diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /lib/Analysis/ScalarEvolutionExpander.cpp | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'lib/Analysis/ScalarEvolutionExpander.cpp')
-rw-r--r-- | lib/Analysis/ScalarEvolutionExpander.cpp | 646 |
1 files changed, 646 insertions, 0 deletions
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp new file mode 100644 index 0000000..7ba8268 --- /dev/null +++ b/lib/Analysis/ScalarEvolutionExpander.cpp @@ -0,0 +1,646 @@ +//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the scalar evolution expander, +// which is used to generate the code corresponding to a given scalar evolution +// expression. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Target/TargetData.h" +using namespace llvm; + +/// InsertCastOfTo - Insert a cast of V to the specified type, doing what +/// we can to share the casts. +Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V, + const Type *Ty) { + // Short-circuit unnecessary bitcasts. + if (opcode == Instruction::BitCast && V->getType() == Ty) + return V; + + // Short-circuit unnecessary inttoptr<->ptrtoint casts. + if ((opcode == Instruction::PtrToInt || opcode == Instruction::IntToPtr) && + SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { + if (CastInst *CI = dyn_cast<CastInst>(V)) + if ((CI->getOpcode() == Instruction::PtrToInt || + CI->getOpcode() == Instruction::IntToPtr) && + SE.getTypeSizeInBits(CI->getType()) == + SE.getTypeSizeInBits(CI->getOperand(0)->getType())) + return CI->getOperand(0); + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + if ((CE->getOpcode() == Instruction::PtrToInt || + CE->getOpcode() == Instruction::IntToPtr) && + SE.getTypeSizeInBits(CE->getType()) == + SE.getTypeSizeInBits(CE->getOperand(0)->getType())) + return CE->getOperand(0); + } + + // FIXME: keep track of the cast instruction. + if (Constant *C = dyn_cast<Constant>(V)) + return ConstantExpr::getCast(opcode, C, Ty); + + if (Argument *A = dyn_cast<Argument>(V)) { + // Check to see if there is already a cast! + for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); + UI != E; ++UI) { + if ((*UI)->getType() == Ty) + if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) + if (CI->getOpcode() == opcode) { + // If the cast isn't the first instruction of the function, move it. + if (BasicBlock::iterator(CI) != + A->getParent()->getEntryBlock().begin()) { + // If the CastInst is the insert point, change the insert point. + if (CI == InsertPt) ++InsertPt; + // Splice the cast at the beginning of the entry block. + CI->moveBefore(A->getParent()->getEntryBlock().begin()); + } + return CI; + } + } + Instruction *I = CastInst::Create(opcode, V, Ty, V->getName(), + A->getParent()->getEntryBlock().begin()); + InsertedValues.insert(I); + return I; + } + + Instruction *I = cast<Instruction>(V); + + // Check to see if there is already a cast. If there is, use it. + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) { + if ((*UI)->getType() == Ty) + if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) + if (CI->getOpcode() == opcode) { + BasicBlock::iterator It = I; ++It; + if (isa<InvokeInst>(I)) + It = cast<InvokeInst>(I)->getNormalDest()->begin(); + while (isa<PHINode>(It)) ++It; + if (It != BasicBlock::iterator(CI)) { + // If the CastInst is the insert point, change the insert point. + if (CI == InsertPt) ++InsertPt; + // Splice the cast immediately after the operand in question. + CI->moveBefore(It); + } + return CI; + } + } + BasicBlock::iterator IP = I; ++IP; + if (InvokeInst *II = dyn_cast<InvokeInst>(I)) + IP = II->getNormalDest()->begin(); + while (isa<PHINode>(IP)) ++IP; + Instruction *CI = CastInst::Create(opcode, V, Ty, V->getName(), IP); + InsertedValues.insert(CI); + return CI; +} + +/// InsertNoopCastOfTo - Insert a cast of V to the specified type, +/// which must be possible with a noop cast. +Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) { + Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); + assert((Op == Instruction::BitCast || + Op == Instruction::PtrToInt || + Op == Instruction::IntToPtr) && + "InsertNoopCastOfTo cannot perform non-noop casts!"); + assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && + "InsertNoopCastOfTo cannot change sizes!"); + return InsertCastOfTo(Op, V, Ty); +} + +/// InsertBinop - Insert the specified binary operator, doing a small amount +/// of work to avoid inserting an obviously redundant operation. +Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, + Value *RHS, BasicBlock::iterator InsertPt) { + // Fold a binop with constant operands. + if (Constant *CLHS = dyn_cast<Constant>(LHS)) + if (Constant *CRHS = dyn_cast<Constant>(RHS)) + return ConstantExpr::get(Opcode, CLHS, CRHS); + + // Do a quick scan to see if we have this binop nearby. If so, reuse it. + unsigned ScanLimit = 6; + BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin(); + if (InsertPt != BlockBegin) { + // Scanning starts from the last instruction before InsertPt. + BasicBlock::iterator IP = InsertPt; + --IP; + for (; ScanLimit; --IP, --ScanLimit) { + if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && + IP->getOperand(1) == RHS) + return IP; + if (IP == BlockBegin) break; + } + } + + // If we haven't found this binop, insert it. + Instruction *BO = BinaryOperator::Create(Opcode, LHS, RHS, "tmp", InsertPt); + InsertedValues.insert(BO); + return BO; +} + +/// FactorOutConstant - Test if S is divisible by Factor, using signed +/// division. If so, update S with Factor divided out and return true. +/// S need not be evenly divisble if a reasonable remainder can be +/// computed. +/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made +/// unnecessary; in its place, just signed-divide Ops[i] by the scale and +/// check to see if the divide was folded. +static bool FactorOutConstant(SCEVHandle &S, + SCEVHandle &Remainder, + const APInt &Factor, + ScalarEvolution &SE) { + // Everything is divisible by one. + if (Factor == 1) + return true; + + // For a Constant, check for a multiple of the given factor. + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { + ConstantInt *CI = + ConstantInt::get(C->getValue()->getValue().sdiv(Factor)); + // If the quotient is zero and the remainder is non-zero, reject + // the value at this scale. It will be considered for subsequent + // smaller scales. + if (C->isZero() || !CI->isZero()) { + SCEVHandle Div = SE.getConstant(CI); + S = Div; + Remainder = + SE.getAddExpr(Remainder, + SE.getConstant(C->getValue()->getValue().srem(Factor))); + return true; + } + } + + // In a Mul, check if there is a constant operand which is a multiple + // of the given factor. + if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) + if (!C->getValue()->getValue().srem(Factor)) { + std::vector<SCEVHandle> NewMulOps(M->getOperands()); + NewMulOps[0] = + SE.getConstant(C->getValue()->getValue().sdiv(Factor)); + S = SE.getMulExpr(NewMulOps); + return true; + } + + // In an AddRec, check if both start and step are divisible. + if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { + SCEVHandle Step = A->getStepRecurrence(SE); + SCEVHandle StepRem = SE.getIntegerSCEV(0, Step->getType()); + if (!FactorOutConstant(Step, StepRem, Factor, SE)) + return false; + if (!StepRem->isZero()) + return false; + SCEVHandle Start = A->getStart(); + if (!FactorOutConstant(Start, Remainder, Factor, SE)) + return false; + S = SE.getAddRecExpr(Start, Step, A->getLoop()); + return true; + } + + return false; +} + +/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP +/// instead of using ptrtoint+arithmetic+inttoptr. This helps +/// BasicAliasAnalysis analyze the result. However, it suffers from the +/// underlying bug described in PR2831. Addition in LLVM currently always +/// has two's complement wrapping guaranteed. However, the semantics for +/// getelementptr overflow are ambiguous. In the common case though, this +/// expansion gets used when a GEP in the original code has been converted +/// into integer arithmetic, in which case the resulting code will be no +/// more undefined than it was originally. +/// +/// Design note: It might seem desirable for this function to be more +/// loop-aware. If some of the indices are loop-invariant while others +/// aren't, it might seem desirable to emit multiple GEPs, keeping the +/// loop-invariant portions of the overall computation outside the loop. +/// However, there are a few reasons this is not done here. Hoisting simple +/// arithmetic is a low-level optimization that often isn't very +/// important until late in the optimization process. In fact, passes +/// like InstructionCombining will combine GEPs, even if it means +/// pushing loop-invariant computation down into loops, so even if the +/// GEPs were split here, the work would quickly be undone. The +/// LoopStrengthReduction pass, which is usually run quite late (and +/// after the last InstructionCombining pass), takes care of hoisting +/// loop-invariant portions of expressions, after considering what +/// can be folded using target addressing modes. +/// +Value *SCEVExpander::expandAddToGEP(const SCEVHandle *op_begin, + const SCEVHandle *op_end, + const PointerType *PTy, + const Type *Ty, + Value *V) { + const Type *ElTy = PTy->getElementType(); + SmallVector<Value *, 4> GepIndices; + std::vector<SCEVHandle> Ops(op_begin, op_end); + bool AnyNonZeroIndices = false; + + // Decend down the pointer's type and attempt to convert the other + // operands into GEP indices, at each level. The first index in a GEP + // indexes into the array implied by the pointer operand; the rest of + // the indices index into the element or field type selected by the + // preceding index. + for (;;) { + APInt ElSize = APInt(SE.getTypeSizeInBits(Ty), + ElTy->isSized() ? SE.TD->getTypeAllocSize(ElTy) : 0); + std::vector<SCEVHandle> NewOps; + std::vector<SCEVHandle> ScaledOps; + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { + // Split AddRecs up into parts as either of the parts may be usable + // without the other. + if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) + if (!A->getStart()->isZero()) { + SCEVHandle Start = A->getStart(); + Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()), + A->getStepRecurrence(SE), + A->getLoop())); + Ops[i] = Start; + ++e; + } + // If the scale size is not 0, attempt to factor out a scale. + if (ElSize != 0) { + SCEVHandle Op = Ops[i]; + SCEVHandle Remainder = SE.getIntegerSCEV(0, Op->getType()); + if (FactorOutConstant(Op, Remainder, ElSize, SE)) { + ScaledOps.push_back(Op); // Op now has ElSize factored out. + NewOps.push_back(Remainder); + continue; + } + } + // If the operand was not divisible, add it to the list of operands + // we'll scan next iteration. + NewOps.push_back(Ops[i]); + } + Ops = NewOps; + AnyNonZeroIndices |= !ScaledOps.empty(); + Value *Scaled = ScaledOps.empty() ? + Constant::getNullValue(Ty) : + expandCodeFor(SE.getAddExpr(ScaledOps), Ty); + GepIndices.push_back(Scaled); + + // Collect struct field index operands. + if (!Ops.empty()) + while (const StructType *STy = dyn_cast<StructType>(ElTy)) { + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) + if (SE.getTypeSizeInBits(C->getType()) <= 64) { + const StructLayout &SL = *SE.TD->getStructLayout(STy); + uint64_t FullOffset = C->getValue()->getZExtValue(); + if (FullOffset < SL.getSizeInBytes()) { + unsigned ElIdx = SL.getElementContainingOffset(FullOffset); + GepIndices.push_back(ConstantInt::get(Type::Int32Ty, ElIdx)); + ElTy = STy->getTypeAtIndex(ElIdx); + Ops[0] = + SE.getConstant(ConstantInt::get(Ty, + FullOffset - + SL.getElementOffset(ElIdx))); + AnyNonZeroIndices = true; + continue; + } + } + break; + } + + if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) { + ElTy = ATy->getElementType(); + continue; + } + break; + } + + // If none of the operands were convertable to proper GEP indices, cast + // the base to i8* and do an ugly getelementptr with that. It's still + // better than ptrtoint+arithmetic+inttoptr at least. + if (!AnyNonZeroIndices) { + V = InsertNoopCastOfTo(V, + Type::Int8Ty->getPointerTo(PTy->getAddressSpace())); + Value *Idx = expand(SE.getAddExpr(Ops)); + Idx = InsertNoopCastOfTo(Idx, Ty); + + // Fold a GEP with constant operands. + if (Constant *CLHS = dyn_cast<Constant>(V)) + if (Constant *CRHS = dyn_cast<Constant>(Idx)) + return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1); + + // Do a quick scan to see if we have this GEP nearby. If so, reuse it. + unsigned ScanLimit = 6; + BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin(); + if (InsertPt != BlockBegin) { + // Scanning starts from the last instruction before InsertPt. + BasicBlock::iterator IP = InsertPt; + --IP; + for (; ScanLimit; --IP, --ScanLimit) { + if (IP->getOpcode() == Instruction::GetElementPtr && + IP->getOperand(0) == V && IP->getOperand(1) == Idx) + return IP; + if (IP == BlockBegin) break; + } + } + + Value *GEP = GetElementPtrInst::Create(V, Idx, "scevgep", InsertPt); + InsertedValues.insert(GEP); + return GEP; + } + + // Insert a pretty getelementptr. + Value *GEP = GetElementPtrInst::Create(V, + GepIndices.begin(), + GepIndices.end(), + "scevgep", InsertPt); + Ops.push_back(SE.getUnknown(GEP)); + InsertedValues.insert(GEP); + return expand(SE.getAddExpr(Ops)); +} + +Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *V = expand(S->getOperand(S->getNumOperands()-1)); + + // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the + // comments on expandAddToGEP for details. + if (SE.TD) + if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) { + const std::vector<SCEVHandle> &Ops = S->getOperands(); + return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], + PTy, Ty, V); + } + + V = InsertNoopCastOfTo(V, Ty); + + // Emit a bunch of add instructions + for (int i = S->getNumOperands()-2; i >= 0; --i) { + Value *W = expand(S->getOperand(i)); + W = InsertNoopCastOfTo(W, Ty); + V = InsertBinop(Instruction::Add, V, W, InsertPt); + } + return V; +} + +Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + int FirstOp = 0; // Set if we should emit a subtract. + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0))) + if (SC->getValue()->isAllOnesValue()) + FirstOp = 1; + + int i = S->getNumOperands()-2; + Value *V = expand(S->getOperand(i+1)); + V = InsertNoopCastOfTo(V, Ty); + + // Emit a bunch of multiply instructions + for (; i >= FirstOp; --i) { + Value *W = expand(S->getOperand(i)); + W = InsertNoopCastOfTo(W, Ty); + V = InsertBinop(Instruction::Mul, V, W, InsertPt); + } + + // -1 * ... ---> 0 - ... + if (FirstOp == 1) + V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V, InsertPt); + return V; +} + +Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + + Value *LHS = expand(S->getLHS()); + LHS = InsertNoopCastOfTo(LHS, Ty); + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { + const APInt &RHS = SC->getValue()->getValue(); + if (RHS.isPowerOf2()) + return InsertBinop(Instruction::LShr, LHS, + ConstantInt::get(Ty, RHS.logBase2()), + InsertPt); + } + + Value *RHS = expand(S->getRHS()); + RHS = InsertNoopCastOfTo(RHS, Ty); + return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt); +} + +/// Move parts of Base into Rest to leave Base with the minimal +/// expression that provides a pointer operand suitable for a +/// GEP expansion. +static void ExposePointerBase(SCEVHandle &Base, SCEVHandle &Rest, + ScalarEvolution &SE) { + while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { + Base = A->getStart(); + Rest = SE.getAddExpr(Rest, + SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()), + A->getStepRecurrence(SE), + A->getLoop())); + } + if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { + Base = A->getOperand(A->getNumOperands()-1); + std::vector<SCEVHandle> NewAddOps(A->op_begin(), A->op_end()); + NewAddOps.back() = Rest; + Rest = SE.getAddExpr(NewAddOps); + ExposePointerBase(Base, Rest, SE); + } +} + +Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + const Loop *L = S->getLoop(); + + // {X,+,F} --> X + {0,+,F} + if (!S->getStart()->isZero()) { + std::vector<SCEVHandle> NewOps(S->getOperands()); + NewOps[0] = SE.getIntegerSCEV(0, Ty); + SCEVHandle Rest = SE.getAddRecExpr(NewOps, L); + + // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the + // comments on expandAddToGEP for details. + if (SE.TD) { + SCEVHandle Base = S->getStart(); + SCEVHandle RestArray[1] = { Rest }; + // Dig into the expression to find the pointer base for a GEP. + ExposePointerBase(Base, RestArray[0], SE); + // If we found a pointer, expand the AddRec with a GEP. + if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { + // Make sure the Base isn't something exotic, such as a multiplied + // or divided pointer value. In those cases, the result type isn't + // actually a pointer type. + if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { + Value *StartV = expand(Base); + assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); + return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); + } + } + } + + Value *RestV = expand(Rest); + return expand(SE.getAddExpr(S->getStart(), SE.getUnknown(RestV))); + } + + // {0,+,1} --> Insert a canonical induction variable into the loop! + if (S->isAffine() && + S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) { + // Create and insert the PHI node for the induction variable in the + // specified loop. + BasicBlock *Header = L->getHeader(); + PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin()); + InsertedValues.insert(PN); + PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader()); + + pred_iterator HPI = pred_begin(Header); + assert(HPI != pred_end(Header) && "Loop with zero preds???"); + if (!L->contains(*HPI)) ++HPI; + assert(HPI != pred_end(Header) && L->contains(*HPI) && + "No backedge in loop?"); + + // Insert a unit add instruction right before the terminator corresponding + // to the back-edge. + Constant *One = ConstantInt::get(Ty, 1); + Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next", + (*HPI)->getTerminator()); + InsertedValues.insert(Add); + + pred_iterator PI = pred_begin(Header); + if (*PI == L->getLoopPreheader()) + ++PI; + PN->addIncoming(Add, *PI); + return PN; + } + + // Get the canonical induction variable I for this loop. + Value *I = getOrInsertCanonicalInductionVariable(L, Ty); + + // If this is a simple linear addrec, emit it now as a special case. + if (S->isAffine()) { // {0,+,F} --> i*F + Value *F = expand(S->getOperand(1)); + F = InsertNoopCastOfTo(F, Ty); + + // IF the step is by one, just return the inserted IV. + if (ConstantInt *CI = dyn_cast<ConstantInt>(F)) + if (CI->getValue() == 1) + return I; + + // If the insert point is directly inside of the loop, emit the multiply at + // the insert point. Otherwise, L is a loop that is a parent of the insert + // point loop. If we can, move the multiply to the outer most loop that it + // is safe to be in. + BasicBlock::iterator MulInsertPt = getInsertionPoint(); + Loop *InsertPtLoop = SE.LI->getLoopFor(MulInsertPt->getParent()); + if (InsertPtLoop != L && InsertPtLoop && + L->contains(InsertPtLoop->getHeader())) { + do { + // If we cannot hoist the multiply out of this loop, don't. + if (!InsertPtLoop->isLoopInvariant(F)) break; + + BasicBlock *InsertPtLoopPH = InsertPtLoop->getLoopPreheader(); + + // If this loop hasn't got a preheader, we aren't able to hoist the + // multiply. + if (!InsertPtLoopPH) + break; + + // Otherwise, move the insert point to the preheader. + MulInsertPt = InsertPtLoopPH->getTerminator(); + InsertPtLoop = InsertPtLoop->getParentLoop(); + } while (InsertPtLoop != L); + } + + return InsertBinop(Instruction::Mul, I, F, MulInsertPt); + } + + // If this is a chain of recurrences, turn it into a closed form, using the + // folders, then expandCodeFor the closed form. This allows the folders to + // simplify the expression without having to build a bunch of special code + // into this folder. + SCEVHandle IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV. + + SCEVHandle V = S->evaluateAtIteration(IH, SE); + //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; + + return expand(V); +} + +Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *V = expand(S->getOperand()); + V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType())); + Instruction *I = new TruncInst(V, Ty, "tmp.", InsertPt); + InsertedValues.insert(I); + return I; +} + +Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *V = expand(S->getOperand()); + V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType())); + Instruction *I = new ZExtInst(V, Ty, "tmp.", InsertPt); + InsertedValues.insert(I); + return I; +} + +Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *V = expand(S->getOperand()); + V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType())); + Instruction *I = new SExtInst(V, Ty, "tmp.", InsertPt); + InsertedValues.insert(I); + return I; +} + +Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *LHS = expand(S->getOperand(0)); + LHS = InsertNoopCastOfTo(LHS, Ty); + for (unsigned i = 1; i < S->getNumOperands(); ++i) { + Value *RHS = expand(S->getOperand(i)); + RHS = InsertNoopCastOfTo(RHS, Ty); + Instruction *ICmp = + new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS, "tmp", InsertPt); + InsertedValues.insert(ICmp); + Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "smax", InsertPt); + InsertedValues.insert(Sel); + LHS = Sel; + } + return LHS; +} + +Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { + const Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *LHS = expand(S->getOperand(0)); + LHS = InsertNoopCastOfTo(LHS, Ty); + for (unsigned i = 1; i < S->getNumOperands(); ++i) { + Value *RHS = expand(S->getOperand(i)); + RHS = InsertNoopCastOfTo(RHS, Ty); + Instruction *ICmp = + new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS, "tmp", InsertPt); + InsertedValues.insert(ICmp); + Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "umax", InsertPt); + InsertedValues.insert(Sel); + LHS = Sel; + } + return LHS; +} + +Value *SCEVExpander::expandCodeFor(SCEVHandle SH, const Type *Ty) { + // Expand the code for this SCEV. + Value *V = expand(SH); + if (Ty) { + assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && + "non-trivial casts should be done with the SCEVs directly!"); + V = InsertNoopCastOfTo(V, Ty); + } + return V; +} + +Value *SCEVExpander::expand(const SCEV *S) { + // Check to see if we already expanded this. + std::map<SCEVHandle, AssertingVH<Value> >::iterator I = + InsertedExpressions.find(S); + if (I != InsertedExpressions.end()) + return I->second; + + Value *V = visit(S); + InsertedExpressions[S] = V; + return V; +} |