summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CodeGenModule.cpp
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
committered <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
commitf27e5a09a0d815b8a4814152954ff87dadfdefc0 (patch)
treece7d964cbb5e39695b71481698f10cb099c23d4a /lib/CodeGen/CodeGenModule.cpp
downloadFreeBSD-src-f27e5a09a0d815b8a4814152954ff87dadfdefc0.zip
FreeBSD-src-f27e5a09a0d815b8a4814152954ff87dadfdefc0.tar.gz
Import Clang, at r72732.
Diffstat (limited to 'lib/CodeGen/CodeGenModule.cpp')
-rw-r--r--lib/CodeGen/CodeGenModule.cpp1543
1 files changed, 1543 insertions, 0 deletions
diff --git a/lib/CodeGen/CodeGenModule.cpp b/lib/CodeGen/CodeGenModule.cpp
new file mode 100644
index 0000000..b69301e
--- /dev/null
+++ b/lib/CodeGen/CodeGenModule.cpp
@@ -0,0 +1,1543 @@
+//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This coordinates the per-module state used while generating code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenModule.h"
+#include "CGDebugInfo.h"
+#include "CodeGenFunction.h"
+#include "CGCall.h"
+#include "CGObjCRuntime.h"
+#include "Mangle.h"
+#include "clang/Frontend/CompileOptions.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/ConvertUTF.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Module.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Target/TargetData.h"
+using namespace clang;
+using namespace CodeGen;
+
+
+CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
+ llvm::Module &M, const llvm::TargetData &TD,
+ Diagnostic &diags)
+ : BlockModule(C, M, TD, Types, *this), Context(C),
+ Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
+ TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
+ MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
+
+ if (!Features.ObjC1)
+ Runtime = 0;
+ else if (!Features.NeXTRuntime)
+ Runtime = CreateGNUObjCRuntime(*this);
+ else if (Features.ObjCNonFragileABI)
+ Runtime = CreateMacNonFragileABIObjCRuntime(*this);
+ else
+ Runtime = CreateMacObjCRuntime(*this);
+
+ // If debug info generation is enabled, create the CGDebugInfo object.
+ DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
+}
+
+CodeGenModule::~CodeGenModule() {
+ delete Runtime;
+ delete DebugInfo;
+}
+
+void CodeGenModule::Release() {
+ EmitDeferred();
+ if (Runtime)
+ if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
+ AddGlobalCtor(ObjCInitFunction);
+ EmitCtorList(GlobalCtors, "llvm.global_ctors");
+ EmitCtorList(GlobalDtors, "llvm.global_dtors");
+ EmitAnnotations();
+ EmitLLVMUsed();
+}
+
+/// ErrorUnsupported - Print out an error that codegen doesn't support the
+/// specified stmt yet.
+void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
+ bool OmitOnError) {
+ if (OmitOnError && getDiags().hasErrorOccurred())
+ return;
+ unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
+ "cannot compile this %0 yet");
+ std::string Msg = Type;
+ getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
+ << Msg << S->getSourceRange();
+}
+
+/// ErrorUnsupported - Print out an error that codegen doesn't support the
+/// specified decl yet.
+void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
+ bool OmitOnError) {
+ if (OmitOnError && getDiags().hasErrorOccurred())
+ return;
+ unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
+ "cannot compile this %0 yet");
+ std::string Msg = Type;
+ getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
+}
+
+LangOptions::VisibilityMode
+CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ if (VD->getStorageClass() == VarDecl::PrivateExtern)
+ return LangOptions::Hidden;
+
+ if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
+ switch (attr->getVisibility()) {
+ default: assert(0 && "Unknown visibility!");
+ case VisibilityAttr::DefaultVisibility:
+ return LangOptions::Default;
+ case VisibilityAttr::HiddenVisibility:
+ return LangOptions::Hidden;
+ case VisibilityAttr::ProtectedVisibility:
+ return LangOptions::Protected;
+ }
+ }
+
+ return getLangOptions().getVisibilityMode();
+}
+
+void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
+ const Decl *D) const {
+ // Internal definitions always have default visibility.
+ if (GV->hasLocalLinkage()) {
+ GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
+ return;
+ }
+
+ switch (getDeclVisibilityMode(D)) {
+ default: assert(0 && "Unknown visibility!");
+ case LangOptions::Default:
+ return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
+ case LangOptions::Hidden:
+ return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ case LangOptions::Protected:
+ return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
+ }
+}
+
+const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
+ const NamedDecl *ND = GD.getDecl();
+
+ if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
+ return getMangledCXXCtorName(D, GD.getCtorType());
+ if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
+ return getMangledCXXDtorName(D, GD.getDtorType());
+
+ return getMangledName(ND);
+}
+
+/// \brief Retrieves the mangled name for the given declaration.
+///
+/// If the given declaration requires a mangled name, returns an
+/// const char* containing the mangled name. Otherwise, returns
+/// the unmangled name.
+///
+const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
+ // In C, functions with no attributes never need to be mangled. Fastpath them.
+ if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
+ assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
+ return ND->getNameAsCString();
+ }
+
+ llvm::SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+ if (!mangleName(ND, Context, Out)) {
+ assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
+ return ND->getNameAsCString();
+ }
+
+ Name += '\0';
+ return UniqueMangledName(Name.begin(), Name.end());
+}
+
+const char *CodeGenModule::UniqueMangledName(const char *NameStart,
+ const char *NameEnd) {
+ assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
+
+ return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
+}
+
+/// AddGlobalCtor - Add a function to the list that will be called before
+/// main() runs.
+void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
+ // FIXME: Type coercion of void()* types.
+ GlobalCtors.push_back(std::make_pair(Ctor, Priority));
+}
+
+/// AddGlobalDtor - Add a function to the list that will be called
+/// when the module is unloaded.
+void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
+ // FIXME: Type coercion of void()* types.
+ GlobalDtors.push_back(std::make_pair(Dtor, Priority));
+}
+
+void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
+ // Ctor function type is void()*.
+ llvm::FunctionType* CtorFTy =
+ llvm::FunctionType::get(llvm::Type::VoidTy,
+ std::vector<const llvm::Type*>(),
+ false);
+ llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
+
+ // Get the type of a ctor entry, { i32, void ()* }.
+ llvm::StructType* CtorStructTy =
+ llvm::StructType::get(llvm::Type::Int32Ty,
+ llvm::PointerType::getUnqual(CtorFTy), NULL);
+
+ // Construct the constructor and destructor arrays.
+ std::vector<llvm::Constant*> Ctors;
+ for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
+ std::vector<llvm::Constant*> S;
+ S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
+ S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
+ Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
+ }
+
+ if (!Ctors.empty()) {
+ llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
+ new llvm::GlobalVariable(AT, false,
+ llvm::GlobalValue::AppendingLinkage,
+ llvm::ConstantArray::get(AT, Ctors),
+ GlobalName,
+ &TheModule);
+ }
+}
+
+void CodeGenModule::EmitAnnotations() {
+ if (Annotations.empty())
+ return;
+
+ // Create a new global variable for the ConstantStruct in the Module.
+ llvm::Constant *Array =
+ llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
+ Annotations.size()),
+ Annotations);
+ llvm::GlobalValue *gv =
+ new llvm::GlobalVariable(Array->getType(), false,
+ llvm::GlobalValue::AppendingLinkage, Array,
+ "llvm.global.annotations", &TheModule);
+ gv->setSection("llvm.metadata");
+}
+
+static CodeGenModule::GVALinkage
+GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ // C++ member functions defined inside the class are always inline.
+ if (MD->isInline() || !MD->isOutOfLineDefinition())
+ return CodeGenModule::GVA_CXXInline;
+
+ return CodeGenModule::GVA_StrongExternal;
+ }
+
+ // "static" functions get internal linkage.
+ if (FD->getStorageClass() == FunctionDecl::Static)
+ return CodeGenModule::GVA_Internal;
+
+ if (!FD->isInline())
+ return CodeGenModule::GVA_StrongExternal;
+
+ // If the inline function explicitly has the GNU inline attribute on it, or if
+ // this is C89 mode, we use to GNU semantics.
+ if (!Features.C99 && !Features.CPlusPlus) {
+ // extern inline in GNU mode is like C99 inline.
+ if (FD->getStorageClass() == FunctionDecl::Extern)
+ return CodeGenModule::GVA_C99Inline;
+ // Normal inline is a strong symbol.
+ return CodeGenModule::GVA_StrongExternal;
+ } else if (FD->hasActiveGNUInlineAttribute()) {
+ // GCC in C99 mode seems to use a different decision-making
+ // process for extern inline, which factors in previous
+ // declarations.
+ if (FD->isExternGNUInline())
+ return CodeGenModule::GVA_C99Inline;
+ // Normal inline is a strong symbol.
+ return CodeGenModule::GVA_StrongExternal;
+ }
+
+ // The definition of inline changes based on the language. Note that we
+ // have already handled "static inline" above, with the GVA_Internal case.
+ if (Features.CPlusPlus) // inline and extern inline.
+ return CodeGenModule::GVA_CXXInline;
+
+ assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
+ if (FD->isC99InlineDefinition())
+ return CodeGenModule::GVA_C99Inline;
+
+ return CodeGenModule::GVA_StrongExternal;
+}
+
+/// SetFunctionDefinitionAttributes - Set attributes for a global.
+///
+/// FIXME: This is currently only done for aliases and functions, but not for
+/// variables (these details are set in EmitGlobalVarDefinition for variables).
+void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
+ llvm::GlobalValue *GV) {
+ GVALinkage Linkage = GetLinkageForFunction(D, Features);
+
+ if (Linkage == GVA_Internal) {
+ GV->setLinkage(llvm::Function::InternalLinkage);
+ } else if (D->hasAttr<DLLExportAttr>()) {
+ GV->setLinkage(llvm::Function::DLLExportLinkage);
+ } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
+ GV->setLinkage(llvm::Function::WeakAnyLinkage);
+ } else if (Linkage == GVA_C99Inline) {
+ // In C99 mode, 'inline' functions are guaranteed to have a strong
+ // definition somewhere else, so we can use available_externally linkage.
+ GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
+ } else if (Linkage == GVA_CXXInline) {
+ // In C++, the compiler has to emit a definition in every translation unit
+ // that references the function. We should use linkonce_odr because
+ // a) if all references in this translation unit are optimized away, we
+ // don't need to codegen it. b) if the function persists, it needs to be
+ // merged with other definitions. c) C++ has the ODR, so we know the
+ // definition is dependable.
+ GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
+ } else {
+ assert(Linkage == GVA_StrongExternal);
+ // Otherwise, we have strong external linkage.
+ GV->setLinkage(llvm::Function::ExternalLinkage);
+ }
+
+ SetCommonAttributes(D, GV);
+}
+
+void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
+ const CGFunctionInfo &Info,
+ llvm::Function *F) {
+ AttributeListType AttributeList;
+ ConstructAttributeList(Info, D, AttributeList);
+
+ F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
+ AttributeList.size()));
+
+ // Set the appropriate calling convention for the Function.
+ if (D->hasAttr<FastCallAttr>())
+ F->setCallingConv(llvm::CallingConv::X86_FastCall);
+
+ if (D->hasAttr<StdCallAttr>())
+ F->setCallingConv(llvm::CallingConv::X86_StdCall);
+}
+
+void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
+ llvm::Function *F) {
+ if (!Features.Exceptions && !Features.ObjCNonFragileABI)
+ F->addFnAttr(llvm::Attribute::NoUnwind);
+
+ if (D->hasAttr<AlwaysInlineAttr>())
+ F->addFnAttr(llvm::Attribute::AlwaysInline);
+
+ if (D->hasAttr<NoinlineAttr>())
+ F->addFnAttr(llvm::Attribute::NoInline);
+}
+
+void CodeGenModule::SetCommonAttributes(const Decl *D,
+ llvm::GlobalValue *GV) {
+ setGlobalVisibility(GV, D);
+
+ if (D->hasAttr<UsedAttr>())
+ AddUsedGlobal(GV);
+
+ if (const SectionAttr *SA = D->getAttr<SectionAttr>())
+ GV->setSection(SA->getName());
+}
+
+void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
+ llvm::Function *F,
+ const CGFunctionInfo &FI) {
+ SetLLVMFunctionAttributes(D, FI, F);
+ SetLLVMFunctionAttributesForDefinition(D, F);
+
+ F->setLinkage(llvm::Function::InternalLinkage);
+
+ SetCommonAttributes(D, F);
+}
+
+void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
+ llvm::Function *F,
+ bool IsIncompleteFunction) {
+ if (!IsIncompleteFunction)
+ SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
+
+ // Only a few attributes are set on declarations; these may later be
+ // overridden by a definition.
+
+ if (FD->hasAttr<DLLImportAttr>()) {
+ F->setLinkage(llvm::Function::DLLImportLinkage);
+ } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
+ // "extern_weak" is overloaded in LLVM; we probably should have
+ // separate linkage types for this.
+ F->setLinkage(llvm::Function::ExternalWeakLinkage);
+ } else {
+ F->setLinkage(llvm::Function::ExternalLinkage);
+ }
+
+ if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
+ F->setSection(SA->getName());
+}
+
+void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
+ assert(!GV->isDeclaration() &&
+ "Only globals with definition can force usage.");
+ LLVMUsed.push_back(GV);
+}
+
+void CodeGenModule::EmitLLVMUsed() {
+ // Don't create llvm.used if there is no need.
+ if (LLVMUsed.empty())
+ return;
+
+ llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
+
+ // Convert LLVMUsed to what ConstantArray needs.
+ std::vector<llvm::Constant*> UsedArray;
+ UsedArray.resize(LLVMUsed.size());
+ for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
+ UsedArray[i] =
+ llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
+ }
+
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(ATy, false,
+ llvm::GlobalValue::AppendingLinkage,
+ llvm::ConstantArray::get(ATy, UsedArray),
+ "llvm.used", &getModule());
+
+ GV->setSection("llvm.metadata");
+}
+
+void CodeGenModule::EmitDeferred() {
+ // Emit code for any potentially referenced deferred decls. Since a
+ // previously unused static decl may become used during the generation of code
+ // for a static function, iterate until no changes are made.
+ while (!DeferredDeclsToEmit.empty()) {
+ GlobalDecl D = DeferredDeclsToEmit.back();
+ DeferredDeclsToEmit.pop_back();
+
+ // The mangled name for the decl must have been emitted in GlobalDeclMap.
+ // Look it up to see if it was defined with a stronger definition (e.g. an
+ // extern inline function with a strong function redefinition). If so,
+ // just ignore the deferred decl.
+ llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
+ assert(CGRef && "Deferred decl wasn't referenced?");
+
+ if (!CGRef->isDeclaration())
+ continue;
+
+ // Otherwise, emit the definition and move on to the next one.
+ EmitGlobalDefinition(D);
+ }
+}
+
+/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
+/// annotation information for a given GlobalValue. The annotation struct is
+/// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the
+/// GlobalValue being annotated. The second field is the constant string
+/// created from the AnnotateAttr's annotation. The third field is a constant
+/// string containing the name of the translation unit. The fourth field is
+/// the line number in the file of the annotated value declaration.
+///
+/// FIXME: this does not unique the annotation string constants, as llvm-gcc
+/// appears to.
+///
+llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
+ const AnnotateAttr *AA,
+ unsigned LineNo) {
+ llvm::Module *M = &getModule();
+
+ // get [N x i8] constants for the annotation string, and the filename string
+ // which are the 2nd and 3rd elements of the global annotation structure.
+ const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
+ llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
+ true);
+
+ // Get the two global values corresponding to the ConstantArrays we just
+ // created to hold the bytes of the strings.
+ const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
+ llvm::GlobalValue *annoGV =
+ new llvm::GlobalVariable(anno->getType(), false,
+ llvm::GlobalValue::InternalLinkage, anno,
+ GV->getName() + StringPrefix, M);
+ // translation unit name string, emitted into the llvm.metadata section.
+ llvm::GlobalValue *unitGV =
+ new llvm::GlobalVariable(unit->getType(), false,
+ llvm::GlobalValue::InternalLinkage, unit,
+ StringPrefix, M);
+
+ // Create the ConstantStruct for the global annotation.
+ llvm::Constant *Fields[4] = {
+ llvm::ConstantExpr::getBitCast(GV, SBP),
+ llvm::ConstantExpr::getBitCast(annoGV, SBP),
+ llvm::ConstantExpr::getBitCast(unitGV, SBP),
+ llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
+ };
+ return llvm::ConstantStruct::get(Fields, 4, false);
+}
+
+bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
+ // Never defer when EmitAllDecls is specified or the decl has
+ // attribute used.
+ if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
+ // Constructors and destructors should never be deferred.
+ if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
+ return false;
+
+ GVALinkage Linkage = GetLinkageForFunction(FD, Features);
+
+ // static, static inline, always_inline, and extern inline functions can
+ // always be deferred. Normal inline functions can be deferred in C99/C++.
+ if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
+ Linkage == GVA_CXXInline)
+ return true;
+ return false;
+ }
+
+ const VarDecl *VD = cast<VarDecl>(Global);
+ assert(VD->isFileVarDecl() && "Invalid decl");
+
+ return VD->getStorageClass() == VarDecl::Static;
+}
+
+void CodeGenModule::EmitGlobal(GlobalDecl GD) {
+ const ValueDecl *Global = GD.getDecl();
+
+ // If this is an alias definition (which otherwise looks like a declaration)
+ // emit it now.
+ if (Global->hasAttr<AliasAttr>())
+ return EmitAliasDefinition(Global);
+
+ // Ignore declarations, they will be emitted on their first use.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
+ // Forward declarations are emitted lazily on first use.
+ if (!FD->isThisDeclarationADefinition())
+ return;
+ } else {
+ const VarDecl *VD = cast<VarDecl>(Global);
+ assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
+
+ // In C++, if this is marked "extern", defer code generation.
+ if (getLangOptions().CPlusPlus && !VD->getInit() &&
+ (VD->getStorageClass() == VarDecl::Extern ||
+ VD->isExternC(getContext())))
+ return;
+
+ // In C, if this isn't a definition, defer code generation.
+ if (!getLangOptions().CPlusPlus && !VD->getInit())
+ return;
+ }
+
+ // Defer code generation when possible if this is a static definition, inline
+ // function etc. These we only want to emit if they are used.
+ if (MayDeferGeneration(Global)) {
+ // If the value has already been used, add it directly to the
+ // DeferredDeclsToEmit list.
+ const char *MangledName = getMangledName(GD);
+ if (GlobalDeclMap.count(MangledName))
+ DeferredDeclsToEmit.push_back(GD);
+ else {
+ // Otherwise, remember that we saw a deferred decl with this name. The
+ // first use of the mangled name will cause it to move into
+ // DeferredDeclsToEmit.
+ DeferredDecls[MangledName] = GD;
+ }
+ return;
+ }
+
+ // Otherwise emit the definition.
+ EmitGlobalDefinition(GD);
+}
+
+void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
+ const ValueDecl *D = GD.getDecl();
+
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
+ EmitCXXConstructor(CD, GD.getCtorType());
+ else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
+ EmitCXXDestructor(DD, GD.getDtorType());
+ else if (isa<FunctionDecl>(D))
+ EmitGlobalFunctionDefinition(GD);
+ else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ EmitGlobalVarDefinition(VD);
+ else {
+ assert(0 && "Invalid argument to EmitGlobalDefinition()");
+ }
+}
+
+/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
+/// module, create and return an llvm Function with the specified type. If there
+/// is something in the module with the specified name, return it potentially
+/// bitcasted to the right type.
+///
+/// If D is non-null, it specifies a decl that correspond to this. This is used
+/// to set the attributes on the function when it is first created.
+llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
+ const llvm::Type *Ty,
+ GlobalDecl D) {
+ // Lookup the entry, lazily creating it if necessary.
+ llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
+ if (Entry) {
+ if (Entry->getType()->getElementType() == Ty)
+ return Entry;
+
+ // Make sure the result is of the correct type.
+ const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
+ return llvm::ConstantExpr::getBitCast(Entry, PTy);
+ }
+
+ // This is the first use or definition of a mangled name. If there is a
+ // deferred decl with this name, remember that we need to emit it at the end
+ // of the file.
+ llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
+ DeferredDecls.find(MangledName);
+ if (DDI != DeferredDecls.end()) {
+ // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
+ // list, and remove it from DeferredDecls (since we don't need it anymore).
+ DeferredDeclsToEmit.push_back(DDI->second);
+ DeferredDecls.erase(DDI);
+ } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
+ // If this the first reference to a C++ inline function in a class, queue up
+ // the deferred function body for emission. These are not seen as
+ // top-level declarations.
+ if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
+ DeferredDeclsToEmit.push_back(D);
+ }
+
+ // This function doesn't have a complete type (for example, the return
+ // type is an incomplete struct). Use a fake type instead, and make
+ // sure not to try to set attributes.
+ bool IsIncompleteFunction = false;
+ if (!isa<llvm::FunctionType>(Ty)) {
+ Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
+ std::vector<const llvm::Type*>(), false);
+ IsIncompleteFunction = true;
+ }
+ llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
+ llvm::Function::ExternalLinkage,
+ "", &getModule());
+ F->setName(MangledName);
+ if (D.getDecl())
+ SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
+ IsIncompleteFunction);
+ Entry = F;
+ return F;
+}
+
+/// GetAddrOfFunction - Return the address of the given function. If Ty is
+/// non-null, then this function will use the specified type if it has to
+/// create it (this occurs when we see a definition of the function).
+llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
+ const llvm::Type *Ty) {
+ // If there was no specific requested type, just convert it now.
+ if (!Ty)
+ Ty = getTypes().ConvertType(GD.getDecl()->getType());
+ return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
+}
+
+/// CreateRuntimeFunction - Create a new runtime function with the specified
+/// type and name.
+llvm::Constant *
+CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
+ const char *Name) {
+ // Convert Name to be a uniqued string from the IdentifierInfo table.
+ Name = getContext().Idents.get(Name).getName();
+ return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
+}
+
+/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
+/// create and return an llvm GlobalVariable with the specified type. If there
+/// is something in the module with the specified name, return it potentially
+/// bitcasted to the right type.
+///
+/// If D is non-null, it specifies a decl that correspond to this. This is used
+/// to set the attributes on the global when it is first created.
+llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
+ const llvm::PointerType*Ty,
+ const VarDecl *D) {
+ // Lookup the entry, lazily creating it if necessary.
+ llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
+ if (Entry) {
+ if (Entry->getType() == Ty)
+ return Entry;
+
+ // Make sure the result is of the correct type.
+ return llvm::ConstantExpr::getBitCast(Entry, Ty);
+ }
+
+ // This is the first use or definition of a mangled name. If there is a
+ // deferred decl with this name, remember that we need to emit it at the end
+ // of the file.
+ llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
+ DeferredDecls.find(MangledName);
+ if (DDI != DeferredDecls.end()) {
+ // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
+ // list, and remove it from DeferredDecls (since we don't need it anymore).
+ DeferredDeclsToEmit.push_back(DDI->second);
+ DeferredDecls.erase(DDI);
+ }
+
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(Ty->getElementType(), false,
+ llvm::GlobalValue::ExternalLinkage,
+ 0, "", &getModule(),
+ false, Ty->getAddressSpace());
+ GV->setName(MangledName);
+
+ // Handle things which are present even on external declarations.
+ if (D) {
+ // FIXME: This code is overly simple and should be merged with other global
+ // handling.
+ GV->setConstant(D->getType().isConstant(Context));
+
+ // FIXME: Merge with other attribute handling code.
+ if (D->getStorageClass() == VarDecl::PrivateExtern)
+ GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
+
+ if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
+ GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
+
+ GV->setThreadLocal(D->isThreadSpecified());
+ }
+
+ return Entry = GV;
+}
+
+
+/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
+/// given global variable. If Ty is non-null and if the global doesn't exist,
+/// then it will be greated with the specified type instead of whatever the
+/// normal requested type would be.
+llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
+ const llvm::Type *Ty) {
+ assert(D->hasGlobalStorage() && "Not a global variable");
+ QualType ASTTy = D->getType();
+ if (Ty == 0)
+ Ty = getTypes().ConvertTypeForMem(ASTTy);
+
+ const llvm::PointerType *PTy =
+ llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
+ return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
+}
+
+/// CreateRuntimeVariable - Create a new runtime global variable with the
+/// specified type and name.
+llvm::Constant *
+CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
+ const char *Name) {
+ // Convert Name to be a uniqued string from the IdentifierInfo table.
+ Name = getContext().Idents.get(Name).getName();
+ return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
+}
+
+void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
+ assert(!D->getInit() && "Cannot emit definite definitions here!");
+
+ if (MayDeferGeneration(D)) {
+ // If we have not seen a reference to this variable yet, place it
+ // into the deferred declarations table to be emitted if needed
+ // later.
+ const char *MangledName = getMangledName(D);
+ if (GlobalDeclMap.count(MangledName) == 0) {
+ DeferredDecls[MangledName] = GlobalDecl(D);
+ return;
+ }
+ }
+
+ // The tentative definition is the only definition.
+ EmitGlobalVarDefinition(D);
+}
+
+void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
+ llvm::Constant *Init = 0;
+ QualType ASTTy = D->getType();
+
+ if (D->getInit() == 0) {
+ // This is a tentative definition; tentative definitions are
+ // implicitly initialized with { 0 }.
+ //
+ // Note that tentative definitions are only emitted at the end of
+ // a translation unit, so they should never have incomplete
+ // type. In addition, EmitTentativeDefinition makes sure that we
+ // never attempt to emit a tentative definition if a real one
+ // exists. A use may still exists, however, so we still may need
+ // to do a RAUW.
+ assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
+ Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
+ } else {
+ Init = EmitConstantExpr(D->getInit(), D->getType());
+ if (!Init) {
+ ErrorUnsupported(D, "static initializer");
+ QualType T = D->getInit()->getType();
+ Init = llvm::UndefValue::get(getTypes().ConvertType(T));
+ }
+ }
+
+ const llvm::Type* InitType = Init->getType();
+ llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
+
+ // Strip off a bitcast if we got one back.
+ if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
+ assert(CE->getOpcode() == llvm::Instruction::BitCast);
+ Entry = CE->getOperand(0);
+ }
+
+ // Entry is now either a Function or GlobalVariable.
+ llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
+
+ // We have a definition after a declaration with the wrong type.
+ // We must make a new GlobalVariable* and update everything that used OldGV
+ // (a declaration or tentative definition) with the new GlobalVariable*
+ // (which will be a definition).
+ //
+ // This happens if there is a prototype for a global (e.g.
+ // "extern int x[];") and then a definition of a different type (e.g.
+ // "int x[10];"). This also happens when an initializer has a different type
+ // from the type of the global (this happens with unions).
+ if (GV == 0 ||
+ GV->getType()->getElementType() != InitType ||
+ GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
+
+ // Remove the old entry from GlobalDeclMap so that we'll create a new one.
+ GlobalDeclMap.erase(getMangledName(D));
+
+ // Make a new global with the correct type, this is now guaranteed to work.
+ GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
+ GV->takeName(cast<llvm::GlobalValue>(Entry));
+
+ // Replace all uses of the old global with the new global
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(GV, Entry->getType());
+ Entry->replaceAllUsesWith(NewPtrForOldDecl);
+
+ // Erase the old global, since it is no longer used.
+ cast<llvm::GlobalValue>(Entry)->eraseFromParent();
+ }
+
+ if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
+ SourceManager &SM = Context.getSourceManager();
+ AddAnnotation(EmitAnnotateAttr(GV, AA,
+ SM.getInstantiationLineNumber(D->getLocation())));
+ }
+
+ GV->setInitializer(Init);
+ GV->setConstant(D->getType().isConstant(Context));
+ GV->setAlignment(getContext().getDeclAlignInBytes(D));
+
+ // Set the llvm linkage type as appropriate.
+ if (D->getStorageClass() == VarDecl::Static)
+ GV->setLinkage(llvm::Function::InternalLinkage);
+ else if (D->hasAttr<DLLImportAttr>())
+ GV->setLinkage(llvm::Function::DLLImportLinkage);
+ else if (D->hasAttr<DLLExportAttr>())
+ GV->setLinkage(llvm::Function::DLLExportLinkage);
+ else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
+ GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
+ else if (!CompileOpts.NoCommon &&
+ (!D->hasExternalStorage() && !D->getInit()))
+ GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
+ else
+ GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
+
+ SetCommonAttributes(D, GV);
+
+ // Emit global variable debug information.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ DI->setLocation(D->getLocation());
+ DI->EmitGlobalVariable(GV, D);
+ }
+}
+
+/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
+/// implement a function with no prototype, e.g. "int foo() {}". If there are
+/// existing call uses of the old function in the module, this adjusts them to
+/// call the new function directly.
+///
+/// This is not just a cleanup: the always_inline pass requires direct calls to
+/// functions to be able to inline them. If there is a bitcast in the way, it
+/// won't inline them. Instcombine normally deletes these calls, but it isn't
+/// run at -O0.
+static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
+ llvm::Function *NewFn) {
+ // If we're redefining a global as a function, don't transform it.
+ llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
+ if (OldFn == 0) return;
+
+ const llvm::Type *NewRetTy = NewFn->getReturnType();
+ llvm::SmallVector<llvm::Value*, 4> ArgList;
+
+ for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
+ UI != E; ) {
+ // TODO: Do invokes ever occur in C code? If so, we should handle them too.
+ llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
+ if (!CI) continue;
+
+ // If the return types don't match exactly, and if the call isn't dead, then
+ // we can't transform this call.
+ if (CI->getType() != NewRetTy && !CI->use_empty())
+ continue;
+
+ // If the function was passed too few arguments, don't transform. If extra
+ // arguments were passed, we silently drop them. If any of the types
+ // mismatch, we don't transform.
+ unsigned ArgNo = 0;
+ bool DontTransform = false;
+ for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
+ E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
+ if (CI->getNumOperands()-1 == ArgNo ||
+ CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
+ DontTransform = true;
+ break;
+ }
+ }
+ if (DontTransform)
+ continue;
+
+ // Okay, we can transform this. Create the new call instruction and copy
+ // over the required information.
+ ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
+ llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
+ ArgList.end(), "", CI);
+ ArgList.clear();
+ if (NewCall->getType() != llvm::Type::VoidTy)
+ NewCall->takeName(CI);
+ NewCall->setCallingConv(CI->getCallingConv());
+ NewCall->setAttributes(CI->getAttributes());
+
+ // Finally, remove the old call, replacing any uses with the new one.
+ if (!CI->use_empty())
+ CI->replaceAllUsesWith(NewCall);
+ CI->eraseFromParent();
+ }
+}
+
+
+void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
+ const llvm::FunctionType *Ty;
+ const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
+
+ Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
+ } else {
+ Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
+
+ // As a special case, make sure that definitions of K&R function
+ // "type foo()" aren't declared as varargs (which forces the backend
+ // to do unnecessary work).
+ if (D->getType()->isFunctionNoProtoType()) {
+ assert(Ty->isVarArg() && "Didn't lower type as expected");
+ // Due to stret, the lowered function could have arguments.
+ // Just create the same type as was lowered by ConvertType
+ // but strip off the varargs bit.
+ std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
+ Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
+ }
+ }
+
+ // Get or create the prototype for the function.
+ llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
+
+ // Strip off a bitcast if we got one back.
+ if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
+ assert(CE->getOpcode() == llvm::Instruction::BitCast);
+ Entry = CE->getOperand(0);
+ }
+
+
+ if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
+ llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
+
+ // If the types mismatch then we have to rewrite the definition.
+ assert(OldFn->isDeclaration() &&
+ "Shouldn't replace non-declaration");
+
+ // F is the Function* for the one with the wrong type, we must make a new
+ // Function* and update everything that used F (a declaration) with the new
+ // Function* (which will be a definition).
+ //
+ // This happens if there is a prototype for a function
+ // (e.g. "int f()") and then a definition of a different type
+ // (e.g. "int f(int x)"). Start by making a new function of the
+ // correct type, RAUW, then steal the name.
+ GlobalDeclMap.erase(getMangledName(D));
+ llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
+ NewFn->takeName(OldFn);
+
+ // If this is an implementation of a function without a prototype, try to
+ // replace any existing uses of the function (which may be calls) with uses
+ // of the new function
+ if (D->getType()->isFunctionNoProtoType()) {
+ ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
+ OldFn->removeDeadConstantUsers();
+ }
+
+ // Replace uses of F with the Function we will endow with a body.
+ if (!Entry->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
+ Entry->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ // Ok, delete the old function now, which is dead.
+ OldFn->eraseFromParent();
+
+ Entry = NewFn;
+ }
+
+ llvm::Function *Fn = cast<llvm::Function>(Entry);
+
+ CodeGenFunction(*this).GenerateCode(D, Fn);
+
+ SetFunctionDefinitionAttributes(D, Fn);
+ SetLLVMFunctionAttributesForDefinition(D, Fn);
+
+ if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
+ AddGlobalCtor(Fn, CA->getPriority());
+ if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
+ AddGlobalDtor(Fn, DA->getPriority());
+}
+
+void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
+ const AliasAttr *AA = D->getAttr<AliasAttr>();
+ assert(AA && "Not an alias?");
+
+ const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
+
+ // Unique the name through the identifier table.
+ const char *AliaseeName = AA->getAliasee().c_str();
+ AliaseeName = getContext().Idents.get(AliaseeName).getName();
+
+ // Create a reference to the named value. This ensures that it is emitted
+ // if a deferred decl.
+ llvm::Constant *Aliasee;
+ if (isa<llvm::FunctionType>(DeclTy))
+ Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
+ else
+ Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
+ llvm::PointerType::getUnqual(DeclTy), 0);
+
+ // Create the new alias itself, but don't set a name yet.
+ llvm::GlobalValue *GA =
+ new llvm::GlobalAlias(Aliasee->getType(),
+ llvm::Function::ExternalLinkage,
+ "", Aliasee, &getModule());
+
+ // See if there is already something with the alias' name in the module.
+ const char *MangledName = getMangledName(D);
+ llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
+
+ if (Entry && !Entry->isDeclaration()) {
+ // If there is a definition in the module, then it wins over the alias.
+ // This is dubious, but allow it to be safe. Just ignore the alias.
+ GA->eraseFromParent();
+ return;
+ }
+
+ if (Entry) {
+ // If there is a declaration in the module, then we had an extern followed
+ // by the alias, as in:
+ // extern int test6();
+ // ...
+ // int test6() __attribute__((alias("test7")));
+ //
+ // Remove it and replace uses of it with the alias.
+
+ Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
+ Entry->getType()));
+ Entry->eraseFromParent();
+ }
+
+ // Now we know that there is no conflict, set the name.
+ Entry = GA;
+ GA->setName(MangledName);
+
+ // Set attributes which are particular to an alias; this is a
+ // specialization of the attributes which may be set on a global
+ // variable/function.
+ if (D->hasAttr<DLLExportAttr>()) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // The dllexport attribute is ignored for undefined symbols.
+ if (FD->getBody(getContext()))
+ GA->setLinkage(llvm::Function::DLLExportLinkage);
+ } else {
+ GA->setLinkage(llvm::Function::DLLExportLinkage);
+ }
+ } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
+ GA->setLinkage(llvm::Function::WeakAnyLinkage);
+ }
+
+ SetCommonAttributes(D, GA);
+}
+
+/// getBuiltinLibFunction - Given a builtin id for a function like
+/// "__builtin_fabsf", return a Function* for "fabsf".
+llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
+ assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
+ Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
+ "isn't a lib fn");
+
+ // Get the name, skip over the __builtin_ prefix (if necessary).
+ const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
+ if (Context.BuiltinInfo.isLibFunction(BuiltinID))
+ Name += 10;
+
+ // Get the type for the builtin.
+ Builtin::Context::GetBuiltinTypeError Error;
+ QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
+ assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
+
+ const llvm::FunctionType *Ty =
+ cast<llvm::FunctionType>(getTypes().ConvertType(Type));
+
+ // Unique the name through the identifier table.
+ Name = getContext().Idents.get(Name).getName();
+ // FIXME: param attributes for sext/zext etc.
+ return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
+}
+
+llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
+ unsigned NumTys) {
+ return llvm::Intrinsic::getDeclaration(&getModule(),
+ (llvm::Intrinsic::ID)IID, Tys, NumTys);
+}
+
+llvm::Function *CodeGenModule::getMemCpyFn() {
+ if (MemCpyFn) return MemCpyFn;
+ const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
+ return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
+}
+
+llvm::Function *CodeGenModule::getMemMoveFn() {
+ if (MemMoveFn) return MemMoveFn;
+ const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
+ return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
+}
+
+llvm::Function *CodeGenModule::getMemSetFn() {
+ if (MemSetFn) return MemSetFn;
+ const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
+ return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
+}
+
+static void appendFieldAndPadding(CodeGenModule &CGM,
+ std::vector<llvm::Constant*>& Fields,
+ FieldDecl *FieldD, FieldDecl *NextFieldD,
+ llvm::Constant* Field,
+ RecordDecl* RD, const llvm::StructType *STy) {
+ // Append the field.
+ Fields.push_back(Field);
+
+ int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
+
+ int NextStructFieldNo;
+ if (!NextFieldD) {
+ NextStructFieldNo = STy->getNumElements();
+ } else {
+ NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
+ }
+
+ // Append padding
+ for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
+ llvm::Constant *C =
+ llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
+
+ Fields.push_back(C);
+ }
+}
+
+llvm::Constant *CodeGenModule::
+GetAddrOfConstantCFString(const StringLiteral *Literal) {
+ std::string str;
+ unsigned StringLength = 0;
+
+ bool isUTF16 = false;
+ if (Literal->containsNonAsciiOrNull()) {
+ // Convert from UTF-8 to UTF-16.
+ llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
+ const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
+ UTF16 *ToPtr = &ToBuf[0];
+
+ ConversionResult Result;
+ Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
+ &ToPtr, ToPtr+Literal->getByteLength(),
+ strictConversion);
+ if (Result == conversionOK) {
+ // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
+ // without doing more surgery to this routine. Since we aren't explicitly
+ // checking for endianness here, it's also a bug (when generating code for
+ // a target that doesn't match the host endianness). Modeling this as an
+ // i16 array is likely the cleanest solution.
+ StringLength = ToPtr-&ToBuf[0];
+ str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
+ isUTF16 = true;
+ } else if (Result == sourceIllegal) {
+ // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
+ str.assign(Literal->getStrData(), Literal->getByteLength());
+ StringLength = str.length();
+ } else
+ assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
+
+ } else {
+ str.assign(Literal->getStrData(), Literal->getByteLength());
+ StringLength = str.length();
+ }
+ llvm::StringMapEntry<llvm::Constant *> &Entry =
+ CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
+
+ if (llvm::Constant *C = Entry.getValue())
+ return C;
+
+ llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
+ llvm::Constant *Zeros[] = { Zero, Zero };
+
+ if (!CFConstantStringClassRef) {
+ const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
+ Ty = llvm::ArrayType::get(Ty, 0);
+
+ // FIXME: This is fairly broken if __CFConstantStringClassReference is
+ // already defined, in that it will get renamed and the user will most
+ // likely see an opaque error message. This is a general issue with relying
+ // on particular names.
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(Ty, false,
+ llvm::GlobalVariable::ExternalLinkage, 0,
+ "__CFConstantStringClassReference",
+ &getModule());
+
+ // Decay array -> ptr
+ CFConstantStringClassRef =
+ llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
+ }
+
+ QualType CFTy = getContext().getCFConstantStringType();
+ RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
+
+ const llvm::StructType *STy =
+ cast<llvm::StructType>(getTypes().ConvertType(CFTy));
+
+ std::vector<llvm::Constant*> Fields;
+ RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
+
+ // Class pointer.
+ FieldDecl *CurField = *Field++;
+ FieldDecl *NextField = *Field++;
+ appendFieldAndPadding(*this, Fields, CurField, NextField,
+ CFConstantStringClassRef, CFRD, STy);
+
+ // Flags.
+ CurField = NextField;
+ NextField = *Field++;
+ const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
+ appendFieldAndPadding(*this, Fields, CurField, NextField,
+ isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
+ : llvm::ConstantInt::get(Ty, 0x07C8),
+ CFRD, STy);
+
+ // String pointer.
+ CurField = NextField;
+ NextField = *Field++;
+ llvm::Constant *C = llvm::ConstantArray::get(str);
+
+ const char *Sect, *Prefix;
+ bool isConstant;
+ if (isUTF16) {
+ Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
+ Sect = getContext().Target.getUnicodeStringSection();
+ // FIXME: Why does GCC not set constant here?
+ isConstant = false;
+ } else {
+ Prefix = getContext().Target.getStringSymbolPrefix(true);
+ Sect = getContext().Target.getCFStringDataSection();
+ // FIXME: -fwritable-strings should probably affect this, but we
+ // are following gcc here.
+ isConstant = true;
+ }
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(C->getType(), isConstant,
+ llvm::GlobalValue::InternalLinkage,
+ C, Prefix, &getModule());
+ if (Sect)
+ GV->setSection(Sect);
+ if (isUTF16) {
+ unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
+ GV->setAlignment(Align);
+ }
+ appendFieldAndPadding(*this, Fields, CurField, NextField,
+ llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
+ CFRD, STy);
+
+ // String length.
+ CurField = NextField;
+ NextField = 0;
+ Ty = getTypes().ConvertType(getContext().LongTy);
+ appendFieldAndPadding(*this, Fields, CurField, NextField,
+ llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
+
+ // The struct.
+ C = llvm::ConstantStruct::get(STy, Fields);
+ GV = new llvm::GlobalVariable(C->getType(), true,
+ llvm::GlobalVariable::InternalLinkage, C,
+ getContext().Target.getCFStringSymbolPrefix(),
+ &getModule());
+ if (const char *Sect = getContext().Target.getCFStringSection())
+ GV->setSection(Sect);
+ Entry.setValue(GV);
+
+ return GV;
+}
+
+/// GetStringForStringLiteral - Return the appropriate bytes for a
+/// string literal, properly padded to match the literal type.
+std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
+ const char *StrData = E->getStrData();
+ unsigned Len = E->getByteLength();
+
+ const ConstantArrayType *CAT =
+ getContext().getAsConstantArrayType(E->getType());
+ assert(CAT && "String isn't pointer or array!");
+
+ // Resize the string to the right size.
+ std::string Str(StrData, StrData+Len);
+ uint64_t RealLen = CAT->getSize().getZExtValue();
+
+ if (E->isWide())
+ RealLen *= getContext().Target.getWCharWidth()/8;
+
+ Str.resize(RealLen, '\0');
+
+ return Str;
+}
+
+/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
+/// constant array for the given string literal.
+llvm::Constant *
+CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
+ // FIXME: This can be more efficient.
+ return GetAddrOfConstantString(GetStringForStringLiteral(S));
+}
+
+/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
+/// array for the given ObjCEncodeExpr node.
+llvm::Constant *
+CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
+ std::string Str;
+ getContext().getObjCEncodingForType(E->getEncodedType(), Str);
+
+ return GetAddrOfConstantCString(Str);
+}
+
+
+/// GenerateWritableString -- Creates storage for a string literal.
+static llvm::Constant *GenerateStringLiteral(const std::string &str,
+ bool constant,
+ CodeGenModule &CGM,
+ const char *GlobalName) {
+ // Create Constant for this string literal. Don't add a '\0'.
+ llvm::Constant *C = llvm::ConstantArray::get(str, false);
+
+ // Create a global variable for this string
+ return new llvm::GlobalVariable(C->getType(), constant,
+ llvm::GlobalValue::InternalLinkage,
+ C, GlobalName, &CGM.getModule());
+}
+
+/// GetAddrOfConstantString - Returns a pointer to a character array
+/// containing the literal. This contents are exactly that of the
+/// given string, i.e. it will not be null terminated automatically;
+/// see GetAddrOfConstantCString. Note that whether the result is
+/// actually a pointer to an LLVM constant depends on
+/// Feature.WriteableStrings.
+///
+/// The result has pointer to array type.
+llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
+ const char *GlobalName) {
+ bool IsConstant = !Features.WritableStrings;
+
+ // Get the default prefix if a name wasn't specified.
+ if (!GlobalName)
+ GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
+
+ // Don't share any string literals if strings aren't constant.
+ if (!IsConstant)
+ return GenerateStringLiteral(str, false, *this, GlobalName);
+
+ llvm::StringMapEntry<llvm::Constant *> &Entry =
+ ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
+
+ if (Entry.getValue())
+ return Entry.getValue();
+
+ // Create a global variable for this.
+ llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
+ Entry.setValue(C);
+ return C;
+}
+
+/// GetAddrOfConstantCString - Returns a pointer to a character
+/// array containing the literal and a terminating '\-'
+/// character. The result has pointer to array type.
+llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
+ const char *GlobalName){
+ return GetAddrOfConstantString(str + '\0', GlobalName);
+}
+
+/// EmitObjCPropertyImplementations - Emit information for synthesized
+/// properties for an implementation.
+void CodeGenModule::EmitObjCPropertyImplementations(const
+ ObjCImplementationDecl *D) {
+ for (ObjCImplementationDecl::propimpl_iterator
+ i = D->propimpl_begin(getContext()),
+ e = D->propimpl_end(getContext()); i != e; ++i) {
+ ObjCPropertyImplDecl *PID = *i;
+
+ // Dynamic is just for type-checking.
+ if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
+ ObjCPropertyDecl *PD = PID->getPropertyDecl();
+
+ // Determine which methods need to be implemented, some may have
+ // been overridden. Note that ::isSynthesized is not the method
+ // we want, that just indicates if the decl came from a
+ // property. What we want to know is if the method is defined in
+ // this implementation.
+ if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
+ CodeGenFunction(*this).GenerateObjCGetter(
+ const_cast<ObjCImplementationDecl *>(D), PID);
+ if (!PD->isReadOnly() &&
+ !D->getInstanceMethod(getContext(), PD->getSetterName()))
+ CodeGenFunction(*this).GenerateObjCSetter(
+ const_cast<ObjCImplementationDecl *>(D), PID);
+ }
+ }
+}
+
+/// EmitNamespace - Emit all declarations in a namespace.
+void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
+ for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
+ E = ND->decls_end(getContext());
+ I != E; ++I)
+ EmitTopLevelDecl(*I);
+}
+
+// EmitLinkageSpec - Emit all declarations in a linkage spec.
+void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
+ if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
+ ErrorUnsupported(LSD, "linkage spec");
+ return;
+ }
+
+ for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
+ E = LSD->decls_end(getContext());
+ I != E; ++I)
+ EmitTopLevelDecl(*I);
+}
+
+/// EmitTopLevelDecl - Emit code for a single top level declaration.
+void CodeGenModule::EmitTopLevelDecl(Decl *D) {
+ // If an error has occurred, stop code generation, but continue
+ // parsing and semantic analysis (to ensure all warnings and errors
+ // are emitted).
+ if (Diags.hasErrorOccurred())
+ return;
+
+ switch (D->getKind()) {
+ case Decl::CXXMethod:
+ case Decl::Function:
+ case Decl::Var:
+ EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
+ break;
+
+ // C++ Decls
+ case Decl::Namespace:
+ EmitNamespace(cast<NamespaceDecl>(D));
+ break;
+ case Decl::CXXConstructor:
+ EmitCXXConstructors(cast<CXXConstructorDecl>(D));
+ break;
+ case Decl::CXXDestructor:
+ EmitCXXDestructors(cast<CXXDestructorDecl>(D));
+ break;
+
+ // Objective-C Decls
+
+ // Forward declarations, no (immediate) code generation.
+ case Decl::ObjCClass:
+ case Decl::ObjCForwardProtocol:
+ case Decl::ObjCCategory:
+ case Decl::ObjCInterface:
+ break;
+
+ case Decl::ObjCProtocol:
+ Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
+ break;
+
+ case Decl::ObjCCategoryImpl:
+ // Categories have properties but don't support synthesize so we
+ // can ignore them here.
+ Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
+ break;
+
+ case Decl::ObjCImplementation: {
+ ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
+ EmitObjCPropertyImplementations(OMD);
+ Runtime->GenerateClass(OMD);
+ break;
+ }
+ case Decl::ObjCMethod: {
+ ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
+ // If this is not a prototype, emit the body.
+ if (OMD->getBody(getContext()))
+ CodeGenFunction(*this).GenerateObjCMethod(OMD);
+ break;
+ }
+ case Decl::ObjCCompatibleAlias:
+ // compatibility-alias is a directive and has no code gen.
+ break;
+
+ case Decl::LinkageSpec:
+ EmitLinkageSpec(cast<LinkageSpecDecl>(D));
+ break;
+
+ case Decl::FileScopeAsm: {
+ FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
+ std::string AsmString(AD->getAsmString()->getStrData(),
+ AD->getAsmString()->getByteLength());
+
+ const std::string &S = getModule().getModuleInlineAsm();
+ if (S.empty())
+ getModule().setModuleInlineAsm(AsmString);
+ else
+ getModule().setModuleInlineAsm(S + '\n' + AsmString);
+ break;
+ }
+
+ default:
+ // Make sure we handled everything we should, every other kind is a
+ // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
+ // function. Need to recode Decl::Kind to do that easily.
+ assert(isa<TypeDecl>(D) && "Unsupported decl kind");
+ }
+}
OpenPOWER on IntegriCloud