summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2010-02-16 09:30:23 +0000
committerrdivacky <rdivacky@FreeBSD.org>2010-02-16 09:30:23 +0000
commitf25ddd991a5601d0101602c4c263a58c7af4b8a2 (patch)
tree4cfca640904d1896e25032757a61f8959c066919 /lib/Analysis/ScalarEvolution.cpp
parent3fd58f91dd318518f7daa4ba64c0aaf31799d89b (diff)
downloadFreeBSD-src-f25ddd991a5601d0101602c4c263a58c7af4b8a2.zip
FreeBSD-src-f25ddd991a5601d0101602c4c263a58c7af4b8a2.tar.gz
Update LLVM to r96341.
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--lib/Analysis/ScalarEvolution.cpp480
1 files changed, 270 insertions, 210 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 2f44913..9ee7d3a 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -214,8 +214,8 @@ bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
const SCEV *op, const Type *ty)
: SCEVCastExpr(ID, scTruncate, op, ty) {
- assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((Op->getType()->isIntegerTy() || isa<PointerType>(Op->getType())) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot truncate non-integer value!");
}
@@ -226,8 +226,8 @@ void SCEVTruncateExpr::print(raw_ostream &OS) const {
SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
const SCEV *op, const Type *ty)
: SCEVCastExpr(ID, scZeroExtend, op, ty) {
- assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((Op->getType()->isIntegerTy() || isa<PointerType>(Op->getType())) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot zero extend non-integer value!");
}
@@ -238,8 +238,8 @@ void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
const SCEV *op, const Type *ty)
: SCEVCastExpr(ID, scSignExtend, op, ty) {
- assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((Op->getType()->isIntegerTy() || isa<PointerType>(Op->getType())) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot sign extend non-integer value!");
}
@@ -312,6 +312,21 @@ bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
return true;
}
+bool
+SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
+ return DT->dominates(L->getHeader(), BB) &&
+ SCEVNAryExpr::dominates(BB, DT);
+}
+
+bool
+SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+ // This uses a "dominates" query instead of "properly dominates" query because
+ // the instruction which produces the addrec's value is a PHI, and a PHI
+ // effectively properly dominates its entire containing block.
+ return DT->dominates(L->getHeader(), BB) &&
+ SCEVNAryExpr::properlyDominates(BB, DT);
+}
+
void SCEVAddRecExpr::print(raw_ostream &OS) const {
OS << "{" << *Operands[0];
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
@@ -321,15 +336,6 @@ void SCEVAddRecExpr::print(raw_ostream &OS) const {
OS << ">";
}
-void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
- // LLVM struct fields don't have names, so just print the field number.
- OS << "offsetof(" << *STy << ", " << FieldNo << ")";
-}
-
-void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
- OS << "sizeof(" << *AllocTy << ")";
-}
-
bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
// All non-instruction values are loop invariant. All instructions are loop
// invariant if they are not contained in the specified loop.
@@ -356,7 +362,91 @@ const Type *SCEVUnknown::getType() const {
return V->getType();
}
+bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
+ if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
+ if (VCE->getOpcode() == Instruction::PtrToInt)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getOperand(0)->isNullValue() &&
+ CE->getNumOperands() == 2)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
+ if (CI->isOne()) {
+ AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
+ ->getElementType();
+ return true;
+ }
+
+ return false;
+}
+
+bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
+ if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
+ if (VCE->getOpcode() == Instruction::PtrToInt)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getOperand(0)->isNullValue()) {
+ const Type *Ty =
+ cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+ if (const StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked() &&
+ CE->getNumOperands() == 3 &&
+ CE->getOperand(1)->isNullValue()) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
+ if (CI->isOne() &&
+ STy->getNumElements() == 2 &&
+ STy->getElementType(0)->isIntegerTy(1)) {
+ AllocTy = STy->getElementType(1);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
+ if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
+ if (VCE->getOpcode() == Instruction::PtrToInt)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getNumOperands() == 3 &&
+ CE->getOperand(0)->isNullValue() &&
+ CE->getOperand(1)->isNullValue()) {
+ const Type *Ty =
+ cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+ // Ignore vector types here so that ScalarEvolutionExpander doesn't
+ // emit getelementptrs that index into vectors.
+ if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
+ CTy = Ty;
+ FieldNo = CE->getOperand(2);
+ return true;
+ }
+ }
+
+ return false;
+}
+
void SCEVUnknown::print(raw_ostream &OS) const {
+ const Type *AllocTy;
+ if (isSizeOf(AllocTy)) {
+ OS << "sizeof(" << *AllocTy << ")";
+ return;
+ }
+ if (isAlignOf(AllocTy)) {
+ OS << "alignof(" << *AllocTy << ")";
+ return;
+ }
+
+ const Type *CTy;
+ Constant *FieldNo;
+ if (isOffsetOf(CTy, FieldNo)) {
+ OS << "offsetof(" << *CTy << ", ";
+ WriteAsOperand(OS, FieldNo, false);
+ OS << ")";
+ return;
+ }
+
+ // Otherwise just print it normally.
WriteAsOperand(OS, V, false);
}
@@ -515,21 +605,6 @@ namespace {
return operator()(LC->getOperand(), RC->getOperand());
}
- // Compare offsetof expressions.
- if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
- const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
- if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
- CompareTypes(RA->getStructType(), LA->getStructType()))
- return CompareTypes(LA->getStructType(), RA->getStructType());
- return LA->getFieldNo() < RA->getFieldNo();
- }
-
- // Compare sizeof expressions by the allocation type.
- if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
- const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
- return CompareTypes(LA->getAllocType(), RA->getAllocType());
- }
-
llvm_unreachable("Unknown SCEV kind!");
return false;
}
@@ -2172,74 +2247,38 @@ const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
}
-const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
- unsigned FieldNo) {
- // If we have TargetData we can determine the constant offset.
- if (TD) {
- const Type *IntPtrTy = TD->getIntPtrType(getContext());
- const StructLayout &SL = *TD->getStructLayout(STy);
- uint64_t Offset = SL.getElementOffset(FieldNo);
- return getIntegerSCEV(Offset, IntPtrTy);
- }
+const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
+ Constant *C = ConstantExpr::getSizeOf(AllocTy);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ C = ConstantFoldConstantExpression(CE, TD);
+ const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
+ return getTruncateOrZeroExtend(getSCEV(C), Ty);
+}
- // Field 0 is always at offset 0.
- if (FieldNo == 0) {
- const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
- return getIntegerSCEV(0, Ty);
- }
+const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
+ Constant *C = ConstantExpr::getAlignOf(AllocTy);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ C = ConstantFoldConstantExpression(CE, TD);
+ const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
+ return getTruncateOrZeroExtend(getSCEV(C), Ty);
+}
- // Okay, it looks like we really DO need an offsetof expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scFieldOffset);
- ID.AddPointer(STy);
- ID.AddInteger(FieldNo);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
+const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
+ unsigned FieldNo) {
+ Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ C = ConstantFoldConstantExpression(CE, TD);
const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
- new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
+ return getTruncateOrZeroExtend(getSCEV(C), Ty);
}
-const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
- // If we have TargetData we can determine the constant size.
- if (TD && AllocTy->isSized()) {
- const Type *IntPtrTy = TD->getIntPtrType(getContext());
- return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
- }
-
- // Expand an array size into the element size times the number
- // of elements.
- if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
- const SCEV *E = getAllocSizeExpr(ATy->getElementType());
- return getMulExpr(
- E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
- ATy->getNumElements())));
- }
-
- // Expand a vector size into the element size times the number
- // of elements.
- if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
- const SCEV *E = getAllocSizeExpr(VTy->getElementType());
- return getMulExpr(
- E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
- VTy->getNumElements())));
- }
-
- // Okay, it looks like we really DO need a sizeof expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scAllocSize);
- ID.AddPointer(AllocTy);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
- const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
- new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
+const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
+ Constant *FieldNo) {
+ Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ C = ConstantFoldConstantExpression(CE, TD);
+ const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
+ return getTruncateOrZeroExtend(getSCEV(C), Ty);
}
const SCEV *ScalarEvolution::getUnknown(Value *V) {
@@ -2269,7 +2308,7 @@ const SCEV *ScalarEvolution::getUnknown(Value *V) {
/// has access to target-specific information.
bool ScalarEvolution::isSCEVable(const Type *Ty) const {
// Integers and pointers are always SCEVable.
- return Ty->isInteger() || isa<PointerType>(Ty);
+ return Ty->isIntegerTy() || isa<PointerType>(Ty);
}
/// getTypeSizeInBits - Return the size in bits of the specified type,
@@ -2282,7 +2321,7 @@ uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
return TD->getTypeSizeInBits(Ty);
// Integer types have fixed sizes.
- if (Ty->isInteger())
+ if (Ty->isIntegerTy())
return Ty->getPrimitiveSizeInBits();
// The only other support type is pointer. Without TargetData, conservatively
@@ -2298,7 +2337,7 @@ uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
assert(isSCEVable(Ty) && "Type is not SCEVable!");
- if (Ty->isInteger())
+ if (Ty->isIntegerTy())
return Ty;
// The only other support type is pointer.
@@ -2327,7 +2366,7 @@ const SCEV *ScalarEvolution::getSCEV(Value *V) {
/// getIntegerSCEV - Given a SCEVable type, create a constant for the
/// specified signed integer value and return a SCEV for the constant.
-const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
+const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
return getConstant(ConstantInt::get(ITy, Val));
}
@@ -2373,8 +2412,8 @@ const SCEV *
ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((SrcTy->isIntegerTy() || isa<PointerType>(SrcTy)) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot truncate or zero extend with non-integer arguments!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
@@ -2390,8 +2429,8 @@ const SCEV *
ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((SrcTy->isIntegerTy() || isa<PointerType>(SrcTy)) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot truncate or zero extend with non-integer arguments!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
@@ -2406,8 +2445,8 @@ ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
const SCEV *
ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((SrcTy->isIntegerTy() || isa<PointerType>(SrcTy)) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot noop or zero extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrZeroExtend cannot truncate!");
@@ -2422,8 +2461,8 @@ ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
const SCEV *
ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((SrcTy->isIntegerTy() || isa<PointerType>(SrcTy)) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot noop or sign extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrSignExtend cannot truncate!");
@@ -2439,8 +2478,8 @@ ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
const SCEV *
ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((SrcTy->isIntegerTy() || isa<PointerType>(SrcTy)) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot noop or any extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrAnyExtend cannot truncate!");
@@ -2454,8 +2493,8 @@ ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
const SCEV *
ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
- (Ty->isInteger() || isa<PointerType>(Ty)) &&
+ assert((SrcTy->isIntegerTy() || isa<PointerType>(SrcTy)) &&
+ (Ty->isIntegerTy() || isa<PointerType>(Ty)) &&
"Cannot truncate or noop with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
"getTruncateOrNoop cannot extend!");
@@ -2527,7 +2566,7 @@ ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
if (It != Scalars.end()) {
// Short-circuit the def-use traversal if the symbolic name
// ceases to appear in expressions.
- if (!It->second->hasOperand(SymName))
+ if (It->second != SymName && !It->second->hasOperand(SymName))
continue;
// SCEVUnknown for a PHI either means that it has an unrecognized
@@ -2689,16 +2728,15 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
// For a struct, add the member offset.
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
TotalOffset = getAddExpr(TotalOffset,
- getFieldOffsetExpr(STy, FieldNo),
+ getOffsetOfExpr(STy, FieldNo),
/*HasNUW=*/false, /*HasNSW=*/InBounds);
} else {
// For an array, add the element offset, explicitly scaled.
const SCEV *LocalOffset = getSCEV(Index);
- if (!isa<PointerType>(LocalOffset->getType()))
- // Getelementptr indicies are signed.
- LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
+ // Getelementptr indicies are signed.
+ LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
// Lower "inbounds" GEPs to NSW arithmetic.
- LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI),
+ LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
/*HasNUW=*/false, /*HasNSW=*/InBounds);
TotalOffset = getAddExpr(TotalOffset, LocalOffset,
/*HasNUW=*/false, /*HasNSW=*/InBounds);
@@ -2797,62 +2835,67 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
return ConstantRange(C->getValue()->getValue());
+ unsigned BitWidth = getTypeSizeInBits(S->getType());
+ ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
+
+ // If the value has known zeros, the maximum unsigned value will have those
+ // known zeros as well.
+ uint32_t TZ = GetMinTrailingZeros(S);
+ if (TZ != 0)
+ ConservativeResult =
+ ConstantRange(APInt::getMinValue(BitWidth),
+ APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
+
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
ConstantRange X = getUnsignedRange(Add->getOperand(0));
for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
X = X.add(getUnsignedRange(Add->getOperand(i)));
- return X;
+ return ConservativeResult.intersectWith(X);
}
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
ConstantRange X = getUnsignedRange(Mul->getOperand(0));
for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
- return X;
+ return ConservativeResult.intersectWith(X);
}
if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
ConstantRange X = getUnsignedRange(SMax->getOperand(0));
for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
X = X.smax(getUnsignedRange(SMax->getOperand(i)));
- return X;
+ return ConservativeResult.intersectWith(X);
}
if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
ConstantRange X = getUnsignedRange(UMax->getOperand(0));
for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
X = X.umax(getUnsignedRange(UMax->getOperand(i)));
- return X;
+ return ConservativeResult.intersectWith(X);
}
if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
ConstantRange X = getUnsignedRange(UDiv->getLHS());
ConstantRange Y = getUnsignedRange(UDiv->getRHS());
- return X.udiv(Y);
+ return ConservativeResult.intersectWith(X.udiv(Y));
}
if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
ConstantRange X = getUnsignedRange(ZExt->getOperand());
- return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
+ return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
}
if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
ConstantRange X = getUnsignedRange(SExt->getOperand());
- return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
+ return ConservativeResult.intersectWith(X.signExtend(BitWidth));
}
if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
ConstantRange X = getUnsignedRange(Trunc->getOperand());
- return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
+ return ConservativeResult.intersectWith(X.truncate(BitWidth));
}
- ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
-
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
- const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
- ConstantRange ConservativeResult = FullSet;
-
// If there's no unsigned wrap, the value will never be less than its
// initial value.
if (AddRec->hasNoUnsignedWrap())
@@ -2862,10 +2905,11 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
APInt(getTypeSizeInBits(C->getType()), 0));
// TODO: non-affine addrec
- if (Trip && AddRec->isAffine()) {
+ if (AddRec->isAffine()) {
const Type *Ty = AddRec->getType();
const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
- if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
+ if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
+ getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
const SCEV *Start = AddRec->getStart();
@@ -2883,7 +2927,7 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
EndRange.getUnsignedMax());
if (Min.isMinValue() && Max.isMaxValue())
return ConservativeResult;
- return ConstantRange(Min, Max+1);
+ return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
}
}
@@ -2897,11 +2941,11 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
if (Ones == ~Zeros + 1)
- return FullSet;
- return ConstantRange(Ones, ~Zeros + 1);
+ return ConservativeResult;
+ return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
}
- return FullSet;
+ return ConservativeResult;
}
/// getSignedRange - Determine the signed range for a particular SCEV.
@@ -2912,62 +2956,67 @@ ScalarEvolution::getSignedRange(const SCEV *S) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
return ConstantRange(C->getValue()->getValue());
+ unsigned BitWidth = getTypeSizeInBits(S->getType());
+ ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
+
+ // If the value has known zeros, the maximum signed value will have those
+ // known zeros as well.
+ uint32_t TZ = GetMinTrailingZeros(S);
+ if (TZ != 0)
+ ConservativeResult =
+ ConstantRange(APInt::getSignedMinValue(BitWidth),
+ APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
+
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
ConstantRange X = getSignedRange(Add->getOperand(0));
for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
X = X.add(getSignedRange(Add->getOperand(i)));
- return X;
+ return ConservativeResult.intersectWith(X);
}
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
ConstantRange X = getSignedRange(Mul->getOperand(0));
for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
X = X.multiply(getSignedRange(Mul->getOperand(i)));
- return X;
+ return ConservativeResult.intersectWith(X);
}
if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
ConstantRange X = getSignedRange(SMax->getOperand(0));
for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
X = X.smax(getSignedRange(SMax->getOperand(i)));
- return X;
+ return ConservativeResult.intersectWith(X);
}
if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
ConstantRange X = getSignedRange(UMax->getOperand(0));
for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
X = X.umax(getSignedRange(UMax->getOperand(i)));
- return X;
+ return ConservativeResult.intersectWith(X);
}
if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
ConstantRange X = getSignedRange(UDiv->getLHS());
ConstantRange Y = getSignedRange(UDiv->getRHS());
- return X.udiv(Y);
+ return ConservativeResult.intersectWith(X.udiv(Y));
}
if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
ConstantRange X = getSignedRange(ZExt->getOperand());
- return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
+ return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
}
if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
ConstantRange X = getSignedRange(SExt->getOperand());
- return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
+ return ConservativeResult.intersectWith(X.signExtend(BitWidth));
}
if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
ConstantRange X = getSignedRange(Trunc->getOperand());
- return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
+ return ConservativeResult.intersectWith(X.truncate(BitWidth));
}
- ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
-
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
- const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
- ConstantRange ConservativeResult = FullSet;
-
// If there's no signed wrap, and all the operands have the same sign or
// zero, the value won't ever change sign.
if (AddRec->hasNoSignedWrap()) {
@@ -2977,20 +3026,22 @@ ScalarEvolution::getSignedRange(const SCEV *S) {
if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
}
- unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
if (AllNonNeg)
- ConservativeResult = ConstantRange(APInt(BitWidth, 0),
- APInt::getSignedMinValue(BitWidth));
+ ConservativeResult = ConservativeResult.intersectWith(
+ ConstantRange(APInt(BitWidth, 0),
+ APInt::getSignedMinValue(BitWidth)));
else if (AllNonPos)
- ConservativeResult = ConstantRange(APInt::getSignedMinValue(BitWidth),
- APInt(BitWidth, 1));
+ ConservativeResult = ConservativeResult.intersectWith(
+ ConstantRange(APInt::getSignedMinValue(BitWidth),
+ APInt(BitWidth, 1)));
}
// TODO: non-affine addrec
- if (Trip && AddRec->isAffine()) {
+ if (AddRec->isAffine()) {
const Type *Ty = AddRec->getType();
const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
- if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
+ if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
+ getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
const SCEV *Start = AddRec->getStart();
@@ -3008,7 +3059,7 @@ ScalarEvolution::getSignedRange(const SCEV *S) {
EndRange.getSignedMax());
if (Min.isMinSignedValue() && Max.isMaxSignedValue())
return ConservativeResult;
- return ConstantRange(Min, Max+1);
+ return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
}
}
@@ -3017,18 +3068,17 @@ ScalarEvolution::getSignedRange(const SCEV *S) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
- unsigned BitWidth = getTypeSizeInBits(U->getType());
- if (!U->getValue()->getType()->isInteger() && !TD)
- return FullSet;
+ if (!U->getValue()->getType()->isIntegerTy() && !TD)
+ return ConservativeResult;
unsigned NS = ComputeNumSignBits(U->getValue(), TD);
if (NS == 1)
- return FullSet;
- return
+ return ConservativeResult;
+ return ConservativeResult.intersectWith(
ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
- APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
+ APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
}
- return FullSet;
+ return ConservativeResult;
}
/// createSCEV - We know that there is no SCEV for the specified value.
@@ -3179,7 +3229,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
case Instruction::Shl:
// Turn shift left of a constant amount into a multiply.
if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
- uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
+ uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Constant *X = ConstantInt::get(getContext(),
APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
@@ -3189,7 +3239,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
case Instruction::LShr:
// Turn logical shift right of a constant into a unsigned divide.
if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
- uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
+ uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Constant *X = ConstantInt::get(getContext(),
APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
@@ -3230,10 +3280,10 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
return getSCEV(U->getOperand(0));
break;
- // It's tempting to handle inttoptr and ptrtoint, however this can
- // lead to pointer expressions which cannot be expanded to GEPs
- // (because they may overflow). For now, the only pointer-typed
- // expressions we handle are GEPs and address literals.
+ // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
+ // lead to pointer expressions which cannot safely be expanded to GEPs,
+ // because ScalarEvolution doesn't respect the GEP aliasing rules when
+ // simplifying integer expressions.
case Instruction::GetElementPtr:
return createNodeForGEP(cast<GEPOperator>(U));
@@ -3350,19 +3400,19 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
if (Pair.second) {
- BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
- if (ItCount.Exact != getCouldNotCompute()) {
- assert(ItCount.Exact->isLoopInvariant(L) &&
- ItCount.Max->isLoopInvariant(L) &&
- "Computed trip count isn't loop invariant for loop!");
+ BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
+ if (BECount.Exact != getCouldNotCompute()) {
+ assert(BECount.Exact->isLoopInvariant(L) &&
+ BECount.Max->isLoopInvariant(L) &&
+ "Computed backedge-taken count isn't loop invariant for loop!");
++NumTripCountsComputed;
// Update the value in the map.
- Pair.first->second = ItCount;
+ Pair.first->second = BECount;
} else {
- if (ItCount.Max != getCouldNotCompute())
+ if (BECount.Max != getCouldNotCompute())
// Update the value in the map.
- Pair.first->second = ItCount;
+ Pair.first->second = BECount;
if (isa<PHINode>(L->getHeader()->begin()))
// Only count loops that have phi nodes as not being computable.
++NumTripCountsNotComputed;
@@ -3373,7 +3423,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
// conservative estimates made without the benefit of trip count
// information. This is similar to the code in forgetLoop, except that
// it handles SCEVUnknown PHI nodes specially.
- if (ItCount.hasAnyInfo()) {
+ if (BECount.hasAnyInfo()) {
SmallVector<Instruction *, 16> Worklist;
PushLoopPHIs(L, Worklist);
@@ -4230,9 +4280,6 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
return getTruncateExpr(Op, Cast->getType());
}
- if (isa<SCEVTargetDataConstant>(V))
- return V;
-
llvm_unreachable("Unknown SCEV type!");
return 0;
}
@@ -4403,7 +4450,7 @@ const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
-StartC->getValue()->getValue(),
*this);
}
- } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
+ } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
// If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
// the quadratic equation to solve it.
std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
@@ -4947,6 +4994,9 @@ const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
const SCEV *End,
const SCEV *Step,
bool NoWrap) {
+ assert(!isKnownNegative(Step) &&
+ "This code doesn't handle negative strides yet!");
+
const Type *Ty = Start->getType();
const SCEV *NegOne = getIntegerSCEV(-1, Ty);
const SCEV *Diff = getMinusSCEV(End, Start);
@@ -4989,39 +5039,35 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
AddRec->hasNoUnsignedWrap();
if (AddRec->isAffine()) {
- // FORNOW: We only support unit strides.
unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
const SCEV *Step = AddRec->getStepRecurrence(*this);
- // TODO: handle non-constant strides.
- const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
- if (!CStep || CStep->isZero())
+ if (Step->isZero())
return getCouldNotCompute();
- if (CStep->isOne()) {
+ if (Step->isOne()) {
// With unit stride, the iteration never steps past the limit value.
- } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
- if (NoWrap) {
- // We know the iteration won't step past the maximum value for its type.
- ;
- } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
- // Test whether a positive iteration iteration can step past the limit
- // value and past the maximum value for its type in a single step.
- if (isSigned) {
- APInt Max = APInt::getSignedMaxValue(BitWidth);
- if ((Max - CStep->getValue()->getValue())
- .slt(CLimit->getValue()->getValue()))
- return getCouldNotCompute();
- } else {
- APInt Max = APInt::getMaxValue(BitWidth);
- if ((Max - CStep->getValue()->getValue())
- .ult(CLimit->getValue()->getValue()))
- return getCouldNotCompute();
- }
- } else
- // TODO: handle non-constant limit values below.
- return getCouldNotCompute();
+ } else if (isKnownPositive(Step)) {
+ // Test whether a positive iteration can step past the limit
+ // value and past the maximum value for its type in a single step.
+ // Note that it's not sufficient to check NoWrap here, because even
+ // though the value after a wrap is undefined, it's not undefined
+ // behavior, so if wrap does occur, the loop could either terminate or
+ // loop infinitely, but in either case, the loop is guaranteed to
+ // iterate at least until the iteration where the wrapping occurs.
+ const SCEV *One = getIntegerSCEV(1, Step->getType());
+ if (isSigned) {
+ APInt Max = APInt::getSignedMaxValue(BitWidth);
+ if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
+ .slt(getSignedRange(RHS).getSignedMax()))
+ return getCouldNotCompute();
+ } else {
+ APInt Max = APInt::getMaxValue(BitWidth);
+ if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
+ .ult(getUnsignedRange(RHS).getUnsignedMax()))
+ return getCouldNotCompute();
+ }
} else
- // TODO: handle negative strides below.
+ // TODO: Handle negative strides here and below.
return getCouldNotCompute();
// We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
@@ -5054,6 +5100,20 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
getSignedRange(End).getSignedMax() :
getUnsignedRange(End).getUnsignedMax());
+ // If MaxEnd is within a step of the maximum integer value in its type,
+ // adjust it down to the minimum value which would produce the same effect.
+ // This allows the subsequent ceiling divison of (N+(step-1))/step to
+ // compute the correct value.
+ const SCEV *StepMinusOne = getMinusSCEV(Step,
+ getIntegerSCEV(1, Step->getType()));
+ MaxEnd = isSigned ?
+ getSMinExpr(MaxEnd,
+ getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
+ StepMinusOne)) :
+ getUMinExpr(MaxEnd,
+ getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
+ StepMinusOne));
+
// Finally, we subtract these two values and divide, rounding up, to get
// the number of times the backedge is executed.
const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
OpenPOWER on IntegriCloud