summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ConstantFolding.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2011-02-20 12:57:14 +0000
committerdim <dim@FreeBSD.org>2011-02-20 12:57:14 +0000
commitcbb70ce070d220642b038ea101d9c0f9fbf860d6 (patch)
treed2b61ce94e654cb01a254d2195259db5f9cc3f3c /lib/Analysis/ConstantFolding.cpp
parent4ace901e87dac5bbbac78ed325e75462e48e386e (diff)
downloadFreeBSD-src-cbb70ce070d220642b038ea101d9c0f9fbf860d6.zip
FreeBSD-src-cbb70ce070d220642b038ea101d9c0f9fbf860d6.tar.gz
Vendor import of llvm trunk r126079:
http://llvm.org/svn/llvm-project/llvm/trunk@126079
Diffstat (limited to 'lib/Analysis/ConstantFolding.cpp')
-rw-r--r--lib/Analysis/ConstantFolding.cpp298
1 files changed, 205 insertions, 93 deletions
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 0bf7967..cd8d52c 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -30,6 +30,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/FEnv.h"
#include <cerrno>
#include <cmath>
using namespace llvm;
@@ -53,7 +54,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
- return FoldBitCast(ConstantVector::get(&Ops, 1), DestTy, TD);
+ return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
}
// If this is a bitcast from constant vector -> vector, fold it.
@@ -166,7 +167,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
}
}
- return ConstantVector::get(Result.data(), Result.size());
+ return ConstantVector::get(Result);
}
@@ -339,6 +340,13 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
return true;
}
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::IntToPtr &&
+ CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
+ return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
+ BytesLeft, TD);
+ }
+
// Otherwise, unknown initializer type.
return false;
}
@@ -466,7 +474,8 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
// If this load comes from anywhere in a constant global, and if the global
// is all undef or zero, we know what it loads.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getUnderlyingObject())){
+ if (GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
if (GV->getInitializer()->isNullValue())
@@ -537,7 +546,7 @@ static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
for (unsigned i = 1; i != NumOps; ++i) {
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
- reinterpret_cast<Value *const *>(Ops+1),
+ reinterpret_cast<Value *const *>(Ops+1),
i-1))) &&
Ops[i]->getType() != IntPtrTy) {
Any = true;
@@ -567,16 +576,35 @@ static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
Constant *Ptr = Ops[0];
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
return 0;
-
- unsigned BitWidth =
- TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext()));
+
+ const Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
for (unsigned i = 1; i != NumOps; ++i)
- if (!isa<ConstantInt>(Ops[i]))
+ if (!isa<ConstantInt>(Ops[i])) {
+
+ // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
+ // "inttoptr (sub (ptrtoint Ptr), V)"
+ if (NumOps == 2 &&
+ cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
+ assert((CE == 0 || CE->getType() == IntPtrTy) &&
+ "CastGEPIndices didn't canonicalize index types!");
+ if (CE && CE->getOpcode() == Instruction::Sub &&
+ CE->getOperand(0)->isNullValue()) {
+ Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
+ Res = ConstantExpr::getSub(Res, CE->getOperand(1));
+ Res = ConstantExpr::getIntToPtr(Res, ResultTy);
+ if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
+ Res = ConstantFoldConstantExpression(ResCE, TD);
+ return Res;
+ }
+ }
return 0;
+ }
+ unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
APInt Offset = APInt(BitWidth,
TD->getIndexedOffset(Ptr->getType(),
(Value**)Ops+1, NumOps-1));
@@ -609,10 +637,8 @@ static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
APInt BasePtr(BitWidth, 0);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
if (CE->getOpcode() == Instruction::IntToPtr)
- if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
- BasePtr = Base->getValue();
- BasePtr.zextOrTrunc(BitWidth);
- }
+ if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
+ BasePtr = Base->getValue().zextOrTrunc(BitWidth);
if (Ptr->isNullValue() || BasePtr != 0) {
Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
return ConstantExpr::getIntToPtr(C, ResultTy);
@@ -638,12 +664,19 @@ static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
+ const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
if (ElemSize == 0)
- return 0;
- APInt NewIdx = Offset.udiv(ElemSize);
- Offset -= NewIdx * ElemSize;
- NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Ty->getContext()),
- NewIdx));
+ // The element size is 0. This may be [0 x Ty]*, so just use a zero
+ // index for this level and proceed to the next level to see if it can
+ // accommodate the offset.
+ NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
+ else {
+ // The element size is non-zero divide the offset by the element
+ // size (rounding down), to compute the index at this level.
+ APInt NewIdx = Offset.udiv(ElemSize);
+ Offset -= NewIdx * ElemSize;
+ NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
+ }
Ty = ATy->getElementType();
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
// Determine which field of the struct the offset points into. The
@@ -687,27 +720,34 @@ static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
-
-/// ConstantFoldInstruction - Attempt to constant fold the specified
-/// instruction. If successful, the constant result is returned, if not, null
-/// is returned. Note that this function can only fail when attempting to fold
-/// instructions like loads and stores, which have no constant expression form.
-///
+/// ConstantFoldInstruction - Try to constant fold the specified instruction.
+/// If successful, the constant result is returned, if not, null is returned.
+/// Note that this fails if not all of the operands are constant. Otherwise,
+/// this function can only fail when attempting to fold instructions like loads
+/// and stores, which have no constant expression form.
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
+ // Handle PHI nodes quickly here...
if (PHINode *PN = dyn_cast<PHINode>(I)) {
- if (PN->getNumIncomingValues() == 0)
- return UndefValue::get(PN->getType());
-
- Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
- if (Result == 0) return 0;
-
- // Handle PHI nodes specially here...
- for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
- return 0; // Not all the same incoming constants...
+ Constant *CommonValue = 0;
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming = PN->getIncomingValue(i);
+ // If the incoming value is undef then skip it. Note that while we could
+ // skip the value if it is equal to the phi node itself we choose not to
+ // because that would break the rule that constant folding only applies if
+ // all operands are constants.
+ if (isa<UndefValue>(Incoming))
+ continue;
+ // If the incoming value is not a constant, or is a different constant to
+ // the one we saw previously, then give up.
+ Constant *C = dyn_cast<Constant>(Incoming);
+ if (!C || (CommonValue && C != CommonValue))
+ return 0;
+ CommonValue = C;
+ }
- // If we reach here, all incoming values are the same constant.
- return Result;
+ // If we reach here, all incoming values are the same constant or undef.
+ return CommonValue ? CommonValue : UndefValue::get(PN->getType());
}
// Scan the operand list, checking to see if they are all constants, if so,
@@ -725,7 +765,18 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return ConstantFoldLoadInst(LI, TD);
-
+
+ if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
+ return ConstantExpr::getInsertValue(
+ cast<Constant>(IVI->getAggregateOperand()),
+ cast<Constant>(IVI->getInsertedValueOperand()),
+ IVI->idx_begin(), IVI->getNumIndices());
+
+ if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
+ return ConstantExpr::getExtractValue(
+ cast<Constant>(EVI->getAggregateOperand()),
+ EVI->idx_begin(), EVI->getNumIndices());
+
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Ops.data(), Ops.size(), TD);
}
@@ -736,7 +787,8 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
const TargetData *TD) {
SmallVector<Constant*, 8> Ops;
- for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) {
+ for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
+ i != e; ++i) {
Constant *NewC = cast<Constant>(*i);
// Recursively fold the ConstantExpr's operands.
if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
@@ -1000,8 +1052,17 @@ llvm::canConstantFoldCallTo(const Function *F) {
case Intrinsic::usub_with_overflow:
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
+ case Intrinsic::smul_with_overflow:
case Intrinsic::convert_from_fp16:
case Intrinsic::convert_to_fp16:
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
return true;
default:
return false;
@@ -1039,10 +1100,10 @@ llvm::canConstantFoldCallTo(const Function *F) {
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
const Type *Ty) {
- errno = 0;
+ sys::llvm_fenv_clearexcept();
V = NativeFP(V);
- if (errno != 0) {
- errno = 0;
+ if (sys::llvm_fenv_testexcept()) {
+ sys::llvm_fenv_clearexcept();
return 0;
}
@@ -1056,10 +1117,10 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
double V, double W, const Type *Ty) {
- errno = 0;
+ sys::llvm_fenv_clearexcept();
V = NativeFP(V, W);
- if (errno != 0) {
- errno = 0;
+ if (sys::llvm_fenv_testexcept()) {
+ sys::llvm_fenv_clearexcept();
return 0;
}
@@ -1071,6 +1132,36 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
return 0; // dummy return to suppress warning
}
+/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
+/// conversion of a constant floating point. If roundTowardZero is false, the
+/// default IEEE rounding is used (toward nearest, ties to even). This matches
+/// the behavior of the non-truncating SSE instructions in the default rounding
+/// mode. The desired integer type Ty is used to select how many bits are
+/// available for the result. Returns null if the conversion cannot be
+/// performed, otherwise returns the Constant value resulting from the
+/// conversion.
+static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
+ const Type *Ty) {
+ assert(Op && "Called with NULL operand");
+ APFloat Val(Op->getValueAPF());
+
+ // All of these conversion intrinsics form an integer of at most 64bits.
+ unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
+ assert(ResultWidth <= 64 &&
+ "Can only constant fold conversions to 64 and 32 bit ints");
+
+ uint64_t UIntVal;
+ bool isExact = false;
+ APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
+ : APFloat::rmNearestTiesToEven;
+ APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
+ /*isSigned=*/true, mode,
+ &isExact);
+ if (status != APFloat::opOK && status != APFloat::opInexact)
+ return 0;
+ return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
+}
+
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *
@@ -1082,7 +1173,7 @@ llvm::ConstantFoldCall(Function *F,
const Type *Ty = F->getReturnType();
if (NumOperands == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
- if (Name == "llvm.convert.to.fp16") {
+ if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
APFloat Val(Op->getValueAPF());
bool lost = false;
@@ -1093,6 +1184,13 @@ llvm::ConstantFoldCall(Function *F,
if (!Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
+
+ /// We only fold functions with finite arguments. Folding NaN and inf is
+ /// likely to be aborted with an exception anyway, and some host libms
+ /// have known errors raising exceptions.
+ if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
+ return 0;
+
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
@@ -1133,8 +1231,8 @@ llvm::ConstantFoldCall(Function *F,
return ConstantFoldFP(log, V, Ty);
else if (Name == "log10" && V > 0)
return ConstantFoldFP(log10, V, Ty);
- else if (Name == "llvm.sqrt.f32" ||
- Name == "llvm.sqrt.f64") {
+ else if (F->getIntrinsicID() == Intrinsic::sqrt &&
+ (Ty->isFloatTy() || Ty->isDoubleTy())) {
if (V >= -0.0)
return ConstantFoldFP(sqrt, V, Ty);
else // Undefined
@@ -1164,18 +1262,18 @@ llvm::ConstantFoldCall(Function *F,
}
return 0;
}
-
-
+
if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
- if (Name.startswith("llvm.bswap"))
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::bswap:
return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
- else if (Name.startswith("llvm.ctpop"))
+ case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
- else if (Name.startswith("llvm.cttz"))
+ case Intrinsic::cttz:
return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
- else if (Name.startswith("llvm.ctlz"))
+ case Intrinsic::ctlz:
return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
- else if (Name == "llvm.convert.from.fp16") {
+ case Intrinsic::convert_from_fp16: {
APFloat Val(Op->getValue());
bool lost = false;
@@ -1183,24 +1281,44 @@ llvm::ConstantFoldCall(Function *F,
Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
// Conversion is always precise.
- status = status;
+ (void)status;
assert(status == APFloat::opOK && !lost &&
"Precision lost during fp16 constfolding");
return ConstantFP::get(F->getContext(), Val);
}
- return 0;
+ default:
+ return 0;
+ }
}
-
+
+ if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
+ switch (F->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
+ return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
+ return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
+ }
+ }
+
if (isa<UndefValue>(Operands[0])) {
- if (Name.startswith("llvm.bswap"))
+ if (F->getIntrinsicID() == Intrinsic::bswap)
return Operands[0];
return 0;
}
return 0;
}
-
+
if (NumOperands == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isFloatTy() && !Ty->isDoubleTy())
@@ -1223,11 +1341,11 @@ llvm::ConstantFoldCall(Function *F,
if (Name == "atan2")
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
- if (Name == "llvm.powi.f32")
+ if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
return ConstantFP::get(F->getContext(),
APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
- if (Name == "llvm.powi.f64")
+ if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
return ConstantFP::get(F->getContext(),
APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
@@ -1240,42 +1358,37 @@ llvm::ConstantFoldCall(Function *F,
if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
switch (F->getIntrinsicID()) {
default: break;
- case Intrinsic::uadd_with_overflow: {
- Constant *Res = ConstantExpr::getAdd(Op1, Op2); // result.
- Constant *Ops[] = {
- Res, ConstantExpr::getICmp(CmpInst::ICMP_ULT, Res, Op1) // overflow.
- };
- return ConstantStruct::get(F->getContext(), Ops, 2, false);
- }
- case Intrinsic::usub_with_overflow: {
- Constant *Res = ConstantExpr::getSub(Op1, Op2); // result.
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow: {
+ APInt Res;
+ bool Overflow;
+ switch (F->getIntrinsicID()) {
+ default: assert(0 && "Invalid case");
+ case Intrinsic::sadd_with_overflow:
+ Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::uadd_with_overflow:
+ Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::ssub_with_overflow:
+ Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::usub_with_overflow:
+ Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
+ break;
+ case Intrinsic::smul_with_overflow:
+ Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
+ break;
+ }
Constant *Ops[] = {
- Res, ConstantExpr::getICmp(CmpInst::ICMP_UGT, Res, Op1) // overflow.
+ ConstantInt::get(F->getContext(), Res),
+ ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
};
return ConstantStruct::get(F->getContext(), Ops, 2, false);
}
- case Intrinsic::sadd_with_overflow: {
- Constant *Res = ConstantExpr::getAdd(Op1, Op2); // result.
- Constant *Overflow = ConstantExpr::getSelect(
- ConstantExpr::getICmp(CmpInst::ICMP_SGT,
- ConstantInt::get(Op1->getType(), 0), Op1),
- ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op2),
- ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op2)); // overflow.
-
- Constant *Ops[] = { Res, Overflow };
- return ConstantStruct::get(F->getContext(), Ops, 2, false);
- }
- case Intrinsic::ssub_with_overflow: {
- Constant *Res = ConstantExpr::getSub(Op1, Op2); // result.
- Constant *Overflow = ConstantExpr::getSelect(
- ConstantExpr::getICmp(CmpInst::ICMP_SGT,
- ConstantInt::get(Op2->getType(), 0), Op2),
- ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op1),
- ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op1)); // overflow.
-
- Constant *Ops[] = { Res, Overflow };
- return ConstantStruct::get(F->getContext(), Ops, 2, false);
- }
}
}
@@ -1285,4 +1398,3 @@ llvm::ConstantFoldCall(Function *F,
}
return 0;
}
-
OpenPOWER on IntegriCloud