summaryrefslogtreecommitdiffstats
path: root/include/llvm/Target/TargetLowering.h
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /include/llvm/Target/TargetLowering.h
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'include/llvm/Target/TargetLowering.h')
-rw-r--r--include/llvm/Target/TargetLowering.h1676
1 files changed, 1676 insertions, 0 deletions
diff --git a/include/llvm/Target/TargetLowering.h b/include/llvm/Target/TargetLowering.h
new file mode 100644
index 0000000..163f4c5
--- /dev/null
+++ b/include/llvm/Target/TargetLowering.h
@@ -0,0 +1,1676 @@
+//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes how to lower LLVM code to machine code. This has two
+// main components:
+//
+// 1. Which ValueTypes are natively supported by the target.
+// 2. Which operations are supported for supported ValueTypes.
+// 3. Cost thresholds for alternative implementations of certain operations.
+//
+// In addition it has a few other components, like information about FP
+// immediates.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_TARGETLOWERING_H
+#define LLVM_TARGET_TARGETLOWERING_H
+
+#include "llvm/InlineAsm.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/RuntimeLibcalls.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/DebugLoc.h"
+#include "llvm/Target/TargetMachine.h"
+#include <climits>
+#include <map>
+#include <vector>
+
+namespace llvm {
+ class AllocaInst;
+ class CallInst;
+ class Function;
+ class FastISel;
+ class MachineBasicBlock;
+ class MachineFunction;
+ class MachineFrameInfo;
+ class MachineInstr;
+ class MachineModuleInfo;
+ class DwarfWriter;
+ class SDNode;
+ class SDValue;
+ class SelectionDAG;
+ class TargetData;
+ class TargetMachine;
+ class TargetRegisterClass;
+ class TargetSubtarget;
+ class Value;
+
+ // FIXME: should this be here?
+ namespace TLSModel {
+ enum Model {
+ GeneralDynamic,
+ LocalDynamic,
+ InitialExec,
+ LocalExec
+ };
+ }
+ TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
+
+
+//===----------------------------------------------------------------------===//
+/// TargetLowering - This class defines information used to lower LLVM code to
+/// legal SelectionDAG operators that the target instruction selector can accept
+/// natively.
+///
+/// This class also defines callbacks that targets must implement to lower
+/// target-specific constructs to SelectionDAG operators.
+///
+class TargetLowering {
+public:
+ /// LegalizeAction - This enum indicates whether operations are valid for a
+ /// target, and if not, what action should be used to make them valid.
+ enum LegalizeAction {
+ Legal, // The target natively supports this operation.
+ Promote, // This operation should be executed in a larger type.
+ Expand, // Try to expand this to other ops, otherwise use a libcall.
+ Custom // Use the LowerOperation hook to implement custom lowering.
+ };
+
+ enum OutOfRangeShiftAmount {
+ Undefined, // Oversized shift amounts are undefined (default).
+ Mask, // Shift amounts are auto masked (anded) to value size.
+ Extend // Oversized shift pulls in zeros or sign bits.
+ };
+
+ enum BooleanContent { // How the target represents true/false values.
+ UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
+ ZeroOrOneBooleanContent, // All bits zero except for bit 0.
+ ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
+ };
+
+ enum SchedPreference {
+ SchedulingForLatency, // Scheduling for shortest total latency.
+ SchedulingForRegPressure // Scheduling for lowest register pressure.
+ };
+
+ explicit TargetLowering(TargetMachine &TM);
+ virtual ~TargetLowering();
+
+ TargetMachine &getTargetMachine() const { return TM; }
+ const TargetData *getTargetData() const { return TD; }
+
+ bool isBigEndian() const { return !IsLittleEndian; }
+ bool isLittleEndian() const { return IsLittleEndian; }
+ MVT getPointerTy() const { return PointerTy; }
+ MVT getShiftAmountTy() const { return ShiftAmountTy; }
+ OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
+
+ /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
+ /// codegen.
+ bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
+
+ /// isSelectExpensive - Return true if the select operation is expensive for
+ /// this target.
+ bool isSelectExpensive() const { return SelectIsExpensive; }
+
+ /// isIntDivCheap() - Return true if integer divide is usually cheaper than
+ /// a sequence of several shifts, adds, and multiplies for this target.
+ bool isIntDivCheap() const { return IntDivIsCheap; }
+
+ /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
+ /// srl/add/sra.
+ bool isPow2DivCheap() const { return Pow2DivIsCheap; }
+
+ /// getSetCCResultType - Return the ValueType of the result of SETCC
+ /// operations. Also used to obtain the target's preferred type for
+ /// the condition operand of SELECT and BRCOND nodes. In the case of
+ /// BRCOND the argument passed is MVT::Other since there are no other
+ /// operands to get a type hint from.
+ virtual MVT getSetCCResultType(MVT VT) const;
+
+ /// getBooleanContents - For targets without i1 registers, this gives the
+ /// nature of the high-bits of boolean values held in types wider than i1.
+ /// "Boolean values" are special true/false values produced by nodes like
+ /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
+ /// Not to be confused with general values promoted from i1.
+ BooleanContent getBooleanContents() const { return BooleanContents;}
+
+ /// getSchedulingPreference - Return target scheduling preference.
+ SchedPreference getSchedulingPreference() const {
+ return SchedPreferenceInfo;
+ }
+
+ /// getRegClassFor - Return the register class that should be used for the
+ /// specified value type. This may only be called on legal types.
+ TargetRegisterClass *getRegClassFor(MVT VT) const {
+ assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
+ TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
+ assert(RC && "This value type is not natively supported!");
+ return RC;
+ }
+
+ /// isTypeLegal - Return true if the target has native support for the
+ /// specified value type. This means that it has a register that directly
+ /// holds it without promotions or expansions.
+ bool isTypeLegal(MVT VT) const {
+ assert(!VT.isSimple() ||
+ (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
+ return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
+ }
+
+ class ValueTypeActionImpl {
+ /// ValueTypeActions - This is a bitvector that contains two bits for each
+ /// value type, where the two bits correspond to the LegalizeAction enum.
+ /// This can be queried with "getTypeAction(VT)".
+ uint32_t ValueTypeActions[2];
+ public:
+ ValueTypeActionImpl() {
+ ValueTypeActions[0] = ValueTypeActions[1] = 0;
+ }
+ ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
+ ValueTypeActions[0] = RHS.ValueTypeActions[0];
+ ValueTypeActions[1] = RHS.ValueTypeActions[1];
+ }
+
+ LegalizeAction getTypeAction(MVT VT) const {
+ if (VT.isExtended()) {
+ if (VT.isVector()) {
+ return VT.isPow2VectorType() ? Expand : Promote;
+ }
+ if (VT.isInteger())
+ // First promote to a power-of-two size, then expand if necessary.
+ return VT == VT.getRoundIntegerType() ? Expand : Promote;
+ assert(0 && "Unsupported extended type!");
+ return Legal;
+ }
+ unsigned I = VT.getSimpleVT();
+ assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
+ return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
+ }
+ void setTypeAction(MVT VT, LegalizeAction Action) {
+ unsigned I = VT.getSimpleVT();
+ assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
+ ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
+ }
+ };
+
+ const ValueTypeActionImpl &getValueTypeActions() const {
+ return ValueTypeActions;
+ }
+
+ /// getTypeAction - Return how we should legalize values of this type, either
+ /// it is already legal (return 'Legal') or we need to promote it to a larger
+ /// type (return 'Promote'), or we need to expand it into multiple registers
+ /// of smaller integer type (return 'Expand'). 'Custom' is not an option.
+ LegalizeAction getTypeAction(MVT VT) const {
+ return ValueTypeActions.getTypeAction(VT);
+ }
+
+ /// getTypeToTransformTo - For types supported by the target, this is an
+ /// identity function. For types that must be promoted to larger types, this
+ /// returns the larger type to promote to. For integer types that are larger
+ /// than the largest integer register, this contains one step in the expansion
+ /// to get to the smaller register. For illegal floating point types, this
+ /// returns the integer type to transform to.
+ MVT getTypeToTransformTo(MVT VT) const {
+ if (VT.isSimple()) {
+ assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
+ MVT NVT = TransformToType[VT.getSimpleVT()];
+ assert(getTypeAction(NVT) != Promote &&
+ "Promote may not follow Expand or Promote");
+ return NVT;
+ }
+
+ if (VT.isVector()) {
+ MVT NVT = VT.getPow2VectorType();
+ if (NVT == VT) {
+ // Vector length is a power of 2 - split to half the size.
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT EltVT = VT.getVectorElementType();
+ return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
+ }
+ // Promote to a power of two size, avoiding multi-step promotion.
+ return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
+ } else if (VT.isInteger()) {
+ MVT NVT = VT.getRoundIntegerType();
+ if (NVT == VT)
+ // Size is a power of two - expand to half the size.
+ return MVT::getIntegerVT(VT.getSizeInBits() / 2);
+ else
+ // Promote to a power of two size, avoiding multi-step promotion.
+ return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
+ }
+ assert(0 && "Unsupported extended type!");
+ return MVT(); // Not reached
+ }
+
+ /// getTypeToExpandTo - For types supported by the target, this is an
+ /// identity function. For types that must be expanded (i.e. integer types
+ /// that are larger than the largest integer register or illegal floating
+ /// point types), this returns the largest legal type it will be expanded to.
+ MVT getTypeToExpandTo(MVT VT) const {
+ assert(!VT.isVector());
+ while (true) {
+ switch (getTypeAction(VT)) {
+ case Legal:
+ return VT;
+ case Expand:
+ VT = getTypeToTransformTo(VT);
+ break;
+ default:
+ assert(false && "Type is not legal nor is it to be expanded!");
+ return VT;
+ }
+ }
+ return VT;
+ }
+
+ /// getVectorTypeBreakdown - Vector types are broken down into some number of
+ /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
+ /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
+ /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
+ ///
+ /// This method returns the number of registers needed, and the VT for each
+ /// register. It also returns the VT and quantity of the intermediate values
+ /// before they are promoted/expanded.
+ ///
+ unsigned getVectorTypeBreakdown(MVT VT,
+ MVT &IntermediateVT,
+ unsigned &NumIntermediates,
+ MVT &RegisterVT) const;
+
+ /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
+ /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
+ /// this is the case, it returns true and store the intrinsic
+ /// information into the IntrinsicInfo that was passed to the function.
+ typedef struct IntrinsicInfo {
+ unsigned opc; // target opcode
+ MVT memVT; // memory VT
+ const Value* ptrVal; // value representing memory location
+ int offset; // offset off of ptrVal
+ unsigned align; // alignment
+ bool vol; // is volatile?
+ bool readMem; // reads memory?
+ bool writeMem; // writes memory?
+ } IntrinisicInfo;
+
+ virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
+ CallInst &I, unsigned Intrinsic) {
+ return false;
+ }
+
+ /// getWidenVectorType: given a vector type, returns the type to widen to
+ /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
+ /// If there is no vector type that we want to widen to, returns MVT::Other
+ /// When and were to widen is target dependent based on the cost of
+ /// scalarizing vs using the wider vector type.
+ virtual MVT getWidenVectorType(MVT VT) const;
+
+ typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
+ legal_fpimm_iterator legal_fpimm_begin() const {
+ return LegalFPImmediates.begin();
+ }
+ legal_fpimm_iterator legal_fpimm_end() const {
+ return LegalFPImmediates.end();
+ }
+
+ /// isShuffleMaskLegal - Targets can use this to indicate that they only
+ /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+ /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+ /// are assumed to be legal.
+ virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
+ MVT VT) const {
+ return true;
+ }
+
+ /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
+ /// used by Targets can use this to indicate if there is a suitable
+ /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
+ /// pool entry.
+ virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
+ MVT VT) const {
+ return false;
+ }
+
+ /// getOperationAction - Return how this operation should be treated: either
+ /// it is legal, needs to be promoted to a larger size, needs to be
+ /// expanded to some other code sequence, or the target has a custom expander
+ /// for it.
+ LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
+ if (VT.isExtended()) return Expand;
+ assert(Op < array_lengthof(OpActions) &&
+ (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
+ "Table isn't big enough!");
+ return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
+ }
+
+ /// isOperationLegalOrCustom - Return true if the specified operation is
+ /// legal on this target or can be made legal with custom lowering. This
+ /// is used to help guide high-level lowering decisions.
+ bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
+ return (VT == MVT::Other || isTypeLegal(VT)) &&
+ (getOperationAction(Op, VT) == Legal ||
+ getOperationAction(Op, VT) == Custom);
+ }
+
+ /// isOperationLegal - Return true if the specified operation is legal on this
+ /// target.
+ bool isOperationLegal(unsigned Op, MVT VT) const {
+ return (VT == MVT::Other || isTypeLegal(VT)) &&
+ getOperationAction(Op, VT) == Legal;
+ }
+
+ /// getLoadExtAction - Return how this load with extension should be treated:
+ /// either it is legal, needs to be promoted to a larger size, needs to be
+ /// expanded to some other code sequence, or the target has a custom expander
+ /// for it.
+ LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
+ assert(LType < array_lengthof(LoadExtActions) &&
+ (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
+ "Table isn't big enough!");
+ return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
+ }
+
+ /// isLoadExtLegal - Return true if the specified load with extension is legal
+ /// on this target.
+ bool isLoadExtLegal(unsigned LType, MVT VT) const {
+ return VT.isSimple() &&
+ (getLoadExtAction(LType, VT) == Legal ||
+ getLoadExtAction(LType, VT) == Custom);
+ }
+
+ /// getTruncStoreAction - Return how this store with truncation should be
+ /// treated: either it is legal, needs to be promoted to a larger size, needs
+ /// to be expanded to some other code sequence, or the target has a custom
+ /// expander for it.
+ LegalizeAction getTruncStoreAction(MVT ValVT,
+ MVT MemVT) const {
+ assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
+ (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
+ "Table isn't big enough!");
+ return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
+ (2*MemVT.getSimpleVT())) & 3);
+ }
+
+ /// isTruncStoreLegal - Return true if the specified store with truncation is
+ /// legal on this target.
+ bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
+ return isTypeLegal(ValVT) && MemVT.isSimple() &&
+ (getTruncStoreAction(ValVT, MemVT) == Legal ||
+ getTruncStoreAction(ValVT, MemVT) == Custom);
+ }
+
+ /// getIndexedLoadAction - Return how the indexed load should be treated:
+ /// either it is legal, needs to be promoted to a larger size, needs to be
+ /// expanded to some other code sequence, or the target has a custom expander
+ /// for it.
+ LegalizeAction
+ getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
+ assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
+ (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
+ "Table isn't big enough!");
+ return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
+ (2*VT.getSimpleVT())) & 3);
+ }
+
+ /// isIndexedLoadLegal - Return true if the specified indexed load is legal
+ /// on this target.
+ bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
+ return VT.isSimple() &&
+ (getIndexedLoadAction(IdxMode, VT) == Legal ||
+ getIndexedLoadAction(IdxMode, VT) == Custom);
+ }
+
+ /// getIndexedStoreAction - Return how the indexed store should be treated:
+ /// either it is legal, needs to be promoted to a larger size, needs to be
+ /// expanded to some other code sequence, or the target has a custom expander
+ /// for it.
+ LegalizeAction
+ getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
+ assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
+ (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
+ "Table isn't big enough!");
+ return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
+ (2*VT.getSimpleVT())) & 3);
+ }
+
+ /// isIndexedStoreLegal - Return true if the specified indexed load is legal
+ /// on this target.
+ bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
+ return VT.isSimple() &&
+ (getIndexedStoreAction(IdxMode, VT) == Legal ||
+ getIndexedStoreAction(IdxMode, VT) == Custom);
+ }
+
+ /// getConvertAction - Return how the conversion should be treated:
+ /// either it is legal, needs to be promoted to a larger size, needs to be
+ /// expanded to some other code sequence, or the target has a custom expander
+ /// for it.
+ LegalizeAction
+ getConvertAction(MVT FromVT, MVT ToVT) const {
+ assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
+ (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
+ "Table isn't big enough!");
+ return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
+ (2*ToVT.getSimpleVT())) & 3);
+ }
+
+ /// isConvertLegal - Return true if the specified conversion is legal
+ /// on this target.
+ bool isConvertLegal(MVT FromVT, MVT ToVT) const {
+ return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
+ (getConvertAction(FromVT, ToVT) == Legal ||
+ getConvertAction(FromVT, ToVT) == Custom);
+ }
+
+ /// getCondCodeAction - Return how the condition code should be treated:
+ /// either it is legal, needs to be expanded to some other code sequence,
+ /// or the target has a custom expander for it.
+ LegalizeAction
+ getCondCodeAction(ISD::CondCode CC, MVT VT) const {
+ assert((unsigned)CC < array_lengthof(CondCodeActions) &&
+ (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
+ "Table isn't big enough!");
+ LegalizeAction Action = (LegalizeAction)
+ ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
+ assert(Action != Promote && "Can't promote condition code!");
+ return Action;
+ }
+
+ /// isCondCodeLegal - Return true if the specified condition code is legal
+ /// on this target.
+ bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
+ return getCondCodeAction(CC, VT) == Legal ||
+ getCondCodeAction(CC, VT) == Custom;
+ }
+
+
+ /// getTypeToPromoteTo - If the action for this operation is to promote, this
+ /// method returns the ValueType to promote to.
+ MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
+ assert(getOperationAction(Op, VT) == Promote &&
+ "This operation isn't promoted!");
+
+ // See if this has an explicit type specified.
+ std::map<std::pair<unsigned, MVT::SimpleValueType>,
+ MVT::SimpleValueType>::const_iterator PTTI =
+ PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
+ if (PTTI != PromoteToType.end()) return PTTI->second;
+
+ assert((VT.isInteger() || VT.isFloatingPoint()) &&
+ "Cannot autopromote this type, add it with AddPromotedToType.");
+
+ MVT NVT = VT;
+ do {
+ NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
+ assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
+ "Didn't find type to promote to!");
+ } while (!isTypeLegal(NVT) ||
+ getOperationAction(Op, NVT) == Promote);
+ return NVT;
+ }
+
+ /// getValueType - Return the MVT corresponding to this LLVM type.
+ /// This is fixed by the LLVM operations except for the pointer size. If
+ /// AllowUnknown is true, this will return MVT::Other for types with no MVT
+ /// counterpart (e.g. structs), otherwise it will assert.
+ MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
+ MVT VT = MVT::getMVT(Ty, AllowUnknown);
+ return VT == MVT::iPTR ? PointerTy : VT;
+ }
+
+ /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+ /// function arguments in the caller parameter area. This is the actual
+ /// alignment, not its logarithm.
+ virtual unsigned getByValTypeAlignment(const Type *Ty) const;
+
+ /// getRegisterType - Return the type of registers that this ValueType will
+ /// eventually require.
+ MVT getRegisterType(MVT VT) const {
+ if (VT.isSimple()) {
+ assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
+ return RegisterTypeForVT[VT.getSimpleVT()];
+ }
+ if (VT.isVector()) {
+ MVT VT1, RegisterVT;
+ unsigned NumIntermediates;
+ (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
+ return RegisterVT;
+ }
+ if (VT.isInteger()) {
+ return getRegisterType(getTypeToTransformTo(VT));
+ }
+ assert(0 && "Unsupported extended type!");
+ return MVT(); // Not reached
+ }
+
+ /// getNumRegisters - Return the number of registers that this ValueType will
+ /// eventually require. This is one for any types promoted to live in larger
+ /// registers, but may be more than one for types (like i64) that are split
+ /// into pieces. For types like i140, which are first promoted then expanded,
+ /// it is the number of registers needed to hold all the bits of the original
+ /// type. For an i140 on a 32 bit machine this means 5 registers.
+ unsigned getNumRegisters(MVT VT) const {
+ if (VT.isSimple()) {
+ assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
+ return NumRegistersForVT[VT.getSimpleVT()];
+ }
+ if (VT.isVector()) {
+ MVT VT1, VT2;
+ unsigned NumIntermediates;
+ return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
+ }
+ if (VT.isInteger()) {
+ unsigned BitWidth = VT.getSizeInBits();
+ unsigned RegWidth = getRegisterType(VT).getSizeInBits();
+ return (BitWidth + RegWidth - 1) / RegWidth;
+ }
+ assert(0 && "Unsupported extended type!");
+ return 0; // Not reached
+ }
+
+ /// ShouldShrinkFPConstant - If true, then instruction selection should
+ /// seek to shrink the FP constant of the specified type to a smaller type
+ /// in order to save space and / or reduce runtime.
+ virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
+
+ /// hasTargetDAGCombine - If true, the target has custom DAG combine
+ /// transformations that it can perform for the specified node.
+ bool hasTargetDAGCombine(ISD::NodeType NT) const {
+ assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
+ return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
+ }
+
+ /// This function returns the maximum number of store operations permitted
+ /// to replace a call to llvm.memset. The value is set by the target at the
+ /// performance threshold for such a replacement.
+ /// @brief Get maximum # of store operations permitted for llvm.memset
+ unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
+
+ /// This function returns the maximum number of store operations permitted
+ /// to replace a call to llvm.memcpy. The value is set by the target at the
+ /// performance threshold for such a replacement.
+ /// @brief Get maximum # of store operations permitted for llvm.memcpy
+ unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
+
+ /// This function returns the maximum number of store operations permitted
+ /// to replace a call to llvm.memmove. The value is set by the target at the
+ /// performance threshold for such a replacement.
+ /// @brief Get maximum # of store operations permitted for llvm.memmove
+ unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
+
+ /// This function returns true if the target allows unaligned memory accesses.
+ /// This is used, for example, in situations where an array copy/move/set is
+ /// converted to a sequence of store operations. It's use helps to ensure that
+ /// such replacements don't generate code that causes an alignment error
+ /// (trap) on the target machine.
+ /// @brief Determine if the target supports unaligned memory accesses.
+ bool allowsUnalignedMemoryAccesses() const {
+ return allowUnalignedMemoryAccesses;
+ }
+
+ /// This function returns true if the target would benefit from code placement
+ /// optimization.
+ /// @brief Determine if the target should perform code placement optimization.
+ bool shouldOptimizeCodePlacement() const {
+ return benefitFromCodePlacementOpt;
+ }
+
+ /// getOptimalMemOpType - Returns the target specific optimal type for load
+ /// and store operations as a result of memset, memcpy, and memmove lowering.
+ /// It returns MVT::iAny if SelectionDAG should be responsible for
+ /// determining it.
+ virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
+ bool isSrcConst, bool isSrcStr) const {
+ return MVT::iAny;
+ }
+
+ /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
+ /// to implement llvm.setjmp.
+ bool usesUnderscoreSetJmp() const {
+ return UseUnderscoreSetJmp;
+ }
+
+ /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
+ /// to implement llvm.longjmp.
+ bool usesUnderscoreLongJmp() const {
+ return UseUnderscoreLongJmp;
+ }
+
+ /// getStackPointerRegisterToSaveRestore - If a physical register, this
+ /// specifies the register that llvm.savestack/llvm.restorestack should save
+ /// and restore.
+ unsigned getStackPointerRegisterToSaveRestore() const {
+ return StackPointerRegisterToSaveRestore;
+ }
+
+ /// getExceptionAddressRegister - If a physical register, this returns
+ /// the register that receives the exception address on entry to a landing
+ /// pad.
+ unsigned getExceptionAddressRegister() const {
+ return ExceptionPointerRegister;
+ }
+
+ /// getExceptionSelectorRegister - If a physical register, this returns
+ /// the register that receives the exception typeid on entry to a landing
+ /// pad.
+ unsigned getExceptionSelectorRegister() const {
+ return ExceptionSelectorRegister;
+ }
+
+ /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
+ /// set, the default is 200)
+ unsigned getJumpBufSize() const {
+ return JumpBufSize;
+ }
+
+ /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
+ /// (if never set, the default is 0)
+ unsigned getJumpBufAlignment() const {
+ return JumpBufAlignment;
+ }
+
+ /// getIfCvtBlockLimit - returns the target specific if-conversion block size
+ /// limit. Any block whose size is greater should not be predicated.
+ unsigned getIfCvtBlockSizeLimit() const {
+ return IfCvtBlockSizeLimit;
+ }
+
+ /// getIfCvtDupBlockLimit - returns the target specific size limit for a
+ /// block to be considered for duplication. Any block whose size is greater
+ /// should not be duplicated to facilitate its predication.
+ unsigned getIfCvtDupBlockSizeLimit() const {
+ return IfCvtDupBlockSizeLimit;
+ }
+
+ /// getPrefLoopAlignment - return the preferred loop alignment.
+ ///
+ unsigned getPrefLoopAlignment() const {
+ return PrefLoopAlignment;
+ }
+
+ /// getPreIndexedAddressParts - returns true by value, base pointer and
+ /// offset pointer and addressing mode by reference if the node's address
+ /// can be legally represented as pre-indexed load / store address.
+ virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ return false;
+ }
+
+ /// getPostIndexedAddressParts - returns true by value, base pointer and
+ /// offset pointer and addressing mode by reference if this node can be
+ /// combined with a load / store to form a post-indexed load / store.
+ virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base, SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ return false;
+ }
+
+ /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
+ /// jumptable.
+ virtual SDValue getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const;
+
+ /// isOffsetFoldingLegal - Return true if folding a constant offset
+ /// with the given GlobalAddress is legal. It is frequently not legal in
+ /// PIC relocation models.
+ virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
+
+ //===--------------------------------------------------------------------===//
+ // TargetLowering Optimization Methods
+ //
+
+ /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
+ /// SDValues for returning information from TargetLowering to its clients
+ /// that want to combine
+ struct TargetLoweringOpt {
+ SelectionDAG &DAG;
+ SDValue Old;
+ SDValue New;
+
+ explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
+
+ bool CombineTo(SDValue O, SDValue N) {
+ Old = O;
+ New = N;
+ return true;
+ }
+
+ /// ShrinkDemandedConstant - Check to see if the specified operand of the
+ /// specified instruction is a constant integer. If so, check to see if
+ /// there are any bits set in the constant that are not demanded. If so,
+ /// shrink the constant and return true.
+ bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
+
+ /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
+ /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
+ /// cast, but it could be generalized for targets with other types of
+ /// implicit widening casts.
+ bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
+ DebugLoc dl);
+ };
+
+ /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
+ /// DemandedMask bits of the result of Op are ever used downstream. If we can
+ /// use this information to simplify Op, create a new simplified DAG node and
+ /// return true, returning the original and new nodes in Old and New.
+ /// Otherwise, analyze the expression and return a mask of KnownOne and
+ /// KnownZero bits for the expression (used to simplify the caller).
+ /// The KnownZero/One bits may only be accurate for those bits in the
+ /// DemandedMask.
+ bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
+ APInt &KnownZero, APInt &KnownOne,
+ TargetLoweringOpt &TLO, unsigned Depth = 0) const;
+
+ /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
+ /// Mask are known to be either zero or one and return them in the
+ /// KnownZero/KnownOne bitsets.
+ virtual void computeMaskedBitsForTargetNode(const SDValue Op,
+ const APInt &Mask,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const;
+
+ /// ComputeNumSignBitsForTargetNode - This method can be implemented by
+ /// targets that want to expose additional information about sign bits to the
+ /// DAG Combiner.
+ virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
+ unsigned Depth = 0) const;
+
+ struct DAGCombinerInfo {
+ void *DC; // The DAG Combiner object.
+ bool BeforeLegalize;
+ bool CalledByLegalizer;
+ public:
+ SelectionDAG &DAG;
+
+ DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
+ : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
+
+ bool isBeforeLegalize() const { return BeforeLegalize; }
+ bool isCalledByLegalizer() const { return CalledByLegalizer; }
+
+ void AddToWorklist(SDNode *N);
+ SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
+ bool AddTo = true);
+ SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
+ SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
+
+ void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
+ };
+
+ /// SimplifySetCC - Try to simplify a setcc built with the specified operands
+ /// and cc. If it is unable to simplify it, return a null SDValue.
+ SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, bool foldBooleans,
+ DAGCombinerInfo &DCI, DebugLoc dl) const;
+
+ /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
+ /// node is a GlobalAddress + offset.
+ virtual bool
+ isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
+
+ /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
+ /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
+ /// location that the 'Base' load is loading from.
+ bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist,
+ const MachineFrameInfo *MFI) const;
+
+ /// PerformDAGCombine - This method will be invoked for all target nodes and
+ /// for any target-independent nodes that the target has registered with
+ /// invoke it for.
+ ///
+ /// The semantics are as follows:
+ /// Return Value:
+ /// SDValue.Val == 0 - No change was made
+ /// SDValue.Val == N - N was replaced, is dead, and is already handled.
+ /// otherwise - N should be replaced by the returned Operand.
+ ///
+ /// In addition, methods provided by DAGCombinerInfo may be used to perform
+ /// more complex transformations.
+ ///
+ virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
+
+ //===--------------------------------------------------------------------===//
+ // TargetLowering Configuration Methods - These methods should be invoked by
+ // the derived class constructor to configure this object for the target.
+ //
+
+protected:
+ /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
+ /// GOT for PC-relative code.
+ void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
+
+ /// setShiftAmountType - Describe the type that should be used for shift
+ /// amounts. This type defaults to the pointer type.
+ void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
+
+ /// setBooleanContents - Specify how the target extends the result of a
+ /// boolean value from i1 to a wider type. See getBooleanContents.
+ void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
+
+ /// setSchedulingPreference - Specify the target scheduling preference.
+ void setSchedulingPreference(SchedPreference Pref) {
+ SchedPreferenceInfo = Pref;
+ }
+
+ /// setShiftAmountFlavor - Describe how the target handles out of range shift
+ /// amounts.
+ void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
+ ShiftAmtHandling = OORSA;
+ }
+
+ /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
+ /// use _setjmp to implement llvm.setjmp or the non _ version.
+ /// Defaults to false.
+ void setUseUnderscoreSetJmp(bool Val) {
+ UseUnderscoreSetJmp = Val;
+ }
+
+ /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
+ /// use _longjmp to implement llvm.longjmp or the non _ version.
+ /// Defaults to false.
+ void setUseUnderscoreLongJmp(bool Val) {
+ UseUnderscoreLongJmp = Val;
+ }
+
+ /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
+ /// specifies the register that llvm.savestack/llvm.restorestack should save
+ /// and restore.
+ void setStackPointerRegisterToSaveRestore(unsigned R) {
+ StackPointerRegisterToSaveRestore = R;
+ }
+
+ /// setExceptionPointerRegister - If set to a physical register, this sets
+ /// the register that receives the exception address on entry to a landing
+ /// pad.
+ void setExceptionPointerRegister(unsigned R) {
+ ExceptionPointerRegister = R;
+ }
+
+ /// setExceptionSelectorRegister - If set to a physical register, this sets
+ /// the register that receives the exception typeid on entry to a landing
+ /// pad.
+ void setExceptionSelectorRegister(unsigned R) {
+ ExceptionSelectorRegister = R;
+ }
+
+ /// SelectIsExpensive - Tells the code generator not to expand operations
+ /// into sequences that use the select operations if possible.
+ void setSelectIsExpensive() { SelectIsExpensive = true; }
+
+ /// setIntDivIsCheap - Tells the code generator that integer divide is
+ /// expensive, and if possible, should be replaced by an alternate sequence
+ /// of instructions not containing an integer divide.
+ void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
+
+ /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
+ /// srl/add/sra for a signed divide by power of two, and let the target handle
+ /// it.
+ void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
+
+ /// addRegisterClass - Add the specified register class as an available
+ /// regclass for the specified value type. This indicates the selector can
+ /// handle values of that class natively.
+ void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
+ assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
+ AvailableRegClasses.push_back(std::make_pair(VT, RC));
+ RegClassForVT[VT.getSimpleVT()] = RC;
+ }
+
+ /// computeRegisterProperties - Once all of the register classes are added,
+ /// this allows us to compute derived properties we expose.
+ void computeRegisterProperties();
+
+ /// setOperationAction - Indicate that the specified operation does not work
+ /// with the specified type and indicate what to do about it.
+ void setOperationAction(unsigned Op, MVT VT,
+ LegalizeAction Action) {
+ assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
+ Op < array_lengthof(OpActions) && "Table isn't big enough!");
+ OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
+ OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
+ }
+
+ /// setLoadExtAction - Indicate that the specified load with extension does
+ /// not work with the with specified type and indicate what to do about it.
+ void setLoadExtAction(unsigned ExtType, MVT VT,
+ LegalizeAction Action) {
+ assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
+ ExtType < array_lengthof(LoadExtActions) &&
+ "Table isn't big enough!");
+ LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
+ LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
+ }
+
+ /// setTruncStoreAction - Indicate that the specified truncating store does
+ /// not work with the with specified type and indicate what to do about it.
+ void setTruncStoreAction(MVT ValVT, MVT MemVT,
+ LegalizeAction Action) {
+ assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
+ (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
+ "Table isn't big enough!");
+ TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
+ MemVT.getSimpleVT()*2);
+ TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
+ MemVT.getSimpleVT()*2;
+ }
+
+ /// setIndexedLoadAction - Indicate that the specified indexed load does or
+ /// does not work with the with specified type and indicate what to do abort
+ /// it. NOTE: All indexed mode loads are initialized to Expand in
+ /// TargetLowering.cpp
+ void setIndexedLoadAction(unsigned IdxMode, MVT VT,
+ LegalizeAction Action) {
+ assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
+ IdxMode < array_lengthof(IndexedModeActions[0]) &&
+ "Table isn't big enough!");
+ IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
+ IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
+ }
+
+ /// setIndexedStoreAction - Indicate that the specified indexed store does or
+ /// does not work with the with specified type and indicate what to do about
+ /// it. NOTE: All indexed mode stores are initialized to Expand in
+ /// TargetLowering.cpp
+ void setIndexedStoreAction(unsigned IdxMode, MVT VT,
+ LegalizeAction Action) {
+ assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
+ IdxMode < array_lengthof(IndexedModeActions[1]) &&
+ "Table isn't big enough!");
+ IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
+ IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
+ }
+
+ /// setConvertAction - Indicate that the specified conversion does or does
+ /// not work with the with specified type and indicate what to do about it.
+ void setConvertAction(MVT FromVT, MVT ToVT,
+ LegalizeAction Action) {
+ assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
+ (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
+ "Table isn't big enough!");
+ ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
+ ToVT.getSimpleVT()*2);
+ ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
+ ToVT.getSimpleVT()*2;
+ }
+
+ /// setCondCodeAction - Indicate that the specified condition code is or isn't
+ /// supported on the target and indicate what to do about it.
+ void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
+ assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
+ (unsigned)CC < array_lengthof(CondCodeActions) &&
+ "Table isn't big enough!");
+ CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
+ CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
+ }
+
+ /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
+ /// promotion code defaults to trying a larger integer/fp until it can find
+ /// one that works. If that default is insufficient, this method can be used
+ /// by the target to override the default.
+ void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
+ PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
+ DestVT.getSimpleVT();
+ }
+
+ /// addLegalFPImmediate - Indicate that this target can instruction select
+ /// the specified FP immediate natively.
+ void addLegalFPImmediate(const APFloat& Imm) {
+ LegalFPImmediates.push_back(Imm);
+ }
+
+ /// setTargetDAGCombine - Targets should invoke this method for each target
+ /// independent node that they want to provide a custom DAG combiner for by
+ /// implementing the PerformDAGCombine virtual method.
+ void setTargetDAGCombine(ISD::NodeType NT) {
+ assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
+ TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
+ }
+
+ /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
+ /// bytes); default is 200
+ void setJumpBufSize(unsigned Size) {
+ JumpBufSize = Size;
+ }
+
+ /// setJumpBufAlignment - Set the target's required jmp_buf buffer
+ /// alignment (in bytes); default is 0
+ void setJumpBufAlignment(unsigned Align) {
+ JumpBufAlignment = Align;
+ }
+
+ /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
+ /// limit (in number of instructions); default is 2.
+ void setIfCvtBlockSizeLimit(unsigned Limit) {
+ IfCvtBlockSizeLimit = Limit;
+ }
+
+ /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
+ /// of instructions) to be considered for code duplication during
+ /// if-conversion; default is 2.
+ void setIfCvtDupBlockSizeLimit(unsigned Limit) {
+ IfCvtDupBlockSizeLimit = Limit;
+ }
+
+ /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
+ /// alignment is zero, it means the target does not care about loop alignment.
+ void setPrefLoopAlignment(unsigned Align) {
+ PrefLoopAlignment = Align;
+ }
+
+public:
+
+ virtual const TargetSubtarget *getSubtarget() {
+ assert(0 && "Not Implemented");
+ return NULL; // this is here to silence compiler errors
+ }
+ //===--------------------------------------------------------------------===//
+ // Lowering methods - These methods must be implemented by targets so that
+ // the SelectionDAGLowering code knows how to lower these.
+ //
+
+ /// LowerArguments - This hook must be implemented to indicate how we should
+ /// lower the arguments for the specified function, into the specified DAG.
+ virtual void
+ LowerArguments(Function &F, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue>& ArgValues, DebugLoc dl);
+
+ /// LowerCallTo - This hook lowers an abstract call to a function into an
+ /// actual call. This returns a pair of operands. The first element is the
+ /// return value for the function (if RetTy is not VoidTy). The second
+ /// element is the outgoing token chain.
+ struct ArgListEntry {
+ SDValue Node;
+ const Type* Ty;
+ bool isSExt : 1;
+ bool isZExt : 1;
+ bool isInReg : 1;
+ bool isSRet : 1;
+ bool isNest : 1;
+ bool isByVal : 1;
+ uint16_t Alignment;
+
+ ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
+ isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
+ };
+ typedef std::vector<ArgListEntry> ArgListTy;
+ virtual std::pair<SDValue, SDValue>
+ LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
+ bool isVarArg, bool isInreg, unsigned CallingConv,
+ bool isTailCall, SDValue Callee, ArgListTy &Args,
+ SelectionDAG &DAG, DebugLoc dl);
+
+ /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
+ /// memcpy. This can be used by targets to provide code sequences for cases
+ /// that don't fit the target's parameters for simple loads/stores and can be
+ /// more efficient than using a library call. This function can return a null
+ /// SDValue if the target declines to use custom code and a different
+ /// lowering strategy should be used.
+ ///
+ /// If AlwaysInline is true, the size is constant and the target should not
+ /// emit any calls and is strongly encouraged to attempt to emit inline code
+ /// even if it is beyond the usual threshold because this intrinsic is being
+ /// expanded in a place where calls are not feasible (e.g. within the prologue
+ /// for another call). If the target chooses to decline an AlwaysInline
+ /// request here, legalize will resort to using simple loads and stores.
+ virtual SDValue
+ EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
+ SDValue Chain,
+ SDValue Op1, SDValue Op2,
+ SDValue Op3, unsigned Align,
+ bool AlwaysInline,
+ const Value *DstSV, uint64_t DstOff,
+ const Value *SrcSV, uint64_t SrcOff) {
+ return SDValue();
+ }
+
+ /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
+ /// memmove. This can be used by targets to provide code sequences for cases
+ /// that don't fit the target's parameters for simple loads/stores and can be
+ /// more efficient than using a library call. This function can return a null
+ /// SDValue if the target declines to use custom code and a different
+ /// lowering strategy should be used.
+ virtual SDValue
+ EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
+ SDValue Chain,
+ SDValue Op1, SDValue Op2,
+ SDValue Op3, unsigned Align,
+ const Value *DstSV, uint64_t DstOff,
+ const Value *SrcSV, uint64_t SrcOff) {
+ return SDValue();
+ }
+
+ /// EmitTargetCodeForMemset - Emit target-specific code that performs a
+ /// memset. This can be used by targets to provide code sequences for cases
+ /// that don't fit the target's parameters for simple stores and can be more
+ /// efficient than using a library call. This function can return a null
+ /// SDValue if the target declines to use custom code and a different
+ /// lowering strategy should be used.
+ virtual SDValue
+ EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
+ SDValue Chain,
+ SDValue Op1, SDValue Op2,
+ SDValue Op3, unsigned Align,
+ const Value *DstSV, uint64_t DstOff) {
+ return SDValue();
+ }
+
+ /// LowerOperationWrapper - This callback is invoked by the type legalizer
+ /// to legalize nodes with an illegal operand type but legal result types.
+ /// It replaces the LowerOperation callback in the type Legalizer.
+ /// The reason we can not do away with LowerOperation entirely is that
+ /// LegalizeDAG isn't yet ready to use this callback.
+ /// TODO: Consider merging with ReplaceNodeResults.
+
+ /// The target places new result values for the node in Results (their number
+ /// and types must exactly match those of the original return values of
+ /// the node), or leaves Results empty, which indicates that the node is not
+ /// to be custom lowered after all.
+ /// The default implementation calls LowerOperation.
+ virtual void LowerOperationWrapper(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG);
+
+ /// LowerOperation - This callback is invoked for operations that are
+ /// unsupported by the target, which are registered to use 'custom' lowering,
+ /// and whose defined values are all legal.
+ /// If the target has no operations that require custom lowering, it need not
+ /// implement this. The default implementation of this aborts.
+ virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
+
+ /// ReplaceNodeResults - This callback is invoked when a node result type is
+ /// illegal for the target, and the operation was registered to use 'custom'
+ /// lowering for that result type. The target places new result values for
+ /// the node in Results (their number and types must exactly match those of
+ /// the original return values of the node), or leaves Results empty, which
+ /// indicates that the node is not to be custom lowered after all.
+ ///
+ /// If the target has no operations that require custom lowering, it need not
+ /// implement this. The default implementation aborts.
+ virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) {
+ assert(0 && "ReplaceNodeResults not implemented for this target!");
+ }
+
+ /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
+ /// tail call optimization. Targets which want to do tail call optimization
+ /// should override this function.
+ virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
+ SDValue Ret,
+ SelectionDAG &DAG) const {
+ return false;
+ }
+
+ /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
+ /// preceeds the RET node and whether the return uses the result of the node
+ /// or is a void return. This function can be used by the target to determine
+ /// eligiblity of tail call optimization.
+ static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret);
+
+ /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
+ /// it exists. Skip a possible ISD::TokenFactor.
+ static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
+ unsigned TailCallNodeOpCode) {
+ if (Chain.getOpcode() == TailCallNodeOpCode) {
+ return Chain;
+ } else if (Chain.getOpcode() == ISD::TokenFactor) {
+ if (Chain.getNumOperands() &&
+ Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
+ return Chain.getOperand(0);
+ }
+ return Chain;
+ }
+
+ /// getTargetNodeName() - This method returns the name of a target specific
+ /// DAG node.
+ virtual const char *getTargetNodeName(unsigned Opcode) const;
+
+ /// createFastISel - This method returns a target specific FastISel object,
+ /// or null if the target does not support "fast" ISel.
+ virtual FastISel *
+ createFastISel(MachineFunction &,
+ MachineModuleInfo *, DwarfWriter *,
+ DenseMap<const Value *, unsigned> &,
+ DenseMap<const BasicBlock *, MachineBasicBlock *> &,
+ DenseMap<const AllocaInst *, int> &
+#ifndef NDEBUG
+ , SmallSet<Instruction*, 8> &CatchInfoLost
+#endif
+ ) {
+ return 0;
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Inline Asm Support hooks
+ //
+
+ enum ConstraintType {
+ C_Register, // Constraint represents specific register(s).
+ C_RegisterClass, // Constraint represents any of register(s) in class.
+ C_Memory, // Memory constraint.
+ C_Other, // Something else.
+ C_Unknown // Unsupported constraint.
+ };
+
+ /// AsmOperandInfo - This contains information for each constraint that we are
+ /// lowering.
+ struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
+ /// ConstraintCode - This contains the actual string for the code, like "m".
+ /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
+ /// most closely matches the operand.
+ std::string ConstraintCode;
+
+ /// ConstraintType - Information about the constraint code, e.g. Register,
+ /// RegisterClass, Memory, Other, Unknown.
+ TargetLowering::ConstraintType ConstraintType;
+
+ /// CallOperandval - If this is the result output operand or a
+ /// clobber, this is null, otherwise it is the incoming operand to the
+ /// CallInst. This gets modified as the asm is processed.
+ Value *CallOperandVal;
+
+ /// ConstraintVT - The ValueType for the operand value.
+ MVT ConstraintVT;
+
+ /// isMatchingInputConstraint - Return true of this is an input operand that
+ /// is a matching constraint like "4".
+ bool isMatchingInputConstraint() const;
+
+ /// getMatchedOperand - If this is an input matching constraint, this method
+ /// returns the output operand it matches.
+ unsigned getMatchedOperand() const;
+
+ AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
+ : InlineAsm::ConstraintInfo(info),
+ ConstraintType(TargetLowering::C_Unknown),
+ CallOperandVal(0), ConstraintVT(MVT::Other) {
+ }
+ };
+
+ /// ComputeConstraintToUse - Determines the constraint code and constraint
+ /// type to use for the specific AsmOperandInfo, setting
+ /// OpInfo.ConstraintCode and OpInfo.ConstraintType. If the actual operand
+ /// being passed in is available, it can be passed in as Op, otherwise an
+ /// empty SDValue can be passed. If hasMemory is true it means one of the asm
+ /// constraint of the inline asm instruction being processed is 'm'.
+ virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
+ SDValue Op,
+ bool hasMemory,
+ SelectionDAG *DAG = 0) const;
+
+ /// getConstraintType - Given a constraint, return the type of constraint it
+ /// is for this target.
+ virtual ConstraintType getConstraintType(const std::string &Constraint) const;
+
+ /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
+ /// return a list of registers that can be used to satisfy the constraint.
+ /// This should only be used for C_RegisterClass constraints.
+ virtual std::vector<unsigned>
+ getRegClassForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const;
+
+ /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
+ /// {edx}), return the register number and the register class for the
+ /// register.
+ ///
+ /// Given a register class constraint, like 'r', if this corresponds directly
+ /// to an LLVM register class, return a register of 0 and the register class
+ /// pointer.
+ ///
+ /// This should only be used for C_Register constraints. On error,
+ /// this returns a register number of 0 and a null register class pointer..
+ virtual std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const;
+
+ /// LowerXConstraint - try to replace an X constraint, which matches anything,
+ /// with another that has more specific requirements based on the type of the
+ /// corresponding operand. This returns null if there is no replacement to
+ /// make.
+ virtual const char *LowerXConstraint(MVT ConstraintVT) const;
+
+ /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+ /// vector. If it is invalid, don't add anything to Ops. If hasMemory is true
+ /// it means one of the asm constraint of the inline asm instruction being
+ /// processed is 'm'.
+ virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
+ bool hasMemory,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const;
+
+ //===--------------------------------------------------------------------===//
+ // Scheduler hooks
+ //
+
+ // EmitInstrWithCustomInserter - This method should be implemented by targets
+ // that mark instructions with the 'usesCustomDAGSchedInserter' flag. These
+ // instructions are special in various ways, which require special support to
+ // insert. The specified MachineInstr is created but not inserted into any
+ // basic blocks, and the scheduler passes ownership of it to this method.
+ virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ //===--------------------------------------------------------------------===//
+ // Addressing mode description hooks (used by LSR etc).
+ //
+
+ /// AddrMode - This represents an addressing mode of:
+ /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
+ /// If BaseGV is null, there is no BaseGV.
+ /// If BaseOffs is zero, there is no base offset.
+ /// If HasBaseReg is false, there is no base register.
+ /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
+ /// no scale.
+ ///
+ struct AddrMode {
+ GlobalValue *BaseGV;
+ int64_t BaseOffs;
+ bool HasBaseReg;
+ int64_t Scale;
+ AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
+ };
+
+ /// isLegalAddressingMode - Return true if the addressing mode represented by
+ /// AM is legal for this target, for a load/store of the specified type.
+ /// The type may be VoidTy, in which case only return true if the addressing
+ /// mode is legal for a load/store of any legal type.
+ /// TODO: Handle pre/postinc as well.
+ virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
+
+ /// isTruncateFree - Return true if it's free to truncate a value of
+ /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
+ /// register EAX to i16 by referencing its sub-register AX.
+ virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
+ return false;
+ }
+
+ virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
+ return false;
+ }
+
+ /// isZExtFree - Return true if any actual instruction that defines a
+ /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
+ /// register. This does not necessarily include registers defined in
+ /// unknown ways, such as incoming arguments, or copies from unknown
+ /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
+ /// does not necessarily apply to truncate instructions. e.g. on x86-64,
+ /// all instructions that define 32-bit values implicit zero-extend the
+ /// result out to 64 bits.
+ virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
+ return false;
+ }
+
+ virtual bool isZExtFree(MVT VT1, MVT VT2) const {
+ return false;
+ }
+
+ /// isNarrowingProfitable - Return true if it's profitable to narrow
+ /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
+ /// from i32 to i8 but not from i32 to i16.
+ virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const {
+ return false;
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Div utility functions
+ //
+ SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
+ std::vector<SDNode*>* Created) const;
+ SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
+ std::vector<SDNode*>* Created) const;
+
+
+ //===--------------------------------------------------------------------===//
+ // Runtime Library hooks
+ //
+
+ /// setLibcallName - Rename the default libcall routine name for the specified
+ /// libcall.
+ void setLibcallName(RTLIB::Libcall Call, const char *Name) {
+ LibcallRoutineNames[Call] = Name;
+ }
+
+ /// getLibcallName - Get the libcall routine name for the specified libcall.
+ ///
+ const char *getLibcallName(RTLIB::Libcall Call) const {
+ return LibcallRoutineNames[Call];
+ }
+
+ /// setCmpLibcallCC - Override the default CondCode to be used to test the
+ /// result of the comparison libcall against zero.
+ void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
+ CmpLibcallCCs[Call] = CC;
+ }
+
+ /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
+ /// the comparison libcall against zero.
+ ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
+ return CmpLibcallCCs[Call];
+ }
+
+private:
+ TargetMachine &TM;
+ const TargetData *TD;
+
+ /// PointerTy - The type to use for pointers, usually i32 or i64.
+ ///
+ MVT PointerTy;
+
+ /// IsLittleEndian - True if this is a little endian target.
+ ///
+ bool IsLittleEndian;
+
+ /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
+ ///
+ bool UsesGlobalOffsetTable;
+
+ /// SelectIsExpensive - Tells the code generator not to expand operations
+ /// into sequences that use the select operations if possible.
+ bool SelectIsExpensive;
+
+ /// IntDivIsCheap - Tells the code generator not to expand integer divides by
+ /// constants into a sequence of muls, adds, and shifts. This is a hack until
+ /// a real cost model is in place. If we ever optimize for size, this will be
+ /// set to true unconditionally.
+ bool IntDivIsCheap;
+
+ /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
+ /// srl/add/sra for a signed divide by power of two, and let the target handle
+ /// it.
+ bool Pow2DivIsCheap;
+
+ /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
+ /// llvm.setjmp. Defaults to false.
+ bool UseUnderscoreSetJmp;
+
+ /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
+ /// llvm.longjmp. Defaults to false.
+ bool UseUnderscoreLongJmp;
+
+ /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
+ /// PointerTy is.
+ MVT ShiftAmountTy;
+
+ OutOfRangeShiftAmount ShiftAmtHandling;
+
+ /// BooleanContents - Information about the contents of the high-bits in
+ /// boolean values held in a type wider than i1. See getBooleanContents.
+ BooleanContent BooleanContents;
+
+ /// SchedPreferenceInfo - The target scheduling preference: shortest possible
+ /// total cycles or lowest register usage.
+ SchedPreference SchedPreferenceInfo;
+
+ /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
+ unsigned JumpBufSize;
+
+ /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
+ /// buffers
+ unsigned JumpBufAlignment;
+
+ /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
+ /// if-converted.
+ unsigned IfCvtBlockSizeLimit;
+
+ /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
+ /// duplicated during if-conversion.
+ unsigned IfCvtDupBlockSizeLimit;
+
+ /// PrefLoopAlignment - The perferred loop alignment.
+ ///
+ unsigned PrefLoopAlignment;
+
+ /// StackPointerRegisterToSaveRestore - If set to a physical register, this
+ /// specifies the register that llvm.savestack/llvm.restorestack should save
+ /// and restore.
+ unsigned StackPointerRegisterToSaveRestore;
+
+ /// ExceptionPointerRegister - If set to a physical register, this specifies
+ /// the register that receives the exception address on entry to a landing
+ /// pad.
+ unsigned ExceptionPointerRegister;
+
+ /// ExceptionSelectorRegister - If set to a physical register, this specifies
+ /// the register that receives the exception typeid on entry to a landing
+ /// pad.
+ unsigned ExceptionSelectorRegister;
+
+ /// RegClassForVT - This indicates the default register class to use for
+ /// each ValueType the target supports natively.
+ TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
+ unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
+ MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
+
+ /// TransformToType - For any value types we are promoting or expanding, this
+ /// contains the value type that we are changing to. For Expanded types, this
+ /// contains one step of the expand (e.g. i64 -> i32), even if there are
+ /// multiple steps required (e.g. i64 -> i16). For types natively supported
+ /// by the system, this holds the same type (e.g. i32 -> i32).
+ MVT TransformToType[MVT::LAST_VALUETYPE];
+
+ /// OpActions - For each operation and each value type, keep a LegalizeAction
+ /// that indicates how instruction selection should deal with the operation.
+ /// Most operations are Legal (aka, supported natively by the target), but
+ /// operations that are not should be described. Note that operations on
+ /// non-legal value types are not described here.
+ uint64_t OpActions[ISD::BUILTIN_OP_END];
+
+ /// LoadExtActions - For each load of load extension type and each value type,
+ /// keep a LegalizeAction that indicates how instruction selection should deal
+ /// with the load.
+ uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
+
+ /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
+ /// indicates how instruction selection should deal with the store.
+ uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
+
+ /// IndexedModeActions - For each indexed mode and each value type, keep a
+ /// pair of LegalizeAction that indicates how instruction selection should
+ /// deal with the load / store.
+ uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
+
+ /// ConvertActions - For each conversion from source type to destination type,
+ /// keep a LegalizeAction that indicates how instruction selection should
+ /// deal with the conversion.
+ /// Currently, this is used only for floating->floating conversions
+ /// (FP_EXTEND and FP_ROUND).
+ uint64_t ConvertActions[MVT::LAST_VALUETYPE];
+
+ /// CondCodeActions - For each condition code (ISD::CondCode) keep a
+ /// LegalizeAction that indicates how instruction selection should
+ /// deal with the condition code.
+ uint64_t CondCodeActions[ISD::SETCC_INVALID];
+
+ ValueTypeActionImpl ValueTypeActions;
+
+ std::vector<APFloat> LegalFPImmediates;
+
+ std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
+
+ /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
+ /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
+ /// which sets a bit in this array.
+ unsigned char
+ TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
+
+ /// PromoteToType - For operations that must be promoted to a specific type,
+ /// this holds the destination type. This map should be sparse, so don't hold
+ /// it as an array.
+ ///
+ /// Targets add entries to this map with AddPromotedToType(..), clients access
+ /// this with getTypeToPromoteTo(..).
+ std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
+ PromoteToType;
+
+ /// LibcallRoutineNames - Stores the name each libcall.
+ ///
+ const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
+
+ /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
+ /// of each of the comparison libcall against zero.
+ ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
+
+protected:
+ /// When lowering \@llvm.memset this field specifies the maximum number of
+ /// store operations that may be substituted for the call to memset. Targets
+ /// must set this value based on the cost threshold for that target. Targets
+ /// should assume that the memset will be done using as many of the largest
+ /// store operations first, followed by smaller ones, if necessary, per
+ /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
+ /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
+ /// store. This only applies to setting a constant array of a constant size.
+ /// @brief Specify maximum number of store instructions per memset call.
+ unsigned maxStoresPerMemset;
+
+ /// When lowering \@llvm.memcpy this field specifies the maximum number of
+ /// store operations that may be substituted for a call to memcpy. Targets
+ /// must set this value based on the cost threshold for that target. Targets
+ /// should assume that the memcpy will be done using as many of the largest
+ /// store operations first, followed by smaller ones, if necessary, per
+ /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
+ /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
+ /// and one 1-byte store. This only applies to copying a constant array of
+ /// constant size.
+ /// @brief Specify maximum bytes of store instructions per memcpy call.
+ unsigned maxStoresPerMemcpy;
+
+ /// When lowering \@llvm.memmove this field specifies the maximum number of
+ /// store instructions that may be substituted for a call to memmove. Targets
+ /// must set this value based on the cost threshold for that target. Targets
+ /// should assume that the memmove will be done using as many of the largest
+ /// store operations first, followed by smaller ones, if necessary, per
+ /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
+ /// with 8-bit alignment would result in nine 1-byte stores. This only
+ /// applies to copying a constant array of constant size.
+ /// @brief Specify maximum bytes of store instructions per memmove call.
+ unsigned maxStoresPerMemmove;
+
+ /// This field specifies whether the target machine permits unaligned memory
+ /// accesses. This is used, for example, to determine the size of store
+ /// operations when copying small arrays and other similar tasks.
+ /// @brief Indicate whether the target permits unaligned memory accesses.
+ bool allowUnalignedMemoryAccesses;
+
+ /// This field specifies whether the target can benefit from code placement
+ /// optimization.
+ bool benefitFromCodePlacementOpt;
+};
+} // end llvm namespace
+
+#endif
OpenPOWER on IntegriCloud