.getDebugLoc(); + + // if the incomming condition comes from a integer compare, the select + // operation must be SelectCC or a conditional move if the subtarget + // supports it. + if (Cond.getOpcode() != MipsISD::FPCmp) { + if (Subtarget->hasCondMov() && !True.getValueType().isFloatingPoint()) + return Op; + return DAG.getNode(MipsISD::SelectCC, dl, True.getValueType(), + Cond, True, False); + } + + // if the incomming condition comes from fpcmp, the select + // operation must use FPSelectCC. + SDValue CCNode = Cond.getOperand(2); + return DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(), + Cond, True, False, CCNode); +} + +SDValue MipsTargetLowering:: +LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) +{ + // FIXME there isn't actually debug info here + DebugLoc dl = Op.getDebugLoc(); + GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); + SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32); + + if (!Subtarget->hasABICall()) { + SDVTList VTs = DAG.getVTList(MVT::i32); + SDValue Ops[] = { GA }; + // %gp_rel relocation + if (!isa<Function>(GV) && IsGlobalInSmallSection(GV)) { + SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, Ops, 1); + SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); + return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode); + } + // %hi/%lo relocation + SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, Ops, 1); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA); + return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo); + + } else { // Abicall relocations, TODO: make this cleaner. + SDValue ResNode = DAG.getLoad(MVT::i32, dl, + DAG.getEntryNode(), GA, NULL, 0); + // On functions and global targets not internal linked only + // a load from got/GP is necessary for PIC to work. + if (!GV->hasLocalLinkage() || isa<Function>(GV)) + return ResNode; + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA); + return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo); + } + + assert(0 && "Dont know how to handle GlobalAddress"); + return SDValue(0,0); +} + +SDValue MipsTargetLowering:: +LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) +{ + assert(0 && "TLS not implemented for MIPS."); + return SDValue(); // Not reached +} + +SDValue MipsTargetLowering:: +LowerJumpTable(SDValue Op, SelectionDAG &DAG) +{ + SDValue ResNode; + SDValue HiPart; + // FIXME there isn't actually debug info here + DebugLoc dl = Op.getDebugLoc(); + + MVT PtrVT = Op.getValueType(); + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); + + if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { + SDVTList VTs = DAG.getVTList(MVT::i32); + SDValue Ops[] = { JTI }; + HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, Ops, 1); + } else // Emit Load from Global Pointer + HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI, NULL, 0); + + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTI); + ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo); + + return ResNode; +} + +SDValue MipsTargetLowering:: +LowerConstantPool(SDValue Op, SelectionDAG &DAG) +{ + SDValue ResNode; + ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); + Constant *C = N->getConstVal(); + SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment()); + // FIXME there isn't actually debug info here + DebugLoc dl = Op.getDebugLoc(); + + // gp_rel relocation + // FIXME: we should reference the constant pool using small data sections, + // but the asm printer currently doens't support this feature without + // hacking it. This feature should come soon so we can uncomment the + // stuff below. + //if (!Subtarget->hasABICall() && + // IsInSmallSection(getTargetData()->getTypeAllocSize(C->getType()))) { + // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP); + // SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); + // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode); + //} else { // %hi/%lo relocation + SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CP); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CP); + ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo); + //} + + return ResNode; +} + +//===----------------------------------------------------------------------===// +// Calling Convention Implementation +// +// The lower operations present on calling convention works on this order: +// LowerCALL (virt regs --> phys regs, virt regs --> stack) +// LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs) +// LowerRET (virt regs --> phys regs) +// LowerCALL (phys regs --> virt regs) +// +//===----------------------------------------------------------------------===// + +#include "MipsGenCallingConv.inc" + +//===----------------------------------------------------------------------===// +// TODO: Implement a generic logic using tblgen that can support this. +// Mips O32 ABI rules: +// --- +// i32 - Passed in A0, A1, A2, A3 and stack +// f32 - Only passed in f32 registers if no int reg has been used yet to hold +// an argument. Otherwise, passed in A1, A2, A3 and stack. +// f64 - Only passed in two aliased f32 registers if no int reg has been used +// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is +// not used, it must be shadowed. If only A3 is avaiable, shadow it and +// go to stack. +//===----------------------------------------------------------------------===// + +static bool CC_MipsO32(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + + static const unsigned IntRegsSize=4, FloatRegsSize=2; + + static const unsigned IntRegs[] = { + Mips::A0, Mips::A1, Mips::A2, Mips::A3 + }; + static const unsigned F32Regs[] = { + Mips::F12, Mips::F14 + }; + static const unsigned F64Regs[] = { + Mips::D6, Mips::D7 + }; + + unsigned Reg=0; + unsigned UnallocIntReg = State.getFirstUnallocated(IntRegs, IntRegsSize); + bool IntRegUsed = (IntRegs[UnallocIntReg] != (unsigned (Mips::A0))); + + // Promote i8 and i16 + if (LocVT == MVT::i8 || LocVT == MVT::i16) { + LocVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExt; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExt; + else + LocInfo = CCValAssign::AExt; + } + + if (ValVT == MVT::i32 || (ValVT == MVT::f32 && IntRegUsed)) { + Reg = State.AllocateReg(IntRegs, IntRegsSize); + IntRegUsed = true; + LocVT = MVT::i32; + } + + if (ValVT.isFloatingPoint() && !IntRegUsed) { + if (ValVT == MVT::f32) + Reg = State.AllocateReg(F32Regs, FloatRegsSize); + else + Reg = State.AllocateReg(F64Regs, FloatRegsSize); + } + + if (ValVT == MVT::f64 && IntRegUsed) { + if (UnallocIntReg != IntRegsSize) { + // If we hit register A3 as the first not allocated, we must + // mark it as allocated (shadow) and use the stack instead. + if (IntRegs[UnallocIntReg] != (unsigned (Mips::A3))) + Reg = Mips::A2; + for (;UnallocIntReg < IntRegsSize; ++UnallocIntReg) + State.AllocateReg(UnallocIntReg); + } + LocVT = MVT::i32; + } + + if (!Reg) { + unsigned SizeInBytes = ValVT.getSizeInBits() >> 3; + unsigned Offset = State.AllocateStack(SizeInBytes, SizeInBytes); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + } else + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + + return false; // CC must always match +} + +//===----------------------------------------------------------------------===// +// CALL Calling Convention Implementation +//===----------------------------------------------------------------------===// + +/// LowerCALL - functions arguments are copied from virtual regs to +/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. +/// TODO: isVarArg, isTailCall. +SDValue MipsTargetLowering:: +LowerCALL(SDValue Op, SelectionDAG &DAG) +{ + MachineFunction &MF = DAG.getMachineFunction(); + + CallSDNode *TheCall = cast<CallSDNode>(Op.getNode()); + SDValue Chain = TheCall->getChain(); + SDValue Callee = TheCall->getCallee(); + bool isVarArg = TheCall->isVarArg(); + unsigned CC = TheCall->getCallingConv(); + DebugLoc dl = TheCall->getDebugLoc(); + + MachineFrameInfo *MFI = MF.getFrameInfo(); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); + + // To meet O32 ABI, Mips must always allocate 16 bytes on + // the stack (even if less than 4 are used as arguments) + if (Subtarget->isABI_O32()) { + int VTsize = MVT(MVT::i32).getSizeInBits()/8; + MFI->CreateFixedObject(VTsize, (VTsize*3)); + CCInfo.AnalyzeCallOperands(TheCall, CC_MipsO32); + } else + CCInfo.AnalyzeCallOperands(TheCall, CC_Mips); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); + + // With EABI is it possible to have 16 args on registers. + SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + + // First/LastArgStackLoc contains the first/last + // "at stack" argument location. + int LastArgStackLoc = 0; + unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16); + + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + SDValue Arg = TheCall->getArg(i); + CCValAssign &VA = ArgLocs[i]; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: assert(0 && "Unknown loc info!"); + case CCValAssign::Full: + if (Subtarget->isABI_O32() && VA.isRegLoc()) { + if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32) + Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Arg); + if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) { + Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg); + SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg, + DAG.getConstant(0, getPointerTy())); + SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg, + DAG.getConstant(1, getPointerTy())); + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo)); + RegsToPass.push_back(std::make_pair(VA.getLocReg()+1, Hi)); + continue; + } + } + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); + break; + } + + // Arguments that can be passed on register must be kept at + // RegsToPass vector + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + continue; + } + + // Register can't get to this point... + assert(VA.isMemLoc()); + + // Create the frame index object for this incoming parameter + // This guarantees that when allocating Local Area the firsts + // 16 bytes which are alwayes reserved won't be overwritten + // if O32 ABI is used. For EABI the first address is zero. + LastArgStackLoc = (FirstStackArgLoc + VA.getLocMemOffset()); + int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, + LastArgStackLoc); + + SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy()); + + // emit ISD::STORE whichs stores the + // parameter value to a stack Location + MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0)); + } + + // Transform all store nodes into one single node because all store + // nodes are independent of each other. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + // Build a sequence of copy-to-reg nodes chained together with token + // chain and flag operands which copy the outgoing args into registers. + // The InFlag in necessary since all emited instructions must be + // stuck together. + SDValue InFlag; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every + // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol + // node so that legalize doesn't hack it. + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); + else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) + Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); + + // MipsJmpLink = #chain, #target_address, #opt_in_flags... + // = Chain, Callee, Reg#1, Reg#2, ... + // + // Returns a chain & a flag for retval copy to use. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size()); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(0, true), InFlag); + InFlag = Chain.getValue(1); + + // Create a stack location to hold GP when PIC is used. This stack + // location is used on function prologue to save GP and also after all + // emited CALL's to restore GP. + if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { + // Function can have an arbitrary number of calls, so + // hold the LastArgStackLoc with the biggest offset. + int FI; + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + if (LastArgStackLoc >= MipsFI->getGPStackOffset()) { + LastArgStackLoc = (!LastArgStackLoc) ? (16) : (LastArgStackLoc+4); + // Create the frame index only once. SPOffset here can be anything + // (this will be fixed on processFunctionBeforeFrameFinalized) + if (MipsFI->getGPStackOffset() == -1) { + FI = MFI->CreateFixedObject(4, 0); + MipsFI->setGPFI(FI); + } + MipsFI->setGPStackOffset(LastArgStackLoc); + } + + // Reload GP value. + FI = MipsFI->getGPFI(); + SDValue FIN = DAG.getFrameIndex(FI,getPointerTy()); + SDValue GPLoad = DAG.getLoad(MVT::i32, dl, Chain, FIN, NULL, 0); + Chain = GPLoad.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, DAG.getRegister(Mips::GP, MVT::i32), + GPLoad, SDValue(0,0)); + InFlag = Chain.getValue(1); + } + + // Handle result values, copying them out of physregs into vregs that we + // return. + return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), Op.getResNo()); +} + +/// LowerCallResult - Lower the result values of an ISD::CALL into the +/// appropriate copies out of appropriate physical registers. This assumes that +/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call +/// being lowered. Returns a SDNode with the same number of values as the +/// ISD::CALL. +SDNode *MipsTargetLowering:: +LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall, + unsigned CallingConv, SelectionDAG &DAG) { + + bool isVarArg = TheCall->isVarArg(); + DebugLoc dl = TheCall->getDebugLoc(); + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); + + CCInfo.AnalyzeCallResult(TheCall, RetCC_Mips); + SmallVector<SDValue, 8> ResultVals; + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), + RVLocs[i].getValVT(), InFlag).getValue(1); + InFlag = Chain.getValue(2); + ResultVals.push_back(Chain.getValue(0)); + } + + ResultVals.push_back(Chain); + + // Merge everything together with a MERGE_VALUES node. + return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(), + &ResultVals[0], ResultVals.size()).getNode(); +} + +//===----------------------------------------------------------------------===// +// FORMAL_ARGUMENTS Calling Convention Implementation +//===----------------------------------------------------------------------===// + +/// LowerFORMAL_ARGUMENTS - transform physical registers into +/// virtual registers and generate load operations for +/// arguments places on the stack. +/// TODO: isVarArg +SDValue MipsTargetLowering:: +LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) +{ + SDValue Root = Op.getOperand(0); + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + DebugLoc dl = Op.getDebugLoc(); + + bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0; + unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); + + unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF); + + // GP must be live into PIC and non-PIC call target. + AddLiveIn(MF, Mips::GP, Mips::CPURegsRegisterClass); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); + + if (Subtarget->isABI_O32()) + CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_MipsO32); + else + CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_Mips); + + SmallVector<SDValue, 16> ArgValues; + SDValue StackPtr; + + unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16); + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + + // Arguments stored on registers + if (VA.isRegLoc()) { + MVT RegVT = VA.getLocVT(); + TargetRegisterClass *RC = 0; + + if (RegVT == MVT::i32) + RC = Mips::CPURegsRegisterClass; + else if (RegVT == MVT::f32) + RC = Mips::FGR32RegisterClass; + else if (RegVT == MVT::f64) { + if (!Subtarget->isSingleFloat()) + RC = Mips::AFGR64RegisterClass; + } else + assert(0 && "RegVT not supported by FORMAL_ARGUMENTS Lowering"); + + // Transform the arguments stored on + // physical registers into virtual ones + unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); + SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT); + + // If this is an 8 or 16-bit value, it has been passed promoted + // to 32 bits. Insert an assert[sz]ext to capture this, then + // truncate to the right size. + if (VA.getLocInfo() != CCValAssign::Full) { + unsigned Opcode = 0; + if (VA.getLocInfo() == CCValAssign::SExt) + Opcode = ISD::AssertSext; + else if (VA.getLocInfo() == CCValAssign::ZExt) + Opcode = ISD::AssertZext; + if (Opcode) + ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); + } + + // Handle O32 ABI cases: i32->f32 and (i32,i32)->f64 + if (Subtarget->isABI_O32()) { + if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32) + ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue); + if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) { + unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(), + VA.getLocReg()+1, RC); + SDValue ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg2, RegVT); + SDValue Hi = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue); + SDValue Lo = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue2); + ArgValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::f64, Lo, Hi); + } + } + + ArgValues.push_back(ArgValue); + + // To meet ABI, when VARARGS are passed on registers, the registers + // must have their values written to the caller stack frame. + if ((isVarArg) && (Subtarget->isABI_O32())) { + if (StackPtr.getNode() == 0) + StackPtr = DAG.getRegister(StackReg, getPointerTy()); + + // The stack pointer offset is relative to the caller stack frame. + // Since the real stack size is unknown here, a negative SPOffset + // is used so there's a way to adjust these offsets when the stack + // size get known (on EliminateFrameIndex). A dummy SPOffset is + // used instead of a direct negative address (which is recorded to + // be used on emitPrologue) to avoid mis-calc of the first stack + // offset on PEI::calculateFrameObjectOffsets. + // Arguments are always 32-bit. + int FI = MFI->CreateFixedObject(4, 0); + MipsFI->recordStoreVarArgsFI(FI, -(4+(i*4))); + SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy()); + + // emit ISD::STORE whichs stores the + // parameter value to a stack Location + ArgValues.push_back(DAG.getStore(Root, dl, ArgValue, PtrOff, NULL, 0)); + } + + } else { // VA.isRegLoc() + + // sanity check + assert(VA.isMemLoc()); + + // The stack pointer offset is relative to the caller stack frame. + // Since the real stack size is unknown here, a negative SPOffset + // is used so there's a way to adjust these offsets when the stack + // size get known (on EliminateFrameIndex). A dummy SPOffset is + // used instead of a direct negative address (which is recorded to + // be used on emitPrologue) to avoid mis-calc of the first stack + // offset on PEI::calculateFrameObjectOffsets. + // Arguments are always 32-bit. + unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; + int FI = MFI->CreateFixedObject(ArgSize, 0); + MipsFI->recordLoadArgsFI(FI, -(ArgSize+ + (FirstStackArgLoc + VA.getLocMemOffset()))); + + // Create load nodes to retrieve arguments from the stack + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); + ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0)); + } + } + + // The mips ABIs for returning structs by value requires that we copy + // the sret argument into $v0 for the return. Save the argument into + // a virtual register so that we can access it from the return points. + if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { + unsigned Reg = MipsFI->getSRetReturnReg(); + if (!Reg) { + Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); + MipsFI->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]); + Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root); + } + + ArgValues.push_back(Root); + + // Return the new list of results. + return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(), + &ArgValues[0], ArgValues.size()).getValue(Op.getResNo()); +} + +//===----------------------------------------------------------------------===// +// Return Value Calling Convention Implementation +//===----------------------------------------------------------------------===// + +SDValue MipsTargetLowering:: +LowerRET(SDValue Op, SelectionDAG &DAG) +{ + // CCValAssign - represent the assignment of + // the return value to a location + SmallVector<CCValAssign, 16> RVLocs; + unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); + bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); + DebugLoc dl = Op.getDebugLoc(); + + // CCState - Info about the registers and stack slot. + CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); + + // Analize return values of ISD::RET + CCInfo.AnalyzeReturn(Op.getNode(), RetCC_Mips); + + // If this is the first return lowered for this function, add + // the regs to the liveout set for the function. + if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { + for (unsigned i = 0; i != RVLocs.size(); ++i) + if (RVLocs[i].isRegLoc()) + DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); + } + + // The chain is always operand #0 + SDValue Chain = Op.getOperand(0); + SDValue Flag; + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + // ISD::RET => ret chain, (regnum1,val1), ... + // So i*2+1 index only the regnums + Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), + Op.getOperand(i*2+1), Flag); + + // guarantee that all emitted copies are + // stuck together, avoiding something bad + Flag = Chain.getValue(1); + } + + // The mips ABIs for returning structs by value requires that we copy + // the sret argument into $v0 for the return. We saved the argument into + // a virtual register in the entry block, so now we copy the value out + // and into $v0. + if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + unsigned Reg = MipsFI->getSRetReturnReg(); + + if (!Reg) + assert(0 && "sret virtual register not created in the entry block"); + SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); + + Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag); + Flag = Chain.getValue(1); + } + + // Return on Mips is always a "jr $ra" + if (Flag.getNode()) + return DAG.getNode(MipsISD::Ret, dl, MVT::Other, + Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag); + else // Return Void + return DAG.getNode(MipsISD::Ret, dl, MVT::Other, + Chain, DAG.getRegister(Mips::RA, MVT::i32)); +} + +//===----------------------------------------------------------------------===// +// Mips Inline Assembly Support +//===----------------------------------------------------------------------===// + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +MipsTargetLowering::ConstraintType MipsTargetLowering:: +getConstraintType(const std::string &Constraint) const +{ + // Mips specific constrainy + // GCC config/mips/constraints.md + // + // 'd' : An address register. Equivalent to r + // unless generating MIPS16 code. + // 'y' : Equivalent to r; retained for + // backwards compatibility. + // 'f' : Floating Point registers. + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default : break; + case 'd': + case 'y': + case 'f': + return C_RegisterClass; + break; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +/// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"), +/// return a list of registers that can be used to satisfy the constraint. +/// This should only be used for C_RegisterClass constraints. +std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering:: +getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const +{ + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'r': + return std::make_pair(0U, Mips::CPURegsRegisterClass); + case 'f': + if (VT == MVT::f32) + return std::make_pair(0U, Mips::FGR32RegisterClass); + if (VT == MVT::f64) + if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit())) + return std::make_pair(0U, Mips::AFGR64RegisterClass); + } + } + return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); +} + +/// Given a register class constraint, like 'r', if this corresponds directly +/// to an LLVM register class, return a register of 0 and the register class +/// pointer. +std::vector<unsigned> MipsTargetLowering:: +getRegClassForInlineAsmConstraint(const std::string &Constraint, + MVT VT) const +{ + if (Constraint.size() != 1) + return std::vector<unsigned>(); + + switch (Constraint[0]) { + default : break; + case 'r': + // GCC Mips Constraint Letters + case 'd': + case 'y': + return make_vector<unsigned>(Mips::T0, Mips::T1, Mips::T2, Mips::T3, + Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1, + Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7, + Mips::T8, 0); + + case 'f': + if (VT == MVT::f32) { + if (Subtarget->isSingleFloat()) + return make_vector<unsigned>(Mips::F2, Mips::F3, Mips::F4, Mips::F5, + Mips::F6, Mips::F7, Mips::F8, Mips::F9, Mips::F10, Mips::F11, + Mips::F20, Mips::F21, Mips::F22, Mips::F23, Mips::F24, + Mips::F25, Mips::F26, Mips::F27, Mips::F28, Mips::F29, + Mips::F30, Mips::F31, 0); + else + return make_vector<unsigned>(Mips::F2, Mips::F4, Mips::F6, Mips::F8, + Mips::F10, Mips::F20, Mips::F22, Mips::F24, Mips::F26, + Mips::F28, Mips::F30, 0); + } + + if (VT == MVT::f64) + if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit())) + return make_vector<unsigned>(Mips::D1, Mips::D2, Mips::D3, Mips::D4, + Mips::D5, Mips::D10, Mips::D11, Mips::D12, Mips::D13, + Mips::D14, Mips::D15, 0); + } + return std::vector<unsigned>(); +} + +bool +MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // The Mips target isn't yet aware of offsets. + return false; +} |