summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/LiveVariables.cpp
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /lib/CodeGen/LiveVariables.cpp
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'lib/CodeGen/LiveVariables.cpp')
-rw-r--r--lib/CodeGen/LiveVariables.cpp695
1 files changed, 695 insertions, 0 deletions
diff --git a/lib/CodeGen/LiveVariables.cpp b/lib/CodeGen/LiveVariables.cpp
new file mode 100644
index 0000000..c33d81e
--- /dev/null
+++ b/lib/CodeGen/LiveVariables.cpp
@@ -0,0 +1,695 @@
+//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveVariable analysis pass. For each machine
+// instruction in the function, this pass calculates the set of registers that
+// are immediately dead after the instruction (i.e., the instruction calculates
+// the value, but it is never used) and the set of registers that are used by
+// the instruction, but are never used after the instruction (i.e., they are
+// killed).
+//
+// This class computes live variables using are sparse implementation based on
+// the machine code SSA form. This class computes live variable information for
+// each virtual and _register allocatable_ physical register in a function. It
+// uses the dominance properties of SSA form to efficiently compute live
+// variables for virtual registers, and assumes that physical registers are only
+// live within a single basic block (allowing it to do a single local analysis
+// to resolve physical register lifetimes in each basic block). If a physical
+// register is not register allocatable, it is not tracked. This is useful for
+// things like the stack pointer and condition codes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Config/alloca.h"
+#include <algorithm>
+using namespace llvm;
+
+char LiveVariables::ID = 0;
+static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
+
+
+void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequiredID(UnreachableMachineBlockElimID);
+ AU.setPreservesAll();
+}
+
+void LiveVariables::VarInfo::dump() const {
+ cerr << " Alive in blocks: ";
+ for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
+ E = AliveBlocks.end(); I != E; ++I)
+ cerr << *I << ", ";
+ cerr << "\n Killed by:";
+ if (Kills.empty())
+ cerr << " No instructions.\n";
+ else {
+ for (unsigned i = 0, e = Kills.size(); i != e; ++i)
+ cerr << "\n #" << i << ": " << *Kills[i];
+ cerr << "\n";
+ }
+}
+
+/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
+LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
+ assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
+ "getVarInfo: not a virtual register!");
+ RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
+ if (RegIdx >= VirtRegInfo.size()) {
+ if (RegIdx >= 2*VirtRegInfo.size())
+ VirtRegInfo.resize(RegIdx*2);
+ else
+ VirtRegInfo.resize(2*VirtRegInfo.size());
+ }
+ return VirtRegInfo[RegIdx];
+}
+
+void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
+ MachineBasicBlock *DefBlock,
+ MachineBasicBlock *MBB,
+ std::vector<MachineBasicBlock*> &WorkList) {
+ unsigned BBNum = MBB->getNumber();
+
+ // Check to see if this basic block is one of the killing blocks. If so,
+ // remove it.
+ for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
+ if (VRInfo.Kills[i]->getParent() == MBB) {
+ VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
+ break;
+ }
+
+ if (MBB == DefBlock) return; // Terminate recursion
+
+ if (VRInfo.AliveBlocks.test(BBNum))
+ return; // We already know the block is live
+
+ // Mark the variable known alive in this bb
+ VRInfo.AliveBlocks.set(BBNum);
+
+ for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
+ E = MBB->pred_rend(); PI != E; ++PI)
+ WorkList.push_back(*PI);
+}
+
+void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
+ MachineBasicBlock *DefBlock,
+ MachineBasicBlock *MBB) {
+ std::vector<MachineBasicBlock*> WorkList;
+ MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
+
+ while (!WorkList.empty()) {
+ MachineBasicBlock *Pred = WorkList.back();
+ WorkList.pop_back();
+ MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
+ }
+}
+
+void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
+ MachineInstr *MI) {
+ assert(MRI->getVRegDef(reg) && "Register use before def!");
+
+ unsigned BBNum = MBB->getNumber();
+
+ VarInfo& VRInfo = getVarInfo(reg);
+ VRInfo.NumUses++;
+
+ // Check to see if this basic block is already a kill block.
+ if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
+ // Yes, this register is killed in this basic block already. Increase the
+ // live range by updating the kill instruction.
+ VRInfo.Kills.back() = MI;
+ return;
+ }
+
+#ifndef NDEBUG
+ for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
+ assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
+#endif
+
+ // This situation can occur:
+ //
+ // ,------.
+ // | |
+ // | v
+ // | t2 = phi ... t1 ...
+ // | |
+ // | v
+ // | t1 = ...
+ // | ... = ... t1 ...
+ // | |
+ // `------'
+ //
+ // where there is a use in a PHI node that's a predecessor to the defining
+ // block. We don't want to mark all predecessors as having the value "alive"
+ // in this case.
+ if (MBB == MRI->getVRegDef(reg)->getParent()) return;
+
+ // Add a new kill entry for this basic block. If this virtual register is
+ // already marked as alive in this basic block, that means it is alive in at
+ // least one of the successor blocks, it's not a kill.
+ if (!VRInfo.AliveBlocks.test(BBNum))
+ VRInfo.Kills.push_back(MI);
+
+ // Update all dominating blocks to mark them as "known live".
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ E = MBB->pred_end(); PI != E; ++PI)
+ MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
+}
+
+void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
+ VarInfo &VRInfo = getVarInfo(Reg);
+
+ if (VRInfo.AliveBlocks.empty())
+ // If vr is not alive in any block, then defaults to dead.
+ VRInfo.Kills.push_back(MI);
+}
+
+/// FindLastPartialDef - Return the last partial def of the specified register.
+/// Also returns the sub-register that's defined.
+MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
+ unsigned &PartDefReg) {
+ unsigned LastDefReg = 0;
+ unsigned LastDefDist = 0;
+ MachineInstr *LastDef = NULL;
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ MachineInstr *Def = PhysRegDef[SubReg];
+ if (!Def)
+ continue;
+ unsigned Dist = DistanceMap[Def];
+ if (Dist > LastDefDist) {
+ LastDefReg = SubReg;
+ LastDef = Def;
+ LastDefDist = Dist;
+ }
+ }
+ PartDefReg = LastDefReg;
+ return LastDef;
+}
+
+/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
+/// implicit defs to a machine instruction if there was an earlier def of its
+/// super-register.
+void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
+ // If there was a previous use or a "full" def all is well.
+ if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
+ // Otherwise, the last sub-register def implicitly defines this register.
+ // e.g.
+ // AH =
+ // AL = ... <imp-def EAX>, <imp-kill AH>
+ // = AH
+ // ...
+ // = EAX
+ // All of the sub-registers must have been defined before the use of Reg!
+ unsigned PartDefReg = 0;
+ MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg);
+ // If LastPartialDef is NULL, it must be using a livein register.
+ if (LastPartialDef) {
+ LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
+ true/*IsImp*/));
+ PhysRegDef[Reg] = LastPartialDef;
+ SmallSet<unsigned, 8> Processed;
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ if (Processed.count(SubReg))
+ continue;
+ if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg))
+ continue;
+ // This part of Reg was defined before the last partial def. It's killed
+ // here.
+ LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
+ false/*IsDef*/,
+ true/*IsImp*/));
+ PhysRegDef[SubReg] = LastPartialDef;
+ for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
+ Processed.insert(*SS);
+ }
+ }
+ }
+
+ // There was an earlier def of a super-register. Add implicit def to that MI.
+ //
+ // A: EAX = ...
+ // B: ... = AX
+ //
+ // Add implicit def to A if there isn't a use of AX (or EAX) before B.
+ if (!PhysRegUse[Reg]) {
+ MachineInstr *Def = PhysRegDef[Reg];
+ if (Def && !Def->modifiesRegister(Reg))
+ Def->addOperand(MachineOperand::CreateReg(Reg,
+ true /*IsDef*/,
+ true /*IsImp*/));
+ }
+
+ // Remember this use.
+ PhysRegUse[Reg] = MI;
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs)
+ PhysRegUse[SubReg] = MI;
+}
+
+/// hasRegisterUseBelow - Return true if the specified register is used after
+/// the current instruction and before it's next definition.
+bool LiveVariables::hasRegisterUseBelow(unsigned Reg,
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock *MBB) {
+ if (I == MBB->end())
+ return false;
+
+ // First find out if there are any uses / defs below.
+ bool hasDistInfo = true;
+ unsigned CurDist = DistanceMap[I];
+ SmallVector<MachineInstr*, 4> Uses;
+ SmallVector<MachineInstr*, 4> Defs;
+ for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
+ RE = MRI->reg_end(); RI != RE; ++RI) {
+ MachineOperand &UDO = RI.getOperand();
+ MachineInstr *UDMI = &*RI;
+ if (UDMI->getParent() != MBB)
+ continue;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
+ bool isBelow = false;
+ if (DI == DistanceMap.end()) {
+ // Must be below if it hasn't been assigned a distance yet.
+ isBelow = true;
+ hasDistInfo = false;
+ } else if (DI->second > CurDist)
+ isBelow = true;
+ if (isBelow) {
+ if (UDO.isUse())
+ Uses.push_back(UDMI);
+ if (UDO.isDef())
+ Defs.push_back(UDMI);
+ }
+ }
+
+ if (Uses.empty())
+ // No uses below.
+ return false;
+ else if (!Uses.empty() && Defs.empty())
+ // There are uses below but no defs below.
+ return true;
+ // There are both uses and defs below. We need to know which comes first.
+ if (!hasDistInfo) {
+ // Complete DistanceMap for this MBB. This information is computed only
+ // once per MBB.
+ ++I;
+ ++CurDist;
+ for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist)
+ DistanceMap.insert(std::make_pair(I, CurDist));
+ }
+
+ unsigned EarliestUse = DistanceMap[Uses[0]];
+ for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
+ unsigned Dist = DistanceMap[Uses[i]];
+ if (Dist < EarliestUse)
+ EarliestUse = Dist;
+ }
+ for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
+ unsigned Dist = DistanceMap[Defs[i]];
+ if (Dist < EarliestUse)
+ // The register is defined before its first use below.
+ return false;
+ }
+ return true;
+}
+
+bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
+ if (!PhysRegUse[Reg] && !PhysRegDef[Reg])
+ return false;
+
+ MachineInstr *LastRefOrPartRef = PhysRegUse[Reg]
+ ? PhysRegUse[Reg] : PhysRegDef[Reg];
+ unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
+ // The whole register is used.
+ // AL =
+ // AH =
+ //
+ // = AX
+ // = AL, AX<imp-use, kill>
+ // AX =
+ //
+ // Or whole register is defined, but not used at all.
+ // AX<dead> =
+ // ...
+ // AX =
+ //
+ // Or whole register is defined, but only partly used.
+ // AX<dead> = AL<imp-def>
+ // = AL<kill>
+ // AX =
+ SmallSet<unsigned, 8> PartUses;
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ if (MachineInstr *Use = PhysRegUse[SubReg]) {
+ PartUses.insert(SubReg);
+ for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
+ PartUses.insert(*SS);
+ unsigned Dist = DistanceMap[Use];
+ if (Dist > LastRefOrPartRefDist) {
+ LastRefOrPartRefDist = Dist;
+ LastRefOrPartRef = Use;
+ }
+ }
+ }
+
+ if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI)
+ // If the last reference is the last def, then it's not used at all.
+ // That is, unless we are currently processing the last reference itself.
+ LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
+
+ /* Partial uses. Mark register def dead and add implicit def of
+ sub-registers which are used.
+ FIXME: LiveIntervalAnalysis can't handle this yet!
+ EAX<dead> = op AL<imp-def>
+ That is, EAX def is dead but AL def extends pass it.
+ Enable this after live interval analysis is fixed to improve codegen!
+ else if (!PhysRegUse[Reg]) {
+ PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ if (PartUses.count(SubReg)) {
+ PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
+ true, true));
+ LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
+ for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
+ PartUses.erase(*SS);
+ }
+ }
+ } */
+ else
+ LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
+ return true;
+}
+
+void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
+ // What parts of the register are previously defined?
+ SmallSet<unsigned, 32> Live;
+ if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
+ Live.insert(Reg);
+ for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
+ Live.insert(*SS);
+ } else {
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ // If a register isn't itself defined, but all parts that make up of it
+ // are defined, then consider it also defined.
+ // e.g.
+ // AL =
+ // AH =
+ // = AX
+ if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
+ Live.insert(SubReg);
+ for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
+ Live.insert(*SS);
+ }
+ }
+ }
+
+ // Start from the largest piece, find the last time any part of the register
+ // is referenced.
+ if (!HandlePhysRegKill(Reg, MI)) {
+ // Only some of the sub-registers are used.
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ if (!Live.count(SubReg))
+ // Skip if this sub-register isn't defined.
+ continue;
+ if (HandlePhysRegKill(SubReg, MI)) {
+ Live.erase(SubReg);
+ for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
+ Live.erase(*SS);
+ }
+ }
+ assert(Live.empty() && "Not all defined registers are killed / dead?");
+ }
+
+ if (MI) {
+ // Does this extend the live range of a super-register?
+ SmallSet<unsigned, 8> Processed;
+ for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg);
+ unsigned SuperReg = *SuperRegs; ++SuperRegs) {
+ if (Processed.count(SuperReg))
+ continue;
+ MachineInstr *LastRef = PhysRegUse[SuperReg]
+ ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg];
+ if (LastRef && LastRef != MI) {
+ // The larger register is previously defined. Now a smaller part is
+ // being re-defined. Treat it as read/mod/write if there are uses
+ // below.
+ // EAX =
+ // AX = EAX<imp-use,kill>, EAX<imp-def>
+ // ...
+ /// = EAX
+ if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) {
+ MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
+ true/*IsImp*/,true/*IsKill*/));
+ MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
+ true/*IsImp*/));
+ PhysRegDef[SuperReg] = MI;
+ PhysRegUse[SuperReg] = NULL;
+ Processed.insert(SuperReg);
+ for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
+ PhysRegDef[*SS] = MI;
+ PhysRegUse[*SS] = NULL;
+ Processed.insert(*SS);
+ }
+ } else {
+ // Otherwise, the super register is killed.
+ if (HandlePhysRegKill(SuperReg, MI)) {
+ PhysRegDef[SuperReg] = NULL;
+ PhysRegUse[SuperReg] = NULL;
+ for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
+ PhysRegDef[*SS] = NULL;
+ PhysRegUse[*SS] = NULL;
+ Processed.insert(*SS);
+ }
+ }
+ }
+ }
+ }
+
+ // Remember this def.
+ PhysRegDef[Reg] = MI;
+ PhysRegUse[Reg] = NULL;
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ PhysRegDef[SubReg] = MI;
+ PhysRegUse[SubReg] = NULL;
+ }
+ }
+}
+
+bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
+ MF = &mf;
+ MRI = &mf.getRegInfo();
+ TRI = MF->getTarget().getRegisterInfo();
+
+ ReservedRegisters = TRI->getReservedRegs(mf);
+
+ unsigned NumRegs = TRI->getNumRegs();
+ PhysRegDef = new MachineInstr*[NumRegs];
+ PhysRegUse = new MachineInstr*[NumRegs];
+ PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
+ std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
+ std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
+
+ /// Get some space for a respectable number of registers.
+ VirtRegInfo.resize(64);
+
+ analyzePHINodes(mf);
+
+ // Calculate live variable information in depth first order on the CFG of the
+ // function. This guarantees that we will see the definition of a virtual
+ // register before its uses due to dominance properties of SSA (except for PHI
+ // nodes, which are treated as a special case).
+ MachineBasicBlock *Entry = MF->begin();
+ SmallPtrSet<MachineBasicBlock*,16> Visited;
+
+ for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
+ DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+ DFI != E; ++DFI) {
+ MachineBasicBlock *MBB = *DFI;
+
+ // Mark live-in registers as live-in.
+ for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
+ EE = MBB->livein_end(); II != EE; ++II) {
+ assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
+ "Cannot have a live-in virtual register!");
+ HandlePhysRegDef(*II, 0);
+ }
+
+ // Loop over all of the instructions, processing them.
+ DistanceMap.clear();
+ unsigned Dist = 0;
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I) {
+ MachineInstr *MI = I;
+ DistanceMap.insert(std::make_pair(MI, Dist++));
+
+ // Process all of the operands of the instruction...
+ unsigned NumOperandsToProcess = MI->getNumOperands();
+
+ // Unless it is a PHI node. In this case, ONLY process the DEF, not any
+ // of the uses. They will be handled in other basic blocks.
+ if (MI->getOpcode() == TargetInstrInfo::PHI)
+ NumOperandsToProcess = 1;
+
+ SmallVector<unsigned, 4> UseRegs;
+ SmallVector<unsigned, 4> DefRegs;
+ for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (MO.isUse())
+ UseRegs.push_back(MOReg);
+ if (MO.isDef())
+ DefRegs.push_back(MOReg);
+ }
+
+ // Process all uses.
+ for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
+ unsigned MOReg = UseRegs[i];
+ if (TargetRegisterInfo::isVirtualRegister(MOReg))
+ HandleVirtRegUse(MOReg, MBB, MI);
+ else if (!ReservedRegisters[MOReg])
+ HandlePhysRegUse(MOReg, MI);
+ }
+
+ // Process all defs.
+ for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
+ unsigned MOReg = DefRegs[i];
+ if (TargetRegisterInfo::isVirtualRegister(MOReg))
+ HandleVirtRegDef(MOReg, MI);
+ else if (!ReservedRegisters[MOReg])
+ HandlePhysRegDef(MOReg, MI);
+ }
+ }
+
+ // Handle any virtual assignments from PHI nodes which might be at the
+ // bottom of this basic block. We check all of our successor blocks to see
+ // if they have PHI nodes, and if so, we simulate an assignment at the end
+ // of the current block.
+ if (!PHIVarInfo[MBB->getNumber()].empty()) {
+ SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
+
+ for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
+ E = VarInfoVec.end(); I != E; ++I)
+ // Mark it alive only in the block we are representing.
+ MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
+ MBB);
+ }
+
+ // Finally, if the last instruction in the block is a return, make sure to
+ // mark it as using all of the live-out values in the function.
+ if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
+ MachineInstr *Ret = &MBB->back();
+
+ for (MachineRegisterInfo::liveout_iterator
+ I = MF->getRegInfo().liveout_begin(),
+ E = MF->getRegInfo().liveout_end(); I != E; ++I) {
+ assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
+ "Cannot have a live-out virtual register!");
+ HandlePhysRegUse(*I, Ret);
+
+ // Add live-out registers as implicit uses.
+ if (!Ret->readsRegister(*I))
+ Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
+ }
+ }
+
+ // Loop over PhysRegDef / PhysRegUse, killing any registers that are
+ // available at the end of the basic block.
+ for (unsigned i = 0; i != NumRegs; ++i)
+ if (PhysRegDef[i] || PhysRegUse[i])
+ HandlePhysRegDef(i, 0);
+
+ std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
+ std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
+ }
+
+ // Convert and transfer the dead / killed information we have gathered into
+ // VirtRegInfo onto MI's.
+ for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
+ for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
+ if (VirtRegInfo[i].Kills[j] ==
+ MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
+ VirtRegInfo[i]
+ .Kills[j]->addRegisterDead(i +
+ TargetRegisterInfo::FirstVirtualRegister,
+ TRI);
+ else
+ VirtRegInfo[i]
+ .Kills[j]->addRegisterKilled(i +
+ TargetRegisterInfo::FirstVirtualRegister,
+ TRI);
+
+ // Check to make sure there are no unreachable blocks in the MC CFG for the
+ // function. If so, it is due to a bug in the instruction selector or some
+ // other part of the code generator if this happens.
+#ifndef NDEBUG
+ for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
+ assert(Visited.count(&*i) != 0 && "unreachable basic block found");
+#endif
+
+ delete[] PhysRegDef;
+ delete[] PhysRegUse;
+ delete[] PHIVarInfo;
+
+ return false;
+}
+
+/// replaceKillInstruction - Update register kill info by replacing a kill
+/// instruction with a new one.
+void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
+ MachineInstr *NewMI) {
+ VarInfo &VI = getVarInfo(Reg);
+ std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
+}
+
+/// removeVirtualRegistersKilled - Remove all killed info for the specified
+/// instruction.
+void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isKill()) {
+ MO.setIsKill(false);
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ bool removed = getVarInfo(Reg).removeKill(MI);
+ assert(removed && "kill not in register's VarInfo?");
+ removed = true;
+ }
+ }
+ }
+}
+
+/// analyzePHINodes - Gather information about the PHI nodes in here. In
+/// particular, we want to map the variable information of a virtual register
+/// which is used in a PHI node. We map that to the BB the vreg is coming from.
+///
+void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
+ for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
+ I != E; ++I)
+ for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
+ BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
+ for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
+ PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
+ .push_back(BBI->getOperand(i).getReg());
+}
OpenPOWER on IntegriCloud