diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /include/llvm/Analysis/Dominators.h | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'include/llvm/Analysis/Dominators.h')
-rw-r--r-- | include/llvm/Analysis/Dominators.h | 1055 |
1 files changed, 1055 insertions, 0 deletions
diff --git a/include/llvm/Analysis/Dominators.h b/include/llvm/Analysis/Dominators.h new file mode 100644 index 0000000..b405f5b --- /dev/null +++ b/include/llvm/Analysis/Dominators.h @@ -0,0 +1,1055 @@ +//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the following classes: +// 1. DominatorTree: Represent dominators as an explicit tree structure. +// 2. DominanceFrontier: Calculate and hold the dominance frontier for a +// function. +// +// These data structures are listed in increasing order of complexity. It +// takes longer to calculate the dominator frontier, for example, than the +// DominatorTree mapping. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_DOMINATORS_H +#define LLVM_ANALYSIS_DOMINATORS_H + +#include "llvm/Pass.h" +#include "llvm/BasicBlock.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Compiler.h" +#include <algorithm> +#include <map> +#include <set> + +namespace llvm { + +//===----------------------------------------------------------------------===// +/// DominatorBase - Base class that other, more interesting dominator analyses +/// inherit from. +/// +template <class NodeT> +class DominatorBase { +protected: + std::vector<NodeT*> Roots; + const bool IsPostDominators; + inline explicit DominatorBase(bool isPostDom) : + Roots(), IsPostDominators(isPostDom) {} +public: + + /// getRoots - Return the root blocks of the current CFG. This may include + /// multiple blocks if we are computing post dominators. For forward + /// dominators, this will always be a single block (the entry node). + /// + inline const std::vector<NodeT*> &getRoots() const { return Roots; } + + /// isPostDominator - Returns true if analysis based of postdoms + /// + bool isPostDominator() const { return IsPostDominators; } +}; + + +//===----------------------------------------------------------------------===// +// DomTreeNode - Dominator Tree Node +template<class NodeT> class DominatorTreeBase; +struct PostDominatorTree; +class MachineBasicBlock; + +template <class NodeT> +class DomTreeNodeBase { + NodeT *TheBB; + DomTreeNodeBase<NodeT> *IDom; + std::vector<DomTreeNodeBase<NodeT> *> Children; + int DFSNumIn, DFSNumOut; + + template<class N> friend class DominatorTreeBase; + friend struct PostDominatorTree; +public: + typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator; + typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator + const_iterator; + + iterator begin() { return Children.begin(); } + iterator end() { return Children.end(); } + const_iterator begin() const { return Children.begin(); } + const_iterator end() const { return Children.end(); } + + NodeT *getBlock() const { return TheBB; } + DomTreeNodeBase<NodeT> *getIDom() const { return IDom; } + const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const { + return Children; + } + + DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom) + : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { } + + DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) { + Children.push_back(C); + return C; + } + + size_t getNumChildren() const { + return Children.size(); + } + + void clearAllChildren() { + Children.clear(); + } + + bool compare(DomTreeNodeBase<NodeT> *Other) { + if (getNumChildren() != Other->getNumChildren()) + return true; + + SmallPtrSet<NodeT *, 4> OtherChildren; + for(iterator I = Other->begin(), E = Other->end(); I != E; ++I) { + NodeT *Nd = (*I)->getBlock(); + OtherChildren.insert(Nd); + } + + for(iterator I = begin(), E = end(); I != E; ++I) { + NodeT *N = (*I)->getBlock(); + if (OtherChildren.count(N) == 0) + return true; + } + return false; + } + + void setIDom(DomTreeNodeBase<NodeT> *NewIDom) { + assert(IDom && "No immediate dominator?"); + if (IDom != NewIDom) { + typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I = + std::find(IDom->Children.begin(), IDom->Children.end(), this); + assert(I != IDom->Children.end() && + "Not in immediate dominator children set!"); + // I am no longer your child... + IDom->Children.erase(I); + + // Switch to new dominator + IDom = NewIDom; + IDom->Children.push_back(this); + } + } + + /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do + /// not call them. + unsigned getDFSNumIn() const { return DFSNumIn; } + unsigned getDFSNumOut() const { return DFSNumOut; } +private: + // Return true if this node is dominated by other. Use this only if DFS info + // is valid. + bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const { + return this->DFSNumIn >= other->DFSNumIn && + this->DFSNumOut <= other->DFSNumOut; + } +}; + +EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>); +EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>); + +template<class NodeT> +static std::ostream &operator<<(std::ostream &o, + const DomTreeNodeBase<NodeT> *Node) { + if (Node->getBlock()) + WriteAsOperand(o, Node->getBlock(), false); + else + o << " <<exit node>>"; + + o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}"; + + return o << "\n"; +} + +template<class NodeT> +static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, std::ostream &o, + unsigned Lev) { + o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N; + for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), + E = N->end(); I != E; ++I) + PrintDomTree<NodeT>(*I, o, Lev+1); +} + +typedef DomTreeNodeBase<BasicBlock> DomTreeNode; + +//===----------------------------------------------------------------------===// +/// DominatorTree - Calculate the immediate dominator tree for a function. +/// + +template<class FuncT, class N> +void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT, + FuncT& F); + +template<class NodeT> +class DominatorTreeBase : public DominatorBase<NodeT> { +protected: + typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType; + DomTreeNodeMapType DomTreeNodes; + DomTreeNodeBase<NodeT> *RootNode; + + bool DFSInfoValid; + unsigned int SlowQueries; + // Information record used during immediate dominators computation. + struct InfoRec { + unsigned DFSNum; + unsigned Semi; + unsigned Size; + NodeT *Label, *Child; + unsigned Parent, Ancestor; + + std::vector<NodeT*> Bucket; + + InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0), + Ancestor(0) {} + }; + + DenseMap<NodeT*, NodeT*> IDoms; + + // Vertex - Map the DFS number to the BasicBlock* + std::vector<NodeT*> Vertex; + + // Info - Collection of information used during the computation of idoms. + DenseMap<NodeT*, InfoRec> Info; + + void reset() { + for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(), + E = DomTreeNodes.end(); I != E; ++I) + delete I->second; + DomTreeNodes.clear(); + IDoms.clear(); + this->Roots.clear(); + Vertex.clear(); + RootNode = 0; + } + + // NewBB is split and now it has one successor. Update dominator tree to + // reflect this change. + template<class N, class GraphT> + void Split(DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType* NewBB) { + assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 + && "NewBB should have a single successor!"); + typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB); + + std::vector<typename GraphT::NodeType*> PredBlocks; + for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI = + GraphTraits<Inverse<N> >::child_begin(NewBB), + PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI) + PredBlocks.push_back(*PI); + + assert(!PredBlocks.empty() && "No predblocks??"); + + bool NewBBDominatesNewBBSucc = true; + for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI = + GraphTraits<Inverse<N> >::child_begin(NewBBSucc), + E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI) + if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI) && + DT.isReachableFromEntry(*PI)) { + NewBBDominatesNewBBSucc = false; + break; + } + + // Find NewBB's immediate dominator and create new dominator tree node for + // NewBB. + NodeT *NewBBIDom = 0; + unsigned i = 0; + for (i = 0; i < PredBlocks.size(); ++i) + if (DT.isReachableFromEntry(PredBlocks[i])) { + NewBBIDom = PredBlocks[i]; + break; + } + assert(i != PredBlocks.size() && "No reachable preds?"); + for (i = i + 1; i < PredBlocks.size(); ++i) { + if (DT.isReachableFromEntry(PredBlocks[i])) + NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]); + } + assert(NewBBIDom && "No immediate dominator found??"); + + // Create the new dominator tree node... and set the idom of NewBB. + DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom); + + // If NewBB strictly dominates other blocks, then it is now the immediate + // dominator of NewBBSucc. Update the dominator tree as appropriate. + if (NewBBDominatesNewBBSucc) { + DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc); + DT.changeImmediateDominator(NewBBSuccNode, NewBBNode); + } + } + +public: + explicit DominatorTreeBase(bool isPostDom) + : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {} + virtual ~DominatorTreeBase() { reset(); } + + // FIXME: Should remove this + virtual bool runOnFunction(Function &F) { return false; } + + /// compare - Return false if the other dominator tree base matches this + /// dominator tree base. Otherwise return true. + bool compare(DominatorTreeBase &Other) const { + + const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; + if (DomTreeNodes.size() != OtherDomTreeNodes.size()) + return true; + + SmallPtrSet<const NodeT *,4> MyBBs; + for (typename DomTreeNodeMapType::const_iterator + I = this->DomTreeNodes.begin(), + E = this->DomTreeNodes.end(); I != E; ++I) { + NodeT *BB = I->first; + typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB); + if (OI == OtherDomTreeNodes.end()) + return true; + + DomTreeNodeBase<NodeT>* MyNd = I->second; + DomTreeNodeBase<NodeT>* OtherNd = OI->second; + + if (MyNd->compare(OtherNd)) + return true; + } + + return false; + } + + virtual void releaseMemory() { reset(); } + + /// getNode - return the (Post)DominatorTree node for the specified basic + /// block. This is the same as using operator[] on this class. + /// + inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const { + typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB); + return I != DomTreeNodes.end() ? I->second : 0; + } + + /// getRootNode - This returns the entry node for the CFG of the function. If + /// this tree represents the post-dominance relations for a function, however, + /// this root may be a node with the block == NULL. This is the case when + /// there are multiple exit nodes from a particular function. Consumers of + /// post-dominance information must be capable of dealing with this + /// possibility. + /// + DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } + const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } + + /// properlyDominates - Returns true iff this dominates N and this != N. + /// Note that this is not a constant time operation! + /// + bool properlyDominates(const DomTreeNodeBase<NodeT> *A, + DomTreeNodeBase<NodeT> *B) const { + if (A == 0 || B == 0) return false; + return dominatedBySlowTreeWalk(A, B); + } + + inline bool properlyDominates(NodeT *A, NodeT *B) { + return properlyDominates(getNode(A), getNode(B)); + } + + bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, + const DomTreeNodeBase<NodeT> *B) const { + const DomTreeNodeBase<NodeT> *IDom; + if (A == 0 || B == 0) return false; + while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B) + B = IDom; // Walk up the tree + return IDom != 0; + } + + + /// isReachableFromEntry - Return true if A is dominated by the entry + /// block of the function containing it. + bool isReachableFromEntry(NodeT* A) { + assert (!this->isPostDominator() + && "This is not implemented for post dominators"); + return dominates(&A->getParent()->front(), A); + } + + /// dominates - Returns true iff A dominates B. Note that this is not a + /// constant time operation! + /// + inline bool dominates(const DomTreeNodeBase<NodeT> *A, + DomTreeNodeBase<NodeT> *B) { + if (B == A) + return true; // A node trivially dominates itself. + + if (A == 0 || B == 0) + return false; + + if (DFSInfoValid) + return B->DominatedBy(A); + + // If we end up with too many slow queries, just update the + // DFS numbers on the theory that we are going to keep querying. + SlowQueries++; + if (SlowQueries > 32) { + updateDFSNumbers(); + return B->DominatedBy(A); + } + + return dominatedBySlowTreeWalk(A, B); + } + + inline bool dominates(NodeT *A, NodeT *B) { + if (A == B) + return true; + + return dominates(getNode(A), getNode(B)); + } + + NodeT *getRoot() const { + assert(this->Roots.size() == 1 && "Should always have entry node!"); + return this->Roots[0]; + } + + /// findNearestCommonDominator - Find nearest common dominator basic block + /// for basic block A and B. If there is no such block then return NULL. + NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) { + + assert (!this->isPostDominator() + && "This is not implemented for post dominators"); + assert (A->getParent() == B->getParent() + && "Two blocks are not in same function"); + + // If either A or B is a entry block then it is nearest common dominator. + NodeT &Entry = A->getParent()->front(); + if (A == &Entry || B == &Entry) + return &Entry; + + // If B dominates A then B is nearest common dominator. + if (dominates(B, A)) + return B; + + // If A dominates B then A is nearest common dominator. + if (dominates(A, B)) + return A; + + DomTreeNodeBase<NodeT> *NodeA = getNode(A); + DomTreeNodeBase<NodeT> *NodeB = getNode(B); + + // Collect NodeA dominators set. + SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms; + NodeADoms.insert(NodeA); + DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom(); + while (IDomA) { + NodeADoms.insert(IDomA); + IDomA = IDomA->getIDom(); + } + + // Walk NodeB immediate dominators chain and find common dominator node. + DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom(); + while(IDomB) { + if (NodeADoms.count(IDomB) != 0) + return IDomB->getBlock(); + + IDomB = IDomB->getIDom(); + } + + return NULL; + } + + //===--------------------------------------------------------------------===// + // API to update (Post)DominatorTree information based on modifications to + // the CFG... + + /// addNewBlock - Add a new node to the dominator tree information. This + /// creates a new node as a child of DomBB dominator node,linking it into + /// the children list of the immediate dominator. + DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { + assert(getNode(BB) == 0 && "Block already in dominator tree!"); + DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); + assert(IDomNode && "Not immediate dominator specified for block!"); + DFSInfoValid = false; + return DomTreeNodes[BB] = + IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode)); + } + + /// changeImmediateDominator - This method is used to update the dominator + /// tree information when a node's immediate dominator changes. + /// + void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, + DomTreeNodeBase<NodeT> *NewIDom) { + assert(N && NewIDom && "Cannot change null node pointers!"); + DFSInfoValid = false; + N->setIDom(NewIDom); + } + + void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { + changeImmediateDominator(getNode(BB), getNode(NewBB)); + } + + /// eraseNode - Removes a node from the dominator tree. Block must not + /// domiante any other blocks. Removes node from its immediate dominator's + /// children list. Deletes dominator node associated with basic block BB. + void eraseNode(NodeT *BB) { + DomTreeNodeBase<NodeT> *Node = getNode(BB); + assert (Node && "Removing node that isn't in dominator tree."); + assert (Node->getChildren().empty() && "Node is not a leaf node."); + + // Remove node from immediate dominator's children list. + DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); + if (IDom) { + typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I = + std::find(IDom->Children.begin(), IDom->Children.end(), Node); + assert(I != IDom->Children.end() && + "Not in immediate dominator children set!"); + // I am no longer your child... + IDom->Children.erase(I); + } + + DomTreeNodes.erase(BB); + delete Node; + } + + /// removeNode - Removes a node from the dominator tree. Block must not + /// dominate any other blocks. Invalidates any node pointing to removed + /// block. + void removeNode(NodeT *BB) { + assert(getNode(BB) && "Removing node that isn't in dominator tree."); + DomTreeNodes.erase(BB); + } + + /// splitBlock - BB is split and now it has one successor. Update dominator + /// tree to reflect this change. + void splitBlock(NodeT* NewBB) { + if (this->IsPostDominators) + this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB); + else + this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB); + } + + /// print - Convert to human readable form + /// + virtual void print(std::ostream &o, const Module* ) const { + o << "=============================--------------------------------\n"; + if (this->isPostDominator()) + o << "Inorder PostDominator Tree: "; + else + o << "Inorder Dominator Tree: "; + if (this->DFSInfoValid) + o << "DFSNumbers invalid: " << SlowQueries << " slow queries."; + o << "\n"; + + PrintDomTree<NodeT>(getRootNode(), o, 1); + } + + void print(std::ostream *OS, const Module* M = 0) const { + if (OS) print(*OS, M); + } + + virtual void dump() { + print(llvm::cerr); + } + +protected: + template<class GraphT> + friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType* VIn); + + template<class GraphT> + friend typename GraphT::NodeType* Eval( + DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType* V); + + template<class GraphT> + friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT, + unsigned DFSNumV, typename GraphT::NodeType* W, + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo); + + template<class GraphT> + friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType* V, + unsigned N); + + template<class FuncT, class N> + friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT, + FuncT& F); + + /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking + /// dominator tree in dfs order. + void updateDFSNumbers() { + unsigned DFSNum = 0; + + SmallVector<std::pair<DomTreeNodeBase<NodeT>*, + typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack; + + for (unsigned i = 0, e = (unsigned)this->Roots.size(); i != e; ++i) { + DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]); + WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin())); + ThisRoot->DFSNumIn = DFSNum++; + + while (!WorkStack.empty()) { + DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; + typename DomTreeNodeBase<NodeT>::iterator ChildIt = + WorkStack.back().second; + + // If we visited all of the children of this node, "recurse" back up the + // stack setting the DFOutNum. + if (ChildIt == Node->end()) { + Node->DFSNumOut = DFSNum++; + WorkStack.pop_back(); + } else { + // Otherwise, recursively visit this child. + DomTreeNodeBase<NodeT> *Child = *ChildIt; + ++WorkStack.back().second; + + WorkStack.push_back(std::make_pair(Child, Child->begin())); + Child->DFSNumIn = DFSNum++; + } + } + } + + SlowQueries = 0; + DFSInfoValid = true; + } + + DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) { + if (DomTreeNodeBase<NodeT> *BBNode = this->DomTreeNodes[BB]) + return BBNode; + + // Haven't calculated this node yet? Get or calculate the node for the + // immediate dominator. + NodeT *IDom = getIDom(BB); + + assert(IDom || this->DomTreeNodes[NULL]); + DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode); + return this->DomTreeNodes[BB] = IDomNode->addChild(C); + } + + inline NodeT *getIDom(NodeT *BB) const { + typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB); + return I != IDoms.end() ? I->second : 0; + } + + inline void addRoot(NodeT* BB) { + this->Roots.push_back(BB); + } + +public: + /// recalculate - compute a dominator tree for the given function + template<class FT> + void recalculate(FT& F) { + if (!this->IsPostDominators) { + reset(); + + // Initialize roots + this->Roots.push_back(&F.front()); + this->IDoms[&F.front()] = 0; + this->DomTreeNodes[&F.front()] = 0; + this->Vertex.push_back(0); + + Calculate<FT, NodeT*>(*this, F); + + updateDFSNumbers(); + } else { + reset(); // Reset from the last time we were run... + + // Initialize the roots list + for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) { + if (std::distance(GraphTraits<FT*>::child_begin(I), + GraphTraits<FT*>::child_end(I)) == 0) + addRoot(I); + + // Prepopulate maps so that we don't get iterator invalidation issues later. + this->IDoms[I] = 0; + this->DomTreeNodes[I] = 0; + } + + this->Vertex.push_back(0); + + Calculate<FT, Inverse<NodeT*> >(*this, F); + } + } +}; + +EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>); + +//===------------------------------------- +/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to +/// compute a normal dominator tree. +/// +class DominatorTree : public FunctionPass { +public: + static char ID; // Pass ID, replacement for typeid + DominatorTreeBase<BasicBlock>* DT; + + DominatorTree() : FunctionPass(&ID) { + DT = new DominatorTreeBase<BasicBlock>(false); + } + + ~DominatorTree() { + DT->releaseMemory(); + delete DT; + } + + DominatorTreeBase<BasicBlock>& getBase() { return *DT; } + + /// getRoots - Return the root blocks of the current CFG. This may include + /// multiple blocks if we are computing post dominators. For forward + /// dominators, this will always be a single block (the entry node). + /// + inline const std::vector<BasicBlock*> &getRoots() const { + return DT->getRoots(); + } + + inline BasicBlock *getRoot() const { + return DT->getRoot(); + } + + inline DomTreeNode *getRootNode() const { + return DT->getRootNode(); + } + + /// compare - Return false if the other dominator tree matches this + /// dominator tree. Otherwise return true. + inline bool compare(DominatorTree &Other) const { + DomTreeNode *R = getRootNode(); + DomTreeNode *OtherR = Other.getRootNode(); + + if (!R || !OtherR || R->getBlock() != OtherR->getBlock()) + return true; + + if (DT->compare(Other.getBase())) + return true; + + return false; + } + + virtual bool runOnFunction(Function &F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } + + inline bool dominates(DomTreeNode* A, DomTreeNode* B) const { + return DT->dominates(A, B); + } + + inline bool dominates(BasicBlock* A, BasicBlock* B) const { + return DT->dominates(A, B); + } + + // dominates - Return true if A dominates B. This performs the + // special checks necessary if A and B are in the same basic block. + bool dominates(Instruction *A, Instruction *B) const { + BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); + if (BBA != BBB) return DT->dominates(BBA, BBB); + + // It is not possible to determine dominance between two PHI nodes + // based on their ordering. + if (isa<PHINode>(A) && isa<PHINode>(B)) + return false; + + // Loop through the basic block until we find A or B. + BasicBlock::iterator I = BBA->begin(); + for (; &*I != A && &*I != B; ++I) /*empty*/; + + //if(!DT.IsPostDominators) { + // A dominates B if it is found first in the basic block. + return &*I == A; + //} else { + // // A post-dominates B if B is found first in the basic block. + // return &*I == B; + //} + } + + inline bool properlyDominates(const DomTreeNode* A, DomTreeNode* B) const { + return DT->properlyDominates(A, B); + } + + inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const { + return DT->properlyDominates(A, B); + } + + /// findNearestCommonDominator - Find nearest common dominator basic block + /// for basic block A and B. If there is no such block then return NULL. + inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) { + return DT->findNearestCommonDominator(A, B); + } + + inline DomTreeNode *operator[](BasicBlock *BB) const { + return DT->getNode(BB); + } + + /// getNode - return the (Post)DominatorTree node for the specified basic + /// block. This is the same as using operator[] on this class. + /// + inline DomTreeNode *getNode(BasicBlock *BB) const { + return DT->getNode(BB); + } + + /// addNewBlock - Add a new node to the dominator tree information. This + /// creates a new node as a child of DomBB dominator node,linking it into + /// the children list of the immediate dominator. + inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) { + return DT->addNewBlock(BB, DomBB); + } + + /// changeImmediateDominator - This method is used to update the dominator + /// tree information when a node's immediate dominator changes. + /// + inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) { + DT->changeImmediateDominator(N, NewIDom); + } + + inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) { + DT->changeImmediateDominator(N, NewIDom); + } + + /// eraseNode - Removes a node from the dominator tree. Block must not + /// domiante any other blocks. Removes node from its immediate dominator's + /// children list. Deletes dominator node associated with basic block BB. + inline void eraseNode(BasicBlock *BB) { + DT->eraseNode(BB); + } + + /// splitBlock - BB is split and now it has one successor. Update dominator + /// tree to reflect this change. + inline void splitBlock(BasicBlock* NewBB) { + DT->splitBlock(NewBB); + } + + bool isReachableFromEntry(BasicBlock* A) { + return DT->isReachableFromEntry(A); + } + + + virtual void releaseMemory() { + DT->releaseMemory(); + } + + virtual void print(std::ostream &OS, const Module* M= 0) const { + DT->print(OS, M); + } +}; + +//===------------------------------------- +/// DominatorTree GraphTraits specialization so the DominatorTree can be +/// iterable by generic graph iterators. +/// +template <> struct GraphTraits<DomTreeNode *> { + typedef DomTreeNode NodeType; + typedef NodeType::iterator ChildIteratorType; + + static NodeType *getEntryNode(NodeType *N) { + return N; + } + static inline ChildIteratorType child_begin(NodeType* N) { + return N->begin(); + } + static inline ChildIteratorType child_end(NodeType* N) { + return N->end(); + } +}; + +template <> struct GraphTraits<DominatorTree*> + : public GraphTraits<DomTreeNode *> { + static NodeType *getEntryNode(DominatorTree *DT) { + return DT->getRootNode(); + } +}; + + +//===----------------------------------------------------------------------===// +/// DominanceFrontierBase - Common base class for computing forward and inverse +/// dominance frontiers for a function. +/// +class DominanceFrontierBase : public FunctionPass { +public: + typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb + typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map +protected: + DomSetMapType Frontiers; + std::vector<BasicBlock*> Roots; + const bool IsPostDominators; + +public: + DominanceFrontierBase(void *ID, bool isPostDom) + : FunctionPass(ID), IsPostDominators(isPostDom) {} + + /// getRoots - Return the root blocks of the current CFG. This may include + /// multiple blocks if we are computing post dominators. For forward + /// dominators, this will always be a single block (the entry node). + /// + inline const std::vector<BasicBlock*> &getRoots() const { return Roots; } + + /// isPostDominator - Returns true if analysis based of postdoms + /// + bool isPostDominator() const { return IsPostDominators; } + + virtual void releaseMemory() { Frontiers.clear(); } + + // Accessor interface: + typedef DomSetMapType::iterator iterator; + typedef DomSetMapType::const_iterator const_iterator; + iterator begin() { return Frontiers.begin(); } + const_iterator begin() const { return Frontiers.begin(); } + iterator end() { return Frontiers.end(); } + const_iterator end() const { return Frontiers.end(); } + iterator find(BasicBlock *B) { return Frontiers.find(B); } + const_iterator find(BasicBlock *B) const { return Frontiers.find(B); } + + void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) { + assert(find(BB) == end() && "Block already in DominanceFrontier!"); + Frontiers.insert(std::make_pair(BB, frontier)); + } + + /// removeBlock - Remove basic block BB's frontier. + void removeBlock(BasicBlock *BB) { + assert(find(BB) != end() && "Block is not in DominanceFrontier!"); + for (iterator I = begin(), E = end(); I != E; ++I) + I->second.erase(BB); + Frontiers.erase(BB); + } + + void addToFrontier(iterator I, BasicBlock *Node) { + assert(I != end() && "BB is not in DominanceFrontier!"); + I->second.insert(Node); + } + + void removeFromFrontier(iterator I, BasicBlock *Node) { + assert(I != end() && "BB is not in DominanceFrontier!"); + assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB"); + I->second.erase(Node); + } + + /// compareDomSet - Return false if two domsets match. Otherwise + /// return true; + bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const { + std::set<BasicBlock *> tmpSet; + for (DomSetType::const_iterator I = DS2.begin(), + E = DS2.end(); I != E; ++I) + tmpSet.insert(*I); + + for (DomSetType::const_iterator I = DS1.begin(), + E = DS1.end(); I != E; ) { + BasicBlock *Node = *I++; + + if (tmpSet.erase(Node) == 0) + // Node is in DS1 but not in DS2. + return true; + } + + if(!tmpSet.empty()) + // There are nodes that are in DS2 but not in DS1. + return true; + + // DS1 and DS2 matches. + return false; + } + + /// compare - Return true if the other dominance frontier base matches + /// this dominance frontier base. Otherwise return false. + bool compare(DominanceFrontierBase &Other) const { + DomSetMapType tmpFrontiers; + for (DomSetMapType::const_iterator I = Other.begin(), + E = Other.end(); I != E; ++I) + tmpFrontiers.insert(std::make_pair(I->first, I->second)); + + for (DomSetMapType::iterator I = tmpFrontiers.begin(), + E = tmpFrontiers.end(); I != E; ) { + BasicBlock *Node = I->first; + const_iterator DFI = find(Node); + if (DFI == end()) + return true; + + if (compareDomSet(I->second, DFI->second)) + return true; + + ++I; + tmpFrontiers.erase(Node); + } + + if (!tmpFrontiers.empty()) + return true; + + return false; + } + + /// print - Convert to human readable form + /// + virtual void print(std::ostream &OS, const Module* = 0) const; + void print(std::ostream *OS, const Module* M = 0) const { + if (OS) print(*OS, M); + } + virtual void dump(); +}; + + +//===------------------------------------- +/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is +/// used to compute a forward dominator frontiers. +/// +class DominanceFrontier : public DominanceFrontierBase { +public: + static char ID; // Pass ID, replacement for typeid + DominanceFrontier() : + DominanceFrontierBase(&ID, false) {} + + BasicBlock *getRoot() const { + assert(Roots.size() == 1 && "Should always have entry node!"); + return Roots[0]; + } + + virtual bool runOnFunction(Function &) { + Frontiers.clear(); + DominatorTree &DT = getAnalysis<DominatorTree>(); + Roots = DT.getRoots(); + assert(Roots.size() == 1 && "Only one entry block for forward domfronts!"); + calculate(DT, DT[Roots[0]]); + return false; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<DominatorTree>(); + } + + /// splitBlock - BB is split and now it has one successor. Update dominance + /// frontier to reflect this change. + void splitBlock(BasicBlock *BB); + + /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier + /// to reflect this change. + void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB, + DominatorTree *DT) { + // NewBB is now dominating BB. Which means BB's dominance + // frontier is now part of NewBB's dominance frontier. However, BB + // itself is not member of NewBB's dominance frontier. + DominanceFrontier::iterator NewDFI = find(NewBB); + DominanceFrontier::iterator DFI = find(BB); + // If BB was an entry block then its frontier is empty. + if (DFI == end()) + return; + DominanceFrontier::DomSetType BBSet = DFI->second; + for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(), + BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) { + BasicBlock *DFMember = *BBSetI; + // Insert only if NewBB dominates DFMember. + if (!DT->dominates(NewBB, DFMember)) + NewDFI->second.insert(DFMember); + } + NewDFI->second.erase(BB); + } + + const DomSetType &calculate(const DominatorTree &DT, + const DomTreeNode *Node); +}; + + +} // End llvm namespace + +#endif |