summaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/ExecutionEngine.cpp
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /lib/ExecutionEngine/ExecutionEngine.cpp
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'lib/ExecutionEngine/ExecutionEngine.cpp')
-rw-r--r--lib/ExecutionEngine/ExecutionEngine.cpp1010
1 files changed, 1010 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
new file mode 100644
index 0000000..29a05bb
--- /dev/null
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -0,0 +1,1010 @@
+//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the common interface used by the various execution engine
+// subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Config/alloca.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/System/Host.h"
+#include "llvm/Target/TargetData.h"
+#include <cmath>
+#include <cstring>
+using namespace llvm;
+
+STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
+STATISTIC(NumGlobals , "Number of global vars initialized");
+
+ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
+ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
+ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
+
+
+ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
+ LazyCompilationDisabled = false;
+ GVCompilationDisabled = false;
+ SymbolSearchingDisabled = false;
+ DlsymStubsEnabled = false;
+ Modules.push_back(P);
+ assert(P && "ModuleProvider is null?");
+}
+
+ExecutionEngine::~ExecutionEngine() {
+ clearAllGlobalMappings();
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+ delete Modules[i];
+}
+
+char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
+ const Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
+ return new char[GVSize];
+}
+
+/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
+/// Relases the Module from the ModuleProvider, materializing it in the
+/// process, and returns the materialized Module.
+Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
+ std::string *ErrInfo) {
+ for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
+ E = Modules.end(); I != E; ++I) {
+ ModuleProvider *MP = *I;
+ if (MP == P) {
+ Modules.erase(I);
+ clearGlobalMappingsFromModule(MP->getModule());
+ return MP->releaseModule(ErrInfo);
+ }
+ }
+ return NULL;
+}
+
+/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
+/// and deletes the ModuleProvider and owned Module. Avoids materializing
+/// the underlying module.
+void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
+ std::string *ErrInfo) {
+ for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
+ E = Modules.end(); I != E; ++I) {
+ ModuleProvider *MP = *I;
+ if (MP == P) {
+ Modules.erase(I);
+ clearGlobalMappingsFromModule(MP->getModule());
+ delete MP;
+ return;
+ }
+ }
+}
+
+/// FindFunctionNamed - Search all of the active modules to find the one that
+/// defines FnName. This is very slow operation and shouldn't be used for
+/// general code.
+Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+ if (Function *F = Modules[i]->getModule()->getFunction(FnName))
+ return F;
+ }
+ return 0;
+}
+
+
+/// addGlobalMapping - Tell the execution engine that the specified global is
+/// at the specified location. This is used internally as functions are JIT'd
+/// and as global variables are laid out in memory. It can and should also be
+/// used by clients of the EE that want to have an LLVM global overlay
+/// existing data in memory.
+void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+
+ DOUT << "JIT: Map \'" << GV->getNameStart() << "\' to [" << Addr << "]\n";
+ void *&CurVal = state.getGlobalAddressMap(locked)[GV];
+ assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too
+ if (!state.getGlobalAddressReverseMap(locked).empty()) {
+ const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
+ assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+ V = GV;
+ }
+}
+
+/// clearAllGlobalMappings - Clear all global mappings and start over again
+/// use in dynamic compilation scenarios when you want to move globals
+void ExecutionEngine::clearAllGlobalMappings() {
+ MutexGuard locked(lock);
+
+ state.getGlobalAddressMap(locked).clear();
+ state.getGlobalAddressReverseMap(locked).clear();
+}
+
+/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
+/// particular module, because it has been removed from the JIT.
+void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
+ MutexGuard locked(lock);
+
+ for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
+ state.getGlobalAddressMap(locked).erase(FI);
+ state.getGlobalAddressReverseMap(locked).erase(FI);
+ }
+ for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
+ GI != GE; ++GI) {
+ state.getGlobalAddressMap(locked).erase(GI);
+ state.getGlobalAddressReverseMap(locked).erase(GI);
+ }
+}
+
+/// updateGlobalMapping - Replace an existing mapping for GV with a new
+/// address. This updates both maps as required. If "Addr" is null, the
+/// entry for the global is removed from the mappings.
+void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+
+ std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);
+
+ // Deleting from the mapping?
+ if (Addr == 0) {
+ std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
+ void *OldVal;
+ if (I == Map.end())
+ OldVal = 0;
+ else {
+ OldVal = I->second;
+ Map.erase(I);
+ }
+
+ if (!state.getGlobalAddressReverseMap(locked).empty())
+ state.getGlobalAddressReverseMap(locked).erase(Addr);
+ return OldVal;
+ }
+
+ void *&CurVal = Map[GV];
+ void *OldVal = CurVal;
+
+ if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
+ state.getGlobalAddressReverseMap(locked).erase(CurVal);
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too
+ if (!state.getGlobalAddressReverseMap(locked).empty()) {
+ const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
+ assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+ V = GV;
+ }
+ return OldVal;
+}
+
+/// getPointerToGlobalIfAvailable - This returns the address of the specified
+/// global value if it is has already been codegen'd, otherwise it returns null.
+///
+void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
+ MutexGuard locked(lock);
+
+ std::map<const GlobalValue*, void*>::iterator I =
+ state.getGlobalAddressMap(locked).find(GV);
+ return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
+}
+
+/// getGlobalValueAtAddress - Return the LLVM global value object that starts
+/// at the specified address.
+///
+const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
+ MutexGuard locked(lock);
+
+ // If we haven't computed the reverse mapping yet, do so first.
+ if (state.getGlobalAddressReverseMap(locked).empty()) {
+ for (std::map<const GlobalValue*, void *>::iterator
+ I = state.getGlobalAddressMap(locked).begin(),
+ E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
+ state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
+ I->first));
+ }
+
+ std::map<void *, const GlobalValue*>::iterator I =
+ state.getGlobalAddressReverseMap(locked).find(Addr);
+ return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
+}
+
+// CreateArgv - Turn a vector of strings into a nice argv style array of
+// pointers to null terminated strings.
+//
+static void *CreateArgv(ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv) {
+ unsigned PtrSize = EE->getTargetData()->getPointerSize();
+ char *Result = new char[(InputArgv.size()+1)*PtrSize];
+
+ DOUT << "JIT: ARGV = " << (void*)Result << "\n";
+ const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);
+
+ for (unsigned i = 0; i != InputArgv.size(); ++i) {
+ unsigned Size = InputArgv[i].size()+1;
+ char *Dest = new char[Size];
+ DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
+
+ std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
+ Dest[Size-1] = 0;
+
+ // Endian safe: Result[i] = (PointerTy)Dest;
+ EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
+ SBytePtr);
+ }
+
+ // Null terminate it
+ EE->StoreValueToMemory(PTOGV(0),
+ (GenericValue*)(Result+InputArgv.size()*PtrSize),
+ SBytePtr);
+ return Result;
+}
+
+
+/// runStaticConstructorsDestructors - This method is used to execute all of
+/// the static constructors or destructors for a module, depending on the
+/// value of isDtors.
+void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
+ const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
+
+ // Execute global ctors/dtors for each module in the program.
+
+ GlobalVariable *GV = module->getNamedGlobal(Name);
+
+ // If this global has internal linkage, or if it has a use, then it must be
+ // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
+ // this is the case, don't execute any of the global ctors, __main will do
+ // it.
+ if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
+
+ // Should be an array of '{ int, void ()* }' structs. The first value is
+ // the init priority, which we ignore.
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!InitList) return;
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
+ if (ConstantStruct *CS =
+ dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
+ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
+
+ Constant *FP = CS->getOperand(1);
+ if (FP->isNullValue())
+ break; // Found a null terminator, exit.
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+ if (CE->isCast())
+ FP = CE->getOperand(0);
+ if (Function *F = dyn_cast<Function>(FP)) {
+ // Execute the ctor/dtor function!
+ runFunction(F, std::vector<GenericValue>());
+ }
+ }
+}
+
+/// runStaticConstructorsDestructors - This method is used to execute all of
+/// the static constructors or destructors for a program, depending on the
+/// value of isDtors.
+void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
+ // Execute global ctors/dtors for each module in the program.
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m)
+ runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
+}
+
+#ifndef NDEBUG
+/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
+static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
+ unsigned PtrSize = EE->getTargetData()->getPointerSize();
+ for (unsigned i = 0; i < PtrSize; ++i)
+ if (*(i + (uint8_t*)Loc))
+ return false;
+ return true;
+}
+#endif
+
+/// runFunctionAsMain - This is a helper function which wraps runFunction to
+/// handle the common task of starting up main with the specified argc, argv,
+/// and envp parameters.
+int ExecutionEngine::runFunctionAsMain(Function *Fn,
+ const std::vector<std::string> &argv,
+ const char * const * envp) {
+ std::vector<GenericValue> GVArgs;
+ GenericValue GVArgc;
+ GVArgc.IntVal = APInt(32, argv.size());
+
+ // Check main() type
+ unsigned NumArgs = Fn->getFunctionType()->getNumParams();
+ const FunctionType *FTy = Fn->getFunctionType();
+ const Type* PPInt8Ty =
+ PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
+ switch (NumArgs) {
+ case 3:
+ if (FTy->getParamType(2) != PPInt8Ty) {
+ cerr << "Invalid type for third argument of main() supplied\n";
+ abort();
+ }
+ // FALLS THROUGH
+ case 2:
+ if (FTy->getParamType(1) != PPInt8Ty) {
+ cerr << "Invalid type for second argument of main() supplied\n";
+ abort();
+ }
+ // FALLS THROUGH
+ case 1:
+ if (FTy->getParamType(0) != Type::Int32Ty) {
+ cerr << "Invalid type for first argument of main() supplied\n";
+ abort();
+ }
+ // FALLS THROUGH
+ case 0:
+ if (!isa<IntegerType>(FTy->getReturnType()) &&
+ FTy->getReturnType() != Type::VoidTy) {
+ cerr << "Invalid return type of main() supplied\n";
+ abort();
+ }
+ break;
+ default:
+ cerr << "Invalid number of arguments of main() supplied\n";
+ abort();
+ }
+
+ if (NumArgs) {
+ GVArgs.push_back(GVArgc); // Arg #0 = argc.
+ if (NumArgs > 1) {
+ GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
+ assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
+ "argv[0] was null after CreateArgv");
+ if (NumArgs > 2) {
+ std::vector<std::string> EnvVars;
+ for (unsigned i = 0; envp[i]; ++i)
+ EnvVars.push_back(envp[i]);
+ GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
+ }
+ }
+ }
+ return runFunction(Fn, GVArgs).IntVal.getZExtValue();
+}
+
+/// If possible, create a JIT, unless the caller specifically requests an
+/// Interpreter or there's an error. If even an Interpreter cannot be created,
+/// NULL is returned.
+///
+ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
+ bool ForceInterpreter,
+ std::string *ErrorStr,
+ CodeGenOpt::Level OptLevel) {
+ ExecutionEngine *EE = 0;
+
+ // Make sure we can resolve symbols in the program as well. The zero arg
+ // to the function tells DynamicLibrary to load the program, not a library.
+ if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
+ return 0;
+
+ // Unless the interpreter was explicitly selected, try making a JIT.
+ if (!ForceInterpreter && JITCtor)
+ EE = JITCtor(MP, ErrorStr, OptLevel);
+
+ // If we can't make a JIT, make an interpreter instead.
+ if (EE == 0 && InterpCtor)
+ EE = InterpCtor(MP, ErrorStr, OptLevel);
+
+ return EE;
+}
+
+ExecutionEngine *ExecutionEngine::create(Module *M) {
+ return create(new ExistingModuleProvider(M));
+}
+
+/// getPointerToGlobal - This returns the address of the specified global
+/// value. This may involve code generation if it's a function.
+///
+void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
+ if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
+ return getPointerToFunction(F);
+
+ MutexGuard locked(lock);
+ void *p = state.getGlobalAddressMap(locked)[GV];
+ if (p)
+ return p;
+
+ // Global variable might have been added since interpreter started.
+ if (GlobalVariable *GVar =
+ const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
+ EmitGlobalVariable(GVar);
+ else
+ assert(0 && "Global hasn't had an address allocated yet!");
+ return state.getGlobalAddressMap(locked)[GV];
+}
+
+/// This function converts a Constant* into a GenericValue. The interesting
+/// part is if C is a ConstantExpr.
+/// @brief Get a GenericValue for a Constant*
+GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
+ // If its undefined, return the garbage.
+ if (isa<UndefValue>(C))
+ return GenericValue();
+
+ // If the value is a ConstantExpr
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ Constant *Op0 = CE->getOperand(0);
+ switch (CE->getOpcode()) {
+ case Instruction::GetElementPtr: {
+ // Compute the index
+ GenericValue Result = getConstantValue(Op0);
+ SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
+ uint64_t Offset =
+ TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
+
+ char* tmp = (char*) Result.PointerVal;
+ Result = PTOGV(tmp + Offset);
+ return Result;
+ }
+ case Instruction::Trunc: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.trunc(BitWidth);
+ return GV;
+ }
+ case Instruction::ZExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.zext(BitWidth);
+ return GV;
+ }
+ case Instruction::SExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.sext(BitWidth);
+ return GV;
+ }
+ case Instruction::FPTrunc: {
+ // FIXME long double
+ GenericValue GV = getConstantValue(Op0);
+ GV.FloatVal = float(GV.DoubleVal);
+ return GV;
+ }
+ case Instruction::FPExt:{
+ // FIXME long double
+ GenericValue GV = getConstantValue(Op0);
+ GV.DoubleVal = double(GV.FloatVal);
+ return GV;
+ }
+ case Instruction::UIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType() == Type::FloatTy)
+ GV.FloatVal = float(GV.IntVal.roundToDouble());
+ else if (CE->getType() == Type::DoubleTy)
+ GV.DoubleVal = GV.IntVal.roundToDouble();
+ else if (CE->getType() == Type::X86_FP80Ty) {
+ const uint64_t zero[] = {0, 0};
+ APFloat apf = APFloat(APInt(80, 2, zero));
+ (void)apf.convertFromAPInt(GV.IntVal,
+ false,
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apf.bitcastToAPInt();
+ }
+ return GV;
+ }
+ case Instruction::SIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType() == Type::FloatTy)
+ GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
+ else if (CE->getType() == Type::DoubleTy)
+ GV.DoubleVal = GV.IntVal.signedRoundToDouble();
+ else if (CE->getType() == Type::X86_FP80Ty) {
+ const uint64_t zero[] = { 0, 0};
+ APFloat apf = APFloat(APInt(80, 2, zero));
+ (void)apf.convertFromAPInt(GV.IntVal,
+ true,
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apf.bitcastToAPInt();
+ }
+ return GV;
+ }
+ case Instruction::FPToUI: // double->APInt conversion handles sign
+ case Instruction::FPToSI: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ if (Op0->getType() == Type::FloatTy)
+ GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
+ else if (Op0->getType() == Type::DoubleTy)
+ GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
+ else if (Op0->getType() == Type::X86_FP80Ty) {
+ APFloat apf = APFloat(GV.IntVal);
+ uint64_t v;
+ bool ignored;
+ (void)apf.convertToInteger(&v, BitWidth,
+ CE->getOpcode()==Instruction::FPToSI,
+ APFloat::rmTowardZero, &ignored);
+ GV.IntVal = v; // endian?
+ }
+ return GV;
+ }
+ case Instruction::PtrToInt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = TD->getPointerSizeInBits();
+ GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
+ return GV;
+ }
+ case Instruction::IntToPtr: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = TD->getPointerSizeInBits();
+ if (PtrWidth != GV.IntVal.getBitWidth())
+ GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
+ assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
+ GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
+ return GV;
+ }
+ case Instruction::BitCast: {
+ GenericValue GV = getConstantValue(Op0);
+ const Type* DestTy = CE->getType();
+ switch (Op0->getType()->getTypeID()) {
+ default: assert(0 && "Invalid bitcast operand");
+ case Type::IntegerTyID:
+ assert(DestTy->isFloatingPoint() && "invalid bitcast");
+ if (DestTy == Type::FloatTy)
+ GV.FloatVal = GV.IntVal.bitsToFloat();
+ else if (DestTy == Type::DoubleTy)
+ GV.DoubleVal = GV.IntVal.bitsToDouble();
+ break;
+ case Type::FloatTyID:
+ assert(DestTy == Type::Int32Ty && "Invalid bitcast");
+ GV.IntVal.floatToBits(GV.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ assert(DestTy == Type::Int64Ty && "Invalid bitcast");
+ GV.IntVal.doubleToBits(GV.DoubleVal);
+ break;
+ case Type::PointerTyID:
+ assert(isa<PointerType>(DestTy) && "Invalid bitcast");
+ break; // getConstantValue(Op0) above already converted it
+ }
+ return GV;
+ }
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ GenericValue LHS = getConstantValue(Op0);
+ GenericValue RHS = getConstantValue(CE->getOperand(1));
+ GenericValue GV;
+ switch (CE->getOperand(0)->getType()->getTypeID()) {
+ default: assert(0 && "Bad add type!"); abort();
+ case Type::IntegerTyID:
+ switch (CE->getOpcode()) {
+ default: assert(0 && "Invalid integer opcode");
+ case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
+ case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
+ case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
+ case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
+ case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
+ case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
+ case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
+ case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
+ case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
+ case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
+ }
+ break;
+ case Type::FloatTyID:
+ switch (CE->getOpcode()) {
+ default: assert(0 && "Invalid float opcode"); abort();
+ case Instruction::Add:
+ GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
+ case Instruction::Sub:
+ GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
+ case Instruction::Mul:
+ GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
+ case Instruction::FDiv:
+ GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
+ case Instruction::FRem:
+ GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
+ }
+ break;
+ case Type::DoubleTyID:
+ switch (CE->getOpcode()) {
+ default: assert(0 && "Invalid double opcode"); abort();
+ case Instruction::Add:
+ GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
+ case Instruction::Sub:
+ GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
+ case Instruction::Mul:
+ GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
+ case Instruction::FDiv:
+ GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
+ case Instruction::FRem:
+ GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
+ }
+ break;
+ case Type::X86_FP80TyID:
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID: {
+ APFloat apfLHS = APFloat(LHS.IntVal);
+ switch (CE->getOpcode()) {
+ default: assert(0 && "Invalid long double opcode"); abort();
+ case Instruction::Add:
+ apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::Sub:
+ apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::Mul:
+ apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FDiv:
+ apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FRem:
+ apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ }
+ }
+ break;
+ }
+ return GV;
+ }
+ default:
+ break;
+ }
+ cerr << "ConstantExpr not handled: " << *CE << "\n";
+ abort();
+ }
+
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ case Type::FloatTyID:
+ Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
+ break;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
+ break;
+ case Type::IntegerTyID:
+ Result.IntVal = cast<ConstantInt>(C)->getValue();
+ break;
+ case Type::PointerTyID:
+ if (isa<ConstantPointerNull>(C))
+ Result.PointerVal = 0;
+ else if (const Function *F = dyn_cast<Function>(C))
+ Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
+ else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
+ Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
+ else
+ assert(0 && "Unknown constant pointer type!");
+ break;
+ default:
+ cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
+ abort();
+ }
+ return Result;
+}
+
+/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
+/// with the integer held in IntVal.
+static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
+ unsigned StoreBytes) {
+ assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
+ uint8_t *Src = (uint8_t *)IntVal.getRawData();
+
+ if (sys::isLittleEndianHost())
+ // Little-endian host - the source is ordered from LSB to MSB. Order the
+ // destination from LSB to MSB: Do a straight copy.
+ memcpy(Dst, Src, StoreBytes);
+ else {
+ // Big-endian host - the source is an array of 64 bit words ordered from
+ // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
+ // from MSB to LSB: Reverse the word order, but not the bytes in a word.
+ while (StoreBytes > sizeof(uint64_t)) {
+ StoreBytes -= sizeof(uint64_t);
+ // May not be aligned so use memcpy.
+ memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
+ Src += sizeof(uint64_t);
+ }
+
+ memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
+ }
+}
+
+/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
+/// is the address of the memory at which to store Val, cast to GenericValue *.
+/// It is not a pointer to a GenericValue containing the address at which to
+/// store Val.
+void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
+ GenericValue *Ptr, const Type *Ty) {
+ const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
+
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
+ break;
+ case Type::FloatTyID:
+ *((float*)Ptr) = Val.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ *((double*)Ptr) = Val.DoubleVal;
+ break;
+ case Type::X86_FP80TyID:
+ memcpy(Ptr, Val.IntVal.getRawData(), 10);
+ break;
+ case Type::PointerTyID:
+ // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
+ if (StoreBytes != sizeof(PointerTy))
+ memset(Ptr, 0, StoreBytes);
+
+ *((PointerTy*)Ptr) = Val.PointerVal;
+ break;
+ default:
+ cerr << "Cannot store value of type " << *Ty << "!\n";
+ }
+
+ if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
+ // Host and target are different endian - reverse the stored bytes.
+ std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
+}
+
+/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
+/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
+static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
+ assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
+ uint8_t *Dst = (uint8_t *)IntVal.getRawData();
+
+ if (sys::isLittleEndianHost())
+ // Little-endian host - the destination must be ordered from LSB to MSB.
+ // The source is ordered from LSB to MSB: Do a straight copy.
+ memcpy(Dst, Src, LoadBytes);
+ else {
+ // Big-endian - the destination is an array of 64 bit words ordered from
+ // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
+ // ordered from MSB to LSB: Reverse the word order, but not the bytes in
+ // a word.
+ while (LoadBytes > sizeof(uint64_t)) {
+ LoadBytes -= sizeof(uint64_t);
+ // May not be aligned so use memcpy.
+ memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
+ Dst += sizeof(uint64_t);
+ }
+
+ memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
+ }
+}
+
+/// FIXME: document
+///
+void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
+ GenericValue *Ptr,
+ const Type *Ty) {
+ const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
+
+ if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
+ // Host and target are different endian - reverse copy the stored
+ // bytes into a buffer, and load from that.
+ uint8_t *Src = (uint8_t*)Ptr;
+ uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
+ std::reverse_copy(Src, Src + LoadBytes, Buf);
+ Ptr = (GenericValue*)Buf;
+ }
+
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ // An APInt with all words initially zero.
+ Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
+ LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
+ break;
+ case Type::FloatTyID:
+ Result.FloatVal = *((float*)Ptr);
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = *((double*)Ptr);
+ break;
+ case Type::PointerTyID:
+ Result.PointerVal = *((PointerTy*)Ptr);
+ break;
+ case Type::X86_FP80TyID: {
+ // This is endian dependent, but it will only work on x86 anyway.
+ // FIXME: Will not trap if loading a signaling NaN.
+ uint64_t y[2];
+ memcpy(y, Ptr, 10);
+ Result.IntVal = APInt(80, 2, y);
+ break;
+ }
+ default:
+ cerr << "Cannot load value of type " << *Ty << "!\n";
+ abort();
+ }
+}
+
+// InitializeMemory - Recursive function to apply a Constant value into the
+// specified memory location...
+//
+void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
+ DOUT << "JIT: Initializing " << Addr << " ";
+ DEBUG(Init->dump());
+ if (isa<UndefValue>(Init)) {
+ return;
+ } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
+ unsigned ElementSize =
+ getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ } else if (isa<ConstantAggregateZero>(Init)) {
+ memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
+ return;
+ } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
+ unsigned ElementSize =
+ getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
+ for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
+ const StructLayout *SL =
+ getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
+ for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
+ return;
+ } else if (Init->getType()->isFirstClassType()) {
+ GenericValue Val = getConstantValue(Init);
+ StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
+ return;
+ }
+
+ cerr << "Bad Type: " << *Init->getType() << "\n";
+ assert(0 && "Unknown constant type to initialize memory with!");
+}
+
+/// EmitGlobals - Emit all of the global variables to memory, storing their
+/// addresses into GlobalAddress. This must make sure to copy the contents of
+/// their initializers into the memory.
+///
+void ExecutionEngine::emitGlobals() {
+
+ // Loop over all of the global variables in the program, allocating the memory
+ // to hold them. If there is more than one module, do a prepass over globals
+ // to figure out how the different modules should link together.
+ //
+ std::map<std::pair<std::string, const Type*>,
+ const GlobalValue*> LinkedGlobalsMap;
+
+ if (Modules.size() != 1) {
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m]->getModule();
+ for (Module::const_global_iterator I = M.global_begin(),
+ E = M.global_end(); I != E; ++I) {
+ const GlobalValue *GV = I;
+ if (GV->hasLocalLinkage() || GV->isDeclaration() ||
+ GV->hasAppendingLinkage() || !GV->hasName())
+ continue;// Ignore external globals and globals with internal linkage.
+
+ const GlobalValue *&GVEntry =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+
+ // If this is the first time we've seen this global, it is the canonical
+ // version.
+ if (!GVEntry) {
+ GVEntry = GV;
+ continue;
+ }
+
+ // If the existing global is strong, never replace it.
+ if (GVEntry->hasExternalLinkage() ||
+ GVEntry->hasDLLImportLinkage() ||
+ GVEntry->hasDLLExportLinkage())
+ continue;
+
+ // Otherwise, we know it's linkonce/weak, replace it if this is a strong
+ // symbol. FIXME is this right for common?
+ if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
+ GVEntry = GV;
+ }
+ }
+ }
+
+ std::vector<const GlobalValue*> NonCanonicalGlobals;
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m]->getModule();
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ // In the multi-module case, see what this global maps to.
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
+ // If something else is the canonical global, ignore this one.
+ if (GVEntry != &*I) {
+ NonCanonicalGlobals.push_back(I);
+ continue;
+ }
+ }
+ }
+
+ if (!I->isDeclaration()) {
+ addGlobalMapping(I, getMemoryForGV(I));
+ } else {
+ // External variable reference. Try to use the dynamic loader to
+ // get a pointer to it.
+ if (void *SymAddr =
+ sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
+ addGlobalMapping(I, SymAddr);
+ else {
+ cerr << "Could not resolve external global address: "
+ << I->getName() << "\n";
+ abort();
+ }
+ }
+ }
+
+ // If there are multiple modules, map the non-canonical globals to their
+ // canonical location.
+ if (!NonCanonicalGlobals.empty()) {
+ for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
+ const GlobalValue *GV = NonCanonicalGlobals[i];
+ const GlobalValue *CGV =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+ void *Ptr = getPointerToGlobalIfAvailable(CGV);
+ assert(Ptr && "Canonical global wasn't codegen'd!");
+ addGlobalMapping(GV, Ptr);
+ }
+ }
+
+ // Now that all of the globals are set up in memory, loop through them all
+ // and initialize their contents.
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ if (!I->isDeclaration()) {
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
+ if (GVEntry != &*I) // Not the canonical variable.
+ continue;
+ }
+ EmitGlobalVariable(I);
+ }
+ }
+ }
+}
+
+// EmitGlobalVariable - This method emits the specified global variable to the
+// address specified in GlobalAddresses, or allocates new memory if it's not
+// already in the map.
+void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
+ void *GA = getPointerToGlobalIfAvailable(GV);
+
+ if (GA == 0) {
+ // If it's not already specified, allocate memory for the global.
+ GA = getMemoryForGV(GV);
+ addGlobalMapping(GV, GA);
+ }
+
+ // Don't initialize if it's thread local, let the client do it.
+ if (!GV->isThreadLocal())
+ InitializeMemory(GV->getInitializer(), GA);
+
+ const Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
+ NumInitBytes += (unsigned)GVSize;
+ ++NumGlobals;
+}
OpenPOWER on IntegriCloud