diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /include/llvm/Analysis/ScalarEvolution.h | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'include/llvm/Analysis/ScalarEvolution.h')
-rw-r--r-- | include/llvm/Analysis/ScalarEvolution.h | 546 |
1 files changed, 546 insertions, 0 deletions
diff --git a/include/llvm/Analysis/ScalarEvolution.h b/include/llvm/Analysis/ScalarEvolution.h new file mode 100644 index 0000000..88002cb --- /dev/null +++ b/include/llvm/Analysis/ScalarEvolution.h @@ -0,0 +1,546 @@ +//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The ScalarEvolution class is an LLVM pass which can be used to analyze and +// catagorize scalar expressions in loops. It specializes in recognizing +// general induction variables, representing them with the abstract and opaque +// SCEV class. Given this analysis, trip counts of loops and other important +// properties can be obtained. +// +// This analysis is primarily useful for induction variable substitution and +// strength reduction. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H +#define LLVM_ANALYSIS_SCALAREVOLUTION_H + +#include "llvm/Pass.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Support/DataTypes.h" +#include "llvm/Support/ValueHandle.h" +#include <iosfwd> + +namespace llvm { + class APInt; + class ConstantInt; + class Type; + class SCEVHandle; + class ScalarEvolution; + class TargetData; + + /// SCEV - This class represents an analyzed expression in the program. These + /// are reference-counted opaque objects that the client is not allowed to + /// do much with directly. + /// + class SCEV { + const unsigned SCEVType; // The SCEV baseclass this node corresponds to + mutable unsigned RefCount; + + friend class SCEVHandle; + void addRef() const { ++RefCount; } + void dropRef() const { + if (--RefCount == 0) + delete this; + } + + SCEV(const SCEV &); // DO NOT IMPLEMENT + void operator=(const SCEV &); // DO NOT IMPLEMENT + protected: + virtual ~SCEV(); + public: + explicit SCEV(unsigned SCEVTy) : SCEVType(SCEVTy), RefCount(0) {} + + unsigned getSCEVType() const { return SCEVType; } + + /// isLoopInvariant - Return true if the value of this SCEV is unchanging in + /// the specified loop. + virtual bool isLoopInvariant(const Loop *L) const = 0; + + /// hasComputableLoopEvolution - Return true if this SCEV changes value in a + /// known way in the specified loop. This property being true implies that + /// the value is variant in the loop AND that we can emit an expression to + /// compute the value of the expression at any particular loop iteration. + virtual bool hasComputableLoopEvolution(const Loop *L) const = 0; + + /// getType - Return the LLVM type of this SCEV expression. + /// + virtual const Type *getType() const = 0; + + /// isZero - Return true if the expression is a constant zero. + /// + bool isZero() const; + + /// isOne - Return true if the expression is a constant one. + /// + bool isOne() const; + + /// replaceSymbolicValuesWithConcrete - If this SCEV internally references + /// the symbolic value "Sym", construct and return a new SCEV that produces + /// the same value, but which uses the concrete value Conc instead of the + /// symbolic value. If this SCEV does not use the symbolic value, it + /// returns itself. + virtual SCEVHandle + replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, + const SCEVHandle &Conc, + ScalarEvolution &SE) const = 0; + + /// dominates - Return true if elements that makes up this SCEV dominates + /// the specified basic block. + virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0; + + /// print - Print out the internal representation of this scalar to the + /// specified stream. This should really only be used for debugging + /// purposes. + virtual void print(raw_ostream &OS) const = 0; + void print(std::ostream &OS) const; + void print(std::ostream *OS) const { if (OS) print(*OS); } + + /// dump - This method is used for debugging. + /// + void dump() const; + }; + + inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { + S.print(OS); + return OS; + } + + inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) { + S.print(OS); + return OS; + } + + /// SCEVCouldNotCompute - An object of this class is returned by queries that + /// could not be answered. For example, if you ask for the number of + /// iterations of a linked-list traversal loop, you will get one of these. + /// None of the standard SCEV operations are valid on this class, it is just a + /// marker. + struct SCEVCouldNotCompute : public SCEV { + SCEVCouldNotCompute(); + ~SCEVCouldNotCompute(); + + // None of these methods are valid for this object. + virtual bool isLoopInvariant(const Loop *L) const; + virtual const Type *getType() const; + virtual bool hasComputableLoopEvolution(const Loop *L) const; + virtual void print(raw_ostream &OS) const; + virtual SCEVHandle + replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, + const SCEVHandle &Conc, + ScalarEvolution &SE) const; + + virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const { + return true; + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVCouldNotCompute *S) { return true; } + static bool classof(const SCEV *S); + }; + + /// SCEVHandle - This class is used to maintain the SCEV object's refcounts, + /// freeing the objects when the last reference is dropped. + class SCEVHandle { + const SCEV *S; + SCEVHandle(); // DO NOT IMPLEMENT + public: + SCEVHandle(const SCEV *s) : S(s) { + assert(S && "Cannot create a handle to a null SCEV!"); + S->addRef(); + } + SCEVHandle(const SCEVHandle &RHS) : S(RHS.S) { + S->addRef(); + } + ~SCEVHandle() { S->dropRef(); } + + operator const SCEV*() const { return S; } + + const SCEV &operator*() const { return *S; } + const SCEV *operator->() const { return S; } + + bool operator==(const SCEV *RHS) const { return S == RHS; } + bool operator!=(const SCEV *RHS) const { return S != RHS; } + + const SCEVHandle &operator=(SCEV *RHS) { + if (S != RHS) { + S->dropRef(); + S = RHS; + S->addRef(); + } + return *this; + } + + const SCEVHandle &operator=(const SCEVHandle &RHS) { + if (S != RHS.S) { + S->dropRef(); + S = RHS.S; + S->addRef(); + } + return *this; + } + }; + + template<typename From> struct simplify_type; + template<> struct simplify_type<const SCEVHandle> { + typedef const SCEV* SimpleType; + static SimpleType getSimplifiedValue(const SCEVHandle &Node) { + return Node; + } + }; + template<> struct simplify_type<SCEVHandle> + : public simplify_type<const SCEVHandle> {}; + + /// ScalarEvolution - This class is the main scalar evolution driver. Because + /// client code (intentionally) can't do much with the SCEV objects directly, + /// they must ask this class for services. + /// + class ScalarEvolution : public FunctionPass { + /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be + /// notified whenever a Value is deleted. + class SCEVCallbackVH : public CallbackVH { + ScalarEvolution *SE; + virtual void deleted(); + virtual void allUsesReplacedWith(Value *New); + public: + SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0); + }; + + friend class SCEVCallbackVH; + friend class SCEVExpander; + + /// F - The function we are analyzing. + /// + Function *F; + + /// LI - The loop information for the function we are currently analyzing. + /// + LoopInfo *LI; + + /// TD - The target data information for the target we are targetting. + /// + TargetData *TD; + + /// UnknownValue - This SCEV is used to represent unknown trip counts and + /// things. + SCEVHandle UnknownValue; + + /// Scalars - This is a cache of the scalars we have analyzed so far. + /// + std::map<SCEVCallbackVH, SCEVHandle> Scalars; + + /// BackedgeTakenInfo - Information about the backedge-taken count + /// of a loop. This currently inclues an exact count and a maximum count. + /// + struct BackedgeTakenInfo { + /// Exact - An expression indicating the exact backedge-taken count of + /// the loop if it is known, or a SCEVCouldNotCompute otherwise. + SCEVHandle Exact; + + /// Exact - An expression indicating the least maximum backedge-taken + /// count of the loop that is known, or a SCEVCouldNotCompute. + SCEVHandle Max; + + /*implicit*/ BackedgeTakenInfo(SCEVHandle exact) : + Exact(exact), Max(exact) {} + + /*implicit*/ BackedgeTakenInfo(const SCEV *exact) : + Exact(exact), Max(exact) {} + + BackedgeTakenInfo(SCEVHandle exact, SCEVHandle max) : + Exact(exact), Max(max) {} + + /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any + /// computed information, or whether it's all SCEVCouldNotCompute + /// values. + bool hasAnyInfo() const { + return !isa<SCEVCouldNotCompute>(Exact) || + !isa<SCEVCouldNotCompute>(Max); + } + }; + + /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for + /// this function as they are computed. + std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts; + + /// ConstantEvolutionLoopExitValue - This map contains entries for all of + /// the PHI instructions that we attempt to compute constant evolutions for. + /// This allows us to avoid potentially expensive recomputation of these + /// properties. An instruction maps to null if we are unable to compute its + /// exit value. + std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; + + /// ValuesAtScopes - This map contains entries for all the instructions + /// that we attempt to compute getSCEVAtScope information for without + /// using SCEV techniques, which can be expensive. + std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes; + + /// createSCEV - We know that there is no SCEV for the specified value. + /// Analyze the expression. + SCEVHandle createSCEV(Value *V); + + /// createNodeForPHI - Provide the special handling we need to analyze PHI + /// SCEVs. + SCEVHandle createNodeForPHI(PHINode *PN); + + /// createNodeForGEP - Provide the special handling we need to analyze GEP + /// SCEVs. + SCEVHandle createNodeForGEP(User *GEP); + + /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value + /// for the specified instruction and replaces any references to the + /// symbolic value SymName with the specified value. This is used during + /// PHI resolution. + void ReplaceSymbolicValueWithConcrete(Instruction *I, + const SCEVHandle &SymName, + const SCEVHandle &NewVal); + + /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given + /// loop, lazily computing new values if the loop hasn't been analyzed + /// yet. + const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); + + /// ComputeBackedgeTakenCount - Compute the number of times the specified + /// loop will iterate. + BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L); + + /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition + /// of 'icmp op load X, cst', try to see if we can compute the trip count. + SCEVHandle + ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, + Constant *RHS, + const Loop *L, + ICmpInst::Predicate p); + + /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute + /// a constant number of times (the condition evolves only from constants), + /// try to evaluate a few iterations of the loop until we get the exit + /// condition gets a value of ExitWhen (true or false). If we cannot + /// evaluate the trip count of the loop, return UnknownValue. + SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, + bool ExitWhen); + + /// HowFarToZero - Return the number of times a backedge comparing the + /// specified value to zero will execute. If not computable, return + /// UnknownValue. + SCEVHandle HowFarToZero(const SCEV *V, const Loop *L); + + /// HowFarToNonZero - Return the number of times a backedge checking the + /// specified value for nonzero will execute. If not computable, return + /// UnknownValue. + SCEVHandle HowFarToNonZero(const SCEV *V, const Loop *L); + + /// HowManyLessThans - Return the number of times a backedge containing the + /// specified less-than comparison will execute. If not computable, return + /// UnknownValue. isSigned specifies whether the less-than is signed. + BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS, + const Loop *L, bool isSigned); + + /// getLoopPredecessor - If the given loop's header has exactly one unique + /// predecessor outside the loop, return it. Otherwise return null. + BasicBlock *getLoopPredecessor(const Loop *L); + + /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB + /// (which may not be an immediate predecessor) which has exactly one + /// successor from which BB is reachable, or null if no such block is + /// found. + BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); + + /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is + /// in the header of its containing loop, we know the loop executes a + /// constant number of times, and the PHI node is just a recurrence + /// involving constants, fold it. + Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, + const Loop *L); + + /// forgetLoopPHIs - Delete the memoized SCEVs associated with the + /// PHI nodes in the given loop. This is used when the trip count of + /// the loop may have changed. + void forgetLoopPHIs(const Loop *L); + + public: + static char ID; // Pass identification, replacement for typeid + ScalarEvolution(); + + /// isSCEVable - Test if values of the given type are analyzable within + /// the SCEV framework. This primarily includes integer types, and it + /// can optionally include pointer types if the ScalarEvolution class + /// has access to target-specific information. + bool isSCEVable(const Type *Ty) const; + + /// getTypeSizeInBits - Return the size in bits of the specified type, + /// for which isSCEVable must return true. + uint64_t getTypeSizeInBits(const Type *Ty) const; + + /// getEffectiveSCEVType - Return a type with the same bitwidth as + /// the given type and which represents how SCEV will treat the given + /// type, for which isSCEVable must return true. For pointer types, + /// this is the pointer-sized integer type. + const Type *getEffectiveSCEVType(const Type *Ty) const; + + /// getSCEV - Return a SCEV expression handle for the full generality of the + /// specified expression. + SCEVHandle getSCEV(Value *V); + + SCEVHandle getConstant(ConstantInt *V); + SCEVHandle getConstant(const APInt& Val); + SCEVHandle getTruncateExpr(const SCEVHandle &Op, const Type *Ty); + SCEVHandle getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty); + SCEVHandle getSignExtendExpr(const SCEVHandle &Op, const Type *Ty); + SCEVHandle getAddExpr(std::vector<SCEVHandle> &Ops); + SCEVHandle getAddExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { + std::vector<SCEVHandle> Ops; + Ops.push_back(LHS); + Ops.push_back(RHS); + return getAddExpr(Ops); + } + SCEVHandle getAddExpr(const SCEVHandle &Op0, const SCEVHandle &Op1, + const SCEVHandle &Op2) { + std::vector<SCEVHandle> Ops; + Ops.push_back(Op0); + Ops.push_back(Op1); + Ops.push_back(Op2); + return getAddExpr(Ops); + } + SCEVHandle getMulExpr(std::vector<SCEVHandle> &Ops); + SCEVHandle getMulExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { + std::vector<SCEVHandle> Ops; + Ops.push_back(LHS); + Ops.push_back(RHS); + return getMulExpr(Ops); + } + SCEVHandle getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS); + SCEVHandle getAddRecExpr(const SCEVHandle &Start, const SCEVHandle &Step, + const Loop *L); + SCEVHandle getAddRecExpr(std::vector<SCEVHandle> &Operands, + const Loop *L); + SCEVHandle getAddRecExpr(const std::vector<SCEVHandle> &Operands, + const Loop *L) { + std::vector<SCEVHandle> NewOp(Operands); + return getAddRecExpr(NewOp, L); + } + SCEVHandle getSMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS); + SCEVHandle getSMaxExpr(std::vector<SCEVHandle> Operands); + SCEVHandle getUMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS); + SCEVHandle getUMaxExpr(std::vector<SCEVHandle> Operands); + SCEVHandle getUnknown(Value *V); + SCEVHandle getCouldNotCompute(); + + /// getNegativeSCEV - Return the SCEV object corresponding to -V. + /// + SCEVHandle getNegativeSCEV(const SCEVHandle &V); + + /// getNotSCEV - Return the SCEV object corresponding to ~V. + /// + SCEVHandle getNotSCEV(const SCEVHandle &V); + + /// getMinusSCEV - Return LHS-RHS. + /// + SCEVHandle getMinusSCEV(const SCEVHandle &LHS, + const SCEVHandle &RHS); + + /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion + /// of the input value to the specified type. If the type must be + /// extended, it is zero extended. + SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty); + + /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion + /// of the input value to the specified type. If the type must be + /// extended, it is sign extended. + SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty); + + /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of + /// the input value to the specified type. If the type must be extended, + /// it is zero extended. The conversion must not be narrowing. + SCEVHandle getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty); + + /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of + /// the input value to the specified type. If the type must be extended, + /// it is sign extended. The conversion must not be narrowing. + SCEVHandle getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty); + + /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the + /// input value to the specified type. The conversion must not be + /// widening. + SCEVHandle getTruncateOrNoop(const SCEVHandle &V, const Type *Ty); + + /// getIntegerSCEV - Given an integer or FP type, create a constant for the + /// specified signed integer value and return a SCEV for the constant. + SCEVHandle getIntegerSCEV(int Val, const Type *Ty); + + /// hasSCEV - Return true if the SCEV for this value has already been + /// computed. + bool hasSCEV(Value *V) const; + + /// setSCEV - Insert the specified SCEV into the map of current SCEVs for + /// the specified value. + void setSCEV(Value *V, const SCEVHandle &H); + + /// getSCEVAtScope - Return a SCEV expression handle for the specified value + /// at the specified scope in the program. The L value specifies a loop + /// nest to evaluate the expression at, where null is the top-level or a + /// specified loop is immediately inside of the loop. + /// + /// This method can be used to compute the exit value for a variable defined + /// in a loop by querying what the value will hold in the parent loop. + /// + /// In the case that a relevant loop exit value cannot be computed, the + /// original value V is returned. + SCEVHandle getSCEVAtScope(const SCEV *S, const Loop *L); + + /// getSCEVAtScope - This is a convenience function which does + /// getSCEVAtScope(getSCEV(V), L). + SCEVHandle getSCEVAtScope(Value *V, const Loop *L); + + /// isLoopGuardedByCond - Test whether entry to the loop is protected by + /// a conditional between LHS and RHS. This is used to help avoid max + /// expressions in loop trip counts. + bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, + const SCEV *LHS, const SCEV *RHS); + + /// getBackedgeTakenCount - If the specified loop has a predictable + /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute + /// object. The backedge-taken count is the number of times the loop header + /// will be branched to from within the loop. This is one less than the + /// trip count of the loop, since it doesn't count the first iteration, + /// when the header is branched to from outside the loop. + /// + /// Note that it is not valid to call this method on a loop without a + /// loop-invariant backedge-taken count (see + /// hasLoopInvariantBackedgeTakenCount). + /// + SCEVHandle getBackedgeTakenCount(const Loop *L); + + /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except + /// return the least SCEV value that is known never to be less than the + /// actual backedge taken count. + SCEVHandle getMaxBackedgeTakenCount(const Loop *L); + + /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop + /// has an analyzable loop-invariant backedge-taken count. + bool hasLoopInvariantBackedgeTakenCount(const Loop *L); + + /// forgetLoopBackedgeTakenCount - This method should be called by the + /// client when it has changed a loop in a way that may effect + /// ScalarEvolution's ability to compute a trip count, or if the loop + /// is deleted. + void forgetLoopBackedgeTakenCount(const Loop *L); + + virtual bool runOnFunction(Function &F); + virtual void releaseMemory(); + virtual void getAnalysisUsage(AnalysisUsage &AU) const; + void print(raw_ostream &OS, const Module* = 0) const; + virtual void print(std::ostream &OS, const Module* = 0) const; + void print(std::ostream *OS, const Module* M = 0) const { + if (OS) print(*OS, M); + } + }; +} + +#endif |