diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /lib/ExecutionEngine/ExecutionEngine.cpp | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'lib/ExecutionEngine/ExecutionEngine.cpp')
-rw-r--r-- | lib/ExecutionEngine/ExecutionEngine.cpp | 1010 |
1 files changed, 1010 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp new file mode 100644 index 0000000..29a05bb --- /dev/null +++ b/lib/ExecutionEngine/ExecutionEngine.cpp @@ -0,0 +1,1010 @@ +//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the common interface used by the various execution engine +// subclasses. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "jit" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/ModuleProvider.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Config/alloca.h" +#include "llvm/ExecutionEngine/ExecutionEngine.h" +#include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MutexGuard.h" +#include "llvm/System/DynamicLibrary.h" +#include "llvm/System/Host.h" +#include "llvm/Target/TargetData.h" +#include <cmath> +#include <cstring> +using namespace llvm; + +STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); +STATISTIC(NumGlobals , "Number of global vars initialized"); + +ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; +ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; +ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; + + +ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { + LazyCompilationDisabled = false; + GVCompilationDisabled = false; + SymbolSearchingDisabled = false; + DlsymStubsEnabled = false; + Modules.push_back(P); + assert(P && "ModuleProvider is null?"); +} + +ExecutionEngine::~ExecutionEngine() { + clearAllGlobalMappings(); + for (unsigned i = 0, e = Modules.size(); i != e; ++i) + delete Modules[i]; +} + +char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { + const Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); + return new char[GVSize]; +} + +/// removeModuleProvider - Remove a ModuleProvider from the list of modules. +/// Relases the Module from the ModuleProvider, materializing it in the +/// process, and returns the materialized Module. +Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, + std::string *ErrInfo) { + for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), + E = Modules.end(); I != E; ++I) { + ModuleProvider *MP = *I; + if (MP == P) { + Modules.erase(I); + clearGlobalMappingsFromModule(MP->getModule()); + return MP->releaseModule(ErrInfo); + } + } + return NULL; +} + +/// deleteModuleProvider - Remove a ModuleProvider from the list of modules, +/// and deletes the ModuleProvider and owned Module. Avoids materializing +/// the underlying module. +void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, + std::string *ErrInfo) { + for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), + E = Modules.end(); I != E; ++I) { + ModuleProvider *MP = *I; + if (MP == P) { + Modules.erase(I); + clearGlobalMappingsFromModule(MP->getModule()); + delete MP; + return; + } + } +} + +/// FindFunctionNamed - Search all of the active modules to find the one that +/// defines FnName. This is very slow operation and shouldn't be used for +/// general code. +Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { + for (unsigned i = 0, e = Modules.size(); i != e; ++i) { + if (Function *F = Modules[i]->getModule()->getFunction(FnName)) + return F; + } + return 0; +} + + +/// addGlobalMapping - Tell the execution engine that the specified global is +/// at the specified location. This is used internally as functions are JIT'd +/// and as global variables are laid out in memory. It can and should also be +/// used by clients of the EE that want to have an LLVM global overlay +/// existing data in memory. +void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { + MutexGuard locked(lock); + + DOUT << "JIT: Map \'" << GV->getNameStart() << "\' to [" << Addr << "]\n"; + void *&CurVal = state.getGlobalAddressMap(locked)[GV]; + assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); + CurVal = Addr; + + // If we are using the reverse mapping, add it too + if (!state.getGlobalAddressReverseMap(locked).empty()) { + const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + assert((V == 0 || GV == 0) && "GlobalMapping already established!"); + V = GV; + } +} + +/// clearAllGlobalMappings - Clear all global mappings and start over again +/// use in dynamic compilation scenarios when you want to move globals +void ExecutionEngine::clearAllGlobalMappings() { + MutexGuard locked(lock); + + state.getGlobalAddressMap(locked).clear(); + state.getGlobalAddressReverseMap(locked).clear(); +} + +/// clearGlobalMappingsFromModule - Clear all global mappings that came from a +/// particular module, because it has been removed from the JIT. +void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { + MutexGuard locked(lock); + + for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { + state.getGlobalAddressMap(locked).erase(FI); + state.getGlobalAddressReverseMap(locked).erase(FI); + } + for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); + GI != GE; ++GI) { + state.getGlobalAddressMap(locked).erase(GI); + state.getGlobalAddressReverseMap(locked).erase(GI); + } +} + +/// updateGlobalMapping - Replace an existing mapping for GV with a new +/// address. This updates both maps as required. If "Addr" is null, the +/// entry for the global is removed from the mappings. +void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { + MutexGuard locked(lock); + + std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked); + + // Deleting from the mapping? + if (Addr == 0) { + std::map<const GlobalValue*, void *>::iterator I = Map.find(GV); + void *OldVal; + if (I == Map.end()) + OldVal = 0; + else { + OldVal = I->second; + Map.erase(I); + } + + if (!state.getGlobalAddressReverseMap(locked).empty()) + state.getGlobalAddressReverseMap(locked).erase(Addr); + return OldVal; + } + + void *&CurVal = Map[GV]; + void *OldVal = CurVal; + + if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) + state.getGlobalAddressReverseMap(locked).erase(CurVal); + CurVal = Addr; + + // If we are using the reverse mapping, add it too + if (!state.getGlobalAddressReverseMap(locked).empty()) { + const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + assert((V == 0 || GV == 0) && "GlobalMapping already established!"); + V = GV; + } + return OldVal; +} + +/// getPointerToGlobalIfAvailable - This returns the address of the specified +/// global value if it is has already been codegen'd, otherwise it returns null. +/// +void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { + MutexGuard locked(lock); + + std::map<const GlobalValue*, void*>::iterator I = + state.getGlobalAddressMap(locked).find(GV); + return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; +} + +/// getGlobalValueAtAddress - Return the LLVM global value object that starts +/// at the specified address. +/// +const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { + MutexGuard locked(lock); + + // If we haven't computed the reverse mapping yet, do so first. + if (state.getGlobalAddressReverseMap(locked).empty()) { + for (std::map<const GlobalValue*, void *>::iterator + I = state.getGlobalAddressMap(locked).begin(), + E = state.getGlobalAddressMap(locked).end(); I != E; ++I) + state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, + I->first)); + } + + std::map<void *, const GlobalValue*>::iterator I = + state.getGlobalAddressReverseMap(locked).find(Addr); + return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; +} + +// CreateArgv - Turn a vector of strings into a nice argv style array of +// pointers to null terminated strings. +// +static void *CreateArgv(ExecutionEngine *EE, + const std::vector<std::string> &InputArgv) { + unsigned PtrSize = EE->getTargetData()->getPointerSize(); + char *Result = new char[(InputArgv.size()+1)*PtrSize]; + + DOUT << "JIT: ARGV = " << (void*)Result << "\n"; + const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty); + + for (unsigned i = 0; i != InputArgv.size(); ++i) { + unsigned Size = InputArgv[i].size()+1; + char *Dest = new char[Size]; + DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"; + + std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); + Dest[Size-1] = 0; + + // Endian safe: Result[i] = (PointerTy)Dest; + EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), + SBytePtr); + } + + // Null terminate it + EE->StoreValueToMemory(PTOGV(0), + (GenericValue*)(Result+InputArgv.size()*PtrSize), + SBytePtr); + return Result; +} + + +/// runStaticConstructorsDestructors - This method is used to execute all of +/// the static constructors or destructors for a module, depending on the +/// value of isDtors. +void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) { + const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; + + // Execute global ctors/dtors for each module in the program. + + GlobalVariable *GV = module->getNamedGlobal(Name); + + // If this global has internal linkage, or if it has a use, then it must be + // an old-style (llvmgcc3) static ctor with __main linked in and in use. If + // this is the case, don't execute any of the global ctors, __main will do + // it. + if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; + + // Should be an array of '{ int, void ()* }' structs. The first value is + // the init priority, which we ignore. + ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); + if (!InitList) return; + for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) + if (ConstantStruct *CS = + dyn_cast<ConstantStruct>(InitList->getOperand(i))) { + if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. + + Constant *FP = CS->getOperand(1); + if (FP->isNullValue()) + break; // Found a null terminator, exit. + + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) + if (CE->isCast()) + FP = CE->getOperand(0); + if (Function *F = dyn_cast<Function>(FP)) { + // Execute the ctor/dtor function! + runFunction(F, std::vector<GenericValue>()); + } + } +} + +/// runStaticConstructorsDestructors - This method is used to execute all of +/// the static constructors or destructors for a program, depending on the +/// value of isDtors. +void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { + // Execute global ctors/dtors for each module in the program. + for (unsigned m = 0, e = Modules.size(); m != e; ++m) + runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); +} + +#ifndef NDEBUG +/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. +static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { + unsigned PtrSize = EE->getTargetData()->getPointerSize(); + for (unsigned i = 0; i < PtrSize; ++i) + if (*(i + (uint8_t*)Loc)) + return false; + return true; +} +#endif + +/// runFunctionAsMain - This is a helper function which wraps runFunction to +/// handle the common task of starting up main with the specified argc, argv, +/// and envp parameters. +int ExecutionEngine::runFunctionAsMain(Function *Fn, + const std::vector<std::string> &argv, + const char * const * envp) { + std::vector<GenericValue> GVArgs; + GenericValue GVArgc; + GVArgc.IntVal = APInt(32, argv.size()); + + // Check main() type + unsigned NumArgs = Fn->getFunctionType()->getNumParams(); + const FunctionType *FTy = Fn->getFunctionType(); + const Type* PPInt8Ty = + PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)); + switch (NumArgs) { + case 3: + if (FTy->getParamType(2) != PPInt8Ty) { + cerr << "Invalid type for third argument of main() supplied\n"; + abort(); + } + // FALLS THROUGH + case 2: + if (FTy->getParamType(1) != PPInt8Ty) { + cerr << "Invalid type for second argument of main() supplied\n"; + abort(); + } + // FALLS THROUGH + case 1: + if (FTy->getParamType(0) != Type::Int32Ty) { + cerr << "Invalid type for first argument of main() supplied\n"; + abort(); + } + // FALLS THROUGH + case 0: + if (!isa<IntegerType>(FTy->getReturnType()) && + FTy->getReturnType() != Type::VoidTy) { + cerr << "Invalid return type of main() supplied\n"; + abort(); + } + break; + default: + cerr << "Invalid number of arguments of main() supplied\n"; + abort(); + } + + if (NumArgs) { + GVArgs.push_back(GVArgc); // Arg #0 = argc. + if (NumArgs > 1) { + GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. + assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && + "argv[0] was null after CreateArgv"); + if (NumArgs > 2) { + std::vector<std::string> EnvVars; + for (unsigned i = 0; envp[i]; ++i) + EnvVars.push_back(envp[i]); + GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. + } + } + } + return runFunction(Fn, GVArgs).IntVal.getZExtValue(); +} + +/// If possible, create a JIT, unless the caller specifically requests an +/// Interpreter or there's an error. If even an Interpreter cannot be created, +/// NULL is returned. +/// +ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, + bool ForceInterpreter, + std::string *ErrorStr, + CodeGenOpt::Level OptLevel) { + ExecutionEngine *EE = 0; + + // Make sure we can resolve symbols in the program as well. The zero arg + // to the function tells DynamicLibrary to load the program, not a library. + if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) + return 0; + + // Unless the interpreter was explicitly selected, try making a JIT. + if (!ForceInterpreter && JITCtor) + EE = JITCtor(MP, ErrorStr, OptLevel); + + // If we can't make a JIT, make an interpreter instead. + if (EE == 0 && InterpCtor) + EE = InterpCtor(MP, ErrorStr, OptLevel); + + return EE; +} + +ExecutionEngine *ExecutionEngine::create(Module *M) { + return create(new ExistingModuleProvider(M)); +} + +/// getPointerToGlobal - This returns the address of the specified global +/// value. This may involve code generation if it's a function. +/// +void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { + if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) + return getPointerToFunction(F); + + MutexGuard locked(lock); + void *p = state.getGlobalAddressMap(locked)[GV]; + if (p) + return p; + + // Global variable might have been added since interpreter started. + if (GlobalVariable *GVar = + const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) + EmitGlobalVariable(GVar); + else + assert(0 && "Global hasn't had an address allocated yet!"); + return state.getGlobalAddressMap(locked)[GV]; +} + +/// This function converts a Constant* into a GenericValue. The interesting +/// part is if C is a ConstantExpr. +/// @brief Get a GenericValue for a Constant* +GenericValue ExecutionEngine::getConstantValue(const Constant *C) { + // If its undefined, return the garbage. + if (isa<UndefValue>(C)) + return GenericValue(); + + // If the value is a ConstantExpr + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + Constant *Op0 = CE->getOperand(0); + switch (CE->getOpcode()) { + case Instruction::GetElementPtr: { + // Compute the index + GenericValue Result = getConstantValue(Op0); + SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); + uint64_t Offset = + TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); + + char* tmp = (char*) Result.PointerVal; + Result = PTOGV(tmp + Offset); + return Result; + } + case Instruction::Trunc: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.trunc(BitWidth); + return GV; + } + case Instruction::ZExt: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.zext(BitWidth); + return GV; + } + case Instruction::SExt: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.sext(BitWidth); + return GV; + } + case Instruction::FPTrunc: { + // FIXME long double + GenericValue GV = getConstantValue(Op0); + GV.FloatVal = float(GV.DoubleVal); + return GV; + } + case Instruction::FPExt:{ + // FIXME long double + GenericValue GV = getConstantValue(Op0); + GV.DoubleVal = double(GV.FloatVal); + return GV; + } + case Instruction::UIToFP: { + GenericValue GV = getConstantValue(Op0); + if (CE->getType() == Type::FloatTy) + GV.FloatVal = float(GV.IntVal.roundToDouble()); + else if (CE->getType() == Type::DoubleTy) + GV.DoubleVal = GV.IntVal.roundToDouble(); + else if (CE->getType() == Type::X86_FP80Ty) { + const uint64_t zero[] = {0, 0}; + APFloat apf = APFloat(APInt(80, 2, zero)); + (void)apf.convertFromAPInt(GV.IntVal, + false, + APFloat::rmNearestTiesToEven); + GV.IntVal = apf.bitcastToAPInt(); + } + return GV; + } + case Instruction::SIToFP: { + GenericValue GV = getConstantValue(Op0); + if (CE->getType() == Type::FloatTy) + GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); + else if (CE->getType() == Type::DoubleTy) + GV.DoubleVal = GV.IntVal.signedRoundToDouble(); + else if (CE->getType() == Type::X86_FP80Ty) { + const uint64_t zero[] = { 0, 0}; + APFloat apf = APFloat(APInt(80, 2, zero)); + (void)apf.convertFromAPInt(GV.IntVal, + true, + APFloat::rmNearestTiesToEven); + GV.IntVal = apf.bitcastToAPInt(); + } + return GV; + } + case Instruction::FPToUI: // double->APInt conversion handles sign + case Instruction::FPToSI: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + if (Op0->getType() == Type::FloatTy) + GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); + else if (Op0->getType() == Type::DoubleTy) + GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); + else if (Op0->getType() == Type::X86_FP80Ty) { + APFloat apf = APFloat(GV.IntVal); + uint64_t v; + bool ignored; + (void)apf.convertToInteger(&v, BitWidth, + CE->getOpcode()==Instruction::FPToSI, + APFloat::rmTowardZero, &ignored); + GV.IntVal = v; // endian? + } + return GV; + } + case Instruction::PtrToInt: { + GenericValue GV = getConstantValue(Op0); + uint32_t PtrWidth = TD->getPointerSizeInBits(); + GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); + return GV; + } + case Instruction::IntToPtr: { + GenericValue GV = getConstantValue(Op0); + uint32_t PtrWidth = TD->getPointerSizeInBits(); + if (PtrWidth != GV.IntVal.getBitWidth()) + GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); + assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); + GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); + return GV; + } + case Instruction::BitCast: { + GenericValue GV = getConstantValue(Op0); + const Type* DestTy = CE->getType(); + switch (Op0->getType()->getTypeID()) { + default: assert(0 && "Invalid bitcast operand"); + case Type::IntegerTyID: + assert(DestTy->isFloatingPoint() && "invalid bitcast"); + if (DestTy == Type::FloatTy) + GV.FloatVal = GV.IntVal.bitsToFloat(); + else if (DestTy == Type::DoubleTy) + GV.DoubleVal = GV.IntVal.bitsToDouble(); + break; + case Type::FloatTyID: + assert(DestTy == Type::Int32Ty && "Invalid bitcast"); + GV.IntVal.floatToBits(GV.FloatVal); + break; + case Type::DoubleTyID: + assert(DestTy == Type::Int64Ty && "Invalid bitcast"); + GV.IntVal.doubleToBits(GV.DoubleVal); + break; + case Type::PointerTyID: + assert(isa<PointerType>(DestTy) && "Invalid bitcast"); + break; // getConstantValue(Op0) above already converted it + } + return GV; + } + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + GenericValue LHS = getConstantValue(Op0); + GenericValue RHS = getConstantValue(CE->getOperand(1)); + GenericValue GV; + switch (CE->getOperand(0)->getType()->getTypeID()) { + default: assert(0 && "Bad add type!"); abort(); + case Type::IntegerTyID: + switch (CE->getOpcode()) { + default: assert(0 && "Invalid integer opcode"); + case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; + case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; + case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; + case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; + case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; + case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; + case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; + case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; + case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; + case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; + } + break; + case Type::FloatTyID: + switch (CE->getOpcode()) { + default: assert(0 && "Invalid float opcode"); abort(); + case Instruction::Add: + GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; + case Instruction::Sub: + GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; + case Instruction::Mul: + GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; + case Instruction::FDiv: + GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; + case Instruction::FRem: + GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; + } + break; + case Type::DoubleTyID: + switch (CE->getOpcode()) { + default: assert(0 && "Invalid double opcode"); abort(); + case Instruction::Add: + GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; + case Instruction::Sub: + GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; + case Instruction::Mul: + GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; + case Instruction::FDiv: + GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; + case Instruction::FRem: + GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; + } + break; + case Type::X86_FP80TyID: + case Type::PPC_FP128TyID: + case Type::FP128TyID: { + APFloat apfLHS = APFloat(LHS.IntVal); + switch (CE->getOpcode()) { + default: assert(0 && "Invalid long double opcode"); abort(); + case Instruction::Add: + apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::Sub: + apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::Mul: + apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FDiv: + apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FRem: + apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + } + } + break; + } + return GV; + } + default: + break; + } + cerr << "ConstantExpr not handled: " << *CE << "\n"; + abort(); + } + + GenericValue Result; + switch (C->getType()->getTypeID()) { + case Type::FloatTyID: + Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); + break; + case Type::DoubleTyID: + Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); + break; + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); + break; + case Type::IntegerTyID: + Result.IntVal = cast<ConstantInt>(C)->getValue(); + break; + case Type::PointerTyID: + if (isa<ConstantPointerNull>(C)) + Result.PointerVal = 0; + else if (const Function *F = dyn_cast<Function>(C)) + Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); + else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) + Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); + else + assert(0 && "Unknown constant pointer type!"); + break; + default: + cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; + abort(); + } + return Result; +} + +/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst +/// with the integer held in IntVal. +static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, + unsigned StoreBytes) { + assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); + uint8_t *Src = (uint8_t *)IntVal.getRawData(); + + if (sys::isLittleEndianHost()) + // Little-endian host - the source is ordered from LSB to MSB. Order the + // destination from LSB to MSB: Do a straight copy. + memcpy(Dst, Src, StoreBytes); + else { + // Big-endian host - the source is an array of 64 bit words ordered from + // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination + // from MSB to LSB: Reverse the word order, but not the bytes in a word. + while (StoreBytes > sizeof(uint64_t)) { + StoreBytes -= sizeof(uint64_t); + // May not be aligned so use memcpy. + memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); + Src += sizeof(uint64_t); + } + + memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); + } +} + +/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr +/// is the address of the memory at which to store Val, cast to GenericValue *. +/// It is not a pointer to a GenericValue containing the address at which to +/// store Val. +void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, + GenericValue *Ptr, const Type *Ty) { + const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); + + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); + break; + case Type::FloatTyID: + *((float*)Ptr) = Val.FloatVal; + break; + case Type::DoubleTyID: + *((double*)Ptr) = Val.DoubleVal; + break; + case Type::X86_FP80TyID: + memcpy(Ptr, Val.IntVal.getRawData(), 10); + break; + case Type::PointerTyID: + // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. + if (StoreBytes != sizeof(PointerTy)) + memset(Ptr, 0, StoreBytes); + + *((PointerTy*)Ptr) = Val.PointerVal; + break; + default: + cerr << "Cannot store value of type " << *Ty << "!\n"; + } + + if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) + // Host and target are different endian - reverse the stored bytes. + std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); +} + +/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting +/// from Src into IntVal, which is assumed to be wide enough and to hold zero. +static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { + assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); + uint8_t *Dst = (uint8_t *)IntVal.getRawData(); + + if (sys::isLittleEndianHost()) + // Little-endian host - the destination must be ordered from LSB to MSB. + // The source is ordered from LSB to MSB: Do a straight copy. + memcpy(Dst, Src, LoadBytes); + else { + // Big-endian - the destination is an array of 64 bit words ordered from + // LSW to MSW. Each word must be ordered from MSB to LSB. The source is + // ordered from MSB to LSB: Reverse the word order, but not the bytes in + // a word. + while (LoadBytes > sizeof(uint64_t)) { + LoadBytes -= sizeof(uint64_t); + // May not be aligned so use memcpy. + memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); + Dst += sizeof(uint64_t); + } + + memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); + } +} + +/// FIXME: document +/// +void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, + GenericValue *Ptr, + const Type *Ty) { + const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); + + if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) { + // Host and target are different endian - reverse copy the stored + // bytes into a buffer, and load from that. + uint8_t *Src = (uint8_t*)Ptr; + uint8_t *Buf = (uint8_t*)alloca(LoadBytes); + std::reverse_copy(Src, Src + LoadBytes, Buf); + Ptr = (GenericValue*)Buf; + } + + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + // An APInt with all words initially zero. + Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); + LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); + break; + case Type::FloatTyID: + Result.FloatVal = *((float*)Ptr); + break; + case Type::DoubleTyID: + Result.DoubleVal = *((double*)Ptr); + break; + case Type::PointerTyID: + Result.PointerVal = *((PointerTy*)Ptr); + break; + case Type::X86_FP80TyID: { + // This is endian dependent, but it will only work on x86 anyway. + // FIXME: Will not trap if loading a signaling NaN. + uint64_t y[2]; + memcpy(y, Ptr, 10); + Result.IntVal = APInt(80, 2, y); + break; + } + default: + cerr << "Cannot load value of type " << *Ty << "!\n"; + abort(); + } +} + +// InitializeMemory - Recursive function to apply a Constant value into the +// specified memory location... +// +void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { + DOUT << "JIT: Initializing " << Addr << " "; + DEBUG(Init->dump()); + if (isa<UndefValue>(Init)) { + return; + } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { + unsigned ElementSize = + getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); + for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) + InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); + return; + } else if (isa<ConstantAggregateZero>(Init)) { + memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); + return; + } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { + unsigned ElementSize = + getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); + for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) + InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); + return; + } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { + const StructLayout *SL = + getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); + for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) + InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); + return; + } else if (Init->getType()->isFirstClassType()) { + GenericValue Val = getConstantValue(Init); + StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); + return; + } + + cerr << "Bad Type: " << *Init->getType() << "\n"; + assert(0 && "Unknown constant type to initialize memory with!"); +} + +/// EmitGlobals - Emit all of the global variables to memory, storing their +/// addresses into GlobalAddress. This must make sure to copy the contents of +/// their initializers into the memory. +/// +void ExecutionEngine::emitGlobals() { + + // Loop over all of the global variables in the program, allocating the memory + // to hold them. If there is more than one module, do a prepass over globals + // to figure out how the different modules should link together. + // + std::map<std::pair<std::string, const Type*>, + const GlobalValue*> LinkedGlobalsMap; + + if (Modules.size() != 1) { + for (unsigned m = 0, e = Modules.size(); m != e; ++m) { + Module &M = *Modules[m]->getModule(); + for (Module::const_global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + const GlobalValue *GV = I; + if (GV->hasLocalLinkage() || GV->isDeclaration() || + GV->hasAppendingLinkage() || !GV->hasName()) + continue;// Ignore external globals and globals with internal linkage. + + const GlobalValue *&GVEntry = + LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; + + // If this is the first time we've seen this global, it is the canonical + // version. + if (!GVEntry) { + GVEntry = GV; + continue; + } + + // If the existing global is strong, never replace it. + if (GVEntry->hasExternalLinkage() || + GVEntry->hasDLLImportLinkage() || + GVEntry->hasDLLExportLinkage()) + continue; + + // Otherwise, we know it's linkonce/weak, replace it if this is a strong + // symbol. FIXME is this right for common? + if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) + GVEntry = GV; + } + } + } + + std::vector<const GlobalValue*> NonCanonicalGlobals; + for (unsigned m = 0, e = Modules.size(); m != e; ++m) { + Module &M = *Modules[m]->getModule(); + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) { + // In the multi-module case, see what this global maps to. + if (!LinkedGlobalsMap.empty()) { + if (const GlobalValue *GVEntry = + LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { + // If something else is the canonical global, ignore this one. + if (GVEntry != &*I) { + NonCanonicalGlobals.push_back(I); + continue; + } + } + } + + if (!I->isDeclaration()) { + addGlobalMapping(I, getMemoryForGV(I)); + } else { + // External variable reference. Try to use the dynamic loader to + // get a pointer to it. + if (void *SymAddr = + sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) + addGlobalMapping(I, SymAddr); + else { + cerr << "Could not resolve external global address: " + << I->getName() << "\n"; + abort(); + } + } + } + + // If there are multiple modules, map the non-canonical globals to their + // canonical location. + if (!NonCanonicalGlobals.empty()) { + for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { + const GlobalValue *GV = NonCanonicalGlobals[i]; + const GlobalValue *CGV = + LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; + void *Ptr = getPointerToGlobalIfAvailable(CGV); + assert(Ptr && "Canonical global wasn't codegen'd!"); + addGlobalMapping(GV, Ptr); + } + } + + // Now that all of the globals are set up in memory, loop through them all + // and initialize their contents. + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) { + if (!I->isDeclaration()) { + if (!LinkedGlobalsMap.empty()) { + if (const GlobalValue *GVEntry = + LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) + if (GVEntry != &*I) // Not the canonical variable. + continue; + } + EmitGlobalVariable(I); + } + } + } +} + +// EmitGlobalVariable - This method emits the specified global variable to the +// address specified in GlobalAddresses, or allocates new memory if it's not +// already in the map. +void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { + void *GA = getPointerToGlobalIfAvailable(GV); + + if (GA == 0) { + // If it's not already specified, allocate memory for the global. + GA = getMemoryForGV(GV); + addGlobalMapping(GV, GA); + } + + // Don't initialize if it's thread local, let the client do it. + if (!GV->isThreadLocal()) + InitializeMemory(GV->getInitializer(), GA); + + const Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); + NumInitBytes += (unsigned)GVSize; + ++NumGlobals; +} |