summaryrefslogtreecommitdiffstats
path: root/lib/Support/APInt.cpp
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2009-10-14 17:57:32 +0000
committerrdivacky <rdivacky@FreeBSD.org>2009-10-14 17:57:32 +0000
commitcd749a9c07f1de2fb8affde90537efa4bc3e7c54 (patch)
treeb21f6de4e08b89bb7931806bab798fc2a5e3a686 /lib/Support/APInt.cpp
parent72621d11de5b873f1695f391eb95f0b336c3d2d4 (diff)
downloadFreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.zip
FreeBSD-src-cd749a9c07f1de2fb8affde90537efa4bc3e7c54.tar.gz
Update llvm to r84119.
Diffstat (limited to 'lib/Support/APInt.cpp')
-rw-r--r--lib/Support/APInt.cpp455
1 files changed, 236 insertions, 219 deletions
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
index 30dc352..56d4773 100644
--- a/lib/Support/APInt.cpp
+++ b/lib/Support/APInt.cpp
@@ -14,9 +14,11 @@
#define DEBUG_TYPE "apint"
#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cmath>
@@ -34,7 +36,7 @@ inline static uint64_t* getClearedMemory(unsigned numWords) {
return result;
}
-/// A utility function for allocating memory and checking for allocation
+/// A utility function for allocating memory and checking for allocation
/// failure. The content is not zeroed.
inline static uint64_t* getMemory(unsigned numWords) {
uint64_t * result = new uint64_t[numWords];
@@ -42,10 +44,36 @@ inline static uint64_t* getMemory(unsigned numWords) {
return result;
}
+/// A utility function that converts a character to a digit.
+inline static unsigned getDigit(char cdigit, uint8_t radix) {
+ unsigned r;
+
+ if (radix == 16) {
+ r = cdigit - '0';
+ if (r <= 9)
+ return r;
+
+ r = cdigit - 'A';
+ if (r <= 5)
+ return r + 10;
+
+ r = cdigit - 'a';
+ if (r <= 5)
+ return r + 10;
+ }
+
+ r = cdigit - '0';
+ if (r < radix)
+ return r;
+
+ return -1U;
+}
+
+
void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
pVal = getClearedMemory(getNumWords());
pVal[0] = val;
- if (isSigned && int64_t(val) < 0)
+ if (isSigned && int64_t(val) < 0)
for (unsigned i = 1; i < getNumWords(); ++i)
pVal[i] = -1ULL;
}
@@ -58,7 +86,7 @@ void APInt::initSlowCase(const APInt& that) {
APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
: BitWidth(numBits), VAL(0) {
- assert(BitWidth && "bitwidth too small");
+ assert(BitWidth && "Bitwidth too small");
assert(bigVal && "Null pointer detected!");
if (isSingleWord())
VAL = bigVal[0];
@@ -74,11 +102,10 @@ APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
clearUnusedBits();
}
-APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
- uint8_t radix)
+APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
: BitWidth(numbits), VAL(0) {
- assert(BitWidth && "bitwidth too small");
- fromString(numbits, StrStart, slen, radix);
+ assert(BitWidth && "Bitwidth too small");
+ fromString(numbits, Str, radix);
}
APInt& APInt::AssignSlowCase(const APInt& RHS) {
@@ -99,7 +126,7 @@ APInt& APInt::AssignSlowCase(const APInt& RHS) {
VAL = 0;
pVal = getMemory(RHS.getNumWords());
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
- } else if (getNumWords() == RHS.getNumWords())
+ } else if (getNumWords() == RHS.getNumWords())
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
else if (RHS.isSingleWord()) {
delete [] pVal;
@@ -114,7 +141,7 @@ APInt& APInt::AssignSlowCase(const APInt& RHS) {
}
APInt& APInt::operator=(uint64_t RHS) {
- if (isSingleWord())
+ if (isSingleWord())
VAL = RHS;
else {
pVal[0] = RHS;
@@ -126,7 +153,7 @@ APInt& APInt::operator=(uint64_t RHS) {
/// Profile - This method 'profiles' an APInt for use with FoldingSet.
void APInt::Profile(FoldingSetNodeID& ID) const {
ID.AddInteger(BitWidth);
-
+
if (isSingleWord()) {
ID.AddInteger(VAL);
return;
@@ -137,7 +164,7 @@ void APInt::Profile(FoldingSetNodeID& ID) const {
ID.AddInteger(pVal[i]);
}
-/// add_1 - This function adds a single "digit" integer, y, to the multiple
+/// add_1 - This function adds a single "digit" integer, y, to the multiple
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
@@ -156,15 +183,15 @@ static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
/// @brief Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
- if (isSingleWord())
+ if (isSingleWord())
++VAL;
else
add_1(pVal, pVal, getNumWords(), 1);
return clearUnusedBits();
}
-/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
-/// the multi-digit integer array, x[], propagating the borrowed 1 value until
+/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
+/// the multi-digit integer array, x[], propagating the borrowed 1 value until
/// no further borrowing is neeeded or it runs out of "digits" in x. The result
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
/// In other words, if y > x then this function returns 1, otherwise 0.
@@ -173,7 +200,7 @@ static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
for (unsigned i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= y;
- if (y > X)
+ if (y > X)
y = 1; // We have to "borrow 1" from next "digit"
else {
y = 0; // No need to borrow
@@ -185,7 +212,7 @@ static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
- if (isSingleWord())
+ if (isSingleWord())
--VAL;
else
sub_1(pVal, getNumWords(), 1);
@@ -193,10 +220,10 @@ APInt& APInt::operator--() {
}
/// add - This function adds the integer array x to the integer array Y and
-/// places the result in dest.
+/// places the result in dest.
/// @returns the carry out from the addition
/// @brief General addition of 64-bit integer arrays
-static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
unsigned len) {
bool carry = false;
for (unsigned i = 0; i< len; ++i) {
@@ -209,10 +236,10 @@ static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
/// Adds the RHS APint to this APInt.
/// @returns this, after addition of RHS.
-/// @brief Addition assignment operator.
+/// @brief Addition assignment operator.
APInt& APInt::operator+=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
+ if (isSingleWord())
VAL += RHS.VAL;
else {
add(pVal, pVal, RHS.pVal, getNumWords());
@@ -220,10 +247,10 @@ APInt& APInt::operator+=(const APInt& RHS) {
return clearUnusedBits();
}
-/// Subtracts the integer array y from the integer array x
+/// Subtracts the integer array y from the integer array x
/// @returns returns the borrow out.
/// @brief Generalized subtraction of 64-bit integer arrays.
-static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
unsigned len) {
bool borrow = false;
for (unsigned i = 0; i < len; ++i) {
@@ -236,10 +263,10 @@ static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
/// Subtracts the RHS APInt from this APInt
/// @returns this, after subtraction
-/// @brief Subtraction assignment operator.
+/// @brief Subtraction assignment operator.
APInt& APInt::operator-=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
+ if (isSingleWord())
VAL -= RHS.VAL;
else
sub(pVal, pVal, RHS.pVal, getNumWords());
@@ -247,7 +274,7 @@ APInt& APInt::operator-=(const APInt& RHS) {
}
/// Multiplies an integer array, x by a a uint64_t integer and places the result
-/// into dest.
+/// into dest.
/// @returns the carry out of the multiplication.
/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
@@ -269,19 +296,19 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
// Determine if the add above introduces carry.
hasCarry = (dest[i] < carry) ? 1 : 0;
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
- // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
+ // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
// (2^32 - 1) + 2^32 = 2^64.
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
- carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
+ carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
}
return carry;
}
-/// Multiplies integer array x by integer array y and stores the result into
+/// Multiplies integer array x by integer array y and stores the result into
/// the integer array dest. Note that dest's size must be >= xlen + ylen.
/// @brief Generalized multiplicate of integer arrays.
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
@@ -307,7 +334,7 @@ static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
resul = (carry << 32) | (resul & 0xffffffffULL);
dest[i+j] += resul;
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
- (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
+ (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
((lx * hy) >> 32) + hx * hy;
}
dest[i+xlen] = carry;
@@ -325,7 +352,7 @@ APInt& APInt::operator*=(const APInt& RHS) {
// Get some bit facts about LHS and check for zero
unsigned lhsBits = getActiveBits();
unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
- if (!lhsWords)
+ if (!lhsWords)
// 0 * X ===> 0
return *this;
@@ -385,7 +412,7 @@ APInt& APInt::operator^=(const APInt& RHS) {
VAL ^= RHS.VAL;
this->clearUnusedBits();
return *this;
- }
+ }
unsigned numWords = getNumWords();
for (unsigned i = 0; i < numWords; ++i)
pVal[i] ^= RHS.pVal[i];
@@ -423,7 +450,7 @@ bool APInt::operator !() const {
return !VAL;
for (unsigned i = 0; i < getNumWords(); ++i)
- if (pVal[i])
+ if (pVal[i])
return false;
return true;
}
@@ -456,7 +483,7 @@ APInt APInt::operator-(const APInt& RHS) const {
}
bool APInt::operator[](unsigned bitPosition) const {
- return (maskBit(bitPosition) &
+ return (maskBit(bitPosition) &
(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
}
@@ -466,7 +493,7 @@ bool APInt::EqualSlowCase(const APInt& RHS) const {
unsigned n2 = RHS.getActiveBits();
// If the number of bits isn't the same, they aren't equal
- if (n1 != n2)
+ if (n1 != n2)
return false;
// If the number of bits fits in a word, we only need to compare the low word.
@@ -475,7 +502,7 @@ bool APInt::EqualSlowCase(const APInt& RHS) const {
// Otherwise, compare everything
for (int i = whichWord(n1 - 1); i >= 0; --i)
- if (pVal[i] != RHS.pVal[i])
+ if (pVal[i] != RHS.pVal[i])
return false;
return true;
}
@@ -512,9 +539,9 @@ bool APInt::ult(const APInt& RHS) const {
// Otherwise, compare all words
unsigned topWord = whichWord(std::max(n1,n2)-1);
for (int i = topWord; i >= 0; --i) {
- if (pVal[i] > RHS.pVal[i])
+ if (pVal[i] > RHS.pVal[i])
return false;
- if (pVal[i] < RHS.pVal[i])
+ if (pVal[i] < RHS.pVal[i])
return true;
}
return false;
@@ -552,14 +579,14 @@ bool APInt::slt(const APInt& RHS) const {
return true;
else if (rhsNeg)
return false;
- else
+ else
return lhs.ult(rhs);
}
APInt& APInt::set(unsigned bitPosition) {
- if (isSingleWord())
+ if (isSingleWord())
VAL |= maskBit(bitPosition);
- else
+ else
pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
return *this;
}
@@ -567,16 +594,16 @@ APInt& APInt::set(unsigned bitPosition) {
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(unsigned bitPosition) {
- if (isSingleWord())
+ if (isSingleWord())
VAL &= ~maskBit(bitPosition);
- else
+ else
pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
return *this;
}
/// @brief Toggle every bit to its opposite value.
-/// Toggle a given bit to its opposite value whose position is given
+/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(unsigned bitPosition) {
@@ -586,16 +613,22 @@ APInt& APInt::flip(unsigned bitPosition) {
return *this;
}
-unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
- assert(str != 0 && "Invalid value string");
- assert(slen > 0 && "Invalid string length");
+unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
+ assert(!str.empty() && "Invalid string length");
+ assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
+ "Radix should be 2, 8, 10, or 16!");
+
+ size_t slen = str.size();
- // Each computation below needs to know if its negative
- unsigned isNegative = str[0] == '-';
- if (isNegative) {
+ // Each computation below needs to know if it's negative.
+ StringRef::iterator p = str.begin();
+ unsigned isNegative = *p == '-';
+ if (*p == '-' || *p == '+') {
+ p++;
slen--;
- str++;
+ assert(slen && "String is only a sign, needs a value.");
}
+
// For radixes of power-of-two values, the bits required is accurately and
// easily computed
if (radix == 2)
@@ -605,22 +638,27 @@ unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
if (radix == 16)
return slen * 4 + isNegative;
- // Otherwise it must be radix == 10, the hard case
- assert(radix == 10 && "Invalid radix");
-
// This is grossly inefficient but accurate. We could probably do something
// with a computation of roughly slen*64/20 and then adjust by the value of
// the first few digits. But, I'm not sure how accurate that could be.
// Compute a sufficient number of bits that is always large enough but might
- // be too large. This avoids the assertion in the constructor.
- unsigned sufficient = slen*64/18;
+ // be too large. This avoids the assertion in the constructor. This
+ // calculation doesn't work appropriately for the numbers 0-9, so just use 4
+ // bits in that case.
+ unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
// Convert to the actual binary value.
- APInt tmp(sufficient, str, slen, radix);
+ APInt tmp(sufficient, StringRef(p, slen), radix);
- // Compute how many bits are required.
- return isNegative + tmp.logBase2() + 1;
+ // Compute how many bits are required. If the log is infinite, assume we need
+ // just bit.
+ unsigned log = tmp.logBase2();
+ if (log == (unsigned)-1) {
+ return isNegative + 1;
+ } else {
+ return isNegative + log + 1;
+ }
}
// From http://www.burtleburtle.net, byBob Jenkins.
@@ -720,7 +758,7 @@ APInt APInt::getHiBits(unsigned numBits) const {
/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(unsigned numBits) const {
- return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
+ return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
BitWidth - numBits);
}
@@ -837,7 +875,7 @@ APInt APInt::byteSwap() const {
}
}
-APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
+APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
const APInt& API2) {
APInt A = API1, B = API2;
while (!!B) {
@@ -870,7 +908,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
// If the exponent doesn't shift all bits out of the mantissa
if (exp < 52)
- return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
+ return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
APInt(width, mantissa >> (52 - exp));
// If the client didn't provide enough bits for us to shift the mantissa into
@@ -884,22 +922,23 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
return isNeg ? -Tmp : Tmp;
}
-/// RoundToDouble - This function convert this APInt to a double.
+/// RoundToDouble - This function converts this APInt to a double.
/// The layout for double is as following (IEEE Standard 754):
/// --------------------------------------
/// | Sign Exponent Fraction Bias |
/// |-------------------------------------- |
/// | 1[63] 11[62-52] 52[51-00] 1023 |
-/// --------------------------------------
+/// --------------------------------------
double APInt::roundToDouble(bool isSigned) const {
// Handle the simple case where the value is contained in one uint64_t.
+ // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
if (isSigned) {
- int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
+ int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
return double(sext);
} else
- return double(VAL);
+ return double(getWord(0));
}
// Determine if the value is negative.
@@ -920,7 +959,7 @@ double APInt::roundToDouble(bool isSigned) const {
if (exp > 1023) {
if (!isSigned || !isNeg)
return std::numeric_limits<double>::infinity();
- else
+ else
return -std::numeric_limits<double>::infinity();
}
exp += 1023; // Increment for 1023 bias
@@ -1030,7 +1069,7 @@ APInt &APInt::zext(unsigned width) {
uint64_t *newVal = getClearedMemory(wordsAfter);
if (wordsBefore == 1)
newVal[0] = VAL;
- else
+ else
for (unsigned i = 0; i < wordsBefore; ++i)
newVal[i] = pVal[i];
if (wordsBefore != 1)
@@ -1076,7 +1115,7 @@ APInt APInt::ashr(unsigned shiftAmt) const {
return APInt(BitWidth, 0); // undefined
else {
unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
- return APInt(BitWidth,
+ return APInt(BitWidth,
(((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
}
}
@@ -1113,11 +1152,11 @@ APInt APInt::ashr(unsigned shiftAmt) const {
if (bitsInWord < APINT_BITS_PER_WORD)
val[breakWord] |= ~0ULL << bitsInWord; // set high bits
} else {
- // Shift the low order words
+ // Shift the low order words
for (unsigned i = 0; i < breakWord; ++i) {
// This combines the shifted corresponding word with the low bits from
// the next word (shifted into this word's high bits).
- val[i] = (pVal[i+offset] >> wordShift) |
+ val[i] = (pVal[i+offset] >> wordShift) |
(pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
}
@@ -1130,10 +1169,10 @@ APInt APInt::ashr(unsigned shiftAmt) const {
if (isNegative()) {
if (wordShift > bitsInWord) {
if (breakWord > 0)
- val[breakWord-1] |=
+ val[breakWord-1] |=
~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
val[breakWord] |= ~0ULL;
- } else
+ } else
val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
}
}
@@ -1157,7 +1196,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
if (isSingleWord()) {
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0);
- else
+ else
return APInt(BitWidth, this->VAL >> shiftAmt);
}
@@ -1168,7 +1207,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
return APInt(BitWidth, 0);
// If none of the bits are shifted out, the result is *this. This avoids
- // issues with shifting by the size of the integer type, which produces
+ // issues with shifting by the size of the integer type, which produces
// undefined results in the code below. This is also an optimization.
if (shiftAmt == 0)
return *this;
@@ -1199,7 +1238,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
return APInt(val,BitWidth).clearUnusedBits();
}
- // Shift the low order words
+ // Shift the low order words
unsigned breakWord = getNumWords() - offset -1;
for (unsigned i = 0; i < breakWord; ++i)
val[i] = (pVal[i+offset] >> wordShift) |
@@ -1306,7 +1345,7 @@ APInt APInt::rotr(unsigned rotateAmt) const {
// values using less than 52 bits, the value is converted to double and then
// the libc sqrt function is called. The result is rounded and then converted
// back to a uint64_t which is then used to construct the result. Finally,
-// the Babylonian method for computing square roots is used.
+// the Babylonian method for computing square roots is used.
APInt APInt::sqrt() const {
// Determine the magnitude of the value.
@@ -1318,7 +1357,7 @@ APInt APInt::sqrt() const {
static const uint8_t results[32] = {
/* 0 */ 0,
/* 1- 2 */ 1, 1,
- /* 3- 6 */ 2, 2, 2, 2,
+ /* 3- 6 */ 2, 2, 2, 2,
/* 7-12 */ 3, 3, 3, 3, 3, 3,
/* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
/* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
@@ -1334,10 +1373,10 @@ APInt APInt::sqrt() const {
if (magnitude < 52) {
#ifdef _MSC_VER
// Amazingly, VC++ doesn't have round().
- return APInt(BitWidth,
+ return APInt(BitWidth,
uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
#else
- return APInt(BitWidth,
+ return APInt(BitWidth,
uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
#endif
}
@@ -1346,7 +1385,7 @@ APInt APInt::sqrt() const {
// is a classical Babylonian method for computing the square root. This code
// was adapted to APINt from a wikipedia article on such computations.
// See http://www.wikipedia.org/ and go to the page named
- // Calculate_an_integer_square_root.
+ // Calculate_an_integer_square_root.
unsigned nbits = BitWidth, i = 4;
APInt testy(BitWidth, 16);
APInt x_old(BitWidth, 1);
@@ -1354,13 +1393,13 @@ APInt APInt::sqrt() const {
APInt two(BitWidth, 2);
// Select a good starting value using binary logarithms.
- for (;; i += 2, testy = testy.shl(2))
+ for (;; i += 2, testy = testy.shl(2))
if (i >= nbits || this->ule(testy)) {
x_old = x_old.shl(i / 2);
break;
}
- // Use the Babylonian method to arrive at the integer square root:
+ // Use the Babylonian method to arrive at the integer square root:
for (;;) {
x_new = (this->udiv(x_old) + x_old).udiv(two);
if (x_old.ule(x_new))
@@ -1369,9 +1408,9 @@ APInt APInt::sqrt() const {
}
// Make sure we return the closest approximation
- // NOTE: The rounding calculation below is correct. It will produce an
+ // NOTE: The rounding calculation below is correct. It will produce an
// off-by-one discrepancy with results from pari/gp. That discrepancy has been
- // determined to be a rounding issue with pari/gp as it begins to use a
+ // determined to be a rounding issue with pari/gp as it begins to use a
// floating point representation after 192 bits. There are no discrepancies
// between this algorithm and pari/gp for bit widths < 192 bits.
APInt square(x_old * x_old);
@@ -1386,7 +1425,7 @@ APInt APInt::sqrt() const {
else
return x_old + 1;
} else
- assert(0 && "Error in APInt::sqrt computation");
+ llvm_unreachable("Error in APInt::sqrt computation");
return x_old + 1;
}
@@ -1409,7 +1448,7 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const {
APInt r[2] = { modulo, *this };
APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
APInt q(BitWidth, 0);
-
+
unsigned i;
for (i = 0; r[i^1] != 0; i ^= 1) {
// An overview of the math without the confusing bit-flipping:
@@ -1442,11 +1481,9 @@ APInt::ms APInt::magic() const {
const APInt& d = *this;
unsigned p;
APInt ad, anc, delta, q1, r1, q2, r2, t;
- APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
- APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
struct ms mag;
-
+
ad = d.abs();
t = signedMin + (d.lshr(d.getBitWidth() - 1));
anc = t - 1 - t.urem(ad); // absolute value of nc
@@ -1471,7 +1508,7 @@ APInt::ms APInt::magic() const {
}
delta = ad - r2;
} while (q1.ule(delta) || (q1 == delta && r1 == 0));
-
+
mag.m = q2 + 1;
if (d.isNegative()) mag.m = -mag.m; // resulting magic number
mag.s = p - d.getBitWidth(); // resulting shift
@@ -1543,17 +1580,17 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
uint64_t b = uint64_t(1) << 32;
#if 0
- DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
- DEBUG(cerr << "KnuthDiv: original:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
- DEBUG(cerr << " by");
- DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
- DEBUG(cerr << '\n');
+ DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
+ DEBUG(errs() << "KnuthDiv: original:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
+ DEBUG(errs() << " by");
+ DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
+ DEBUG(errs() << '\n');
#endif
- // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
- // u and v by d. Note that we have taken Knuth's advice here to use a power
- // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
- // 2 allows us to shift instead of multiply and it is easy to determine the
+ // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
+ // u and v by d. Note that we have taken Knuth's advice here to use a power
+ // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
+ // 2 allows us to shift instead of multiply and it is easy to determine the
// shift amount from the leading zeros. We are basically normalizing the u
// and v so that its high bits are shifted to the top of v's range without
// overflow. Note that this can require an extra word in u so that u must
@@ -1575,27 +1612,27 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
}
u[m+n] = u_carry;
#if 0
- DEBUG(cerr << "KnuthDiv: normal:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
- DEBUG(cerr << " by");
- DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
- DEBUG(cerr << '\n');
+ DEBUG(errs() << "KnuthDiv: normal:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
+ DEBUG(errs() << " by");
+ DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
+ DEBUG(errs() << '\n');
#endif
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
int j = m;
do {
- DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
- // D3. [Calculate q'.].
+ DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
+ // D3. [Calculate q'.].
// Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
// Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
// Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
// qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
// on v[n-2] determines at high speed most of the cases in which the trial
- // value qp is one too large, and it eliminates all cases where qp is two
- // too large.
+ // value qp is one too large, and it eliminates all cases where qp is two
+ // too large.
uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
- DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
+ DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
uint64_t qp = dividend / v[n-1];
uint64_t rp = dividend % v[n-1];
if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
@@ -1604,20 +1641,20 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
qp--;
}
- DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
+ DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
// D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
// (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
// consists of a simple multiplication by a one-place number, combined with
- // a subtraction.
+ // a subtraction.
bool isNeg = false;
for (unsigned i = 0; i < n; ++i) {
uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
bool borrow = subtrahend > u_tmp;
- DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
- << ", subtrahend == " << subtrahend
- << ", borrow = " << borrow << '\n');
+ DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
+ << ", subtrahend == " << subtrahend
+ << ", borrow = " << borrow << '\n');
uint64_t result = u_tmp - subtrahend;
unsigned k = j + i;
@@ -1629,14 +1666,14 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
k++;
}
isNeg |= borrow;
- DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
- u[j+i+1] << '\n');
+ DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
+ u[j+i+1] << '\n');
}
- DEBUG(cerr << "KnuthDiv: after subtraction:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
- DEBUG(cerr << '\n');
- // The digits (u[j+n]...u[j]) should be kept positive; if the result of
- // this step is actually negative, (u[j+n]...u[j]) should be left as the
+ DEBUG(errs() << "KnuthDiv: after subtraction:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
+ DEBUG(errs() << '\n');
+ // The digits (u[j+n]...u[j]) should be kept positive; if the result of
+ // this step is actually negative, (u[j+n]...u[j]) should be left as the
// true value plus b**(n+1), namely as the b's complement of
// the true value, and a "borrow" to the left should be remembered.
//
@@ -1647,20 +1684,20 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
carry = carry && u[i] == 0;
}
}
- DEBUG(cerr << "KnuthDiv: after complement:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
- DEBUG(cerr << '\n');
+ DEBUG(errs() << "KnuthDiv: after complement:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
+ DEBUG(errs() << '\n');
- // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
+ // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
q[j] = (unsigned)qp;
if (isNeg) {
- // D6. [Add back]. The probability that this step is necessary is very
+ // D6. [Add back]. The probability that this step is necessary is very
// small, on the order of only 2/b. Make sure that test data accounts for
- // this possibility. Decrease q[j] by 1
+ // this possibility. Decrease q[j] by 1
q[j]--;
- // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
- // A carry will occur to the left of u[j+n], and it should be ignored
+ // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
+ // A carry will occur to the left of u[j+n], and it should be ignored
// since it cancels with the borrow that occurred in D4.
bool carry = false;
for (unsigned i = 0; i < n; i++) {
@@ -1670,16 +1707,16 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
}
u[j+n] += carry;
}
- DEBUG(cerr << "KnuthDiv: after correction:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
- DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
+ DEBUG(errs() << "KnuthDiv: after correction:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
+ DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
// D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
} while (--j >= 0);
- DEBUG(cerr << "KnuthDiv: quotient:");
- DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
- DEBUG(cerr << '\n');
+ DEBUG(errs() << "KnuthDiv: quotient:");
+ DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
+ DEBUG(errs() << '\n');
// D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
// remainder may be obtained by dividing u[...] by d. If r is non-null we
@@ -1690,22 +1727,22 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
// shift right here. In order to mak
if (shift) {
unsigned carry = 0;
- DEBUG(cerr << "KnuthDiv: remainder:");
+ DEBUG(errs() << "KnuthDiv: remainder:");
for (int i = n-1; i >= 0; i--) {
r[i] = (u[i] >> shift) | carry;
carry = u[i] << (32 - shift);
- DEBUG(cerr << " " << r[i]);
+ DEBUG(errs() << " " << r[i]);
}
} else {
for (int i = n-1; i >= 0; i--) {
r[i] = u[i];
- DEBUG(cerr << " " << r[i]);
+ DEBUG(errs() << " " << r[i]);
}
}
- DEBUG(cerr << '\n');
+ DEBUG(errs() << '\n');
}
#if 0
- DEBUG(cerr << std::setbase(10) << '\n');
+ DEBUG(errs() << '\n');
#endif
}
@@ -1715,12 +1752,12 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
{
assert(lhsWords >= rhsWords && "Fractional result");
- // First, compose the values into an array of 32-bit words instead of
+ // First, compose the values into an array of 32-bit words instead of
// 64-bit words. This is a necessity of both the "short division" algorithm
- // and the the Knuth "classical algorithm" which requires there to be native
- // operations for +, -, and * on an m bit value with an m*2 bit result. We
- // can't use 64-bit operands here because we don't have native results of
- // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
+ // and the the Knuth "classical algorithm" which requires there to be native
+ // operations for +, -, and * on an m bit value with an m*2 bit result. We
+ // can't use 64-bit operands here because we don't have native results of
+ // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
// work on large-endian machines.
uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
unsigned n = rhsWords * 2;
@@ -1769,9 +1806,9 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
if (Remainder)
memset(R, 0, n * sizeof(unsigned));
- // Now, adjust m and n for the Knuth division. n is the number of words in
+ // Now, adjust m and n for the Knuth division. n is the number of words in
// the divisor. m is the number of words by which the dividend exceeds the
- // divisor (i.e. m+n is the length of the dividend). These sizes must not
+ // divisor (i.e. m+n is the length of the dividend). These sizes must not
// contain any zero words or the Knuth algorithm fails.
for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
n--;
@@ -1828,10 +1865,10 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else
Quotient->clear();
- // The quotient is in Q. Reconstitute the quotient into Quotient's low
+ // The quotient is in Q. Reconstitute the quotient into Quotient's low
// order words.
if (lhsWords == 1) {
- uint64_t tmp =
+ uint64_t tmp =
uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
if (Quotient->isSingleWord())
Quotient->VAL = tmp;
@@ -1840,7 +1877,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else {
assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
for (unsigned i = 0; i < lhsWords; ++i)
- Quotient->pVal[i] =
+ Quotient->pVal[i] =
uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
}
}
@@ -1862,7 +1899,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
// The remainder is in R. Reconstitute the remainder into Remainder's low
// order words.
if (rhsWords == 1) {
- uint64_t tmp =
+ uint64_t tmp =
uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
if (Remainder->isSingleWord())
Remainder->VAL = tmp;
@@ -1871,7 +1908,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else {
assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
for (unsigned i = 0; i < rhsWords; ++i)
- Remainder->pVal[i] =
+ Remainder->pVal[i] =
uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
}
}
@@ -1902,9 +1939,9 @@ APInt APInt::udiv(const APInt& RHS) const {
unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
// Deal with some degenerate cases
- if (!lhsWords)
+ if (!lhsWords)
// 0 / X ===> 0
- return APInt(BitWidth, 0);
+ return APInt(BitWidth, 0);
else if (lhsWords < rhsWords || this->ult(RHS)) {
// X / Y ===> 0, iff X < Y
return APInt(BitWidth, 0);
@@ -1959,7 +1996,7 @@ APInt APInt::urem(const APInt& RHS) const {
return Remainder;
}
-void APInt::udivrem(const APInt &LHS, const APInt &RHS,
+void APInt::udivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder) {
// Get some size facts about the dividend and divisor
unsigned lhsBits = LHS.getActiveBits();
@@ -1968,24 +2005,24 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS,
unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
// Check the degenerate cases
- if (lhsWords == 0) {
+ if (lhsWords == 0) {
Quotient = 0; // 0 / Y ===> 0
Remainder = 0; // 0 % Y ===> 0
return;
- }
-
- if (lhsWords < rhsWords || LHS.ult(RHS)) {
+ }
+
+ if (lhsWords < rhsWords || LHS.ult(RHS)) {
Quotient = 0; // X / Y ===> 0, iff X < Y
Remainder = LHS; // X % Y ===> X, iff X < Y
return;
- }
-
+ }
+
if (LHS == RHS) {
Quotient = 1; // X / X ===> 1
Remainder = 0; // X % X ===> 0;
return;
- }
-
+ }
+
if (lhsWords == 1 && rhsWords == 1) {
// There is only one word to consider so use the native versions.
uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
@@ -1999,19 +2036,25 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS,
divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
}
-void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
- uint8_t radix) {
+void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
// Check our assumptions here
+ assert(!str.empty() && "Invalid string length");
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
- assert(str && "String is null?");
- bool isNeg = str[0] == '-';
- if (isNeg)
- str++, slen--;
+
+ StringRef::iterator p = str.begin();
+ size_t slen = str.size();
+ bool isNeg = *p == '-';
+ if (*p == '-' || *p == '+') {
+ p++;
+ slen--;
+ assert(slen && "String is only a sign, needs a value.");
+ }
assert((slen <= numbits || radix != 2) && "Insufficient bit width");
assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
- assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
+ assert((((slen-1)*64)/22 <= numbits || radix != 10)
+ && "Insufficient bit width");
// Allocate memory
if (!isSingleWord())
@@ -2026,30 +2069,9 @@ void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
APInt apradix(getBitWidth(), radix);
// Enter digit traversal loop
- for (unsigned i = 0; i < slen; i++) {
- // Get a digit
- unsigned digit = 0;
- char cdigit = str[i];
- if (radix == 16) {
- if (!isxdigit(cdigit))
- assert(0 && "Invalid hex digit in string");
- if (isdigit(cdigit))
- digit = cdigit - '0';
- else if (cdigit >= 'a')
- digit = cdigit - 'a' + 10;
- else if (cdigit >= 'A')
- digit = cdigit - 'A' + 10;
- else
- assert(0 && "huh? we shouldn't get here");
- } else if (isdigit(cdigit)) {
- digit = cdigit - '0';
- assert((radix == 10 ||
- (radix == 8 && digit != 8 && digit != 9) ||
- (radix == 2 && (digit == 0 || digit == 1))) &&
- "Invalid digit in string for given radix");
- } else {
- assert(0 && "Invalid character in digit string");
- }
+ for (StringRef::iterator e = str.end(); p != e; ++p) {
+ unsigned digit = getDigit(*p, radix);
+ assert(digit < radix && "Invalid character in digit string");
// Shift or multiply the value by the radix
if (slen > 1) {
@@ -2077,19 +2099,19 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
bool Signed) const {
assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
-
+
// First, check for a zero value and just short circuit the logic below.
if (*this == 0) {
Str.push_back('0');
return;
}
-
+
static const char Digits[] = "0123456789ABCDEF";
-
+
if (isSingleWord()) {
char Buffer[65];
char *BufPtr = Buffer+65;
-
+
uint64_t N;
if (Signed) {
int64_t I = getSExtValue();
@@ -2101,7 +2123,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
} else {
N = getZExtValue();
}
-
+
while (N) {
*--BufPtr = Digits[N % Radix];
N /= Radix;
@@ -2111,7 +2133,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
}
APInt Tmp(*this);
-
+
if (Signed && isNegative()) {
// They want to print the signed version and it is a negative value
// Flip the bits and add one to turn it into the equivalent positive
@@ -2120,18 +2142,18 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Tmp++;
Str.push_back('-');
}
-
+
// We insert the digits backward, then reverse them to get the right order.
unsigned StartDig = Str.size();
-
- // For the 2, 8 and 16 bit cases, we can just shift instead of divide
- // because the number of bits per digit (1, 3 and 4 respectively) divides
+
+ // For the 2, 8 and 16 bit cases, we can just shift instead of divide
+ // because the number of bits per digit (1, 3 and 4 respectively) divides
// equaly. We just shift until the value is zero.
if (Radix != 10) {
// Just shift tmp right for each digit width until it becomes zero
unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
unsigned MaskAmt = Radix - 1;
-
+
while (Tmp != 0) {
unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
Str.push_back(Digits[Digit]);
@@ -2142,7 +2164,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
while (Tmp != 0) {
APInt APdigit(1, 0);
APInt tmp2(Tmp.getBitWidth(), 0);
- divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
+ divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
&APdigit);
unsigned Digit = (unsigned)APdigit.getZExtValue();
assert(Digit < Radix && "divide failed");
@@ -2150,7 +2172,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Tmp = tmp2;
}
}
-
+
// Reverse the digits before returning.
std::reverse(Str.begin()+StartDig, Str.end());
}
@@ -2161,7 +2183,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
SmallString<40> S;
toString(S, Radix, Signed);
- return S.c_str();
+ return S.str();
}
@@ -2169,26 +2191,21 @@ void APInt::dump() const {
SmallString<40> S, U;
this->toStringUnsigned(U);
this->toStringSigned(S);
- fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
+ errs() << "APInt(" << BitWidth << "b, "
+ << U.str() << "u " << S.str() << "s)";
}
void APInt::print(raw_ostream &OS, bool isSigned) const {
SmallString<40> S;
this->toString(S, 10, isSigned);
- OS << S.c_str();
-}
-
-std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) {
- raw_os_ostream OS(o);
- OS << I;
- return o;
+ OS << S.str();
}
// This implements a variety of operations on a representation of
// arbitrary precision, two's-complement, bignum integer values.
-/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
- and unrestricting assumption. */
+// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
+// and unrestricting assumption.
#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
OpenPOWER on IntegriCloud