summaryrefslogtreecommitdiffstats
path: root/lib/Bitcode/Reader/BitcodeReader.cpp
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /lib/Bitcode/Reader/BitcodeReader.cpp
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'lib/Bitcode/Reader/BitcodeReader.cpp')
-rw-r--r--lib/Bitcode/Reader/BitcodeReader.cpp2126
1 files changed, 2126 insertions, 0 deletions
diff --git a/lib/Bitcode/Reader/BitcodeReader.cpp b/lib/Bitcode/Reader/BitcodeReader.cpp
new file mode 100644
index 0000000..1dad04b
--- /dev/null
+++ b/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -0,0 +1,2126 @@
+//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header defines the BitcodeReader class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "BitcodeReader.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/MDNode.h"
+#include "llvm/Module.h"
+#include "llvm/AutoUpgrade.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/OperandTraits.h"
+using namespace llvm;
+
+void BitcodeReader::FreeState() {
+ delete Buffer;
+ Buffer = 0;
+ std::vector<PATypeHolder>().swap(TypeList);
+ ValueList.clear();
+
+ std::vector<AttrListPtr>().swap(MAttributes);
+ std::vector<BasicBlock*>().swap(FunctionBBs);
+ std::vector<Function*>().swap(FunctionsWithBodies);
+ DeferredFunctionInfo.clear();
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions to implement forward reference resolution, etc.
+//===----------------------------------------------------------------------===//
+
+/// ConvertToString - Convert a string from a record into an std::string, return
+/// true on failure.
+template<typename StrTy>
+static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
+ StrTy &Result) {
+ if (Idx > Record.size())
+ return true;
+
+ for (unsigned i = Idx, e = Record.size(); i != e; ++i)
+ Result += (char)Record[i];
+ return false;
+}
+
+static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown/new linkages to external
+ case 0: return GlobalValue::ExternalLinkage;
+ case 1: return GlobalValue::WeakAnyLinkage;
+ case 2: return GlobalValue::AppendingLinkage;
+ case 3: return GlobalValue::InternalLinkage;
+ case 4: return GlobalValue::LinkOnceAnyLinkage;
+ case 5: return GlobalValue::DLLImportLinkage;
+ case 6: return GlobalValue::DLLExportLinkage;
+ case 7: return GlobalValue::ExternalWeakLinkage;
+ case 8: return GlobalValue::CommonLinkage;
+ case 9: return GlobalValue::PrivateLinkage;
+ case 10: return GlobalValue::WeakODRLinkage;
+ case 11: return GlobalValue::LinkOnceODRLinkage;
+ case 12: return GlobalValue::AvailableExternallyLinkage;
+ }
+}
+
+static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown visibilities to default.
+ case 0: return GlobalValue::DefaultVisibility;
+ case 1: return GlobalValue::HiddenVisibility;
+ case 2: return GlobalValue::ProtectedVisibility;
+ }
+}
+
+static int GetDecodedCastOpcode(unsigned Val) {
+ switch (Val) {
+ default: return -1;
+ case bitc::CAST_TRUNC : return Instruction::Trunc;
+ case bitc::CAST_ZEXT : return Instruction::ZExt;
+ case bitc::CAST_SEXT : return Instruction::SExt;
+ case bitc::CAST_FPTOUI : return Instruction::FPToUI;
+ case bitc::CAST_FPTOSI : return Instruction::FPToSI;
+ case bitc::CAST_UITOFP : return Instruction::UIToFP;
+ case bitc::CAST_SITOFP : return Instruction::SIToFP;
+ case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
+ case bitc::CAST_FPEXT : return Instruction::FPExt;
+ case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
+ case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
+ case bitc::CAST_BITCAST : return Instruction::BitCast;
+ }
+}
+static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
+ switch (Val) {
+ default: return -1;
+ case bitc::BINOP_ADD: return Instruction::Add;
+ case bitc::BINOP_SUB: return Instruction::Sub;
+ case bitc::BINOP_MUL: return Instruction::Mul;
+ case bitc::BINOP_UDIV: return Instruction::UDiv;
+ case bitc::BINOP_SDIV:
+ return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
+ case bitc::BINOP_UREM: return Instruction::URem;
+ case bitc::BINOP_SREM:
+ return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
+ case bitc::BINOP_SHL: return Instruction::Shl;
+ case bitc::BINOP_LSHR: return Instruction::LShr;
+ case bitc::BINOP_ASHR: return Instruction::AShr;
+ case bitc::BINOP_AND: return Instruction::And;
+ case bitc::BINOP_OR: return Instruction::Or;
+ case bitc::BINOP_XOR: return Instruction::Xor;
+ }
+}
+
+namespace llvm {
+namespace {
+ /// @brief A class for maintaining the slot number definition
+ /// as a placeholder for the actual definition for forward constants defs.
+ class ConstantPlaceHolder : public ConstantExpr {
+ ConstantPlaceHolder(); // DO NOT IMPLEMENT
+ void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
+ public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ explicit ConstantPlaceHolder(const Type *Ty)
+ : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
+ Op<0>() = UndefValue::get(Type::Int32Ty);
+ }
+
+ /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
+ static inline bool classof(const ConstantPlaceHolder *) { return true; }
+ static bool classof(const Value *V) {
+ return isa<ConstantExpr>(V) &&
+ cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
+ }
+
+
+ /// Provide fast operand accessors
+ //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+ };
+}
+
+// FIXME: can we inherit this from ConstantExpr?
+template <>
+struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
+};
+}
+
+
+void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
+ if (Idx == size()) {
+ push_back(V);
+ return;
+ }
+
+ if (Idx >= size())
+ resize(Idx+1);
+
+ WeakVH &OldV = ValuePtrs[Idx];
+ if (OldV == 0) {
+ OldV = V;
+ return;
+ }
+
+ // Handle constants and non-constants (e.g. instrs) differently for
+ // efficiency.
+ if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
+ ResolveConstants.push_back(std::make_pair(PHC, Idx));
+ OldV = V;
+ } else {
+ // If there was a forward reference to this value, replace it.
+ Value *PrevVal = OldV;
+ OldV->replaceAllUsesWith(V);
+ delete PrevVal;
+ }
+}
+
+
+Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
+ const Type *Ty) {
+ if (Idx >= size())
+ resize(Idx + 1);
+
+ if (Value *V = ValuePtrs[Idx]) {
+ assert(Ty == V->getType() && "Type mismatch in constant table!");
+ return cast<Constant>(V);
+ }
+
+ // Create and return a placeholder, which will later be RAUW'd.
+ Constant *C = new ConstantPlaceHolder(Ty);
+ ValuePtrs[Idx] = C;
+ return C;
+}
+
+Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
+ if (Idx >= size())
+ resize(Idx + 1);
+
+ if (Value *V = ValuePtrs[Idx]) {
+ assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
+ return V;
+ }
+
+ // No type specified, must be invalid reference.
+ if (Ty == 0) return 0;
+
+ // Create and return a placeholder, which will later be RAUW'd.
+ Value *V = new Argument(Ty);
+ ValuePtrs[Idx] = V;
+ return V;
+}
+
+/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
+/// resolves any forward references. The idea behind this is that we sometimes
+/// get constants (such as large arrays) which reference *many* forward ref
+/// constants. Replacing each of these causes a lot of thrashing when
+/// building/reuniquing the constant. Instead of doing this, we look at all the
+/// uses and rewrite all the place holders at once for any constant that uses
+/// a placeholder.
+void BitcodeReaderValueList::ResolveConstantForwardRefs() {
+ // Sort the values by-pointer so that they are efficient to look up with a
+ // binary search.
+ std::sort(ResolveConstants.begin(), ResolveConstants.end());
+
+ SmallVector<Constant*, 64> NewOps;
+
+ while (!ResolveConstants.empty()) {
+ Value *RealVal = operator[](ResolveConstants.back().second);
+ Constant *Placeholder = ResolveConstants.back().first;
+ ResolveConstants.pop_back();
+
+ // Loop over all users of the placeholder, updating them to reference the
+ // new value. If they reference more than one placeholder, update them all
+ // at once.
+ while (!Placeholder->use_empty()) {
+ Value::use_iterator UI = Placeholder->use_begin();
+
+ // If the using object isn't uniqued, just update the operands. This
+ // handles instructions and initializers for global variables.
+ if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
+ UI.getUse().set(RealVal);
+ continue;
+ }
+
+ // Otherwise, we have a constant that uses the placeholder. Replace that
+ // constant with a new constant that has *all* placeholder uses updated.
+ Constant *UserC = cast<Constant>(*UI);
+ for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
+ I != E; ++I) {
+ Value *NewOp;
+ if (!isa<ConstantPlaceHolder>(*I)) {
+ // Not a placeholder reference.
+ NewOp = *I;
+ } else if (*I == Placeholder) {
+ // Common case is that it just references this one placeholder.
+ NewOp = RealVal;
+ } else {
+ // Otherwise, look up the placeholder in ResolveConstants.
+ ResolveConstantsTy::iterator It =
+ std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
+ std::pair<Constant*, unsigned>(cast<Constant>(*I),
+ 0));
+ assert(It != ResolveConstants.end() && It->first == *I);
+ NewOp = operator[](It->second);
+ }
+
+ NewOps.push_back(cast<Constant>(NewOp));
+ }
+
+ // Make the new constant.
+ Constant *NewC;
+ if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
+ NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
+ } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
+ NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
+ UserCS->getType()->isPacked());
+ } else if (isa<ConstantVector>(UserC)) {
+ NewC = ConstantVector::get(&NewOps[0], NewOps.size());
+ } else {
+ assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
+ NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
+ NewOps.size());
+ }
+
+ UserC->replaceAllUsesWith(NewC);
+ UserC->destroyConstant();
+ NewOps.clear();
+ }
+
+ // Update all ValueHandles, they should be the only users at this point.
+ Placeholder->replaceAllUsesWith(RealVal);
+ delete Placeholder;
+ }
+}
+
+
+const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
+ // If the TypeID is in range, return it.
+ if (ID < TypeList.size())
+ return TypeList[ID].get();
+ if (!isTypeTable) return 0;
+
+ // The type table allows forward references. Push as many Opaque types as
+ // needed to get up to ID.
+ while (TypeList.size() <= ID)
+ TypeList.push_back(OpaqueType::get());
+ return TypeList.back().get();
+}
+
+//===----------------------------------------------------------------------===//
+// Functions for parsing blocks from the bitcode file
+//===----------------------------------------------------------------------===//
+
+bool BitcodeReader::ParseAttributeBlock() {
+ if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
+ return Error("Malformed block record");
+
+ if (!MAttributes.empty())
+ return Error("Multiple PARAMATTR blocks found!");
+
+ SmallVector<uint64_t, 64> Record;
+
+ SmallVector<AttributeWithIndex, 8> Attrs;
+
+ // Read all the records.
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of PARAMATTR block");
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
+ if (Record.size() & 1)
+ return Error("Invalid ENTRY record");
+
+ // FIXME : Remove this autoupgrade code in LLVM 3.0.
+ // If Function attributes are using index 0 then transfer them
+ // to index ~0. Index 0 is used for return value attributes but used to be
+ // used for function attributes.
+ Attributes RetAttribute = Attribute::None;
+ Attributes FnAttribute = Attribute::None;
+ for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+ // FIXME: remove in LLVM 3.0
+ // The alignment is stored as a 16-bit raw value from bits 31--16.
+ // We shift the bits above 31 down by 11 bits.
+
+ unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
+ if (Alignment && !isPowerOf2_32(Alignment))
+ return Error("Alignment is not a power of two.");
+
+ Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
+ if (Alignment)
+ ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
+ ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
+ Record[i+1] = ReconstitutedAttr;
+
+ if (Record[i] == 0)
+ RetAttribute = Record[i+1];
+ else if (Record[i] == ~0U)
+ FnAttribute = Record[i+1];
+ }
+
+ unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
+ Attribute::ReadOnly|Attribute::ReadNone);
+
+ if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
+ (RetAttribute & OldRetAttrs) != 0) {
+ if (FnAttribute == Attribute::None) { // add a slot so they get added.
+ Record.push_back(~0U);
+ Record.push_back(0);
+ }
+
+ FnAttribute |= RetAttribute & OldRetAttrs;
+ RetAttribute &= ~OldRetAttrs;
+ }
+
+ for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+ if (Record[i] == 0) {
+ if (RetAttribute != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
+ } else if (Record[i] == ~0U) {
+ if (FnAttribute != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
+ } else if (Record[i+1] != Attribute::None)
+ Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
+ }
+
+ MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
+ Attrs.clear();
+ break;
+ }
+ }
+ }
+}
+
+
+bool BitcodeReader::ParseTypeTable() {
+ if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
+ return Error("Malformed block record");
+
+ if (!TypeList.empty())
+ return Error("Multiple TYPE_BLOCKs found!");
+
+ SmallVector<uint64_t, 64> Record;
+ unsigned NumRecords = 0;
+
+ // Read all the records for this type table.
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (NumRecords != TypeList.size())
+ return Error("Invalid type forward reference in TYPE_BLOCK");
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of type table block");
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ const Type *ResultTy = 0;
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: unknown type.
+ ResultTy = 0;
+ break;
+ case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
+ // TYPE_CODE_NUMENTRY contains a count of the number of types in the
+ // type list. This allows us to reserve space.
+ if (Record.size() < 1)
+ return Error("Invalid TYPE_CODE_NUMENTRY record");
+ TypeList.reserve(Record[0]);
+ continue;
+ case bitc::TYPE_CODE_VOID: // VOID
+ ResultTy = Type::VoidTy;
+ break;
+ case bitc::TYPE_CODE_FLOAT: // FLOAT
+ ResultTy = Type::FloatTy;
+ break;
+ case bitc::TYPE_CODE_DOUBLE: // DOUBLE
+ ResultTy = Type::DoubleTy;
+ break;
+ case bitc::TYPE_CODE_X86_FP80: // X86_FP80
+ ResultTy = Type::X86_FP80Ty;
+ break;
+ case bitc::TYPE_CODE_FP128: // FP128
+ ResultTy = Type::FP128Ty;
+ break;
+ case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
+ ResultTy = Type::PPC_FP128Ty;
+ break;
+ case bitc::TYPE_CODE_LABEL: // LABEL
+ ResultTy = Type::LabelTy;
+ break;
+ case bitc::TYPE_CODE_OPAQUE: // OPAQUE
+ ResultTy = 0;
+ break;
+ case bitc::TYPE_CODE_METADATA: // METADATA
+ ResultTy = Type::MetadataTy;
+ break;
+ case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
+ if (Record.size() < 1)
+ return Error("Invalid Integer type record");
+
+ ResultTy = IntegerType::get(Record[0]);
+ break;
+ case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
+ // [pointee type, address space]
+ if (Record.size() < 1)
+ return Error("Invalid POINTER type record");
+ unsigned AddressSpace = 0;
+ if (Record.size() == 2)
+ AddressSpace = Record[1];
+ ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
+ break;
+ }
+ case bitc::TYPE_CODE_FUNCTION: {
+ // FIXME: attrid is dead, remove it in LLVM 3.0
+ // FUNCTION: [vararg, attrid, retty, paramty x N]
+ if (Record.size() < 3)
+ return Error("Invalid FUNCTION type record");
+ std::vector<const Type*> ArgTys;
+ for (unsigned i = 3, e = Record.size(); i != e; ++i)
+ ArgTys.push_back(getTypeByID(Record[i], true));
+
+ ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
+ Record[0]);
+ break;
+ }
+ case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N]
+ if (Record.size() < 1)
+ return Error("Invalid STRUCT type record");
+ std::vector<const Type*> EltTys;
+ for (unsigned i = 1, e = Record.size(); i != e; ++i)
+ EltTys.push_back(getTypeByID(Record[i], true));
+ ResultTy = StructType::get(EltTys, Record[0]);
+ break;
+ }
+ case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
+ if (Record.size() < 2)
+ return Error("Invalid ARRAY type record");
+ ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
+ break;
+ case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
+ if (Record.size() < 2)
+ return Error("Invalid VECTOR type record");
+ ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
+ break;
+ }
+
+ if (NumRecords == TypeList.size()) {
+ // If this is a new type slot, just append it.
+ TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
+ ++NumRecords;
+ } else if (ResultTy == 0) {
+ // Otherwise, this was forward referenced, so an opaque type was created,
+ // but the result type is actually just an opaque. Leave the one we
+ // created previously.
+ ++NumRecords;
+ } else {
+ // Otherwise, this was forward referenced, so an opaque type was created.
+ // Resolve the opaque type to the real type now.
+ assert(NumRecords < TypeList.size() && "Typelist imbalance");
+ const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
+
+ // Don't directly push the new type on the Tab. Instead we want to replace
+ // the opaque type we previously inserted with the new concrete value. The
+ // refinement from the abstract (opaque) type to the new type causes all
+ // uses of the abstract type to use the concrete type (NewTy). This will
+ // also cause the opaque type to be deleted.
+ const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
+
+ // This should have replaced the old opaque type with the new type in the
+ // value table... or with a preexisting type that was already in the
+ // system. Let's just make sure it did.
+ assert(TypeList[NumRecords-1].get() != OldTy &&
+ "refineAbstractType didn't work!");
+ }
+ }
+}
+
+
+bool BitcodeReader::ParseTypeSymbolTable() {
+ if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
+ return Error("Malformed block record");
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records for this type table.
+ std::string TypeName;
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of type symbol table block");
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: unknown type.
+ break;
+ case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
+ if (ConvertToString(Record, 1, TypeName))
+ return Error("Invalid TST_ENTRY record");
+ unsigned TypeID = Record[0];
+ if (TypeID >= TypeList.size())
+ return Error("Invalid Type ID in TST_ENTRY record");
+
+ TheModule->addTypeName(TypeName, TypeList[TypeID].get());
+ TypeName.clear();
+ break;
+ }
+ }
+}
+
+bool BitcodeReader::ParseValueSymbolTable() {
+ if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
+ return Error("Malformed block record");
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records for this value table.
+ SmallString<128> ValueName;
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of value symbol table block");
+ return false;
+ }
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: unknown type.
+ break;
+ case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
+ if (ConvertToString(Record, 1, ValueName))
+ return Error("Invalid VST_ENTRY record");
+ unsigned ValueID = Record[0];
+ if (ValueID >= ValueList.size())
+ return Error("Invalid Value ID in VST_ENTRY record");
+ Value *V = ValueList[ValueID];
+
+ V->setName(&ValueName[0], ValueName.size());
+ ValueName.clear();
+ break;
+ }
+ case bitc::VST_CODE_BBENTRY: {
+ if (ConvertToString(Record, 1, ValueName))
+ return Error("Invalid VST_BBENTRY record");
+ BasicBlock *BB = getBasicBlock(Record[0]);
+ if (BB == 0)
+ return Error("Invalid BB ID in VST_BBENTRY record");
+
+ BB->setName(&ValueName[0], ValueName.size());
+ ValueName.clear();
+ break;
+ }
+ }
+ }
+}
+
+/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
+/// the LSB for dense VBR encoding.
+static uint64_t DecodeSignRotatedValue(uint64_t V) {
+ if ((V & 1) == 0)
+ return V >> 1;
+ if (V != 1)
+ return -(V >> 1);
+ // There is no such thing as -0 with integers. "-0" really means MININT.
+ return 1ULL << 63;
+}
+
+/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
+/// values and aliases that we can.
+bool BitcodeReader::ResolveGlobalAndAliasInits() {
+ std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
+ std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
+
+ GlobalInitWorklist.swap(GlobalInits);
+ AliasInitWorklist.swap(AliasInits);
+
+ while (!GlobalInitWorklist.empty()) {
+ unsigned ValID = GlobalInitWorklist.back().second;
+ if (ValID >= ValueList.size()) {
+ // Not ready to resolve this yet, it requires something later in the file.
+ GlobalInits.push_back(GlobalInitWorklist.back());
+ } else {
+ if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
+ GlobalInitWorklist.back().first->setInitializer(C);
+ else
+ return Error("Global variable initializer is not a constant!");
+ }
+ GlobalInitWorklist.pop_back();
+ }
+
+ while (!AliasInitWorklist.empty()) {
+ unsigned ValID = AliasInitWorklist.back().second;
+ if (ValID >= ValueList.size()) {
+ AliasInits.push_back(AliasInitWorklist.back());
+ } else {
+ if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
+ AliasInitWorklist.back().first->setAliasee(C);
+ else
+ return Error("Alias initializer is not a constant!");
+ }
+ AliasInitWorklist.pop_back();
+ }
+ return false;
+}
+
+
+bool BitcodeReader::ParseConstants() {
+ if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
+ return Error("Malformed block record");
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records for this value table.
+ const Type *CurTy = Type::Int32Ty;
+ unsigned NextCstNo = ValueList.size();
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK)
+ break;
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ Value *V = 0;
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: unknown constant
+ case bitc::CST_CODE_UNDEF: // UNDEF
+ V = UndefValue::get(CurTy);
+ break;
+ case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
+ if (Record.empty())
+ return Error("Malformed CST_SETTYPE record");
+ if (Record[0] >= TypeList.size())
+ return Error("Invalid Type ID in CST_SETTYPE record");
+ CurTy = TypeList[Record[0]];
+ continue; // Skip the ValueList manipulation.
+ case bitc::CST_CODE_NULL: // NULL
+ V = Constant::getNullValue(CurTy);
+ break;
+ case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
+ if (!isa<IntegerType>(CurTy) || Record.empty())
+ return Error("Invalid CST_INTEGER record");
+ V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
+ break;
+ case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
+ if (!isa<IntegerType>(CurTy) || Record.empty())
+ return Error("Invalid WIDE_INTEGER record");
+
+ unsigned NumWords = Record.size();
+ SmallVector<uint64_t, 8> Words;
+ Words.resize(NumWords);
+ for (unsigned i = 0; i != NumWords; ++i)
+ Words[i] = DecodeSignRotatedValue(Record[i]);
+ V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
+ NumWords, &Words[0]));
+ break;
+ }
+ case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
+ if (Record.empty())
+ return Error("Invalid FLOAT record");
+ if (CurTy == Type::FloatTy)
+ V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
+ else if (CurTy == Type::DoubleTy)
+ V = ConstantFP::get(APFloat(APInt(64, Record[0])));
+ else if (CurTy == Type::X86_FP80Ty) {
+ // Bits are not stored the same way as a normal i80 APInt, compensate.
+ uint64_t Rearrange[2];
+ Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
+ Rearrange[1] = Record[0] >> 48;
+ V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange)));
+ } else if (CurTy == Type::FP128Ty)
+ V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
+ else if (CurTy == Type::PPC_FP128Ty)
+ V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
+ else
+ V = UndefValue::get(CurTy);
+ break;
+ }
+
+ case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
+ if (Record.empty())
+ return Error("Invalid CST_AGGREGATE record");
+
+ unsigned Size = Record.size();
+ std::vector<Constant*> Elts;
+
+ if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ValueList.getConstantFwdRef(Record[i],
+ STy->getElementType(i)));
+ V = ConstantStruct::get(STy, Elts);
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
+ const Type *EltTy = ATy->getElementType();
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
+ V = ConstantArray::get(ATy, Elts);
+ } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
+ const Type *EltTy = VTy->getElementType();
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
+ V = ConstantVector::get(Elts);
+ } else {
+ V = UndefValue::get(CurTy);
+ }
+ break;
+ }
+ case bitc::CST_CODE_STRING: { // STRING: [values]
+ if (Record.empty())
+ return Error("Invalid CST_AGGREGATE record");
+
+ const ArrayType *ATy = cast<ArrayType>(CurTy);
+ const Type *EltTy = ATy->getElementType();
+
+ unsigned Size = Record.size();
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ConstantInt::get(EltTy, Record[i]));
+ V = ConstantArray::get(ATy, Elts);
+ break;
+ }
+ case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
+ if (Record.empty())
+ return Error("Invalid CST_AGGREGATE record");
+
+ const ArrayType *ATy = cast<ArrayType>(CurTy);
+ const Type *EltTy = ATy->getElementType();
+
+ unsigned Size = Record.size();
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ConstantInt::get(EltTy, Record[i]));
+ Elts.push_back(Constant::getNullValue(EltTy));
+ V = ConstantArray::get(ATy, Elts);
+ break;
+ }
+ case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
+ if (Record.size() < 3) return Error("Invalid CE_BINOP record");
+ int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
+ if (Opc < 0) {
+ V = UndefValue::get(CurTy); // Unknown binop.
+ } else {
+ Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
+ Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
+ V = ConstantExpr::get(Opc, LHS, RHS);
+ }
+ break;
+ }
+ case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
+ if (Record.size() < 3) return Error("Invalid CE_CAST record");
+ int Opc = GetDecodedCastOpcode(Record[0]);
+ if (Opc < 0) {
+ V = UndefValue::get(CurTy); // Unknown cast.
+ } else {
+ const Type *OpTy = getTypeByID(Record[1]);
+ if (!OpTy) return Error("Invalid CE_CAST record");
+ Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
+ V = ConstantExpr::getCast(Opc, Op, CurTy);
+ }
+ break;
+ }
+ case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
+ if (Record.size() & 1) return Error("Invalid CE_GEP record");
+ SmallVector<Constant*, 16> Elts;
+ for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+ const Type *ElTy = getTypeByID(Record[i]);
+ if (!ElTy) return Error("Invalid CE_GEP record");
+ Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
+ }
+ V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
+ break;
+ }
+ case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
+ if (Record.size() < 3) return Error("Invalid CE_SELECT record");
+ V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
+ Type::Int1Ty),
+ ValueList.getConstantFwdRef(Record[1],CurTy),
+ ValueList.getConstantFwdRef(Record[2],CurTy));
+ break;
+ case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
+ if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
+ const VectorType *OpTy =
+ dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
+ if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
+ V = ConstantExpr::getExtractElement(Op0, Op1);
+ break;
+ }
+ case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
+ const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
+ if (Record.size() < 3 || OpTy == 0)
+ return Error("Invalid CE_INSERTELT record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
+ OpTy->getElementType());
+ Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
+ V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
+ break;
+ }
+ case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
+ const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
+ if (Record.size() < 3 || OpTy == 0)
+ return Error("Invalid CE_SHUFFLEVEC record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
+ const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
+ Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
+ V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
+ break;
+ }
+ case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
+ const VectorType *RTy = dyn_cast<VectorType>(CurTy);
+ const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
+ if (Record.size() < 4 || RTy == 0 || OpTy == 0)
+ return Error("Invalid CE_SHUFVEC_EX record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
+ const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
+ Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
+ V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
+ break;
+ }
+ case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
+ if (Record.size() < 4) return Error("Invalid CE_CMP record");
+ const Type *OpTy = getTypeByID(Record[0]);
+ if (OpTy == 0) return Error("Invalid CE_CMP record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
+
+ if (OpTy->isFloatingPoint())
+ V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
+ else if (!isa<VectorType>(OpTy))
+ V = ConstantExpr::getICmp(Record[3], Op0, Op1);
+ else if (OpTy->isFPOrFPVector())
+ V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
+ else
+ V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
+ break;
+ }
+ case bitc::CST_CODE_INLINEASM: {
+ if (Record.size() < 2) return Error("Invalid INLINEASM record");
+ std::string AsmStr, ConstrStr;
+ bool HasSideEffects = Record[0];
+ unsigned AsmStrSize = Record[1];
+ if (2+AsmStrSize >= Record.size())
+ return Error("Invalid INLINEASM record");
+ unsigned ConstStrSize = Record[2+AsmStrSize];
+ if (3+AsmStrSize+ConstStrSize > Record.size())
+ return Error("Invalid INLINEASM record");
+
+ for (unsigned i = 0; i != AsmStrSize; ++i)
+ AsmStr += (char)Record[2+i];
+ for (unsigned i = 0; i != ConstStrSize; ++i)
+ ConstrStr += (char)Record[3+AsmStrSize+i];
+ const PointerType *PTy = cast<PointerType>(CurTy);
+ V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
+ AsmStr, ConstrStr, HasSideEffects);
+ break;
+ }
+ case bitc::CST_CODE_MDSTRING: {
+ if (Record.size() < 2) return Error("Invalid MDSTRING record");
+ unsigned MDStringLength = Record.size();
+ SmallString<8> String;
+ String.resize(MDStringLength);
+ for (unsigned i = 0; i != MDStringLength; ++i)
+ String[i] = Record[i];
+ V = MDString::get(String.c_str(), String.c_str() + MDStringLength);
+ break;
+ }
+ case bitc::CST_CODE_MDNODE: {
+ if (Record.empty() || Record.size() % 2 == 1)
+ return Error("Invalid CST_MDNODE record");
+
+ unsigned Size = Record.size();
+ SmallVector<Value*, 8> Elts;
+ for (unsigned i = 0; i != Size; i += 2) {
+ const Type *Ty = getTypeByID(Record[i], false);
+ if (Ty != Type::VoidTy)
+ Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
+ else
+ Elts.push_back(NULL);
+ }
+ V = MDNode::get(&Elts[0], Elts.size());
+ break;
+ }
+ }
+
+ ValueList.AssignValue(V, NextCstNo);
+ ++NextCstNo;
+ }
+
+ if (NextCstNo != ValueList.size())
+ return Error("Invalid constant reference!");
+
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of constants block");
+
+ // Once all the constants have been read, go through and resolve forward
+ // references.
+ ValueList.ResolveConstantForwardRefs();
+ return false;
+}
+
+/// RememberAndSkipFunctionBody - When we see the block for a function body,
+/// remember where it is and then skip it. This lets us lazily deserialize the
+/// functions.
+bool BitcodeReader::RememberAndSkipFunctionBody() {
+ // Get the function we are talking about.
+ if (FunctionsWithBodies.empty())
+ return Error("Insufficient function protos");
+
+ Function *Fn = FunctionsWithBodies.back();
+ FunctionsWithBodies.pop_back();
+
+ // Save the current stream state.
+ uint64_t CurBit = Stream.GetCurrentBitNo();
+ DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
+
+ // Set the functions linkage to GhostLinkage so we know it is lazily
+ // deserialized.
+ Fn->setLinkage(GlobalValue::GhostLinkage);
+
+ // Skip over the function block for now.
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ return false;
+}
+
+bool BitcodeReader::ParseModule(const std::string &ModuleID) {
+ // Reject multiple MODULE_BLOCK's in a single bitstream.
+ if (TheModule)
+ return Error("Multiple MODULE_BLOCKs in same stream");
+
+ if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
+ return Error("Malformed block record");
+
+ // Otherwise, create the module.
+ TheModule = new Module(ModuleID);
+
+ SmallVector<uint64_t, 64> Record;
+ std::vector<std::string> SectionTable;
+ std::vector<std::string> GCTable;
+
+ // Read all the records for this module.
+ while (!Stream.AtEndOfStream()) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of module block");
+
+ // Patch the initializers for globals and aliases up.
+ ResolveGlobalAndAliasInits();
+ if (!GlobalInits.empty() || !AliasInits.empty())
+ return Error("Malformed global initializer set");
+ if (!FunctionsWithBodies.empty())
+ return Error("Too few function bodies found");
+
+ // Look for intrinsic functions which need to be upgraded at some point
+ for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
+ FI != FE; ++FI) {
+ Function* NewFn;
+ if (UpgradeIntrinsicFunction(FI, NewFn))
+ UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
+ }
+
+ // Force deallocation of memory for these vectors to favor the client that
+ // want lazy deserialization.
+ std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
+ std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
+ std::vector<Function*>().swap(FunctionsWithBodies);
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ switch (Stream.ReadSubBlockID()) {
+ default: // Skip unknown content.
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ break;
+ case bitc::BLOCKINFO_BLOCK_ID:
+ if (Stream.ReadBlockInfoBlock())
+ return Error("Malformed BlockInfoBlock");
+ break;
+ case bitc::PARAMATTR_BLOCK_ID:
+ if (ParseAttributeBlock())
+ return true;
+ break;
+ case bitc::TYPE_BLOCK_ID:
+ if (ParseTypeTable())
+ return true;
+ break;
+ case bitc::TYPE_SYMTAB_BLOCK_ID:
+ if (ParseTypeSymbolTable())
+ return true;
+ break;
+ case bitc::VALUE_SYMTAB_BLOCK_ID:
+ if (ParseValueSymbolTable())
+ return true;
+ break;
+ case bitc::CONSTANTS_BLOCK_ID:
+ if (ParseConstants() || ResolveGlobalAndAliasInits())
+ return true;
+ break;
+ case bitc::FUNCTION_BLOCK_ID:
+ // If this is the first function body we've seen, reverse the
+ // FunctionsWithBodies list.
+ if (!HasReversedFunctionsWithBodies) {
+ std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
+ HasReversedFunctionsWithBodies = true;
+ }
+
+ if (RememberAndSkipFunctionBody())
+ return true;
+ break;
+ }
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: break; // Default behavior, ignore unknown content.
+ case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
+ if (Record.size() < 1)
+ return Error("Malformed MODULE_CODE_VERSION");
+ // Only version #0 is supported so far.
+ if (Record[0] != 0)
+ return Error("Unknown bitstream version!");
+ break;
+ case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_TRIPLE record");
+ TheModule->setTargetTriple(S);
+ break;
+ }
+ case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_DATALAYOUT record");
+ TheModule->setDataLayout(S);
+ break;
+ }
+ case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_ASM record");
+ TheModule->setModuleInlineAsm(S);
+ break;
+ }
+ case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_DEPLIB record");
+ TheModule->addLibrary(S);
+ break;
+ }
+ case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_SECTIONNAME record");
+ SectionTable.push_back(S);
+ break;
+ }
+ case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_GCNAME record");
+ GCTable.push_back(S);
+ break;
+ }
+ // GLOBALVAR: [pointer type, isconst, initid,
+ // linkage, alignment, section, visibility, threadlocal]
+ case bitc::MODULE_CODE_GLOBALVAR: {
+ if (Record.size() < 6)
+ return Error("Invalid MODULE_CODE_GLOBALVAR record");
+ const Type *Ty = getTypeByID(Record[0]);
+ if (!isa<PointerType>(Ty))
+ return Error("Global not a pointer type!");
+ unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
+ Ty = cast<PointerType>(Ty)->getElementType();
+
+ bool isConstant = Record[1];
+ GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
+ unsigned Alignment = (1 << Record[4]) >> 1;
+ std::string Section;
+ if (Record[5]) {
+ if (Record[5]-1 >= SectionTable.size())
+ return Error("Invalid section ID");
+ Section = SectionTable[Record[5]-1];
+ }
+ GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
+ if (Record.size() > 6)
+ Visibility = GetDecodedVisibility(Record[6]);
+ bool isThreadLocal = false;
+ if (Record.size() > 7)
+ isThreadLocal = Record[7];
+
+ GlobalVariable *NewGV =
+ new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
+ isThreadLocal, AddressSpace);
+ NewGV->setAlignment(Alignment);
+ if (!Section.empty())
+ NewGV->setSection(Section);
+ NewGV->setVisibility(Visibility);
+ NewGV->setThreadLocal(isThreadLocal);
+
+ ValueList.push_back(NewGV);
+
+ // Remember which value to use for the global initializer.
+ if (unsigned InitID = Record[2])
+ GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
+ break;
+ }
+ // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
+ // alignment, section, visibility, gc]
+ case bitc::MODULE_CODE_FUNCTION: {
+ if (Record.size() < 8)
+ return Error("Invalid MODULE_CODE_FUNCTION record");
+ const Type *Ty = getTypeByID(Record[0]);
+ if (!isa<PointerType>(Ty))
+ return Error("Function not a pointer type!");
+ const FunctionType *FTy =
+ dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
+ if (!FTy)
+ return Error("Function not a pointer to function type!");
+
+ Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
+ "", TheModule);
+
+ Func->setCallingConv(Record[1]);
+ bool isProto = Record[2];
+ Func->setLinkage(GetDecodedLinkage(Record[3]));
+ Func->setAttributes(getAttributes(Record[4]));
+
+ Func->setAlignment((1 << Record[5]) >> 1);
+ if (Record[6]) {
+ if (Record[6]-1 >= SectionTable.size())
+ return Error("Invalid section ID");
+ Func->setSection(SectionTable[Record[6]-1]);
+ }
+ Func->setVisibility(GetDecodedVisibility(Record[7]));
+ if (Record.size() > 8 && Record[8]) {
+ if (Record[8]-1 > GCTable.size())
+ return Error("Invalid GC ID");
+ Func->setGC(GCTable[Record[8]-1].c_str());
+ }
+ ValueList.push_back(Func);
+
+ // If this is a function with a body, remember the prototype we are
+ // creating now, so that we can match up the body with them later.
+ if (!isProto)
+ FunctionsWithBodies.push_back(Func);
+ break;
+ }
+ // ALIAS: [alias type, aliasee val#, linkage]
+ // ALIAS: [alias type, aliasee val#, linkage, visibility]
+ case bitc::MODULE_CODE_ALIAS: {
+ if (Record.size() < 3)
+ return Error("Invalid MODULE_ALIAS record");
+ const Type *Ty = getTypeByID(Record[0]);
+ if (!isa<PointerType>(Ty))
+ return Error("Function not a pointer type!");
+
+ GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
+ "", 0, TheModule);
+ // Old bitcode files didn't have visibility field.
+ if (Record.size() > 3)
+ NewGA->setVisibility(GetDecodedVisibility(Record[3]));
+ ValueList.push_back(NewGA);
+ AliasInits.push_back(std::make_pair(NewGA, Record[1]));
+ break;
+ }
+ /// MODULE_CODE_PURGEVALS: [numvals]
+ case bitc::MODULE_CODE_PURGEVALS:
+ // Trim down the value list to the specified size.
+ if (Record.size() < 1 || Record[0] > ValueList.size())
+ return Error("Invalid MODULE_PURGEVALS record");
+ ValueList.shrinkTo(Record[0]);
+ break;
+ }
+ Record.clear();
+ }
+
+ return Error("Premature end of bitstream");
+}
+
+bool BitcodeReader::ParseBitcode() {
+ TheModule = 0;
+
+ if (Buffer->getBufferSize() & 3)
+ return Error("Bitcode stream should be a multiple of 4 bytes in length");
+
+ unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
+ unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
+
+ // If we have a wrapper header, parse it and ignore the non-bc file contents.
+ // The magic number is 0x0B17C0DE stored in little endian.
+ if (isBitcodeWrapper(BufPtr, BufEnd))
+ if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
+ return Error("Invalid bitcode wrapper header");
+
+ StreamFile.init(BufPtr, BufEnd);
+ Stream.init(StreamFile);
+
+ // Sniff for the signature.
+ if (Stream.Read(8) != 'B' ||
+ Stream.Read(8) != 'C' ||
+ Stream.Read(4) != 0x0 ||
+ Stream.Read(4) != 0xC ||
+ Stream.Read(4) != 0xE ||
+ Stream.Read(4) != 0xD)
+ return Error("Invalid bitcode signature");
+
+ // We expect a number of well-defined blocks, though we don't necessarily
+ // need to understand them all.
+ while (!Stream.AtEndOfStream()) {
+ unsigned Code = Stream.ReadCode();
+
+ if (Code != bitc::ENTER_SUBBLOCK)
+ return Error("Invalid record at top-level");
+
+ unsigned BlockID = Stream.ReadSubBlockID();
+
+ // We only know the MODULE subblock ID.
+ switch (BlockID) {
+ case bitc::BLOCKINFO_BLOCK_ID:
+ if (Stream.ReadBlockInfoBlock())
+ return Error("Malformed BlockInfoBlock");
+ break;
+ case bitc::MODULE_BLOCK_ID:
+ if (ParseModule(Buffer->getBufferIdentifier()))
+ return true;
+ break;
+ default:
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ break;
+ }
+ }
+
+ return false;
+}
+
+
+/// ParseFunctionBody - Lazily parse the specified function body block.
+bool BitcodeReader::ParseFunctionBody(Function *F) {
+ if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
+ return Error("Malformed block record");
+
+ unsigned ModuleValueListSize = ValueList.size();
+
+ // Add all the function arguments to the value table.
+ for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
+ ValueList.push_back(I);
+
+ unsigned NextValueNo = ValueList.size();
+ BasicBlock *CurBB = 0;
+ unsigned CurBBNo = 0;
+
+ // Read all the records.
+ SmallVector<uint64_t, 64> Record;
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of function block");
+ break;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ switch (Stream.ReadSubBlockID()) {
+ default: // Skip unknown content.
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ break;
+ case bitc::CONSTANTS_BLOCK_ID:
+ if (ParseConstants()) return true;
+ NextValueNo = ValueList.size();
+ break;
+ case bitc::VALUE_SYMTAB_BLOCK_ID:
+ if (ParseValueSymbolTable()) return true;
+ break;
+ }
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ Instruction *I = 0;
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: reject
+ return Error("Unknown instruction");
+ case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
+ if (Record.size() < 1 || Record[0] == 0)
+ return Error("Invalid DECLAREBLOCKS record");
+ // Create all the basic blocks for the function.
+ FunctionBBs.resize(Record[0]);
+ for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
+ FunctionBBs[i] = BasicBlock::Create("", F);
+ CurBB = FunctionBBs[0];
+ continue;
+
+ case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
+ unsigned OpNum = 0;
+ Value *LHS, *RHS;
+ if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
+ getValue(Record, OpNum, LHS->getType(), RHS) ||
+ OpNum+1 != Record.size())
+ return Error("Invalid BINOP record");
+
+ int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
+ if (Opc == -1) return Error("Invalid BINOP record");
+ I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
+ unsigned OpNum = 0;
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+ OpNum+2 != Record.size())
+ return Error("Invalid CAST record");
+
+ const Type *ResTy = getTypeByID(Record[OpNum]);
+ int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
+ if (Opc == -1 || ResTy == 0)
+ return Error("Invalid CAST record");
+ I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
+ unsigned OpNum = 0;
+ Value *BasePtr;
+ if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
+ return Error("Invalid GEP record");
+
+ SmallVector<Value*, 16> GEPIdx;
+ while (OpNum != Record.size()) {
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+ return Error("Invalid GEP record");
+ GEPIdx.push_back(Op);
+ }
+
+ I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_EXTRACTVAL: {
+ // EXTRACTVAL: [opty, opval, n x indices]
+ unsigned OpNum = 0;
+ Value *Agg;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
+ return Error("Invalid EXTRACTVAL record");
+
+ SmallVector<unsigned, 4> EXTRACTVALIdx;
+ for (unsigned RecSize = Record.size();
+ OpNum != RecSize; ++OpNum) {
+ uint64_t Index = Record[OpNum];
+ if ((unsigned)Index != Index)
+ return Error("Invalid EXTRACTVAL index");
+ EXTRACTVALIdx.push_back((unsigned)Index);
+ }
+
+ I = ExtractValueInst::Create(Agg,
+ EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_INSERTVAL: {
+ // INSERTVAL: [opty, opval, opty, opval, n x indices]
+ unsigned OpNum = 0;
+ Value *Agg;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
+ return Error("Invalid INSERTVAL record");
+ Value *Val;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Val))
+ return Error("Invalid INSERTVAL record");
+
+ SmallVector<unsigned, 4> INSERTVALIdx;
+ for (unsigned RecSize = Record.size();
+ OpNum != RecSize; ++OpNum) {
+ uint64_t Index = Record[OpNum];
+ if ((unsigned)Index != Index)
+ return Error("Invalid INSERTVAL index");
+ INSERTVALIdx.push_back((unsigned)Index);
+ }
+
+ I = InsertValueInst::Create(Agg, Val,
+ INSERTVALIdx.begin(), INSERTVALIdx.end());
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
+ // obsolete form of select
+ // handles select i1 ... in old bitcode
+ unsigned OpNum = 0;
+ Value *TrueVal, *FalseVal, *Cond;
+ if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
+ getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
+ getValue(Record, OpNum, Type::Int1Ty, Cond))
+ return Error("Invalid SELECT record");
+
+ I = SelectInst::Create(Cond, TrueVal, FalseVal);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
+ // new form of select
+ // handles select i1 or select [N x i1]
+ unsigned OpNum = 0;
+ Value *TrueVal, *FalseVal, *Cond;
+ if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
+ getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
+ getValueTypePair(Record, OpNum, NextValueNo, Cond))
+ return Error("Invalid SELECT record");
+
+ // select condition can be either i1 or [N x i1]
+ if (const VectorType* vector_type =
+ dyn_cast<const VectorType>(Cond->getType())) {
+ // expect <n x i1>
+ if (vector_type->getElementType() != Type::Int1Ty)
+ return Error("Invalid SELECT condition type");
+ } else {
+ // expect i1
+ if (Cond->getType() != Type::Int1Ty)
+ return Error("Invalid SELECT condition type");
+ }
+
+ I = SelectInst::Create(Cond, TrueVal, FalseVal);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
+ unsigned OpNum = 0;
+ Value *Vec, *Idx;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
+ getValue(Record, OpNum, Type::Int32Ty, Idx))
+ return Error("Invalid EXTRACTELT record");
+ I = new ExtractElementInst(Vec, Idx);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
+ unsigned OpNum = 0;
+ Value *Vec, *Elt, *Idx;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
+ getValue(Record, OpNum,
+ cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
+ getValue(Record, OpNum, Type::Int32Ty, Idx))
+ return Error("Invalid INSERTELT record");
+ I = InsertElementInst::Create(Vec, Elt, Idx);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
+ unsigned OpNum = 0;
+ Value *Vec1, *Vec2, *Mask;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
+ getValue(Record, OpNum, Vec1->getType(), Vec2))
+ return Error("Invalid SHUFFLEVEC record");
+
+ if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
+ return Error("Invalid SHUFFLEVEC record");
+ I = new ShuffleVectorInst(Vec1, Vec2, Mask);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
+ // VFCmp/VICmp
+ // or old form of ICmp/FCmp returning bool
+ unsigned OpNum = 0;
+ Value *LHS, *RHS;
+ if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
+ getValue(Record, OpNum, LHS->getType(), RHS) ||
+ OpNum+1 != Record.size())
+ return Error("Invalid CMP record");
+
+ if (LHS->getType()->isFloatingPoint())
+ I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
+ else if (!isa<VectorType>(LHS->getType()))
+ I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
+ else if (LHS->getType()->isFPOrFPVector())
+ I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
+ else
+ I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
+ // Fcmp/ICmp returning bool or vector of bool
+ unsigned OpNum = 0;
+ Value *LHS, *RHS;
+ if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
+ getValue(Record, OpNum, LHS->getType(), RHS) ||
+ OpNum+1 != Record.size())
+ return Error("Invalid CMP2 record");
+
+ if (LHS->getType()->isFPOrFPVector())
+ I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
+ else
+ I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
+ if (Record.size() != 2)
+ return Error("Invalid GETRESULT record");
+ unsigned OpNum = 0;
+ Value *Op;
+ getValueTypePair(Record, OpNum, NextValueNo, Op);
+ unsigned Index = Record[1];
+ I = ExtractValueInst::Create(Op, Index);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
+ {
+ unsigned Size = Record.size();
+ if (Size == 0) {
+ I = ReturnInst::Create();
+ break;
+ }
+
+ unsigned OpNum = 0;
+ SmallVector<Value *,4> Vs;
+ do {
+ Value *Op = NULL;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+ return Error("Invalid RET record");
+ Vs.push_back(Op);
+ } while(OpNum != Record.size());
+
+ const Type *ReturnType = F->getReturnType();
+ if (Vs.size() > 1 ||
+ (isa<StructType>(ReturnType) &&
+ (Vs.empty() || Vs[0]->getType() != ReturnType))) {
+ Value *RV = UndefValue::get(ReturnType);
+ for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
+ I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
+ CurBB->getInstList().push_back(I);
+ ValueList.AssignValue(I, NextValueNo++);
+ RV = I;
+ }
+ I = ReturnInst::Create(RV);
+ break;
+ }
+
+ I = ReturnInst::Create(Vs[0]);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
+ if (Record.size() != 1 && Record.size() != 3)
+ return Error("Invalid BR record");
+ BasicBlock *TrueDest = getBasicBlock(Record[0]);
+ if (TrueDest == 0)
+ return Error("Invalid BR record");
+
+ if (Record.size() == 1)
+ I = BranchInst::Create(TrueDest);
+ else {
+ BasicBlock *FalseDest = getBasicBlock(Record[1]);
+ Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
+ if (FalseDest == 0 || Cond == 0)
+ return Error("Invalid BR record");
+ I = BranchInst::Create(TrueDest, FalseDest, Cond);
+ }
+ break;
+ }
+ case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
+ if (Record.size() < 3 || (Record.size() & 1) == 0)
+ return Error("Invalid SWITCH record");
+ const Type *OpTy = getTypeByID(Record[0]);
+ Value *Cond = getFnValueByID(Record[1], OpTy);
+ BasicBlock *Default = getBasicBlock(Record[2]);
+ if (OpTy == 0 || Cond == 0 || Default == 0)
+ return Error("Invalid SWITCH record");
+ unsigned NumCases = (Record.size()-3)/2;
+ SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
+ for (unsigned i = 0, e = NumCases; i != e; ++i) {
+ ConstantInt *CaseVal =
+ dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
+ BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
+ if (CaseVal == 0 || DestBB == 0) {
+ delete SI;
+ return Error("Invalid SWITCH record!");
+ }
+ SI->addCase(CaseVal, DestBB);
+ }
+ I = SI;
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_INVOKE: {
+ // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
+ if (Record.size() < 4) return Error("Invalid INVOKE record");
+ AttrListPtr PAL = getAttributes(Record[0]);
+ unsigned CCInfo = Record[1];
+ BasicBlock *NormalBB = getBasicBlock(Record[2]);
+ BasicBlock *UnwindBB = getBasicBlock(Record[3]);
+
+ unsigned OpNum = 4;
+ Value *Callee;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
+ return Error("Invalid INVOKE record");
+
+ const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = !CalleeTy ? 0 :
+ dyn_cast<FunctionType>(CalleeTy->getElementType());
+
+ // Check that the right number of fixed parameters are here.
+ if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
+ Record.size() < OpNum+FTy->getNumParams())
+ return Error("Invalid INVOKE record");
+
+ SmallVector<Value*, 16> Ops;
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+ Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
+ if (Ops.back() == 0) return Error("Invalid INVOKE record");
+ }
+
+ if (!FTy->isVarArg()) {
+ if (Record.size() != OpNum)
+ return Error("Invalid INVOKE record");
+ } else {
+ // Read type/value pairs for varargs params.
+ while (OpNum != Record.size()) {
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+ return Error("Invalid INVOKE record");
+ Ops.push_back(Op);
+ }
+ }
+
+ I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
+ Ops.begin(), Ops.end());
+ cast<InvokeInst>(I)->setCallingConv(CCInfo);
+ cast<InvokeInst>(I)->setAttributes(PAL);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
+ I = new UnwindInst();
+ break;
+ case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
+ I = new UnreachableInst();
+ break;
+ case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
+ if (Record.size() < 1 || ((Record.size()-1)&1))
+ return Error("Invalid PHI record");
+ const Type *Ty = getTypeByID(Record[0]);
+ if (!Ty) return Error("Invalid PHI record");
+
+ PHINode *PN = PHINode::Create(Ty);
+ PN->reserveOperandSpace((Record.size()-1)/2);
+
+ for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
+ Value *V = getFnValueByID(Record[1+i], Ty);
+ BasicBlock *BB = getBasicBlock(Record[2+i]);
+ if (!V || !BB) return Error("Invalid PHI record");
+ PN->addIncoming(V, BB);
+ }
+ I = PN;
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
+ if (Record.size() < 3)
+ return Error("Invalid MALLOC record");
+ const PointerType *Ty =
+ dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
+ Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
+ unsigned Align = Record[2];
+ if (!Ty || !Size) return Error("Invalid MALLOC record");
+ I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
+ unsigned OpNum = 0;
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+ OpNum != Record.size())
+ return Error("Invalid FREE record");
+ I = new FreeInst(Op);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
+ if (Record.size() < 3)
+ return Error("Invalid ALLOCA record");
+ const PointerType *Ty =
+ dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
+ Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
+ unsigned Align = Record[2];
+ if (!Ty || !Size) return Error("Invalid ALLOCA record");
+ I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
+ unsigned OpNum = 0;
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+ OpNum+2 != Record.size())
+ return Error("Invalid LOAD record");
+
+ I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
+ unsigned OpNum = 0;
+ Value *Val, *Ptr;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
+ getValue(Record, OpNum,
+ cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
+ OpNum+2 != Record.size())
+ return Error("Invalid STORE record");
+
+ I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
+ // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
+ unsigned OpNum = 0;
+ Value *Val, *Ptr;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
+ getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
+ OpNum+2 != Record.size())
+ return Error("Invalid STORE record");
+
+ I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CALL: {
+ // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
+ if (Record.size() < 3)
+ return Error("Invalid CALL record");
+
+ AttrListPtr PAL = getAttributes(Record[0]);
+ unsigned CCInfo = Record[1];
+
+ unsigned OpNum = 2;
+ Value *Callee;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
+ return Error("Invalid CALL record");
+
+ const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = 0;
+ if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
+ if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
+ return Error("Invalid CALL record");
+
+ SmallVector<Value*, 16> Args;
+ // Read the fixed params.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+ if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
+ Args.push_back(getBasicBlock(Record[OpNum]));
+ else
+ Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
+ if (Args.back() == 0) return Error("Invalid CALL record");
+ }
+
+ // Read type/value pairs for varargs params.
+ if (!FTy->isVarArg()) {
+ if (OpNum != Record.size())
+ return Error("Invalid CALL record");
+ } else {
+ while (OpNum != Record.size()) {
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+ return Error("Invalid CALL record");
+ Args.push_back(Op);
+ }
+ }
+
+ I = CallInst::Create(Callee, Args.begin(), Args.end());
+ cast<CallInst>(I)->setCallingConv(CCInfo>>1);
+ cast<CallInst>(I)->setTailCall(CCInfo & 1);
+ cast<CallInst>(I)->setAttributes(PAL);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
+ if (Record.size() < 3)
+ return Error("Invalid VAARG record");
+ const Type *OpTy = getTypeByID(Record[0]);
+ Value *Op = getFnValueByID(Record[1], OpTy);
+ const Type *ResTy = getTypeByID(Record[2]);
+ if (!OpTy || !Op || !ResTy)
+ return Error("Invalid VAARG record");
+ I = new VAArgInst(Op, ResTy);
+ break;
+ }
+ }
+
+ // Add instruction to end of current BB. If there is no current BB, reject
+ // this file.
+ if (CurBB == 0) {
+ delete I;
+ return Error("Invalid instruction with no BB");
+ }
+ CurBB->getInstList().push_back(I);
+
+ // If this was a terminator instruction, move to the next block.
+ if (isa<TerminatorInst>(I)) {
+ ++CurBBNo;
+ CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
+ }
+
+ // Non-void values get registered in the value table for future use.
+ if (I && I->getType() != Type::VoidTy)
+ ValueList.AssignValue(I, NextValueNo++);
+ }
+
+ // Check the function list for unresolved values.
+ if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
+ if (A->getParent() == 0) {
+ // We found at least one unresolved value. Nuke them all to avoid leaks.
+ for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
+ if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
+ A->replaceAllUsesWith(UndefValue::get(A->getType()));
+ delete A;
+ }
+ }
+ return Error("Never resolved value found in function!");
+ }
+ }
+
+ // Trim the value list down to the size it was before we parsed this function.
+ ValueList.shrinkTo(ModuleValueListSize);
+ std::vector<BasicBlock*>().swap(FunctionBBs);
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// ModuleProvider implementation
+//===----------------------------------------------------------------------===//
+
+
+bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
+ // If it already is material, ignore the request.
+ if (!F->hasNotBeenReadFromBitcode()) return false;
+
+ DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
+ DeferredFunctionInfo.find(F);
+ assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
+
+ // Move the bit stream to the saved position of the deferred function body and
+ // restore the real linkage type for the function.
+ Stream.JumpToBit(DFII->second.first);
+ F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
+
+ if (ParseFunctionBody(F)) {
+ if (ErrInfo) *ErrInfo = ErrorString;
+ return true;
+ }
+
+ // Upgrade any old intrinsic calls in the function.
+ for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
+ E = UpgradedIntrinsics.end(); I != E; ++I) {
+ if (I->first != I->second) {
+ for (Value::use_iterator UI = I->first->use_begin(),
+ UE = I->first->use_end(); UI != UE; ) {
+ if (CallInst* CI = dyn_cast<CallInst>(*UI++))
+ UpgradeIntrinsicCall(CI, I->second);
+ }
+ }
+ }
+
+ return false;
+}
+
+void BitcodeReader::dematerializeFunction(Function *F) {
+ // If this function isn't materialized, or if it is a proto, this is a noop.
+ if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
+ return;
+
+ assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
+
+ // Just forget the function body, we can remat it later.
+ F->deleteBody();
+ F->setLinkage(GlobalValue::GhostLinkage);
+}
+
+
+Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
+ for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
+ DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
+ ++I) {
+ Function *F = I->first;
+ if (F->hasNotBeenReadFromBitcode() &&
+ materializeFunction(F, ErrInfo))
+ return 0;
+ }
+
+ // Upgrade any intrinsic calls that slipped through (should not happen!) and
+ // delete the old functions to clean up. We can't do this unless the entire
+ // module is materialized because there could always be another function body
+ // with calls to the old function.
+ for (std::vector<std::pair<Function*, Function*> >::iterator I =
+ UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
+ if (I->first != I->second) {
+ for (Value::use_iterator UI = I->first->use_begin(),
+ UE = I->first->use_end(); UI != UE; ) {
+ if (CallInst* CI = dyn_cast<CallInst>(*UI++))
+ UpgradeIntrinsicCall(CI, I->second);
+ }
+ if (!I->first->use_empty())
+ I->first->replaceAllUsesWith(I->second);
+ I->first->eraseFromParent();
+ }
+ }
+ std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
+
+ return TheModule;
+}
+
+
+/// This method is provided by the parent ModuleProvde class and overriden
+/// here. It simply releases the module from its provided and frees up our
+/// state.
+/// @brief Release our hold on the generated module
+Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
+ // Since we're losing control of this Module, we must hand it back complete
+ Module *M = ModuleProvider::releaseModule(ErrInfo);
+ FreeState();
+ return M;
+}
+
+
+//===----------------------------------------------------------------------===//
+// External interface
+//===----------------------------------------------------------------------===//
+
+/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
+///
+ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
+ std::string *ErrMsg) {
+ BitcodeReader *R = new BitcodeReader(Buffer);
+ if (R->ParseBitcode()) {
+ if (ErrMsg)
+ *ErrMsg = R->getErrorString();
+
+ // Don't let the BitcodeReader dtor delete 'Buffer'.
+ R->releaseMemoryBuffer();
+ delete R;
+ return 0;
+ }
+ return R;
+}
+
+/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
+/// If an error occurs, return null and fill in *ErrMsg if non-null.
+Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
+ BitcodeReader *R;
+ R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
+ if (!R) return 0;
+
+ // Read in the entire module.
+ Module *M = R->materializeModule(ErrMsg);
+
+ // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
+ // there was an error.
+ R->releaseMemoryBuffer();
+
+ // If there was no error, tell ModuleProvider not to delete it when its dtor
+ // is run.
+ if (M)
+ M = R->releaseModule(ErrMsg);
+
+ delete R;
+ return M;
+}
OpenPOWER on IntegriCloud