summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/PostRASchedulerList.cpp
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /lib/CodeGen/PostRASchedulerList.cpp
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'lib/CodeGen/PostRASchedulerList.cpp')
-rw-r--r--lib/CodeGen/PostRASchedulerList.cpp941
1 files changed, 941 insertions, 0 deletions
diff --git a/lib/CodeGen/PostRASchedulerList.cpp b/lib/CodeGen/PostRASchedulerList.cpp
new file mode 100644
index 0000000..de774685
--- /dev/null
+++ b/lib/CodeGen/PostRASchedulerList.cpp
@@ -0,0 +1,941 @@
+//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements a top-down list scheduler, using standard algorithms.
+// The basic approach uses a priority queue of available nodes to schedule.
+// One at a time, nodes are taken from the priority queue (thus in priority
+// order), checked for legality to schedule, and emitted if legal.
+//
+// Nodes may not be legal to schedule either due to structural hazards (e.g.
+// pipeline or resource constraints) or because an input to the instruction has
+// not completed execution.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "post-RA-sched"
+#include "ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/LatencyPriorityQueue.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+#include <map>
+using namespace llvm;
+
+STATISTIC(NumNoops, "Number of noops inserted");
+STATISTIC(NumStalls, "Number of pipeline stalls");
+
+static cl::opt<bool>
+EnableAntiDepBreaking("break-anti-dependencies",
+ cl::desc("Break post-RA scheduling anti-dependencies"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+EnablePostRAHazardAvoidance("avoid-hazards",
+ cl::desc("Enable simple hazard-avoidance"),
+ cl::init(true), cl::Hidden);
+
+namespace {
+ class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
+ public:
+ static char ID;
+ PostRAScheduler() : MachineFunctionPass(&ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ const char *getPassName() const {
+ return "Post RA top-down list latency scheduler";
+ }
+
+ bool runOnMachineFunction(MachineFunction &Fn);
+ };
+ char PostRAScheduler::ID = 0;
+
+ class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
+ /// AvailableQueue - The priority queue to use for the available SUnits.
+ ///
+ LatencyPriorityQueue AvailableQueue;
+
+ /// PendingQueue - This contains all of the instructions whose operands have
+ /// been issued, but their results are not ready yet (due to the latency of
+ /// the operation). Once the operands becomes available, the instruction is
+ /// added to the AvailableQueue.
+ std::vector<SUnit*> PendingQueue;
+
+ /// Topo - A topological ordering for SUnits.
+ ScheduleDAGTopologicalSort Topo;
+
+ /// AllocatableSet - The set of allocatable registers.
+ /// We'll be ignoring anti-dependencies on non-allocatable registers,
+ /// because they may not be safe to break.
+ const BitVector AllocatableSet;
+
+ /// HazardRec - The hazard recognizer to use.
+ ScheduleHazardRecognizer *HazardRec;
+
+ /// Classes - For live regs that are only used in one register class in a
+ /// live range, the register class. If the register is not live, the
+ /// corresponding value is null. If the register is live but used in
+ /// multiple register classes, the corresponding value is -1 casted to a
+ /// pointer.
+ const TargetRegisterClass *
+ Classes[TargetRegisterInfo::FirstVirtualRegister];
+
+ /// RegRegs - Map registers to all their references within a live range.
+ std::multimap<unsigned, MachineOperand *> RegRefs;
+
+ /// The index of the most recent kill (proceding bottom-up), or ~0u if
+ /// the register is not live.
+ unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
+
+ /// The index of the most recent complete def (proceding bottom up), or ~0u
+ /// if the register is live.
+ unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
+
+ public:
+ SchedulePostRATDList(MachineFunction &MF,
+ const MachineLoopInfo &MLI,
+ const MachineDominatorTree &MDT,
+ ScheduleHazardRecognizer *HR)
+ : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
+ AllocatableSet(TRI->getAllocatableSet(MF)),
+ HazardRec(HR) {}
+
+ ~SchedulePostRATDList() {
+ delete HazardRec;
+ }
+
+ /// StartBlock - Initialize register live-range state for scheduling in
+ /// this block.
+ ///
+ void StartBlock(MachineBasicBlock *BB);
+
+ /// Schedule - Schedule the instruction range using list scheduling.
+ ///
+ void Schedule();
+
+ /// Observe - Update liveness information to account for the current
+ /// instruction, which will not be scheduled.
+ ///
+ void Observe(MachineInstr *MI, unsigned Count);
+
+ /// FinishBlock - Clean up register live-range state.
+ ///
+ void FinishBlock();
+
+ private:
+ void PrescanInstruction(MachineInstr *MI);
+ void ScanInstruction(MachineInstr *MI, unsigned Count);
+ void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
+ void ReleaseSuccessors(SUnit *SU);
+ void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
+ void ListScheduleTopDown();
+ bool BreakAntiDependencies();
+ };
+
+ /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
+ /// a coarse classification and attempts to avoid that instructions of
+ /// a given class aren't grouped too densely together.
+ class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
+ /// Class - A simple classification for SUnits.
+ enum Class {
+ Other, Load, Store
+ };
+
+ /// Window - The Class values of the most recently issued
+ /// instructions.
+ Class Window[8];
+
+ /// getClass - Classify the given SUnit.
+ Class getClass(const SUnit *SU) {
+ const MachineInstr *MI = SU->getInstr();
+ const TargetInstrDesc &TID = MI->getDesc();
+ if (TID.mayLoad())
+ return Load;
+ if (TID.mayStore())
+ return Store;
+ return Other;
+ }
+
+ /// Step - Rotate the existing entries in Window and insert the
+ /// given class value in position as the most recent.
+ void Step(Class C) {
+ std::copy(Window+1, array_endof(Window), Window);
+ Window[array_lengthof(Window)-1] = C;
+ }
+
+ public:
+ SimpleHazardRecognizer() : Window() {}
+
+ virtual HazardType getHazardType(SUnit *SU) {
+ Class C = getClass(SU);
+ if (C == Other)
+ return NoHazard;
+ unsigned Score = 0;
+ for (unsigned i = 0; i != array_lengthof(Window); ++i)
+ if (Window[i] == C)
+ Score += i + 1;
+ if (Score > array_lengthof(Window) * 2)
+ return Hazard;
+ return NoHazard;
+ }
+
+ virtual void EmitInstruction(SUnit *SU) {
+ Step(getClass(SU));
+ }
+
+ virtual void AdvanceCycle() {
+ Step(Other);
+ }
+ };
+}
+
+/// isSchedulingBoundary - Test if the given instruction should be
+/// considered a scheduling boundary. This primarily includes labels
+/// and terminators.
+///
+static bool isSchedulingBoundary(const MachineInstr *MI,
+ const MachineFunction &MF) {
+ // Terminators and labels can't be scheduled around.
+ if (MI->getDesc().isTerminator() || MI->isLabel())
+ return true;
+
+ // Don't attempt to schedule around any instruction that modifies
+ // a stack-oriented pointer, as it's unlikely to be profitable. This
+ // saves compile time, because it doesn't require every single
+ // stack slot reference to depend on the instruction that does the
+ // modification.
+ const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
+ if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
+ return true;
+
+ return false;
+}
+
+bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
+ DOUT << "PostRAScheduler\n";
+
+ const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
+ const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
+ ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
+ new SimpleHazardRecognizer :
+ new ScheduleHazardRecognizer();
+
+ SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
+
+ // Loop over all of the basic blocks
+ for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+ MBB != MBBe; ++MBB) {
+ // Initialize register live-range state for scheduling in this block.
+ Scheduler.StartBlock(MBB);
+
+ // Schedule each sequence of instructions not interrupted by a label
+ // or anything else that effectively needs to shut down scheduling.
+ MachineBasicBlock::iterator Current = MBB->end();
+ unsigned Count = MBB->size(), CurrentCount = Count;
+ for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
+ MachineInstr *MI = prior(I);
+ if (isSchedulingBoundary(MI, Fn)) {
+ Scheduler.Run(MBB, I, Current, CurrentCount);
+ Scheduler.EmitSchedule();
+ Current = MI;
+ CurrentCount = Count - 1;
+ Scheduler.Observe(MI, CurrentCount);
+ }
+ I = MI;
+ --Count;
+ }
+ assert(Count == 0 && "Instruction count mismatch!");
+ assert((MBB->begin() == Current || CurrentCount != 0) &&
+ "Instruction count mismatch!");
+ Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
+ Scheduler.EmitSchedule();
+
+ // Clean up register live-range state.
+ Scheduler.FinishBlock();
+ }
+
+ return true;
+}
+
+/// StartBlock - Initialize register live-range state for scheduling in
+/// this block.
+///
+void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
+ // Call the superclass.
+ ScheduleDAGInstrs::StartBlock(BB);
+
+ // Clear out the register class data.
+ std::fill(Classes, array_endof(Classes),
+ static_cast<const TargetRegisterClass *>(0));
+
+ // Initialize the indices to indicate that no registers are live.
+ std::fill(KillIndices, array_endof(KillIndices), ~0u);
+ std::fill(DefIndices, array_endof(DefIndices), BB->size());
+
+ // Determine the live-out physregs for this block.
+ if (!BB->empty() && BB->back().getDesc().isReturn())
+ // In a return block, examine the function live-out regs.
+ for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
+ E = MRI.liveout_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ KillIndices[Reg] = BB->size();
+ DefIndices[Reg] = ~0u;
+ // Repeat, for all aliases.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ KillIndices[AliasReg] = BB->size();
+ DefIndices[AliasReg] = ~0u;
+ }
+ }
+ else
+ // In a non-return block, examine the live-in regs of all successors.
+ for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+ SE = BB->succ_end(); SI != SE; ++SI)
+ for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
+ E = (*SI)->livein_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ KillIndices[Reg] = BB->size();
+ DefIndices[Reg] = ~0u;
+ // Repeat, for all aliases.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ KillIndices[AliasReg] = BB->size();
+ DefIndices[AliasReg] = ~0u;
+ }
+ }
+
+ // Consider callee-saved registers as live-out, since we're running after
+ // prologue/epilogue insertion so there's no way to add additional
+ // saved registers.
+ //
+ // TODO: If the callee saves and restores these, then we can potentially
+ // use them between the save and the restore. To do that, we could scan
+ // the exit blocks to see which of these registers are defined.
+ // Alternatively, callee-saved registers that aren't saved and restored
+ // could be marked live-in in every block.
+ for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
+ unsigned Reg = *I;
+ Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ KillIndices[Reg] = BB->size();
+ DefIndices[Reg] = ~0u;
+ // Repeat, for all aliases.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ KillIndices[AliasReg] = BB->size();
+ DefIndices[AliasReg] = ~0u;
+ }
+ }
+}
+
+/// Schedule - Schedule the instruction range using list scheduling.
+///
+void SchedulePostRATDList::Schedule() {
+ DOUT << "********** List Scheduling **********\n";
+
+ // Build the scheduling graph.
+ BuildSchedGraph();
+
+ if (EnableAntiDepBreaking) {
+ if (BreakAntiDependencies()) {
+ // We made changes. Update the dependency graph.
+ // Theoretically we could update the graph in place:
+ // When a live range is changed to use a different register, remove
+ // the def's anti-dependence *and* output-dependence edges due to
+ // that register, and add new anti-dependence and output-dependence
+ // edges based on the next live range of the register.
+ SUnits.clear();
+ EntrySU = SUnit();
+ ExitSU = SUnit();
+ BuildSchedGraph();
+ }
+ }
+
+ AvailableQueue.initNodes(SUnits);
+
+ ListScheduleTopDown();
+
+ AvailableQueue.releaseState();
+}
+
+/// Observe - Update liveness information to account for the current
+/// instruction, which will not be scheduled.
+///
+void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
+ assert(Count < InsertPosIndex && "Instruction index out of expected range!");
+
+ // Any register which was defined within the previous scheduling region
+ // may have been rescheduled and its lifetime may overlap with registers
+ // in ways not reflected in our current liveness state. For each such
+ // register, adjust the liveness state to be conservatively correct.
+ for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
+ if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
+ assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
+ // Mark this register to be non-renamable.
+ Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ // Move the def index to the end of the previous region, to reflect
+ // that the def could theoretically have been scheduled at the end.
+ DefIndices[Reg] = InsertPosIndex;
+ }
+
+ PrescanInstruction(MI);
+ ScanInstruction(MI, Count);
+}
+
+/// FinishBlock - Clean up register live-range state.
+///
+void SchedulePostRATDList::FinishBlock() {
+ RegRefs.clear();
+
+ // Call the superclass.
+ ScheduleDAGInstrs::FinishBlock();
+}
+
+/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
+/// critical path.
+static SDep *CriticalPathStep(SUnit *SU) {
+ SDep *Next = 0;
+ unsigned NextDepth = 0;
+ // Find the predecessor edge with the greatest depth.
+ for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
+ P != PE; ++P) {
+ SUnit *PredSU = P->getSUnit();
+ unsigned PredLatency = P->getLatency();
+ unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
+ // In the case of a latency tie, prefer an anti-dependency edge over
+ // other types of edges.
+ if (NextDepth < PredTotalLatency ||
+ (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
+ NextDepth = PredTotalLatency;
+ Next = &*P;
+ }
+ }
+ return Next;
+}
+
+void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
+ // Scan the register operands for this instruction and update
+ // Classes and RegRefs.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+ const TargetRegisterClass *NewRC =
+ getInstrOperandRegClass(TRI, MI->getDesc(), i);
+
+ // For now, only allow the register to be changed if its register
+ // class is consistent across all uses.
+ if (!Classes[Reg] && NewRC)
+ Classes[Reg] = NewRC;
+ else if (!NewRC || Classes[Reg] != NewRC)
+ Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+
+ // Now check for aliases.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ // If an alias of the reg is used during the live range, give up.
+ // Note that this allows us to skip checking if AntiDepReg
+ // overlaps with any of the aliases, among other things.
+ unsigned AliasReg = *Alias;
+ if (Classes[AliasReg]) {
+ Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ }
+ }
+
+ // If we're still willing to consider this register, note the reference.
+ if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
+ RegRefs.insert(std::make_pair(Reg, &MO));
+ }
+}
+
+void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
+ unsigned Count) {
+ // Update liveness.
+ // Proceding upwards, registers that are defed but not used in this
+ // instruction are now dead.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+ if (!MO.isDef()) continue;
+ // Ignore two-addr defs.
+ if (MI->isRegTiedToUseOperand(i)) continue;
+
+ DefIndices[Reg] = Count;
+ KillIndices[Reg] = ~0u;
+ assert(((KillIndices[Reg] == ~0u) !=
+ (DefIndices[Reg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for Reg!");
+ Classes[Reg] = 0;
+ RegRefs.erase(Reg);
+ // Repeat, for all subregs.
+ for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+ *Subreg; ++Subreg) {
+ unsigned SubregReg = *Subreg;
+ DefIndices[SubregReg] = Count;
+ KillIndices[SubregReg] = ~0u;
+ Classes[SubregReg] = 0;
+ RegRefs.erase(SubregReg);
+ }
+ // Conservatively mark super-registers as unusable.
+ for (const unsigned *Super = TRI->getSuperRegisters(Reg);
+ *Super; ++Super) {
+ unsigned SuperReg = *Super;
+ Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+ }
+ }
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+ if (!MO.isUse()) continue;
+
+ const TargetRegisterClass *NewRC =
+ getInstrOperandRegClass(TRI, MI->getDesc(), i);
+
+ // For now, only allow the register to be changed if its register
+ // class is consistent across all uses.
+ if (!Classes[Reg] && NewRC)
+ Classes[Reg] = NewRC;
+ else if (!NewRC || Classes[Reg] != NewRC)
+ Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+
+ RegRefs.insert(std::make_pair(Reg, &MO));
+
+ // It wasn't previously live but now it is, this is a kill.
+ if (KillIndices[Reg] == ~0u) {
+ KillIndices[Reg] = Count;
+ DefIndices[Reg] = ~0u;
+ assert(((KillIndices[Reg] == ~0u) !=
+ (DefIndices[Reg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for Reg!");
+ }
+ // Repeat, for all aliases.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ if (KillIndices[AliasReg] == ~0u) {
+ KillIndices[AliasReg] = Count;
+ DefIndices[AliasReg] = ~0u;
+ }
+ }
+ }
+}
+
+/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
+/// of the ScheduleDAG and break them by renaming registers.
+///
+bool SchedulePostRATDList::BreakAntiDependencies() {
+ // The code below assumes that there is at least one instruction,
+ // so just duck out immediately if the block is empty.
+ if (SUnits.empty()) return false;
+
+ // Find the node at the bottom of the critical path.
+ SUnit *Max = 0;
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ SUnit *SU = &SUnits[i];
+ if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
+ Max = SU;
+ }
+
+ DOUT << "Critical path has total latency "
+ << (Max->getDepth() + Max->Latency) << "\n";
+
+ // Track progress along the critical path through the SUnit graph as we walk
+ // the instructions.
+ SUnit *CriticalPathSU = Max;
+ MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
+
+ // Consider this pattern:
+ // A = ...
+ // ... = A
+ // A = ...
+ // ... = A
+ // A = ...
+ // ... = A
+ // A = ...
+ // ... = A
+ // There are three anti-dependencies here, and without special care,
+ // we'd break all of them using the same register:
+ // A = ...
+ // ... = A
+ // B = ...
+ // ... = B
+ // B = ...
+ // ... = B
+ // B = ...
+ // ... = B
+ // because at each anti-dependence, B is the first register that
+ // isn't A which is free. This re-introduces anti-dependencies
+ // at all but one of the original anti-dependencies that we were
+ // trying to break. To avoid this, keep track of the most recent
+ // register that each register was replaced with, avoid avoid
+ // using it to repair an anti-dependence on the same register.
+ // This lets us produce this:
+ // A = ...
+ // ... = A
+ // B = ...
+ // ... = B
+ // C = ...
+ // ... = C
+ // B = ...
+ // ... = B
+ // This still has an anti-dependence on B, but at least it isn't on the
+ // original critical path.
+ //
+ // TODO: If we tracked more than one register here, we could potentially
+ // fix that remaining critical edge too. This is a little more involved,
+ // because unlike the most recent register, less recent registers should
+ // still be considered, though only if no other registers are available.
+ unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
+
+ // Attempt to break anti-dependence edges on the critical path. Walk the
+ // instructions from the bottom up, tracking information about liveness
+ // as we go to help determine which registers are available.
+ bool Changed = false;
+ unsigned Count = InsertPosIndex - 1;
+ for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
+ I != E; --Count) {
+ MachineInstr *MI = --I;
+
+ // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
+ // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
+ // is left behind appearing to clobber the super-register, while the
+ // subregister needs to remain live. So we just ignore them.
+ if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
+ continue;
+
+ // Check if this instruction has a dependence on the critical path that
+ // is an anti-dependence that we may be able to break. If it is, set
+ // AntiDepReg to the non-zero register associated with the anti-dependence.
+ //
+ // We limit our attention to the critical path as a heuristic to avoid
+ // breaking anti-dependence edges that aren't going to significantly
+ // impact the overall schedule. There are a limited number of registers
+ // and we want to save them for the important edges.
+ //
+ // TODO: Instructions with multiple defs could have multiple
+ // anti-dependencies. The current code here only knows how to break one
+ // edge per instruction. Note that we'd have to be able to break all of
+ // the anti-dependencies in an instruction in order to be effective.
+ unsigned AntiDepReg = 0;
+ if (MI == CriticalPathMI) {
+ if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
+ SUnit *NextSU = Edge->getSUnit();
+
+ // Only consider anti-dependence edges.
+ if (Edge->getKind() == SDep::Anti) {
+ AntiDepReg = Edge->getReg();
+ assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
+ // Don't break anti-dependencies on non-allocatable registers.
+ if (!AllocatableSet.test(AntiDepReg))
+ AntiDepReg = 0;
+ else {
+ // If the SUnit has other dependencies on the SUnit that it
+ // anti-depends on, don't bother breaking the anti-dependency
+ // since those edges would prevent such units from being
+ // scheduled past each other regardless.
+ //
+ // Also, if there are dependencies on other SUnits with the
+ // same register as the anti-dependency, don't attempt to
+ // break it.
+ for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
+ PE = CriticalPathSU->Preds.end(); P != PE; ++P)
+ if (P->getSUnit() == NextSU ?
+ (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
+ (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
+ AntiDepReg = 0;
+ break;
+ }
+ }
+ }
+ CriticalPathSU = NextSU;
+ CriticalPathMI = CriticalPathSU->getInstr();
+ } else {
+ // We've reached the end of the critical path.
+ CriticalPathSU = 0;
+ CriticalPathMI = 0;
+ }
+ }
+
+ PrescanInstruction(MI);
+
+ // If this instruction has a use of AntiDepReg, breaking it
+ // is invalid.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+ if (MO.isUse() && AntiDepReg == Reg) {
+ AntiDepReg = 0;
+ break;
+ }
+ }
+
+ // Determine AntiDepReg's register class, if it is live and is
+ // consistently used within a single class.
+ const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
+ assert((AntiDepReg == 0 || RC != NULL) &&
+ "Register should be live if it's causing an anti-dependence!");
+ if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
+ AntiDepReg = 0;
+
+ // Look for a suitable register to use to break the anti-depenence.
+ //
+ // TODO: Instead of picking the first free register, consider which might
+ // be the best.
+ if (AntiDepReg != 0) {
+ for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
+ RE = RC->allocation_order_end(MF); R != RE; ++R) {
+ unsigned NewReg = *R;
+ // Don't replace a register with itself.
+ if (NewReg == AntiDepReg) continue;
+ // Don't replace a register with one that was recently used to repair
+ // an anti-dependence with this AntiDepReg, because that would
+ // re-introduce that anti-dependence.
+ if (NewReg == LastNewReg[AntiDepReg]) continue;
+ // If NewReg is dead and NewReg's most recent def is not before
+ // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
+ assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for AntiDepReg!");
+ assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for NewReg!");
+ if (KillIndices[NewReg] == ~0u &&
+ Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
+ KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
+ DOUT << "Breaking anti-dependence edge on "
+ << TRI->getName(AntiDepReg)
+ << " with " << RegRefs.count(AntiDepReg) << " references"
+ << " using " << TRI->getName(NewReg) << "!\n";
+
+ // Update the references to the old register to refer to the new
+ // register.
+ std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
+ std::multimap<unsigned, MachineOperand *>::iterator>
+ Range = RegRefs.equal_range(AntiDepReg);
+ for (std::multimap<unsigned, MachineOperand *>::iterator
+ Q = Range.first, QE = Range.second; Q != QE; ++Q)
+ Q->second->setReg(NewReg);
+
+ // We just went back in time and modified history; the
+ // liveness information for the anti-depenence reg is now
+ // inconsistent. Set the state as if it were dead.
+ Classes[NewReg] = Classes[AntiDepReg];
+ DefIndices[NewReg] = DefIndices[AntiDepReg];
+ KillIndices[NewReg] = KillIndices[AntiDepReg];
+ assert(((KillIndices[NewReg] == ~0u) !=
+ (DefIndices[NewReg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for NewReg!");
+
+ Classes[AntiDepReg] = 0;
+ DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
+ KillIndices[AntiDepReg] = ~0u;
+ assert(((KillIndices[AntiDepReg] == ~0u) !=
+ (DefIndices[AntiDepReg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for AntiDepReg!");
+
+ RegRefs.erase(AntiDepReg);
+ Changed = true;
+ LastNewReg[AntiDepReg] = NewReg;
+ break;
+ }
+ }
+ }
+
+ ScanInstruction(MI, Count);
+ }
+
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Down Scheduling
+//===----------------------------------------------------------------------===//
+
+/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
+/// the PendingQueue if the count reaches zero. Also update its cycle bound.
+void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
+ SUnit *SuccSU = SuccEdge->getSUnit();
+ --SuccSU->NumPredsLeft;
+
+#ifndef NDEBUG
+ if (SuccSU->NumPredsLeft < 0) {
+ cerr << "*** Scheduling failed! ***\n";
+ SuccSU->dump(this);
+ cerr << " has been released too many times!\n";
+ assert(0);
+ }
+#endif
+
+ // Compute how many cycles it will be before this actually becomes
+ // available. This is the max of the start time of all predecessors plus
+ // their latencies.
+ SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
+
+ // If all the node's predecessors are scheduled, this node is ready
+ // to be scheduled. Ignore the special ExitSU node.
+ if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
+ PendingQueue.push_back(SuccSU);
+}
+
+/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
+void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I)
+ ReleaseSucc(SU, &*I);
+}
+
+/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
+/// count of its successors. If a successor pending count is zero, add it to
+/// the Available queue.
+void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
+ DOUT << "*** Scheduling [" << CurCycle << "]: ";
+ DEBUG(SU->dump(this));
+
+ Sequence.push_back(SU);
+ assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
+ SU->setDepthToAtLeast(CurCycle);
+
+ ReleaseSuccessors(SU);
+ SU->isScheduled = true;
+ AvailableQueue.ScheduledNode(SU);
+}
+
+/// ListScheduleTopDown - The main loop of list scheduling for top-down
+/// schedulers.
+void SchedulePostRATDList::ListScheduleTopDown() {
+ unsigned CurCycle = 0;
+
+ // Release any successors of the special Entry node.
+ ReleaseSuccessors(&EntrySU);
+
+ // All leaves to Available queue.
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ // It is available if it has no predecessors.
+ if (SUnits[i].Preds.empty()) {
+ AvailableQueue.push(&SUnits[i]);
+ SUnits[i].isAvailable = true;
+ }
+ }
+
+ // While Available queue is not empty, grab the node with the highest
+ // priority. If it is not ready put it back. Schedule the node.
+ std::vector<SUnit*> NotReady;
+ Sequence.reserve(SUnits.size());
+ while (!AvailableQueue.empty() || !PendingQueue.empty()) {
+ // Check to see if any of the pending instructions are ready to issue. If
+ // so, add them to the available queue.
+ unsigned MinDepth = ~0u;
+ for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
+ if (PendingQueue[i]->getDepth() <= CurCycle) {
+ AvailableQueue.push(PendingQueue[i]);
+ PendingQueue[i]->isAvailable = true;
+ PendingQueue[i] = PendingQueue.back();
+ PendingQueue.pop_back();
+ --i; --e;
+ } else if (PendingQueue[i]->getDepth() < MinDepth)
+ MinDepth = PendingQueue[i]->getDepth();
+ }
+
+ // If there are no instructions available, don't try to issue anything, and
+ // don't advance the hazard recognizer.
+ if (AvailableQueue.empty()) {
+ CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
+ continue;
+ }
+
+ SUnit *FoundSUnit = 0;
+
+ bool HasNoopHazards = false;
+ while (!AvailableQueue.empty()) {
+ SUnit *CurSUnit = AvailableQueue.pop();
+
+ ScheduleHazardRecognizer::HazardType HT =
+ HazardRec->getHazardType(CurSUnit);
+ if (HT == ScheduleHazardRecognizer::NoHazard) {
+ FoundSUnit = CurSUnit;
+ break;
+ }
+
+ // Remember if this is a noop hazard.
+ HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
+
+ NotReady.push_back(CurSUnit);
+ }
+
+ // Add the nodes that aren't ready back onto the available list.
+ if (!NotReady.empty()) {
+ AvailableQueue.push_all(NotReady);
+ NotReady.clear();
+ }
+
+ // If we found a node to schedule, do it now.
+ if (FoundSUnit) {
+ ScheduleNodeTopDown(FoundSUnit, CurCycle);
+ HazardRec->EmitInstruction(FoundSUnit);
+
+ // If this is a pseudo-op node, we don't want to increment the current
+ // cycle.
+ if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
+ ++CurCycle;
+ } else if (!HasNoopHazards) {
+ // Otherwise, we have a pipeline stall, but no other problem, just advance
+ // the current cycle and try again.
+ DOUT << "*** Advancing cycle, no work to do\n";
+ HazardRec->AdvanceCycle();
+ ++NumStalls;
+ ++CurCycle;
+ } else {
+ // Otherwise, we have no instructions to issue and we have instructions
+ // that will fault if we don't do this right. This is the case for
+ // processors without pipeline interlocks and other cases.
+ DOUT << "*** Emitting noop\n";
+ HazardRec->EmitNoop();
+ Sequence.push_back(0); // NULL here means noop
+ ++NumNoops;
+ ++CurCycle;
+ }
+ }
+
+#ifndef NDEBUG
+ VerifySchedule(/*isBottomUp=*/false);
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+FunctionPass *llvm::createPostRAScheduler() {
+ return new PostRAScheduler();
+}
OpenPOWER on IntegriCloud