summaryrefslogtreecommitdiffstats
path: root/lib/Analysis
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-07-04 13:58:26 +0000
committered <ed@FreeBSD.org>2009-07-04 13:58:26 +0000
commit72621d11de5b873f1695f391eb95f0b336c3d2d4 (patch)
tree84360c8989c912127a383af37c4b1aa5767bd16e /lib/Analysis
parentcf5cd875b51255602afaed29deb636b66b295671 (diff)
downloadFreeBSD-src-72621d11de5b873f1695f391eb95f0b336c3d2d4.zip
FreeBSD-src-72621d11de5b873f1695f391eb95f0b336c3d2d4.tar.gz
Import LLVM 74788.
Diffstat (limited to 'lib/Analysis')
-rw-r--r--lib/Analysis/DebugInfo.cpp329
-rw-r--r--lib/Analysis/IPA/Andersens.cpp4
-rw-r--r--lib/Analysis/LoopDependenceAnalysis.cpp122
-rw-r--r--lib/Analysis/LoopInfo.cpp2
-rw-r--r--lib/Analysis/LoopPass.cpp3
-rw-r--r--lib/Analysis/ScalarEvolution.cpp384
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp156
-rw-r--r--lib/Analysis/ValueTracking.cpp5
8 files changed, 660 insertions, 345 deletions
diff --git a/lib/Analysis/DebugInfo.cpp b/lib/Analysis/DebugInfo.cpp
index 6b27cf4..9eecc33 100644
--- a/lib/Analysis/DebugInfo.cpp
+++ b/lib/Analysis/DebugInfo.cpp
@@ -21,6 +21,7 @@
#include "llvm/Module.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/DebugLoc.h"
#include "llvm/Support/Streams.h"
using namespace llvm;
@@ -321,13 +322,140 @@ bool DISubprogram::describes(const Function *F) {
}
//===----------------------------------------------------------------------===//
+// DIDescriptor: dump routines for all descriptors.
+//===----------------------------------------------------------------------===//
+
+
+/// dump - Print descriptor.
+void DIDescriptor::dump() const {
+ cerr << "[" << dwarf::TagString(getTag()) << "] ";
+ cerr << std::hex << "[GV:" << DbgGV << "]" << std::dec;
+}
+
+/// dump - Print compile unit.
+void DICompileUnit::dump() const {
+ if (getLanguage())
+ cerr << " [" << dwarf::LanguageString(getLanguage()) << "] ";
+
+ std::string Res1, Res2;
+ cerr << " [" << getDirectory(Res1) << "/" << getFilename(Res2) << " ]";
+}
+
+/// dump - Print type.
+void DIType::dump() const {
+ if (isNull()) return;
+
+ std::string Res;
+ if (!getName(Res).empty())
+ cerr << " [" << Res << "] ";
+
+ unsigned Tag = getTag();
+ cerr << " [" << dwarf::TagString(Tag) << "] ";
+
+ // TODO : Print context
+ getCompileUnit().dump();
+ cerr << " ["
+ << getLineNumber() << ", "
+ << getSizeInBits() << ", "
+ << getAlignInBits() << ", "
+ << getOffsetInBits()
+ << "] ";
+
+ if (isPrivate())
+ cerr << " [private] ";
+ else if (isProtected())
+ cerr << " [protected] ";
+
+ if (isForwardDecl())
+ cerr << " [fwd] ";
+
+ if (isBasicType(Tag))
+ DIBasicType(DbgGV).dump();
+ else if (isDerivedType(Tag))
+ DIDerivedType(DbgGV).dump();
+ else if (isCompositeType(Tag))
+ DICompositeType(DbgGV).dump();
+ else {
+ cerr << "Invalid DIType\n";
+ return;
+ }
+
+ cerr << "\n";
+}
+
+/// dump - Print basic type.
+void DIBasicType::dump() const {
+ cerr << " [" << dwarf::AttributeEncodingString(getEncoding()) << "] ";
+}
+
+/// dump - Print derived type.
+void DIDerivedType::dump() const {
+ cerr << "\n\t Derived From: "; getTypeDerivedFrom().dump();
+}
+
+/// dump - Print composite type.
+void DICompositeType::dump() const {
+ DIArray A = getTypeArray();
+ if (A.isNull())
+ return;
+ cerr << " [" << A.getNumElements() << " elements]";
+}
+
+/// dump - Print global.
+void DIGlobal::dump() const {
+ std::string Res;
+ if (!getName(Res).empty())
+ cerr << " [" << Res << "] ";
+
+ unsigned Tag = getTag();
+ cerr << " [" << dwarf::TagString(Tag) << "] ";
+
+ // TODO : Print context
+ getCompileUnit().dump();
+ cerr << " [" << getLineNumber() << "] ";
+
+ if (isLocalToUnit())
+ cerr << " [local] ";
+
+ if (isDefinition())
+ cerr << " [def] ";
+
+ if (isGlobalVariable(Tag))
+ DIGlobalVariable(DbgGV).dump();
+
+ cerr << "\n";
+}
+
+/// dump - Print subprogram.
+void DISubprogram::dump() const {
+ DIGlobal::dump();
+}
+
+/// dump - Print global variable.
+void DIGlobalVariable::dump() const {
+ cerr << " ["; getGlobal()->dump(); cerr << "] ";
+}
+
+/// dump - Print variable.
+void DIVariable::dump() const {
+ std::string Res;
+ if (!getName(Res).empty())
+ cerr << " [" << Res << "] ";
+
+ getCompileUnit().dump();
+ cerr << " [" << getLineNumber() << "] ";
+ getType().dump();
+ cerr << "\n";
+}
+
+//===----------------------------------------------------------------------===//
// DIFactory: Basic Helpers
//===----------------------------------------------------------------------===//
DIFactory::DIFactory(Module &m)
: M(m), StopPointFn(0), FuncStartFn(0), RegionStartFn(0), RegionEndFn(0),
DeclareFn(0) {
- EmptyStructPtr = PointerType::getUnqual(StructType::get(NULL, NULL));
+ EmptyStructPtr = PointerType::getUnqual(StructType::get());
}
/// getCastToEmpty - Return this descriptor as a Constant* with type '{}*'.
@@ -923,127 +1051,108 @@ namespace llvm {
}
}
}
-}
-
-/// dump - Print descriptor.
-void DIDescriptor::dump() const {
- cerr << "[" << dwarf::TagString(getTag()) << "] ";
- cerr << std::hex << "[GV:" << DbgGV << "]" << std::dec;
-}
-
-/// dump - Print compile unit.
-void DICompileUnit::dump() const {
- if (getLanguage())
- cerr << " [" << dwarf::LanguageString(getLanguage()) << "] ";
-
- std::string Res1, Res2;
- cerr << " [" << getDirectory(Res1) << "/" << getFilename(Res2) << " ]";
-}
-
-/// dump - Print type.
-void DIType::dump() const {
- if (isNull()) return;
-
- std::string Res;
- if (!getName(Res).empty())
- cerr << " [" << Res << "] ";
-
- unsigned Tag = getTag();
- cerr << " [" << dwarf::TagString(Tag) << "] ";
-
- // TODO : Print context
- getCompileUnit().dump();
- cerr << " ["
- << getLineNumber() << ", "
- << getSizeInBits() << ", "
- << getAlignInBits() << ", "
- << getOffsetInBits()
- << "] ";
-
- if (isPrivate())
- cerr << " [private] ";
- else if (isProtected())
- cerr << " [protected] ";
-
- if (isForwardDecl())
- cerr << " [fwd] ";
- if (isBasicType(Tag))
- DIBasicType(DbgGV).dump();
- else if (isDerivedType(Tag))
- DIDerivedType(DbgGV).dump();
- else if (isCompositeType(Tag))
- DICompositeType(DbgGV).dump();
- else {
- cerr << "Invalid DIType\n";
- return;
+ /// isValidDebugInfoIntrinsic - Return true if SPI is a valid debug
+ /// info intrinsic.
+ bool isValidDebugInfoIntrinsic(DbgStopPointInst &SPI,
+ CodeGenOpt::Level OptLev) {
+ return DIDescriptor::ValidDebugInfo(SPI.getContext(), OptLev);
}
- cerr << "\n";
-}
-
-/// dump - Print basic type.
-void DIBasicType::dump() const {
- cerr << " [" << dwarf::AttributeEncodingString(getEncoding()) << "] ";
-}
-
-/// dump - Print derived type.
-void DIDerivedType::dump() const {
- cerr << "\n\t Derived From: "; getTypeDerivedFrom().dump();
-}
-
-/// dump - Print composite type.
-void DICompositeType::dump() const {
- DIArray A = getTypeArray();
- if (A.isNull())
- return;
- cerr << " [" << A.getNumElements() << " elements]";
-}
+ /// isValidDebugInfoIntrinsic - Return true if FSI is a valid debug
+ /// info intrinsic.
+ bool isValidDebugInfoIntrinsic(DbgFuncStartInst &FSI,
+ CodeGenOpt::Level OptLev) {
+ return DIDescriptor::ValidDebugInfo(FSI.getSubprogram(), OptLev);
+ }
-/// dump - Print global.
-void DIGlobal::dump() const {
- std::string Res;
- if (!getName(Res).empty())
- cerr << " [" << Res << "] ";
+ /// isValidDebugInfoIntrinsic - Return true if RSI is a valid debug
+ /// info intrinsic.
+ bool isValidDebugInfoIntrinsic(DbgRegionStartInst &RSI,
+ CodeGenOpt::Level OptLev) {
+ return DIDescriptor::ValidDebugInfo(RSI.getContext(), OptLev);
+ }
- unsigned Tag = getTag();
- cerr << " [" << dwarf::TagString(Tag) << "] ";
+ /// isValidDebugInfoIntrinsic - Return true if REI is a valid debug
+ /// info intrinsic.
+ bool isValidDebugInfoIntrinsic(DbgRegionEndInst &REI,
+ CodeGenOpt::Level OptLev) {
+ return DIDescriptor::ValidDebugInfo(REI.getContext(), OptLev);
+ }
- // TODO : Print context
- getCompileUnit().dump();
- cerr << " [" << getLineNumber() << "] ";
- if (isLocalToUnit())
- cerr << " [local] ";
+ /// isValidDebugInfoIntrinsic - Return true if DI is a valid debug
+ /// info intrinsic.
+ bool isValidDebugInfoIntrinsic(DbgDeclareInst &DI,
+ CodeGenOpt::Level OptLev) {
+ return DIDescriptor::ValidDebugInfo(DI.getVariable(), OptLev);
+ }
- if (isDefinition())
- cerr << " [def] ";
+ /// ExtractDebugLocation - Extract debug location information
+ /// from llvm.dbg.stoppoint intrinsic.
+ DebugLoc ExtractDebugLocation(DbgStopPointInst &SPI,
+ DebugLocTracker &DebugLocInfo) {
+ DebugLoc DL;
+ Value *Context = SPI.getContext();
+
+ // If this location is already tracked then use it.
+ DebugLocTuple Tuple(cast<GlobalVariable>(Context), SPI.getLine(),
+ SPI.getColumn());
+ DenseMap<DebugLocTuple, unsigned>::iterator II
+ = DebugLocInfo.DebugIdMap.find(Tuple);
+ if (II != DebugLocInfo.DebugIdMap.end())
+ return DebugLoc::get(II->second);
+
+ // Add a new location entry.
+ unsigned Id = DebugLocInfo.DebugLocations.size();
+ DebugLocInfo.DebugLocations.push_back(Tuple);
+ DebugLocInfo.DebugIdMap[Tuple] = Id;
+
+ return DebugLoc::get(Id);
+ }
- if (isGlobalVariable(Tag))
- DIGlobalVariable(DbgGV).dump();
+ /// ExtractDebugLocation - Extract debug location information
+ /// from llvm.dbg.func_start intrinsic.
+ DebugLoc ExtractDebugLocation(DbgFuncStartInst &FSI,
+ DebugLocTracker &DebugLocInfo) {
+ DebugLoc DL;
+ Value *SP = FSI.getSubprogram();
+
+ DISubprogram Subprogram(cast<GlobalVariable>(SP));
+ unsigned Line = Subprogram.getLineNumber();
+ DICompileUnit CU(Subprogram.getCompileUnit());
+
+ // If this location is already tracked then use it.
+ DebugLocTuple Tuple(CU.getGV(), Line, /* Column */ 0);
+ DenseMap<DebugLocTuple, unsigned>::iterator II
+ = DebugLocInfo.DebugIdMap.find(Tuple);
+ if (II != DebugLocInfo.DebugIdMap.end())
+ return DebugLoc::get(II->second);
+
+ // Add a new location entry.
+ unsigned Id = DebugLocInfo.DebugLocations.size();
+ DebugLocInfo.DebugLocations.push_back(Tuple);
+ DebugLocInfo.DebugIdMap[Tuple] = Id;
+
+ return DebugLoc::get(Id);
+ }
- cerr << "\n";
-}
+ /// isInlinedFnStart - Return true if FSI is starting an inlined function.
+ bool isInlinedFnStart(DbgFuncStartInst &FSI, const Function *CurrentFn) {
+ DISubprogram Subprogram(cast<GlobalVariable>(FSI.getSubprogram()));
+ if (Subprogram.describes(CurrentFn))
+ return false;
-/// dump - Print subprogram.
-void DISubprogram::dump() const {
- DIGlobal::dump();
-}
+ return true;
+ }
-/// dump - Print global variable.
-void DIGlobalVariable::dump() const {
- cerr << " ["; getGlobal()->dump(); cerr << "] ";
-}
+ /// isInlinedFnEnd - Return true if REI is ending an inlined function.
+ bool isInlinedFnEnd(DbgRegionEndInst &REI, const Function *CurrentFn) {
+ DISubprogram Subprogram(cast<GlobalVariable>(REI.getContext()));
+ if (Subprogram.isNull() || Subprogram.describes(CurrentFn))
+ return false;
-/// dump - Print variable.
-void DIVariable::dump() const {
- std::string Res;
- if (!getName(Res).empty())
- cerr << " [" << Res << "] ";
+ return true;
+ }
- getCompileUnit().dump();
- cerr << " [" << getLineNumber() << "] ";
- getType().dump();
- cerr << "\n";
}
-
diff --git a/lib/Analysis/IPA/Andersens.cpp b/lib/Analysis/IPA/Andersens.cpp
index 4ace049..3fb6526 100644
--- a/lib/Analysis/IPA/Andersens.cpp
+++ b/lib/Analysis/IPA/Andersens.cpp
@@ -211,7 +211,7 @@ namespace {
// for each location equivalent Node.
struct Node {
private:
- static unsigned Counter;
+ static volatile sys::cas_flag Counter;
public:
Value *Val;
@@ -618,7 +618,7 @@ X("anders-aa", "Andersen's Interprocedural Alias Analysis", false, true);
static RegisterAnalysisGroup<AliasAnalysis> Y(X);
// Initialize Timestamp Counter (static).
-unsigned Andersens::Node::Counter = 0;
+volatile llvm::sys::cas_flag Andersens::Node::Counter = 0;
ModulePass *llvm::createAndersensPass() { return new Andersens(); }
diff --git a/lib/Analysis/LoopDependenceAnalysis.cpp b/lib/Analysis/LoopDependenceAnalysis.cpp
index 172a2be..f605783 100644
--- a/lib/Analysis/LoopDependenceAnalysis.cpp
+++ b/lib/Analysis/LoopDependenceAnalysis.cpp
@@ -18,9 +18,13 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lda"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopDependenceAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Instructions.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetData.h"
using namespace llvm;
LoopPass *llvm::createLoopDependenceAnalysisPass() {
@@ -32,16 +36,132 @@ R("lda", "Loop Dependence Analysis", false, true);
char LoopDependenceAnalysis::ID = 0;
//===----------------------------------------------------------------------===//
+// Utility Functions
+//===----------------------------------------------------------------------===//
+
+static inline bool IsMemRefInstr(const Value *V) {
+ const Instruction *I = dyn_cast<const Instruction>(V);
+ return I && (I->mayReadFromMemory() || I->mayWriteToMemory());
+}
+
+static void GetMemRefInstrs(
+ const Loop *L, SmallVectorImpl<Instruction*> &memrefs) {
+ for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
+ b != be; ++b)
+ for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end();
+ i != ie; ++i)
+ if (IsMemRefInstr(i))
+ memrefs.push_back(i);
+}
+
+static bool IsLoadOrStoreInst(Value *I) {
+ return isa<LoadInst>(I) || isa<StoreInst>(I);
+}
+
+static Value *GetPointerOperand(Value *I) {
+ if (LoadInst *i = dyn_cast<LoadInst>(I))
+ return i->getPointerOperand();
+ if (StoreInst *i = dyn_cast<StoreInst>(I))
+ return i->getPointerOperand();
+ assert(0 && "Value is no load or store instruction!");
+ // Never reached.
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Dependence Testing
+//===----------------------------------------------------------------------===//
+
+bool LoopDependenceAnalysis::isDependencePair(const Value *x,
+ const Value *y) const {
+ return IsMemRefInstr(x) &&
+ IsMemRefInstr(y) &&
+ (cast<const Instruction>(x)->mayWriteToMemory() ||
+ cast<const Instruction>(y)->mayWriteToMemory());
+}
+
+bool LoopDependenceAnalysis::depends(Value *src, Value *dst) {
+ assert(isDependencePair(src, dst) && "Values form no dependence pair!");
+ DOUT << "== LDA test ==\n" << *src << *dst;
+
+ // We only analyse loads and stores; for possible memory accesses by e.g.
+ // free, call, or invoke instructions we conservatively assume dependence.
+ if (!IsLoadOrStoreInst(src) || !IsLoadOrStoreInst(dst))
+ return true;
+
+ Value *srcPtr = GetPointerOperand(src);
+ Value *dstPtr = GetPointerOperand(dst);
+ const Value *srcObj = srcPtr->getUnderlyingObject();
+ const Value *dstObj = dstPtr->getUnderlyingObject();
+ AliasAnalysis::AliasResult alias = AA->alias(
+ srcObj, AA->getTargetData().getTypeStoreSize(srcObj->getType()),
+ dstObj, AA->getTargetData().getTypeStoreSize(dstObj->getType()));
+
+ // If we don't know whether or not the two objects alias, assume dependence.
+ if (alias == AliasAnalysis::MayAlias)
+ return true;
+
+ // If the objects noalias, they are distinct, accesses are independent.
+ if (alias == AliasAnalysis::NoAlias)
+ return false;
+
+ // TODO: the underlying objects MustAlias, test for dependence
+
+ // We couldn't establish a more precise result, so we have to conservatively
+ // assume full dependence.
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
// LoopDependenceAnalysis Implementation
//===----------------------------------------------------------------------===//
bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) {
this->L = L;
+ AA = &getAnalysis<AliasAnalysis>();
SE = &getAnalysis<ScalarEvolution>();
return false;
}
void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
- AU.addRequired<ScalarEvolution>();
+ AU.addRequiredTransitive<AliasAnalysis>();
+ AU.addRequiredTransitive<ScalarEvolution>();
+}
+
+static void PrintLoopInfo(
+ raw_ostream &OS, LoopDependenceAnalysis *LDA, const Loop *L) {
+ if (!L->empty()) return; // ignore non-innermost loops
+
+ SmallVector<Instruction*, 8> memrefs;
+ GetMemRefInstrs(L, memrefs);
+
+ OS << "Loop at depth " << L->getLoopDepth() << ", header block: ";
+ WriteAsOperand(OS, L->getHeader(), false);
+ OS << "\n";
+
+ OS << " Load/store instructions: " << memrefs.size() << "\n";
+ for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
+ end = memrefs.end(); x != end; ++x)
+ OS << "\t" << (x - memrefs.begin()) << ": " << **x;
+
+ OS << " Pairwise dependence results:\n";
+ for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
+ end = memrefs.end(); x != end; ++x)
+ for (SmallVector<Instruction*, 8>::const_iterator y = x + 1;
+ y != end; ++y)
+ if (LDA->isDependencePair(*x, *y))
+ OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin())
+ << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent")
+ << "\n";
+}
+
+void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const {
+ // TODO: doc why const_cast is safe
+ PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L);
+}
+
+void LoopDependenceAnalysis::print(std::ostream &OS, const Module *M) const {
+ raw_os_ostream os(OS);
+ print(os, M);
}
diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp
index a0d3974..bb53589 100644
--- a/lib/Analysis/LoopInfo.cpp
+++ b/lib/Analysis/LoopInfo.cpp
@@ -39,7 +39,7 @@ X("loops", "Natural Loop Information", true, true);
//
bool LoopInfo::runOnFunction(Function &) {
releaseMemory();
- LI->Calculate(getAnalysis<DominatorTree>().getBase()); // Update
+ LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
return false;
}
diff --git a/lib/Analysis/LoopPass.cpp b/lib/Analysis/LoopPass.cpp
index 08c25f4..ee03556 100644
--- a/lib/Analysis/LoopPass.cpp
+++ b/lib/Analysis/LoopPass.cpp
@@ -195,6 +195,9 @@ bool LPPassManager::runOnFunction(Function &F) {
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
addLoopIntoQueue(*I, LQ);
+ if (LQ.empty()) // No loops, skip calling finalizers
+ return false;
+
// Initialization
for (std::deque<Loop *>::const_iterator I = LQ.begin(), E = LQ.end();
I != E; ++I) {
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index dcb179af..4081562 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -110,7 +110,9 @@ char ScalarEvolution::ID = 0;
//===----------------------------------------------------------------------===//
// Implementation of the SCEV class.
//
+
SCEV::~SCEV() {}
+
void SCEV::dump() const {
print(errs());
errs() << '\n';
@@ -142,6 +144,10 @@ bool SCEV::isAllOnesValue() const {
SCEVCouldNotCompute::SCEVCouldNotCompute() :
SCEV(scCouldNotCompute) {}
+void SCEVCouldNotCompute::Profile(FoldingSetNodeID &ID) const {
+ assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+}
+
bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
return false;
@@ -174,9 +180,15 @@ bool SCEVCouldNotCompute::classof(const SCEV *S) {
}
const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
- SCEVConstant *&R = SCEVConstants[V];
- if (R == 0) R = new SCEVConstant(V);
- return R;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scConstant);
+ ID.AddPointer(V);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
+ new (S) SCEVConstant(V);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
@@ -188,6 +200,11 @@ ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
}
+void SCEVConstant::Profile(FoldingSetNodeID &ID) const {
+ ID.AddInteger(scConstant);
+ ID.AddPointer(V);
+}
+
const Type *SCEVConstant::getType() const { return V->getType(); }
void SCEVConstant::print(raw_ostream &OS) const {
@@ -198,6 +215,12 @@ SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
const SCEV* op, const Type *ty)
: SCEV(SCEVTy), Op(op), Ty(ty) {}
+void SCEVCastExpr::Profile(FoldingSetNodeID &ID) const {
+ ID.AddInteger(getSCEVType());
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+}
+
bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return Op->dominates(BB, DT);
}
@@ -277,6 +300,13 @@ SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
return this;
}
+void SCEVNAryExpr::Profile(FoldingSetNodeID &ID) const {
+ ID.AddInteger(getSCEVType());
+ ID.AddInteger(Operands.size());
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+ ID.AddPointer(Operands[i]);
+}
+
bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
if (!getOperand(i)->dominates(BB, DT))
@@ -285,6 +315,12 @@ bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return true;
}
+void SCEVUDivExpr::Profile(FoldingSetNodeID &ID) const {
+ ID.AddInteger(scUDivExpr);
+ ID.AddPointer(LHS);
+ ID.AddPointer(RHS);
+}
+
bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
}
@@ -302,6 +338,14 @@ const Type *SCEVUDivExpr::getType() const {
return RHS->getType();
}
+void SCEVAddRecExpr::Profile(FoldingSetNodeID &ID) const {
+ ID.AddInteger(scAddRecExpr);
+ ID.AddInteger(Operands.size());
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+ ID.AddPointer(Operands[i]);
+ ID.AddPointer(L);
+}
+
const SCEV *
SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
const SCEV *Conc,
@@ -345,7 +389,6 @@ bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
return true;
}
-
void SCEVAddRecExpr::print(raw_ostream &OS) const {
OS << "{" << *Operands[0];
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
@@ -353,6 +396,11 @@ void SCEVAddRecExpr::print(raw_ostream &OS) const {
OS << "}<" << L->getHeader()->getName() + ">";
}
+void SCEVUnknown::Profile(FoldingSetNodeID &ID) const {
+ ID.AddInteger(scUnknown);
+ ID.AddPointer(V);
+}
+
bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
// All non-instruction values are loop invariant. All instructions are loop
// invariant if they are not contained in the specified loop.
@@ -696,6 +744,7 @@ const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
+ // Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
@@ -720,9 +769,16 @@ const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
return getAddRecExpr(Operands, AddRec->getLoop());
}
- SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
- if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scTruncate);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
+ new (S) SCEVTruncateExpr(Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
@@ -733,6 +789,7 @@ const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
+ // Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
const Type *IntTy = getEffectiveSCEVType(Ty);
Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
@@ -808,9 +865,16 @@ const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
}
}
- SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
- if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scZeroExtend);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
+ new (S) SCEVZeroExtendExpr(Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
@@ -821,6 +885,7 @@ const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
+ // Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
const Type *IntTy = getEffectiveSCEVType(Ty);
Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
@@ -880,9 +945,16 @@ const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
}
}
- SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)];
- if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scSignExtend);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
+ new (S) SCEVSignExtendExpr(Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
/// getAnyExtendExpr - Return a SCEV for the given operand extended with
@@ -980,9 +1052,8 @@ CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
const SCEV* Key = SE.getMulExpr(MulOps);
std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
- M.insert(std::make_pair(Key, APInt()));
+ M.insert(std::make_pair(Key, NewScale));
if (Pair.second) {
- Pair.first->second = NewScale;
NewOps.push_back(Pair.first->first);
} else {
Pair.first->second += NewScale;
@@ -999,9 +1070,8 @@ CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
} else {
// An ordinary operand. Update the map.
std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
- M.insert(std::make_pair(Ops[i], APInt()));
+ M.insert(std::make_pair(Ops[i], Scale));
if (Pair.second) {
- Pair.first->second = Scale;
NewOps.push_back(Pair.first->first);
} else {
Pair.first->second += Scale;
@@ -1343,11 +1413,17 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
// Okay, it looks like we really DO need an add expr. Check to see if we
// already have one, otherwise create a new one.
- std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
- SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
- SCEVOps)];
- if (Result == 0) Result = new SCEVAddExpr(Ops);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scAddExpr);
+ ID.AddInteger(Ops.size());
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ ID.AddPointer(Ops[i]);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
+ new (S) SCEVAddExpr(Ops);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
@@ -1508,12 +1584,17 @@ const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
// Okay, it looks like we really DO need an mul expr. Check to see if we
// already have one, otherwise create a new one.
- std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
- SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
- SCEVOps)];
- if (Result == 0)
- Result = new SCEVMulExpr(Ops);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scMulExpr);
+ ID.AddInteger(Ops.size());
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ ID.AddPointer(Ops[i]);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
+ new (S) SCEVMulExpr(Ops);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
/// getUDivExpr - Get a canonical multiply expression, or something simpler if
@@ -1603,9 +1684,16 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
}
}
- SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
- if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scUDivExpr);
+ ID.AddPointer(LHS);
+ ID.AddPointer(RHS);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
+ new (S) SCEVUDivExpr(LHS, RHS);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
@@ -1677,10 +1765,18 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
}
}
- std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
- SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)];
- if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scAddRecExpr);
+ ID.AddInteger(Operands.size());
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+ ID.AddPointer(Operands[i]);
+ ID.AddPointer(L);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
+ new (S) SCEVAddRecExpr(Operands, L);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
@@ -1767,11 +1863,17 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
// Okay, it looks like we really DO need an smax expr. Check to see if we
// already have one, otherwise create a new one.
- std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
- SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr,
- SCEVOps)];
- if (Result == 0) Result = new SCEVSMaxExpr(Ops);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scSMaxExpr);
+ ID.AddInteger(Ops.size());
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ ID.AddPointer(Ops[i]);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
+ new (S) SCEVSMaxExpr(Ops);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
@@ -1858,11 +1960,17 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
// Okay, it looks like we really DO need a umax expr. Check to see if we
// already have one, otherwise create a new one.
- std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
- SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr,
- SCEVOps)];
- if (Result == 0) Result = new SCEVUMaxExpr(Ops);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scUMaxExpr);
+ ID.AddInteger(Ops.size());
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ ID.AddPointer(Ops[i]);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
+ new (S) SCEVUMaxExpr(Ops);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
@@ -1883,9 +1991,15 @@ const SCEV* ScalarEvolution::getUnknown(Value *V) {
// interesting possibilities, and any other code that calls getUnknown
// is doing so in order to hide a value from SCEV canonicalization.
- SCEVUnknown *&Result = SCEVUnknowns[V];
- if (Result == 0) Result = new SCEVUnknown(V);
- return Result;
+ FoldingSetNodeID ID;
+ ID.AddInteger(scUnknown);
+ ID.AddPointer(V);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
+ new (S) SCEVUnknown(V);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
}
//===----------------------------------------------------------------------===//
@@ -1939,7 +2053,7 @@ const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
}
const SCEV* ScalarEvolution::getCouldNotCompute() {
- return CouldNotCompute;
+ return &CouldNotCompute;
}
/// hasSCEV - Return true if the SCEV for this value has already been
@@ -2750,7 +2864,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
if (Pair.second) {
BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
- if (ItCount.Exact != CouldNotCompute) {
+ if (ItCount.Exact != getCouldNotCompute()) {
assert(ItCount.Exact->isLoopInvariant(L) &&
ItCount.Max->isLoopInvariant(L) &&
"Computed trip count isn't loop invariant for loop!");
@@ -2759,7 +2873,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
// Update the value in the map.
Pair.first->second = ItCount;
} else {
- if (ItCount.Max != CouldNotCompute)
+ if (ItCount.Max != getCouldNotCompute())
// Update the value in the map.
Pair.first->second = ItCount;
if (isa<PHINode>(L->getHeader()->begin()))
@@ -2825,27 +2939,27 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
L->getExitingBlocks(ExitingBlocks);
// Examine all exits and pick the most conservative values.
- const SCEV* BECount = CouldNotCompute;
- const SCEV* MaxBECount = CouldNotCompute;
+ const SCEV* BECount = getCouldNotCompute();
+ const SCEV* MaxBECount = getCouldNotCompute();
bool CouldNotComputeBECount = false;
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BackedgeTakenInfo NewBTI =
ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
- if (NewBTI.Exact == CouldNotCompute) {
+ if (NewBTI.Exact == getCouldNotCompute()) {
// We couldn't compute an exact value for this exit, so
// we won't be able to compute an exact value for the loop.
CouldNotComputeBECount = true;
- BECount = CouldNotCompute;
+ BECount = getCouldNotCompute();
} else if (!CouldNotComputeBECount) {
- if (BECount == CouldNotCompute)
+ if (BECount == getCouldNotCompute())
BECount = NewBTI.Exact;
else
BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
}
- if (MaxBECount == CouldNotCompute)
+ if (MaxBECount == getCouldNotCompute())
MaxBECount = NewBTI.Max;
- else if (NewBTI.Max != CouldNotCompute)
+ else if (NewBTI.Max != getCouldNotCompute())
MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
}
@@ -2863,7 +2977,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
//
// FIXME: we should be able to handle switch instructions (with a single exit)
BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
- if (ExitBr == 0) return CouldNotCompute;
+ if (ExitBr == 0) return getCouldNotCompute();
assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
// At this point, we know we have a conditional branch that determines whether
@@ -2892,7 +3006,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
BasicBlock *Pred = BB->getUniquePredecessor();
if (!Pred)
- return CouldNotCompute;
+ return getCouldNotCompute();
TerminatorInst *PredTerm = Pred->getTerminator();
for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
BasicBlock *PredSucc = PredTerm->getSuccessor(i);
@@ -2901,7 +3015,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
// If the predecessor has a successor that isn't BB and isn't
// outside the loop, assume the worst.
if (L->contains(PredSucc))
- return CouldNotCompute;
+ return getCouldNotCompute();
}
if (Pred == L->getHeader()) {
Ok = true;
@@ -2910,7 +3024,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
BB = Pred;
}
if (!Ok)
- return CouldNotCompute;
+ return getCouldNotCompute();
}
// Procede to the next level to examine the exit condition expression.
@@ -2935,27 +3049,30 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
BackedgeTakenInfo BTI1 =
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
- const SCEV* BECount = CouldNotCompute;
- const SCEV* MaxBECount = CouldNotCompute;
+ const SCEV* BECount = getCouldNotCompute();
+ const SCEV* MaxBECount = getCouldNotCompute();
if (L->contains(TBB)) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
- if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
- BECount = CouldNotCompute;
+ if (BTI0.Exact == getCouldNotCompute() ||
+ BTI1.Exact == getCouldNotCompute())
+ BECount = getCouldNotCompute();
else
BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
- if (BTI0.Max == CouldNotCompute)
+ if (BTI0.Max == getCouldNotCompute())
MaxBECount = BTI1.Max;
- else if (BTI1.Max == CouldNotCompute)
+ else if (BTI1.Max == getCouldNotCompute())
MaxBECount = BTI0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
} else {
// Both conditions must be true for the loop to exit.
assert(L->contains(FBB) && "Loop block has no successor in loop!");
- if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
+ if (BTI0.Exact != getCouldNotCompute() &&
+ BTI1.Exact != getCouldNotCompute())
BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
- if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
+ if (BTI0.Max != getCouldNotCompute() &&
+ BTI1.Max != getCouldNotCompute())
MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
}
@@ -2967,27 +3084,30 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
BackedgeTakenInfo BTI1 =
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
- const SCEV* BECount = CouldNotCompute;
- const SCEV* MaxBECount = CouldNotCompute;
+ const SCEV* BECount = getCouldNotCompute();
+ const SCEV* MaxBECount = getCouldNotCompute();
if (L->contains(FBB)) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
- if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
- BECount = CouldNotCompute;
+ if (BTI0.Exact == getCouldNotCompute() ||
+ BTI1.Exact == getCouldNotCompute())
+ BECount = getCouldNotCompute();
else
BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
- if (BTI0.Max == CouldNotCompute)
+ if (BTI0.Max == getCouldNotCompute())
MaxBECount = BTI1.Max;
- else if (BTI1.Max == CouldNotCompute)
+ else if (BTI1.Max == getCouldNotCompute())
MaxBECount = BTI0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
} else {
// Both conditions must be false for the loop to exit.
assert(L->contains(TBB) && "Loop block has no successor in loop!");
- if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
+ if (BTI0.Exact != getCouldNotCompute() &&
+ BTI1.Exact != getCouldNotCompute())
BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
- if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
+ if (BTI0.Max != getCouldNotCompute() &&
+ BTI1.Max != getCouldNotCompute())
MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
}
@@ -3164,11 +3284,11 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
Constant *RHS,
const Loop *L,
ICmpInst::Predicate predicate) {
- if (LI->isVolatile()) return CouldNotCompute;
+ if (LI->isVolatile()) return getCouldNotCompute();
// Check to see if the loaded pointer is a getelementptr of a global.
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
- if (!GEP) return CouldNotCompute;
+ if (!GEP) return getCouldNotCompute();
// Make sure that it is really a constant global we are gepping, with an
// initializer, and make sure the first IDX is really 0.
@@ -3176,7 +3296,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
!cast<Constant>(GEP->getOperand(1))->isNullValue())
- return CouldNotCompute;
+ return getCouldNotCompute();
// Okay, we allow one non-constant index into the GEP instruction.
Value *VarIdx = 0;
@@ -3186,7 +3306,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
Indexes.push_back(CI);
} else if (!isa<ConstantInt>(GEP->getOperand(i))) {
- if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's.
+ if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
VarIdx = GEP->getOperand(i);
VarIdxNum = i-2;
Indexes.push_back(0);
@@ -3203,7 +3323,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
!isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
!isa<SCEVConstant>(IdxExpr->getOperand(1)))
- return CouldNotCompute;
+ return getCouldNotCompute();
unsigned MaxSteps = MaxBruteForceIterations;
for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
@@ -3230,7 +3350,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
return getConstant(ItCst); // Found terminating iteration!
}
}
- return CouldNotCompute;
+ return getCouldNotCompute();
}
@@ -3371,13 +3491,13 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
/// constant number of times (the condition evolves only from constants),
/// try to evaluate a few iterations of the loop until we get the exit
/// condition gets a value of ExitWhen (true or false). If we cannot
-/// evaluate the trip count of the loop, return CouldNotCompute.
+/// evaluate the trip count of the loop, return getCouldNotCompute().
const SCEV *
ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
Value *Cond,
bool ExitWhen) {
PHINode *PN = getConstantEvolvingPHI(Cond, L);
- if (PN == 0) return CouldNotCompute;
+ if (PN == 0) return getCouldNotCompute();
// Since the loop is canonicalized, the PHI node must have two entries. One
// entry must be a constant (coming in from outside of the loop), and the
@@ -3385,11 +3505,11 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Constant *StartCST =
dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
- if (StartCST == 0) return CouldNotCompute; // Must be a constant.
+ if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
- if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI.
+ if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
// Okay, we find a PHI node that defines the trip count of this loop. Execute
// the loop symbolically to determine when the condition gets a value of
@@ -3402,10 +3522,9 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
// Couldn't symbolically evaluate.
- if (!CondVal) return CouldNotCompute;
+ if (!CondVal) return getCouldNotCompute();
if (CondVal->getValue() == uint64_t(ExitWhen)) {
- ConstantEvolutionLoopExitValue[PN] = PHIVal;
++NumBruteForceTripCountsComputed;
return getConstant(Type::Int32Ty, IterationNum);
}
@@ -3413,12 +3532,12 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
// Compute the value of the PHI node for the next iteration.
Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
if (NextPHI == 0 || NextPHI == PHIVal)
- return CouldNotCompute; // Couldn't evaluate or not making progress...
+ return getCouldNotCompute();// Couldn't evaluate or not making progress...
PHIVal = NextPHI;
}
// Too many iterations were needed to evaluate.
- return CouldNotCompute;
+ return getCouldNotCompute();
}
/// getSCEVAtScope - Return a SCEV expression handle for the specified value
@@ -3457,7 +3576,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Constant *RV = getConstantEvolutionLoopExitValue(PN,
BTCC->getValue()->getValue(),
LI);
- if (RV) return getUnknown(RV);
+ if (RV) return getSCEV(RV);
}
}
@@ -3471,7 +3590,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
if (!Pair.second)
- return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
+ return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
std::vector<Constant*> Operands;
Operands.reserve(I->getNumOperands());
@@ -3520,7 +3639,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
&Operands[0], Operands.size());
Pair.first->second = C;
- return getUnknown(C);
+ return getSCEV(C);
}
}
@@ -3574,7 +3693,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
// To evaluate this recurrence, we need to know how many times the AddRec
// loop iterates. Compute this now.
const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
- if (BackedgeTakenCount == CouldNotCompute) return AddRec;
+ if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
// Then, evaluate the AddRec.
return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
@@ -3729,12 +3848,12 @@ const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
// If the value is already zero, the branch will execute zero times.
if (C->getValue()->isZero()) return C;
- return CouldNotCompute; // Otherwise it will loop infinitely.
+ return getCouldNotCompute(); // Otherwise it will loop infinitely.
}
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
if (!AddRec || AddRec->getLoop() != L)
- return CouldNotCompute;
+ return getCouldNotCompute();
if (AddRec->isAffine()) {
// If this is an affine expression, the execution count of this branch is
@@ -3798,7 +3917,7 @@ const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
}
}
- return CouldNotCompute;
+ return getCouldNotCompute();
}
/// HowFarToNonZero - Return the number of times a backedge checking the
@@ -3814,12 +3933,12 @@ const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
if (!C->getValue()->isNullValue())
return getIntegerSCEV(0, C->getType());
- return CouldNotCompute; // Otherwise it will loop infinitely.
+ return getCouldNotCompute(); // Otherwise it will loop infinitely.
}
// We could implement others, but I really doubt anyone writes loops like
// this, and if they did, they would already be constant folded.
- return CouldNotCompute;
+ return getCouldNotCompute();
}
/// getLoopPredecessor - If the given loop's header has exactly one unique
@@ -4037,7 +4156,7 @@ const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
getAddExpr(getZeroExtendExpr(Diff, WideTy),
getZeroExtendExpr(RoundUp, WideTy));
if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
- return CouldNotCompute;
+ return getCouldNotCompute();
return getUDivExpr(Add, Step);
}
@@ -4049,11 +4168,11 @@ ScalarEvolution::BackedgeTakenInfo
ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool isSigned) {
// Only handle: "ADDREC < LoopInvariant".
- if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
+ if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
if (!AddRec || AddRec->getLoop() != L)
- return CouldNotCompute;
+ return getCouldNotCompute();
if (AddRec->isAffine()) {
// FORNOW: We only support unit strides.
@@ -4063,7 +4182,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
// TODO: handle non-constant strides.
const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
if (!CStep || CStep->isZero())
- return CouldNotCompute;
+ return getCouldNotCompute();
if (CStep->isOne()) {
// With unit stride, the iteration never steps past the limit value.
} else if (CStep->getValue()->getValue().isStrictlyPositive()) {
@@ -4074,19 +4193,19 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
APInt Max = APInt::getSignedMaxValue(BitWidth);
if ((Max - CStep->getValue()->getValue())
.slt(CLimit->getValue()->getValue()))
- return CouldNotCompute;
+ return getCouldNotCompute();
} else {
APInt Max = APInt::getMaxValue(BitWidth);
if ((Max - CStep->getValue()->getValue())
.ult(CLimit->getValue()->getValue()))
- return CouldNotCompute;
+ return getCouldNotCompute();
}
} else
// TODO: handle non-constant limit values below.
- return CouldNotCompute;
+ return getCouldNotCompute();
} else
// TODO: handle negative strides below.
- return CouldNotCompute;
+ return getCouldNotCompute();
// We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
// m. So, we count the number of iterations in which {n,+,s} < m is true.
@@ -4126,12 +4245,12 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
// The maximum backedge count is similar, except using the minimum start
// value and the maximum end value.
- const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);;
+ const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);
return BackedgeTakenInfo(BECount, MaxBECount);
}
- return CouldNotCompute;
+ return getCouldNotCompute();
}
/// getNumIterationsInRange - Return the number of iterations of this loop that
@@ -4319,7 +4438,7 @@ ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
//===----------------------------------------------------------------------===//
ScalarEvolution::ScalarEvolution()
- : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) {
+ : FunctionPass(&ID) {
}
bool ScalarEvolution::runOnFunction(Function &F) {
@@ -4334,45 +4453,8 @@ void ScalarEvolution::releaseMemory() {
BackedgeTakenCounts.clear();
ConstantEvolutionLoopExitValue.clear();
ValuesAtScopes.clear();
-
- for (std::map<ConstantInt*, SCEVConstant*>::iterator
- I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I)
- delete I->second;
- for (std::map<std::pair<const SCEV*, const Type*>,
- SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(),
- E = SCEVTruncates.end(); I != E; ++I)
- delete I->second;
- for (std::map<std::pair<const SCEV*, const Type*>,
- SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(),
- E = SCEVZeroExtends.end(); I != E; ++I)
- delete I->second;
- for (std::map<std::pair<unsigned, std::vector<const SCEV*> >,
- SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(),
- E = SCEVCommExprs.end(); I != E; ++I)
- delete I->second;
- for (std::map<std::pair<const SCEV*, const SCEV*>, SCEVUDivExpr*>::iterator
- I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I)
- delete I->second;
- for (std::map<std::pair<const SCEV*, const Type*>,
- SCEVSignExtendExpr*>::iterator I = SCEVSignExtends.begin(),
- E = SCEVSignExtends.end(); I != E; ++I)
- delete I->second;
- for (std::map<std::pair<const Loop *, std::vector<const SCEV*> >,
- SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(),
- E = SCEVAddRecExprs.end(); I != E; ++I)
- delete I->second;
- for (std::map<Value*, SCEVUnknown*>::iterator I = SCEVUnknowns.begin(),
- E = SCEVUnknowns.end(); I != E; ++I)
- delete I->second;
-
- SCEVConstants.clear();
- SCEVTruncates.clear();
- SCEVZeroExtends.clear();
- SCEVCommExprs.clear();
- SCEVUDivs.clear();
- SCEVSignExtends.clear();
- SCEVAddRecExprs.clear();
- SCEVUnknowns.clear();
+ UniqueSCEVs.clear();
+ SCEVAllocator.Reset();
}
void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index 4cc5ebc..729a0c3 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -19,16 +19,24 @@
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
-/// InsertCastOfTo - Insert a cast of V to the specified type, doing what
-/// we can to share the casts.
-Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
- const Type *Ty) {
+/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
+/// which must be possible with a noop cast, doing what we can to share
+/// the casts.
+Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
+ Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
+ assert((Op == Instruction::BitCast ||
+ Op == Instruction::PtrToInt ||
+ Op == Instruction::IntToPtr) &&
+ "InsertNoopCastOfTo cannot perform non-noop casts!");
+ assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
+ "InsertNoopCastOfTo cannot change sizes!");
+
// Short-circuit unnecessary bitcasts.
- if (opcode == Instruction::BitCast && V->getType() == Ty)
+ if (Op == Instruction::BitCast && V->getType() == Ty)
return V;
// Short-circuit unnecessary inttoptr<->ptrtoint casts.
- if ((opcode == Instruction::PtrToInt || opcode == Instruction::IntToPtr) &&
+ if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
if (CastInst *CI = dyn_cast<CastInst>(V))
if ((CI->getOpcode() == Instruction::PtrToInt ||
@@ -46,7 +54,7 @@ Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
// FIXME: keep track of the cast instruction.
if (Constant *C = dyn_cast<Constant>(V))
- return ConstantExpr::getCast(opcode, C, Ty);
+ return ConstantExpr::getCast(Op, C, Ty);
if (Argument *A = dyn_cast<Argument>(V)) {
// Check to see if there is already a cast!
@@ -54,7 +62,7 @@ Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
UI != E; ++UI)
if ((*UI)->getType() == Ty)
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
- if (CI->getOpcode() == opcode) {
+ if (CI->getOpcode() == Op) {
// If the cast isn't the first instruction of the function, move it.
if (BasicBlock::iterator(CI) !=
A->getParent()->getEntryBlock().begin()) {
@@ -62,7 +70,7 @@ Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
// The old cast is left in place in case it is being used
// as an insert point.
Instruction *NewCI =
- CastInst::Create(opcode, V, Ty, "",
+ CastInst::Create(Op, V, Ty, "",
A->getParent()->getEntryBlock().begin());
NewCI->takeName(CI);
CI->replaceAllUsesWith(NewCI);
@@ -71,7 +79,7 @@ Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
return CI;
}
- Instruction *I = CastInst::Create(opcode, V, Ty, V->getName(),
+ Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
A->getParent()->getEntryBlock().begin());
InsertedValues.insert(I);
return I;
@@ -84,7 +92,7 @@ Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
UI != E; ++UI) {
if ((*UI)->getType() == Ty)
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
- if (CI->getOpcode() == opcode) {
+ if (CI->getOpcode() == Op) {
BasicBlock::iterator It = I; ++It;
if (isa<InvokeInst>(I))
It = cast<InvokeInst>(I)->getNormalDest()->begin();
@@ -93,7 +101,7 @@ Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
// Recreate the cast at the beginning of the entry block.
// The old cast is left in place in case it is being used
// as an insert point.
- Instruction *NewCI = CastInst::Create(opcode, V, Ty, "", It);
+ Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
NewCI->takeName(CI);
CI->replaceAllUsesWith(NewCI);
return NewCI;
@@ -105,28 +113,15 @@ Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
if (InvokeInst *II = dyn_cast<InvokeInst>(I))
IP = II->getNormalDest()->begin();
while (isa<PHINode>(IP)) ++IP;
- Instruction *CI = CastInst::Create(opcode, V, Ty, V->getName(), IP);
+ Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
InsertedValues.insert(CI);
return CI;
}
-/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
-/// which must be possible with a noop cast.
-Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
- Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
- assert((Op == Instruction::BitCast ||
- Op == Instruction::PtrToInt ||
- Op == Instruction::IntToPtr) &&
- "InsertNoopCastOfTo cannot perform non-noop casts!");
- assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
- "InsertNoopCastOfTo cannot change sizes!");
- return InsertCastOfTo(Op, V, Ty);
-}
-
/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
-Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
- Value *RHS, BasicBlock::iterator InsertPt) {
+Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
+ Value *LHS, Value *RHS) {
// Fold a binop with constant operands.
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
@@ -134,10 +129,10 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
// Do a quick scan to see if we have this binop nearby. If so, reuse it.
unsigned ScanLimit = 6;
- BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin();
- if (InsertPt != BlockBegin) {
- // Scanning starts from the last instruction before InsertPt.
- BasicBlock::iterator IP = InsertPt;
+ BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
+ // Scanning starts from the last instruction before the insertion point.
+ BasicBlock::iterator IP = Builder.GetInsertPoint();
+ if (IP != BlockBegin) {
--IP;
for (; ScanLimit; --IP, --ScanLimit) {
if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
@@ -146,9 +141,9 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
if (IP == BlockBegin) break;
}
}
-
+
// If we haven't found this binop, insert it.
- Instruction *BO = BinaryOperator::Create(Opcode, LHS, RHS, "tmp", InsertPt);
+ Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
InsertedValues.insert(BO);
return BO;
}
@@ -190,8 +185,9 @@ static bool FactorOutConstant(const SCEV* &S,
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S))
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
if (!C->getValue()->getValue().srem(Factor)) {
- const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
- SmallVector<const SCEV*, 4> NewMulOps(MOperands.begin(), MOperands.end());
+ const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
+ SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
+ MOperands.end());
NewMulOps[0] =
SE.getConstant(C->getValue()->getValue().sdiv(Factor));
S = SE.getMulExpr(NewMulOps);
@@ -336,10 +332,10 @@ Value *SCEVExpander::expandAddToGEP(const SCEV* const *op_begin,
// Do a quick scan to see if we have this GEP nearby. If so, reuse it.
unsigned ScanLimit = 6;
- BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin();
- if (InsertPt != BlockBegin) {
- // Scanning starts from the last instruction before InsertPt.
- BasicBlock::iterator IP = InsertPt;
+ BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
+ // Scanning starts from the last instruction before the insertion point.
+ BasicBlock::iterator IP = Builder.GetInsertPoint();
+ if (IP != BlockBegin) {
--IP;
for (; ScanLimit; --IP, --ScanLimit) {
if (IP->getOpcode() == Instruction::GetElementPtr &&
@@ -349,16 +345,16 @@ Value *SCEVExpander::expandAddToGEP(const SCEV* const *op_begin,
}
}
- Value *GEP = GetElementPtrInst::Create(V, Idx, "scevgep", InsertPt);
+ Value *GEP = Builder.CreateGEP(V, Idx, "scevgep");
InsertedValues.insert(GEP);
return GEP;
}
// Insert a pretty getelementptr.
- Value *GEP = GetElementPtrInst::Create(V,
- GepIndices.begin(),
- GepIndices.end(),
- "scevgep", InsertPt);
+ Value *GEP = Builder.CreateGEP(V,
+ GepIndices.begin(),
+ GepIndices.end(),
+ "scevgep");
Ops.push_back(SE.getUnknown(GEP));
InsertedValues.insert(GEP);
return expand(SE.getAddExpr(Ops));
@@ -373,8 +369,7 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
if (SE.TD)
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
const SmallVectorImpl<const SCEV*> &Ops = S->getOperands();
- return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1],
- PTy, Ty, V);
+ return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], PTy, Ty, V);
}
V = InsertNoopCastOfTo(V, Ty);
@@ -382,7 +377,7 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
// Emit a bunch of add instructions
for (int i = S->getNumOperands()-2; i >= 0; --i) {
Value *W = expandCodeFor(S->getOperand(i), Ty);
- V = InsertBinop(Instruction::Add, V, W, InsertPt);
+ V = InsertBinop(Instruction::Add, V, W);
}
return V;
}
@@ -400,12 +395,12 @@ Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
// Emit a bunch of multiply instructions
for (; i >= FirstOp; --i) {
Value *W = expandCodeFor(S->getOperand(i), Ty);
- V = InsertBinop(Instruction::Mul, V, W, InsertPt);
+ V = InsertBinop(Instruction::Mul, V, W);
}
// -1 * ... ---> 0 - ...
if (FirstOp == 1)
- V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V, InsertPt);
+ V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
return V;
}
@@ -417,12 +412,11 @@ Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
const APInt &RHS = SC->getValue()->getValue();
if (RHS.isPowerOf2())
return InsertBinop(Instruction::LShr, LHS,
- ConstantInt::get(Ty, RHS.logBase2()),
- InsertPt);
+ ConstantInt::get(Ty, RHS.logBase2()));
}
Value *RHS = expandCodeFor(S->getRHS(), Ty);
- return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
+ return InsertBinop(Instruction::UDiv, LHS, RHS);
}
/// Move parts of Base into Rest to leave Base with the minimal
@@ -463,18 +457,19 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
if (CanonicalIV &&
SE.getTypeSizeInBits(CanonicalIV->getType()) >
SE.getTypeSizeInBits(Ty)) {
- const SCEV* Start = SE.getAnyExtendExpr(S->getStart(),
+ const SCEV *Start = SE.getAnyExtendExpr(S->getStart(),
+ CanonicalIV->getType());
+ const SCEV *Step = SE.getAnyExtendExpr(S->getStepRecurrence(SE),
CanonicalIV->getType());
- const SCEV* Step = SE.getAnyExtendExpr(S->getStepRecurrence(SE),
- CanonicalIV->getType());
Value *V = expand(SE.getAddRecExpr(Start, Step, S->getLoop()));
- BasicBlock::iterator SaveInsertPt = InsertPt;
+ BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
+ BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
BasicBlock::iterator NewInsertPt =
next(BasicBlock::iterator(cast<Instruction>(V)));
while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
NewInsertPt);
- InsertPt = SaveInsertPt;
+ Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
return V;
}
@@ -524,9 +519,10 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// Create and insert the PHI node for the induction variable in the
// specified loop.
BasicBlock *Header = L->getHeader();
+ BasicBlock *Preheader = L->getLoopPreheader();
PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
InsertedValues.insert(PN);
- PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
+ PN->addIncoming(Constant::getNullValue(Ty), Preheader);
pred_iterator HPI = pred_begin(Header);
assert(HPI != pred_end(Header) && "Loop with zero preds???");
@@ -542,7 +538,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
InsertedValues.insert(Add);
pred_iterator PI = pred_begin(Header);
- if (*PI == L->getLoopPreheader())
+ if (*PI == Preheader)
++PI;
PN->addIncoming(Add, *PI);
return PN;
@@ -587,7 +583,7 @@ Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Instruction *I = new TruncInst(V, Ty, "tmp.", InsertPt);
+ Value *I = Builder.CreateTrunc(V, Ty, "tmp");
InsertedValues.insert(I);
return I;
}
@@ -596,7 +592,7 @@ Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Instruction *I = new ZExtInst(V, Ty, "tmp.", InsertPt);
+ Value *I = Builder.CreateZExt(V, Ty, "tmp");
InsertedValues.insert(I);
return I;
}
@@ -605,7 +601,7 @@ Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Instruction *I = new SExtInst(V, Ty, "tmp.", InsertPt);
+ Value *I = Builder.CreateSExt(V, Ty, "tmp");
InsertedValues.insert(I);
return I;
}
@@ -615,10 +611,9 @@ Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
Value *LHS = expandCodeFor(S->getOperand(0), Ty);
for (unsigned i = 1; i < S->getNumOperands(); ++i) {
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
- Instruction *ICmp =
- new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS, "tmp", InsertPt);
+ Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
InsertedValues.insert(ICmp);
- Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "smax", InsertPt);
+ Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
InsertedValues.insert(Sel);
LHS = Sel;
}
@@ -630,10 +625,9 @@ Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
Value *LHS = expandCodeFor(S->getOperand(0), Ty);
for (unsigned i = 1; i < S->getNumOperands(); ++i) {
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
- Instruction *ICmp =
- new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS, "tmp", InsertPt);
+ Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
InsertedValues.insert(ICmp);
- Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "umax", InsertPt);
+ Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
InsertedValues.insert(Sel);
LHS = Sel;
}
@@ -652,11 +646,10 @@ Value *SCEVExpander::expandCodeFor(const SCEV* SH, const Type *Ty) {
}
Value *SCEVExpander::expand(const SCEV *S) {
- BasicBlock::iterator SaveInsertPt = InsertPt;
-
// Compute an insertion point for this SCEV object. Hoist the instructions
// as far out in the loop nest as possible.
- for (Loop *L = SE.LI->getLoopFor(InsertPt->getParent()); ;
+ Instruction *InsertPt = Builder.GetInsertPoint();
+ for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
L = L->getParentLoop())
if (S->isLoopInvariant(L)) {
if (!L) break;
@@ -668,7 +661,8 @@ Value *SCEVExpander::expand(const SCEV *S) {
// there) so that it is guaranteed to dominate any user inside the loop.
if (L && S->hasComputableLoopEvolution(L))
InsertPt = L->getHeader()->getFirstNonPHI();
- while (isInsertedInstruction(InsertPt)) ++InsertPt;
+ while (isInsertedInstruction(InsertPt))
+ InsertPt = next(BasicBlock::iterator(InsertPt));
break;
}
@@ -676,10 +670,12 @@ Value *SCEVExpander::expand(const SCEV *S) {
std::map<std::pair<const SCEV *, Instruction *>,
AssertingVH<Value> >::iterator I =
InsertedExpressions.find(std::make_pair(S, InsertPt));
- if (I != InsertedExpressions.end()) {
- InsertPt = SaveInsertPt;
+ if (I != InsertedExpressions.end())
return I->second;
- }
+
+ BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
+ BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
+ Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
// Expand the expression into instructions.
Value *V = visit(S);
@@ -687,7 +683,7 @@ Value *SCEVExpander::expand(const SCEV *S) {
// Remember the expanded value for this SCEV at this location.
InsertedExpressions[std::make_pair(S, InsertPt)] = V;
- InsertPt = SaveInsertPt;
+ Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
return V;
}
@@ -701,8 +697,10 @@ SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
assert(Ty->isInteger() && "Can only insert integer induction variables!");
const SCEV* H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
SE.getIntegerSCEV(1, Ty), L);
- BasicBlock::iterator SaveInsertPt = InsertPt;
+ BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
+ BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
- InsertPt = SaveInsertPt;
+ if (SaveInsertBB)
+ Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
return V;
}
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 7509e91..07a18fe 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -249,7 +249,10 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
}
case Instruction::BitCast: {
const Type *SrcTy = I->getOperand(0)->getType();
- if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
+ if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+ // TODO: For now, not handling conversions like:
+ // (bitcast i64 %x to <2 x i32>)
+ !isa<VectorType>(I->getType())) {
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
Depth+1);
return;
OpenPOWER on IntegriCloud