diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp')
-rw-r--r-- | lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp | 542 |
1 files changed, 542 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp new file mode 100644 index 0000000..160f1ba --- /dev/null +++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp @@ -0,0 +1,542 @@ +//===-- ExternalFunctions.cpp - Implement External Functions --------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains both code to deal with invoking "external" functions, but +// also contains code that implements "exported" external functions. +// +// There are currently two mechanisms for handling external functions in the +// Interpreter. The first is to implement lle_* wrapper functions that are +// specific to well-known library functions which manually translate the +// arguments from GenericValues and make the call. If such a wrapper does +// not exist, and libffi is available, then the Interpreter will attempt to +// invoke the function using libffi, after finding its address. +// +//===----------------------------------------------------------------------===// + +#include "Interpreter.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Config/config.h" // Detect libffi +#include "llvm/Support/Streams.h" +#include "llvm/System/DynamicLibrary.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Support/ManagedStatic.h" +#include <csignal> +#include <cstdio> +#include <map> +#include <cmath> +#include <cstring> + +#ifdef HAVE_FFI_CALL +#ifdef HAVE_FFI_H +#include <ffi.h> +#define USE_LIBFFI +#elif HAVE_FFI_FFI_H +#include <ffi/ffi.h> +#define USE_LIBFFI +#endif +#endif + +using namespace llvm; + +typedef GenericValue (*ExFunc)(const FunctionType *, + const std::vector<GenericValue> &); +static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; +static std::map<std::string, ExFunc> FuncNames; + +#ifdef USE_LIBFFI +typedef void (*RawFunc)(void); +static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; +#endif + +static Interpreter *TheInterpreter; + +static char getTypeID(const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::VoidTyID: return 'V'; + case Type::IntegerTyID: + switch (cast<IntegerType>(Ty)->getBitWidth()) { + case 1: return 'o'; + case 8: return 'B'; + case 16: return 'S'; + case 32: return 'I'; + case 64: return 'L'; + default: return 'N'; + } + case Type::FloatTyID: return 'F'; + case Type::DoubleTyID: return 'D'; + case Type::PointerTyID: return 'P'; + case Type::FunctionTyID:return 'M'; + case Type::StructTyID: return 'T'; + case Type::ArrayTyID: return 'A'; + case Type::OpaqueTyID: return 'O'; + default: return 'U'; + } +} + +// Try to find address of external function given a Function object. +// Please note, that interpreter doesn't know how to assemble a +// real call in general case (this is JIT job), that's why it assumes, +// that all external functions has the same (and pretty "general") signature. +// The typical example of such functions are "lle_X_" ones. +static ExFunc lookupFunction(const Function *F) { + // Function not found, look it up... start by figuring out what the + // composite function name should be. + std::string ExtName = "lle_"; + const FunctionType *FT = F->getFunctionType(); + for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) + ExtName += getTypeID(FT->getContainedType(i)); + ExtName += "_" + F->getName(); + + ExFunc FnPtr = FuncNames[ExtName]; + if (FnPtr == 0) + FnPtr = FuncNames["lle_X_"+F->getName()]; + if (FnPtr == 0) // Try calling a generic function... if it exists... + FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( + ("lle_X_"+F->getName()).c_str()); + if (FnPtr != 0) + ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later + return FnPtr; +} + +#ifdef USE_LIBFFI +static ffi_type *ffiTypeFor(const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::VoidTyID: return &ffi_type_void; + case Type::IntegerTyID: + switch (cast<IntegerType>(Ty)->getBitWidth()) { + case 8: return &ffi_type_sint8; + case 16: return &ffi_type_sint16; + case 32: return &ffi_type_sint32; + case 64: return &ffi_type_sint64; + } + case Type::FloatTyID: return &ffi_type_float; + case Type::DoubleTyID: return &ffi_type_double; + case Type::PointerTyID: return &ffi_type_pointer; + default: break; + } + // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. + cerr << "Type could not be mapped for use with libffi.\n"; + abort(); + return NULL; +} + +static void *ffiValueFor(const Type *Ty, const GenericValue &AV, + void *ArgDataPtr) { + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + switch (cast<IntegerType>(Ty)->getBitWidth()) { + case 8: { + int8_t *I8Ptr = (int8_t *) ArgDataPtr; + *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); + return ArgDataPtr; + } + case 16: { + int16_t *I16Ptr = (int16_t *) ArgDataPtr; + *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); + return ArgDataPtr; + } + case 32: { + int32_t *I32Ptr = (int32_t *) ArgDataPtr; + *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); + return ArgDataPtr; + } + case 64: { + int64_t *I64Ptr = (int64_t *) ArgDataPtr; + *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); + return ArgDataPtr; + } + } + case Type::FloatTyID: { + float *FloatPtr = (float *) ArgDataPtr; + *FloatPtr = AV.DoubleVal; + return ArgDataPtr; + } + case Type::DoubleTyID: { + double *DoublePtr = (double *) ArgDataPtr; + *DoublePtr = AV.DoubleVal; + return ArgDataPtr; + } + case Type::PointerTyID: { + void **PtrPtr = (void **) ArgDataPtr; + *PtrPtr = GVTOP(AV); + return ArgDataPtr; + } + default: break; + } + // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. + cerr << "Type value could not be mapped for use with libffi.\n"; + abort(); + return NULL; +} + +static bool ffiInvoke(RawFunc Fn, Function *F, + const std::vector<GenericValue> &ArgVals, + const TargetData *TD, GenericValue &Result) { + ffi_cif cif; + const FunctionType *FTy = F->getFunctionType(); + const unsigned NumArgs = F->arg_size(); + + // TODO: We don't have type information about the remaining arguments, because + // this information is never passed into ExecutionEngine::runFunction(). + if (ArgVals.size() > NumArgs && F->isVarArg()) { + cerr << "Calling external var arg function '" << F->getName() + << "' is not supported by the Interpreter.\n"; + abort(); + } + + unsigned ArgBytes = 0; + + std::vector<ffi_type*> args(NumArgs); + for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); + A != E; ++A) { + const unsigned ArgNo = A->getArgNo(); + const Type *ArgTy = FTy->getParamType(ArgNo); + args[ArgNo] = ffiTypeFor(ArgTy); + ArgBytes += TD->getTypeStoreSize(ArgTy); + } + + uint8_t *ArgData = (uint8_t*) alloca(ArgBytes); + uint8_t *ArgDataPtr = ArgData; + std::vector<void*> values(NumArgs); + for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); + A != E; ++A) { + const unsigned ArgNo = A->getArgNo(); + const Type *ArgTy = FTy->getParamType(ArgNo); + values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); + ArgDataPtr += TD->getTypeStoreSize(ArgTy); + } + + const Type *RetTy = FTy->getReturnType(); + ffi_type *rtype = ffiTypeFor(RetTy); + + if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { + void *ret = NULL; + if (RetTy->getTypeID() != Type::VoidTyID) + ret = alloca(TD->getTypeStoreSize(RetTy)); + ffi_call(&cif, Fn, ret, &values[0]); + switch (RetTy->getTypeID()) { + case Type::IntegerTyID: + switch (cast<IntegerType>(RetTy)->getBitWidth()) { + case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break; + case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break; + case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break; + case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break; + } + break; + case Type::FloatTyID: Result.FloatVal = *(float *) ret; break; + case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break; + case Type::PointerTyID: Result.PointerVal = *(void **) ret; break; + default: break; + } + return true; + } + + return false; +} +#endif // USE_LIBFFI + +GenericValue Interpreter::callExternalFunction(Function *F, + const std::vector<GenericValue> &ArgVals) { + TheInterpreter = this; + + // Do a lookup to see if the function is in our cache... this should just be a + // deferred annotation! + std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); + if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) + : FI->second) + return Fn(F->getFunctionType(), ArgVals); + +#ifdef USE_LIBFFI + std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); + RawFunc RawFn; + if (RF == RawFunctions->end()) { + RawFn = (RawFunc)(intptr_t) + sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); + if (RawFn != 0) + RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later + } else { + RawFn = RF->second; + } + + GenericValue Result; + if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result)) + return Result; +#endif // USE_LIBFFI + + cerr << "Tried to execute an unknown external function: " + << F->getType()->getDescription() << " " << F->getName() << "\n"; + if (F->getName() != "__main") + abort(); + return GenericValue(); +} + + +//===----------------------------------------------------------------------===// +// Functions "exported" to the running application... +// +extern "C" { // Don't add C++ manglings to llvm mangling :) + +// void atexit(Function*) +GenericValue lle_X_atexit(const FunctionType *FT, + const std::vector<GenericValue> &Args) { + assert(Args.size() == 1); + TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); + GenericValue GV; + GV.IntVal = 0; + return GV; +} + +// void exit(int) +GenericValue lle_X_exit(const FunctionType *FT, + const std::vector<GenericValue> &Args) { + TheInterpreter->exitCalled(Args[0]); + return GenericValue(); +} + +// void abort(void) +GenericValue lle_X_abort(const FunctionType *FT, + const std::vector<GenericValue> &Args) { + raise (SIGABRT); + return GenericValue(); +} + +// int sprintf(char *, const char *, ...) - a very rough implementation to make +// output useful. +GenericValue lle_X_sprintf(const FunctionType *FT, + const std::vector<GenericValue> &Args) { + char *OutputBuffer = (char *)GVTOP(Args[0]); + const char *FmtStr = (const char *)GVTOP(Args[1]); + unsigned ArgNo = 2; + + // printf should return # chars printed. This is completely incorrect, but + // close enough for now. + GenericValue GV; + GV.IntVal = APInt(32, strlen(FmtStr)); + while (1) { + switch (*FmtStr) { + case 0: return GV; // Null terminator... + default: // Normal nonspecial character + sprintf(OutputBuffer++, "%c", *FmtStr++); + break; + case '\\': { // Handle escape codes + sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); + FmtStr += 2; OutputBuffer += 2; + break; + } + case '%': { // Handle format specifiers + char FmtBuf[100] = "", Buffer[1000] = ""; + char *FB = FmtBuf; + *FB++ = *FmtStr++; + char Last = *FB++ = *FmtStr++; + unsigned HowLong = 0; + while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && + Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && + Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && + Last != 'p' && Last != 's' && Last != '%') { + if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's + Last = *FB++ = *FmtStr++; + } + *FB = 0; + + switch (Last) { + case '%': + strcpy(Buffer, "%"); break; + case 'c': + sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); + break; + case 'd': case 'i': + case 'u': case 'o': + case 'x': case 'X': + if (HowLong >= 1) { + if (HowLong == 1 && + TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && + sizeof(long) < sizeof(int64_t)) { + // Make sure we use %lld with a 64 bit argument because we might be + // compiling LLI on a 32 bit compiler. + unsigned Size = strlen(FmtBuf); + FmtBuf[Size] = FmtBuf[Size-1]; + FmtBuf[Size+1] = 0; + FmtBuf[Size-1] = 'l'; + } + sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); + } else + sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); + break; + case 'e': case 'E': case 'g': case 'G': case 'f': + sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; + case 'p': + sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; + case 's': + sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; + default: cerr << "<unknown printf code '" << *FmtStr << "'!>"; + ArgNo++; break; + } + strcpy(OutputBuffer, Buffer); + OutputBuffer += strlen(Buffer); + } + break; + } + } + return GV; +} + +// int printf(const char *, ...) - a very rough implementation to make output +// useful. +GenericValue lle_X_printf(const FunctionType *FT, + const std::vector<GenericValue> &Args) { + char Buffer[10000]; + std::vector<GenericValue> NewArgs; + NewArgs.push_back(PTOGV((void*)&Buffer[0])); + NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); + GenericValue GV = lle_X_sprintf(FT, NewArgs); + cout << Buffer; + return GV; +} + +static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, + void *Arg2, void *Arg3, void *Arg4, void *Arg5, + void *Arg6, void *Arg7, void *Arg8) { + void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; + + // Loop over the format string, munging read values as appropriate (performs + // byteswaps as necessary). + unsigned ArgNo = 0; + while (*Fmt) { + if (*Fmt++ == '%') { + // Read any flag characters that may be present... + bool Suppress = false; + bool Half = false; + bool Long = false; + bool LongLong = false; // long long or long double + + while (1) { + switch (*Fmt++) { + case '*': Suppress = true; break; + case 'a': /*Allocate = true;*/ break; // We don't need to track this + case 'h': Half = true; break; + case 'l': Long = true; break; + case 'q': + case 'L': LongLong = true; break; + default: + if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs + goto Out; + } + } + Out: + + // Read the conversion character + if (!Suppress && Fmt[-1] != '%') { // Nothing to do? + unsigned Size = 0; + const Type *Ty = 0; + + switch (Fmt[-1]) { + case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': + case 'd': + if (Long || LongLong) { + Size = 8; Ty = Type::Int64Ty; + } else if (Half) { + Size = 4; Ty = Type::Int16Ty; + } else { + Size = 4; Ty = Type::Int32Ty; + } + break; + + case 'e': case 'g': case 'E': + case 'f': + if (Long || LongLong) { + Size = 8; Ty = Type::DoubleTy; + } else { + Size = 4; Ty = Type::FloatTy; + } + break; + + case 's': case 'c': case '[': // No byteswap needed + Size = 1; + Ty = Type::Int8Ty; + break; + + default: break; + } + + if (Size) { + GenericValue GV; + void *Arg = Args[ArgNo++]; + memcpy(&GV, Arg, Size); + TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); + } + } + } + } +} + +// int sscanf(const char *format, ...); +GenericValue lle_X_sscanf(const FunctionType *FT, + const std::vector<GenericValue> &args) { + assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); + + char *Args[10]; + for (unsigned i = 0; i < args.size(); ++i) + Args[i] = (char*)GVTOP(args[i]); + + GenericValue GV; + GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9])); + ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9], 0); + return GV; +} + +// int scanf(const char *format, ...); +GenericValue lle_X_scanf(const FunctionType *FT, + const std::vector<GenericValue> &args) { + assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); + + char *Args[10]; + for (unsigned i = 0; i < args.size(); ++i) + Args[i] = (char*)GVTOP(args[i]); + + GenericValue GV; + GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9])); + ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9]); + return GV; +} + +// int fprintf(FILE *, const char *, ...) - a very rough implementation to make +// output useful. +GenericValue lle_X_fprintf(const FunctionType *FT, + const std::vector<GenericValue> &Args) { + assert(Args.size() >= 2); + char Buffer[10000]; + std::vector<GenericValue> NewArgs; + NewArgs.push_back(PTOGV(Buffer)); + NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); + GenericValue GV = lle_X_sprintf(FT, NewArgs); + + fputs(Buffer, (FILE *) GVTOP(Args[0])); + return GV; +} + +} // End extern "C" + + +void Interpreter::initializeExternalFunctions() { + FuncNames["lle_X_atexit"] = lle_X_atexit; + FuncNames["lle_X_exit"] = lle_X_exit; + FuncNames["lle_X_abort"] = lle_X_abort; + + FuncNames["lle_X_printf"] = lle_X_printf; + FuncNames["lle_X_sprintf"] = lle_X_sprintf; + FuncNames["lle_X_sscanf"] = lle_X_sscanf; + FuncNames["lle_X_scanf"] = lle_X_scanf; + FuncNames["lle_X_fprintf"] = lle_X_fprintf; +} + |