summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/MachineSSAUpdater.cpp
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2009-12-15 18:09:07 +0000
committerrdivacky <rdivacky@FreeBSD.org>2009-12-15 18:09:07 +0000
commit40a6fcdb85efd93fe0e36c9552cfb0b18b5eacd6 (patch)
tree076117cdf3579003f07cad4cdf0593347ce58150 /lib/CodeGen/MachineSSAUpdater.cpp
parente7908924d847e63b02bc82bfaa1709ab9c774dcd (diff)
downloadFreeBSD-src-40a6fcdb85efd93fe0e36c9552cfb0b18b5eacd6.zip
FreeBSD-src-40a6fcdb85efd93fe0e36c9552cfb0b18b5eacd6.tar.gz
Update LLVM to 91430.
Diffstat (limited to 'lib/CodeGen/MachineSSAUpdater.cpp')
-rw-r--r--lib/CodeGen/MachineSSAUpdater.cpp393
1 files changed, 393 insertions, 0 deletions
diff --git a/lib/CodeGen/MachineSSAUpdater.cpp b/lib/CodeGen/MachineSSAUpdater.cpp
new file mode 100644
index 0000000..292096f
--- /dev/null
+++ b/lib/CodeGen/MachineSSAUpdater.cpp
@@ -0,0 +1,393 @@
+//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
+// class in lib/Transforms/Utils.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineSSAUpdater.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
+typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
+ IncomingPredInfoTy;
+
+static AvailableValsTy &getAvailableVals(void *AV) {
+ return *static_cast<AvailableValsTy*>(AV);
+}
+
+static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
+ return *static_cast<IncomingPredInfoTy*>(IPI);
+}
+
+
+MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
+ SmallVectorImpl<MachineInstr*> *NewPHI)
+ : AV(0), IPI(0), InsertedPHIs(NewPHI) {
+ TII = MF.getTarget().getInstrInfo();
+ MRI = &MF.getRegInfo();
+}
+
+MachineSSAUpdater::~MachineSSAUpdater() {
+ delete &getAvailableVals(AV);
+ delete &getIncomingPredInfo(IPI);
+}
+
+/// Initialize - Reset this object to get ready for a new set of SSA
+/// updates. ProtoValue is the value used to name PHI nodes.
+void MachineSSAUpdater::Initialize(unsigned V) {
+ if (AV == 0)
+ AV = new AvailableValsTy();
+ else
+ getAvailableVals(AV).clear();
+
+ if (IPI == 0)
+ IPI = new IncomingPredInfoTy();
+ else
+ getIncomingPredInfo(IPI).clear();
+
+ VR = V;
+ VRC = MRI->getRegClass(VR);
+}
+
+/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
+/// the specified block.
+bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
+ return getAvailableVals(AV).count(BB);
+}
+
+/// AddAvailableValue - Indicate that a rewritten value is available in the
+/// specified block with the specified value.
+void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
+ getAvailableVals(AV)[BB] = V;
+}
+
+/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
+/// live at the end of the specified block.
+unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
+ return GetValueAtEndOfBlockInternal(BB);
+}
+
+static
+unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
+ SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) {
+ if (BB->empty())
+ return 0;
+
+ MachineBasicBlock::iterator I = BB->front();
+ if (I->getOpcode() != TargetInstrInfo::PHI)
+ return 0;
+
+ AvailableValsTy AVals;
+ for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
+ AVals[PredValues[i].first] = PredValues[i].second;
+ while (I != BB->end() && I->getOpcode() == TargetInstrInfo::PHI) {
+ bool Same = true;
+ for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
+ unsigned SrcReg = I->getOperand(i).getReg();
+ MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
+ if (AVals[SrcBB] != SrcReg) {
+ Same = false;
+ break;
+ }
+ }
+ if (Same)
+ return I->getOperand(0).getReg();
+ ++I;
+ }
+ return 0;
+}
+
+/// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
+/// a value of the given register class at the start of the specified basic
+/// block. It returns the virtual register defined by the instruction.
+static
+MachineInstr *InsertNewDef(unsigned Opcode,
+ MachineBasicBlock *BB, MachineBasicBlock::iterator I,
+ const TargetRegisterClass *RC,
+ MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
+ unsigned NewVR = MRI->createVirtualRegister(RC);
+ return BuildMI(*BB, I, DebugLoc::getUnknownLoc(), TII->get(Opcode), NewVR);
+}
+
+/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
+/// is live in the middle of the specified block.
+///
+/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
+/// important case: if there is a definition of the rewritten value after the
+/// 'use' in BB. Consider code like this:
+///
+/// X1 = ...
+/// SomeBB:
+/// use(X)
+/// X2 = ...
+/// br Cond, SomeBB, OutBB
+///
+/// In this case, there are two values (X1 and X2) added to the AvailableVals
+/// set by the client of the rewriter, and those values are both live out of
+/// their respective blocks. However, the use of X happens in the *middle* of
+/// a block. Because of this, we need to insert a new PHI node in SomeBB to
+/// merge the appropriate values, and this value isn't live out of the block.
+///
+unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
+ // If there is no definition of the renamed variable in this block, just use
+ // GetValueAtEndOfBlock to do our work.
+ if (!getAvailableVals(AV).count(BB))
+ return GetValueAtEndOfBlockInternal(BB);
+
+ // If there are no predecessors, just return undef.
+ if (BB->pred_empty()) {
+ // Insert an implicit_def to represent an undef value.
+ MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
+ BB, BB->getFirstTerminator(),
+ VRC, MRI, TII);
+ return NewDef->getOperand(0).getReg();
+ }
+
+ // Otherwise, we have the hard case. Get the live-in values for each
+ // predecessor.
+ SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
+ unsigned SingularValue = 0;
+
+ bool isFirstPred = true;
+ for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
+ E = BB->pred_end(); PI != E; ++PI) {
+ MachineBasicBlock *PredBB = *PI;
+ unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
+ PredValues.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (isFirstPred) {
+ SingularValue = PredVal;
+ isFirstPred = false;
+ } else if (PredVal != SingularValue)
+ SingularValue = 0;
+ }
+
+ // Otherwise, if all the merged values are the same, just use it.
+ if (SingularValue != 0)
+ return SingularValue;
+
+ // If an identical PHI is already in BB, just reuse it.
+ unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
+ if (DupPHI)
+ return DupPHI;
+
+ // Otherwise, we do need a PHI: insert one now.
+ MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
+ MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB,
+ Loc, VRC, MRI, TII);
+
+ // Fill in all the predecessors of the PHI.
+ MachineInstrBuilder MIB(InsertedPHI);
+ for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
+ MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
+
+ // See if the PHI node can be merged to a single value. This can happen in
+ // loop cases when we get a PHI of itself and one other value.
+ if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
+ InsertedPHI->eraseFromParent();
+ return ConstVal;
+ }
+
+ // If the client wants to know about all new instructions, tell it.
+ if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
+
+ DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
+ return InsertedPHI->getOperand(0).getReg();
+}
+
+static
+MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
+ MachineOperand *U) {
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
+ if (&MI->getOperand(i) == U)
+ return MI->getOperand(i+1).getMBB();
+ }
+
+ llvm_unreachable("MachineOperand::getParent() failure?");
+ return 0;
+}
+
+/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
+/// which use their value in the corresponding predecessor.
+void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
+ MachineInstr *UseMI = U.getParent();
+ unsigned NewVR = 0;
+ if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
+ MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
+ NewVR = GetValueAtEndOfBlockInternal(SourceBB);
+ } else {
+ NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
+ }
+
+ U.setReg(NewVR);
+}
+
+void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
+ MRI->replaceRegWith(OldReg, NewReg);
+
+ AvailableValsTy &AvailableVals = getAvailableVals(AV);
+ for (DenseMap<MachineBasicBlock*, unsigned>::iterator
+ I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I)
+ if (I->second == OldReg)
+ I->second = NewReg;
+}
+
+/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
+/// for the specified BB and if so, return it. If not, construct SSA form by
+/// walking predecessors inserting PHI nodes as needed until we get to a block
+/// where the value is available.
+///
+unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
+ AvailableValsTy &AvailableVals = getAvailableVals(AV);
+
+ // Query AvailableVals by doing an insertion of null.
+ std::pair<AvailableValsTy::iterator, bool> InsertRes =
+ AvailableVals.insert(std::make_pair(BB, 0));
+
+ // Handle the case when the insertion fails because we have already seen BB.
+ if (!InsertRes.second) {
+ // If the insertion failed, there are two cases. The first case is that the
+ // value is already available for the specified block. If we get this, just
+ // return the value.
+ if (InsertRes.first->second != 0)
+ return InsertRes.first->second;
+
+ // Otherwise, if the value we find is null, then this is the value is not
+ // known but it is being computed elsewhere in our recursion. This means
+ // that we have a cycle. Handle this by inserting a PHI node and returning
+ // it. When we get back to the first instance of the recursion we will fill
+ // in the PHI node.
+ MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
+ MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
+ VRC, MRI,TII);
+ unsigned NewVR = NewPHI->getOperand(0).getReg();
+ InsertRes.first->second = NewVR;
+ return NewVR;
+ }
+
+ // If there are no predecessors, then we must have found an unreachable block
+ // just return 'undef'. Since there are no predecessors, InsertRes must not
+ // be invalidated.
+ if (BB->pred_empty()) {
+ // Insert an implicit_def to represent an undef value.
+ MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
+ BB, BB->getFirstTerminator(),
+ VRC, MRI, TII);
+ return InsertRes.first->second = NewDef->getOperand(0).getReg();
+ }
+
+ // Okay, the value isn't in the map and we just inserted a null in the entry
+ // to indicate that we're processing the block. Since we have no idea what
+ // value is in this block, we have to recurse through our predecessors.
+ //
+ // While we're walking our predecessors, we keep track of them in a vector,
+ // then insert a PHI node in the end if we actually need one. We could use a
+ // smallvector here, but that would take a lot of stack space for every level
+ // of the recursion, just use IncomingPredInfo as an explicit stack.
+ IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
+ unsigned FirstPredInfoEntry = IncomingPredInfo.size();
+
+ // As we're walking the predecessors, keep track of whether they are all
+ // producing the same value. If so, this value will capture it, if not, it
+ // will get reset to null. We distinguish the no-predecessor case explicitly
+ // below.
+ unsigned SingularValue = 0;
+ bool isFirstPred = true;
+ for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
+ E = BB->pred_end(); PI != E; ++PI) {
+ MachineBasicBlock *PredBB = *PI;
+ unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
+ IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (isFirstPred) {
+ SingularValue = PredVal;
+ isFirstPred = false;
+ } else if (PredVal != SingularValue)
+ SingularValue = 0;
+ }
+
+ /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
+ /// this block is involved in a loop, a no-entry PHI node will have been
+ /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
+ /// above.
+ unsigned &InsertedVal = AvailableVals[BB];
+
+ // If all the predecessor values are the same then we don't need to insert a
+ // PHI. This is the simple and common case.
+ if (SingularValue) {
+ // If a PHI node got inserted, replace it with the singlar value and delete
+ // it.
+ if (InsertedVal) {
+ MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
+ // Be careful about dead loops. These RAUW's also update InsertedVal.
+ assert(InsertedVal != SingularValue && "Dead loop?");
+ ReplaceRegWith(InsertedVal, SingularValue);
+ OldVal->eraseFromParent();
+ }
+
+ InsertedVal = SingularValue;
+
+ // Drop the entries we added in IncomingPredInfo to restore the stack.
+ IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
+ IncomingPredInfo.end());
+ return InsertedVal;
+ }
+
+
+ // Otherwise, we do need a PHI: insert one now if we don't already have one.
+ MachineInstr *InsertedPHI;
+ if (InsertedVal == 0) {
+ MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
+ InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
+ VRC, MRI, TII);
+ InsertedVal = InsertedPHI->getOperand(0).getReg();
+ } else {
+ InsertedPHI = MRI->getVRegDef(InsertedVal);
+ }
+
+ // Fill in all the predecessors of the PHI.
+ MachineInstrBuilder MIB(InsertedPHI);
+ for (IncomingPredInfoTy::iterator I =
+ IncomingPredInfo.begin()+FirstPredInfoEntry,
+ E = IncomingPredInfo.end(); I != E; ++I)
+ MIB.addReg(I->second).addMBB(I->first);
+
+ // Drop the entries we added in IncomingPredInfo to restore the stack.
+ IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
+ IncomingPredInfo.end());
+
+ // See if the PHI node can be merged to a single value. This can happen in
+ // loop cases when we get a PHI of itself and one other value.
+ if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
+ MRI->replaceRegWith(InsertedVal, ConstVal);
+ InsertedPHI->eraseFromParent();
+ InsertedVal = ConstVal;
+ } else {
+ DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
+
+ // If the client wants to know about all new instructions, tell it.
+ if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
+ }
+
+ return InsertedVal;
+}
OpenPOWER on IntegriCloud