diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /lib/Bitcode/Writer/ValueEnumerator.cpp | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'lib/Bitcode/Writer/ValueEnumerator.cpp')
-rw-r--r-- | lib/Bitcode/Writer/ValueEnumerator.cpp | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/lib/Bitcode/Writer/ValueEnumerator.cpp b/lib/Bitcode/Writer/ValueEnumerator.cpp new file mode 100644 index 0000000..8002a36 --- /dev/null +++ b/lib/Bitcode/Writer/ValueEnumerator.cpp @@ -0,0 +1,347 @@ +//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the ValueEnumerator class. +// +//===----------------------------------------------------------------------===// + +#include "ValueEnumerator.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/MDNode.h" +#include "llvm/Module.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/Instructions.h" +#include <algorithm> +using namespace llvm; + +static bool isSingleValueType(const std::pair<const llvm::Type*, + unsigned int> &P) { + return P.first->isSingleValueType(); +} + +static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) { + return isa<IntegerType>(V.first->getType()); +} + +static bool CompareByFrequency(const std::pair<const llvm::Type*, + unsigned int> &P1, + const std::pair<const llvm::Type*, + unsigned int> &P2) { + return P1.second > P2.second; +} + +/// ValueEnumerator - Enumerate module-level information. +ValueEnumerator::ValueEnumerator(const Module *M) { + // Enumerate the global variables. + for (Module::const_global_iterator I = M->global_begin(), + E = M->global_end(); I != E; ++I) + EnumerateValue(I); + + // Enumerate the functions. + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { + EnumerateValue(I); + EnumerateAttributes(cast<Function>(I)->getAttributes()); + } + + // Enumerate the aliases. + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + EnumerateValue(I); + + // Remember what is the cutoff between globalvalue's and other constants. + unsigned FirstConstant = Values.size(); + + // Enumerate the global variable initializers. + for (Module::const_global_iterator I = M->global_begin(), + E = M->global_end(); I != E; ++I) + if (I->hasInitializer()) + EnumerateValue(I->getInitializer()); + + // Enumerate the aliasees. + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + EnumerateValue(I->getAliasee()); + + // Enumerate types used by the type symbol table. + EnumerateTypeSymbolTable(M->getTypeSymbolTable()); + + // Insert constants that are named at module level into the slot pool so that + // the module symbol table can refer to them... + EnumerateValueSymbolTable(M->getValueSymbolTable()); + + // Enumerate types used by function bodies and argument lists. + for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { + + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) + EnumerateType(I->getType()); + + for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) + EnumerateOperandType(*OI); + EnumerateType(I->getType()); + if (const CallInst *CI = dyn_cast<CallInst>(I)) + EnumerateAttributes(CI->getAttributes()); + else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) + EnumerateAttributes(II->getAttributes()); + } + } + + // Optimize constant ordering. + OptimizeConstants(FirstConstant, Values.size()); + + // Sort the type table by frequency so that most commonly used types are early + // in the table (have low bit-width). + std::stable_sort(Types.begin(), Types.end(), CompareByFrequency); + + // Partition the Type ID's so that the single-value types occur before the + // aggregate types. This allows the aggregate types to be dropped from the + // type table after parsing the global variable initializers. + std::partition(Types.begin(), Types.end(), isSingleValueType); + + // Now that we rearranged the type table, rebuild TypeMap. + for (unsigned i = 0, e = Types.size(); i != e; ++i) + TypeMap[Types[i].first] = i+1; +} + +// Optimize constant ordering. +namespace { + struct CstSortPredicate { + ValueEnumerator &VE; + explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} + bool operator()(const std::pair<const Value*, unsigned> &LHS, + const std::pair<const Value*, unsigned> &RHS) { + // Sort by plane. + if (LHS.first->getType() != RHS.first->getType()) + return VE.getTypeID(LHS.first->getType()) < + VE.getTypeID(RHS.first->getType()); + // Then by frequency. + return LHS.second > RHS.second; + } + }; +} + +/// OptimizeConstants - Reorder constant pool for denser encoding. +void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { + if (CstStart == CstEnd || CstStart+1 == CstEnd) return; + + CstSortPredicate P(*this); + std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); + + // Ensure that integer constants are at the start of the constant pool. This + // is important so that GEP structure indices come before gep constant exprs. + std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, + isIntegerValue); + + // Rebuild the modified portion of ValueMap. + for (; CstStart != CstEnd; ++CstStart) + ValueMap[Values[CstStart].first] = CstStart+1; +} + + +/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol +/// table. +void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) { + for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); + TI != TE; ++TI) + EnumerateType(TI->second); +} + +/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol +/// table into the values table. +void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { + for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); + VI != VE; ++VI) + EnumerateValue(VI->getValue()); +} + +void ValueEnumerator::EnumerateValue(const Value *V) { + assert(V->getType() != Type::VoidTy && "Can't insert void values!"); + + // Check to see if it's already in! + unsigned &ValueID = ValueMap[V]; + if (ValueID) { + // Increment use count. + Values[ValueID-1].second++; + return; + } + + // Enumerate the type of this value. + EnumerateType(V->getType()); + + if (const Constant *C = dyn_cast<Constant>(V)) { + if (isa<GlobalValue>(C)) { + // Initializers for globals are handled explicitly elsewhere. + } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { + // Do not enumerate the initializers for an array of simple characters. + // The initializers just polute the value table, and we emit the strings + // specially. + } else if (C->getNumOperands()) { + // If a constant has operands, enumerate them. This makes sure that if a + // constant has uses (for example an array of const ints), that they are + // inserted also. + + // We prefer to enumerate them with values before we enumerate the user + // itself. This makes it more likely that we can avoid forward references + // in the reader. We know that there can be no cycles in the constants + // graph that don't go through a global variable. + for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); + I != E; ++I) + EnumerateValue(*I); + + // Finally, add the value. Doing this could make the ValueID reference be + // dangling, don't reuse it. + Values.push_back(std::make_pair(V, 1U)); + ValueMap[V] = Values.size(); + return; + } else if (const MDNode *N = dyn_cast<MDNode>(C)) { + for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end(); + I != E; ++I) { + if (*I) + EnumerateValue(*I); + else + EnumerateType(Type::VoidTy); + } + + Values.push_back(std::make_pair(V, 1U)); + ValueMap[V] = Values.size(); + return; + } + } + + // Add the value. + Values.push_back(std::make_pair(V, 1U)); + ValueID = Values.size(); +} + + +void ValueEnumerator::EnumerateType(const Type *Ty) { + unsigned &TypeID = TypeMap[Ty]; + + if (TypeID) { + // If we've already seen this type, just increase its occurrence count. + Types[TypeID-1].second++; + return; + } + + // First time we saw this type, add it. + Types.push_back(std::make_pair(Ty, 1U)); + TypeID = Types.size(); + + // Enumerate subtypes. + for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); + I != E; ++I) + EnumerateType(*I); +} + +// Enumerate the types for the specified value. If the value is a constant, +// walk through it, enumerating the types of the constant. +void ValueEnumerator::EnumerateOperandType(const Value *V) { + EnumerateType(V->getType()); + if (const Constant *C = dyn_cast<Constant>(V)) { + // If this constant is already enumerated, ignore it, we know its type must + // be enumerated. + if (ValueMap.count(V)) return; + + // This constant may have operands, make sure to enumerate the types in + // them. + for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) + EnumerateOperandType(C->getOperand(i)); + + if (const MDNode *N = dyn_cast<MDNode>(V)) { + for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) + EnumerateOperandType(N->getElement(i)); + } + } +} + +void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) { + if (PAL.isEmpty()) return; // null is always 0. + // Do a lookup. + unsigned &Entry = AttributeMap[PAL.getRawPointer()]; + if (Entry == 0) { + // Never saw this before, add it. + Attributes.push_back(PAL); + Entry = Attributes.size(); + } +} + + +/// PurgeAggregateValues - If there are any aggregate values at the end of the +/// value list, remove them and return the count of the remaining values. If +/// there are none, return -1. +int ValueEnumerator::PurgeAggregateValues() { + // If there are no aggregate values at the end of the list, return -1. + if (Values.empty() || Values.back().first->getType()->isSingleValueType()) + return -1; + + // Otherwise, remove aggregate values... + while (!Values.empty() && !Values.back().first->getType()->isSingleValueType()) + Values.pop_back(); + + // ... and return the new size. + return Values.size(); +} + +void ValueEnumerator::incorporateFunction(const Function &F) { + NumModuleValues = Values.size(); + + // Adding function arguments to the value table. + for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I) + EnumerateValue(I); + + FirstFuncConstantID = Values.size(); + + // Add all function-level constants to the value table. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || + isa<InlineAsm>(*OI)) + EnumerateValue(*OI); + } + BasicBlocks.push_back(BB); + ValueMap[BB] = BasicBlocks.size(); + } + + // Optimize the constant layout. + OptimizeConstants(FirstFuncConstantID, Values.size()); + + // Add the function's parameter attributes so they are available for use in + // the function's instruction. + EnumerateAttributes(F.getAttributes()); + + FirstInstID = Values.size(); + + // Add all of the instructions. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { + if (I->getType() != Type::VoidTy) + EnumerateValue(I); + } + } +} + +void ValueEnumerator::purgeFunction() { + /// Remove purged values from the ValueMap. + for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) + ValueMap.erase(Values[i].first); + for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) + ValueMap.erase(BasicBlocks[i]); + + Values.resize(NumModuleValues); + BasicBlocks.clear(); +} + |