diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /include/llvm/Analysis/DominatorInternals.h | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'include/llvm/Analysis/DominatorInternals.h')
-rw-r--r-- | include/llvm/Analysis/DominatorInternals.h | 363 |
1 files changed, 363 insertions, 0 deletions
diff --git a/include/llvm/Analysis/DominatorInternals.h b/include/llvm/Analysis/DominatorInternals.h new file mode 100644 index 0000000..cca0d50 --- /dev/null +++ b/include/llvm/Analysis/DominatorInternals.h @@ -0,0 +1,363 @@ +//=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H +#define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H + +#include "llvm/Analysis/Dominators.h" +#include "llvm/ADT/SmallPtrSet.h" + +//===----------------------------------------------------------------------===// +// +// DominatorTree construction - This pass constructs immediate dominator +// information for a flow-graph based on the algorithm described in this +// document: +// +// A Fast Algorithm for Finding Dominators in a Flowgraph +// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. +// +// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and +// LINK, but it turns out that the theoretically slower O(n*log(n)) +// implementation is actually faster than the "efficient" algorithm (even for +// large CFGs) because the constant overheads are substantially smaller. The +// lower-complexity version can be enabled with the following #define: +// +#define BALANCE_IDOM_TREE 0 +// +//===----------------------------------------------------------------------===// + +namespace llvm { + +template<class GraphT> +unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType* V, unsigned N) { + // This is more understandable as a recursive algorithm, but we can't use the + // recursive algorithm due to stack depth issues. Keep it here for + // documentation purposes. +#if 0 + InfoRec &VInfo = DT.Info[DT.Roots[i]]; + VInfo.DFSNum = VInfo.Semi = ++N; + VInfo.Label = V; + + Vertex.push_back(V); // Vertex[n] = V; + //Info[V].Ancestor = 0; // Ancestor[n] = 0 + //Info[V].Child = 0; // Child[v] = 0 + VInfo.Size = 1; // Size[v] = 1 + + for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { + InfoRec &SuccVInfo = DT.Info[*SI]; + if (SuccVInfo.Semi == 0) { + SuccVInfo.Parent = V; + N = DTDFSPass(DT, *SI, N); + } + } +#else + bool IsChilOfArtificialExit = (N != 0); + + std::vector<std::pair<typename GraphT::NodeType*, + typename GraphT::ChildIteratorType> > Worklist; + Worklist.push_back(std::make_pair(V, GraphT::child_begin(V))); + while (!Worklist.empty()) { + typename GraphT::NodeType* BB = Worklist.back().first; + typename GraphT::ChildIteratorType NextSucc = Worklist.back().second; + + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = + DT.Info[BB]; + + // First time we visited this BB? + if (NextSucc == GraphT::child_begin(BB)) { + BBInfo.DFSNum = BBInfo.Semi = ++N; + BBInfo.Label = BB; + + DT.Vertex.push_back(BB); // Vertex[n] = V; + //BBInfo[V].Ancestor = 0; // Ancestor[n] = 0 + //BBInfo[V].Child = 0; // Child[v] = 0 + BBInfo.Size = 1; // Size[v] = 1 + + if (IsChilOfArtificialExit) + BBInfo.Parent = 1; + + IsChilOfArtificialExit = false; + } + + // store the DFS number of the current BB - the reference to BBInfo might + // get invalidated when processing the successors. + unsigned BBDFSNum = BBInfo.DFSNum; + + // If we are done with this block, remove it from the worklist. + if (NextSucc == GraphT::child_end(BB)) { + Worklist.pop_back(); + continue; + } + + // Increment the successor number for the next time we get to it. + ++Worklist.back().second; + + // Visit the successor next, if it isn't already visited. + typename GraphT::NodeType* Succ = *NextSucc; + + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo = + DT.Info[Succ]; + if (SuccVInfo.Semi == 0) { + SuccVInfo.Parent = BBDFSNum; + Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ))); + } + } +#endif + return N; +} + +template<class GraphT> +void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType *VIn) { + std::vector<typename GraphT::NodeType*> Work; + SmallPtrSet<typename GraphT::NodeType*, 32> Visited; + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInVAInfo = + DT.Info[DT.Vertex[DT.Info[VIn].Ancestor]]; + + if (VInVAInfo.Ancestor != 0) + Work.push_back(VIn); + + while (!Work.empty()) { + typename GraphT::NodeType* V = Work.back(); + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo = + DT.Info[V]; + typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Ancestor]; + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo = + DT.Info[VAncestor]; + + // Process Ancestor first + if (Visited.insert(VAncestor) && + VAInfo.Ancestor != 0) { + Work.push_back(VAncestor); + continue; + } + Work.pop_back(); + + // Update VInfo based on Ancestor info + if (VAInfo.Ancestor == 0) + continue; + typename GraphT::NodeType* VAncestorLabel = VAInfo.Label; + typename GraphT::NodeType* VLabel = VInfo.Label; + if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi) + VInfo.Label = VAncestorLabel; + VInfo.Ancestor = VAInfo.Ancestor; + } +} + +template<class GraphT> +typename GraphT::NodeType* Eval(DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType *V) { + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo = + DT.Info[V]; +#if !BALANCE_IDOM_TREE + // Higher-complexity but faster implementation + if (VInfo.Ancestor == 0) + return V; + Compress<GraphT>(DT, V); + return VInfo.Label; +#else + // Lower-complexity but slower implementation + if (VInfo.Ancestor == 0) + return VInfo.Label; + Compress<GraphT>(DT, V); + GraphT::NodeType* VLabel = VInfo.Label; + + GraphT::NodeType* VAncestorLabel = DT.Info[VInfo.Ancestor].Label; + if (DT.Info[VAncestorLabel].Semi >= DT.Info[VLabel].Semi) + return VLabel; + else + return VAncestorLabel; +#endif +} + +template<class GraphT> +void Link(DominatorTreeBase<typename GraphT::NodeType>& DT, + unsigned DFSNumV, typename GraphT::NodeType* W, + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo) { +#if !BALANCE_IDOM_TREE + // Higher-complexity but faster implementation + WInfo.Ancestor = DFSNumV; +#else + // Lower-complexity but slower implementation + GraphT::NodeType* WLabel = WInfo.Label; + unsigned WLabelSemi = DT.Info[WLabel].Semi; + GraphT::NodeType* S = W; + InfoRec *SInfo = &DT.Info[S]; + + GraphT::NodeType* SChild = SInfo->Child; + InfoRec *SChildInfo = &DT.Info[SChild]; + + while (WLabelSemi < DT.Info[SChildInfo->Label].Semi) { + GraphT::NodeType* SChildChild = SChildInfo->Child; + if (SInfo->Size+DT.Info[SChildChild].Size >= 2*SChildInfo->Size) { + SChildInfo->Ancestor = S; + SInfo->Child = SChild = SChildChild; + SChildInfo = &DT.Info[SChild]; + } else { + SChildInfo->Size = SInfo->Size; + S = SInfo->Ancestor = SChild; + SInfo = SChildInfo; + SChild = SChildChild; + SChildInfo = &DT.Info[SChild]; + } + } + + DominatorTreeBase::InfoRec &VInfo = DT.Info[V]; + SInfo->Label = WLabel; + + assert(V != W && "The optimization here will not work in this case!"); + unsigned WSize = WInfo.Size; + unsigned VSize = (VInfo.Size += WSize); + + if (VSize < 2*WSize) + std::swap(S, VInfo.Child); + + while (S) { + SInfo = &DT.Info[S]; + SInfo->Ancestor = V; + S = SInfo->Child; + } +#endif +} + +template<class FuncT, class NodeT> +void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT, + FuncT& F) { + typedef GraphTraits<NodeT> GraphT; + + unsigned N = 0; + bool MultipleRoots = (DT.Roots.size() > 1); + if (MultipleRoots) { + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = + DT.Info[NULL]; + BBInfo.DFSNum = BBInfo.Semi = ++N; + BBInfo.Label = NULL; + + DT.Vertex.push_back(NULL); // Vertex[n] = V; + //BBInfo[V].Ancestor = 0; // Ancestor[n] = 0 + //BBInfo[V].Child = 0; // Child[v] = 0 + BBInfo.Size = 1; // Size[v] = 1 + } + + // Step #1: Number blocks in depth-first order and initialize variables used + // in later stages of the algorithm. + for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size()); + i != e; ++i) + N = DFSPass<GraphT>(DT, DT.Roots[i], N); + + // it might be that some blocks did not get a DFS number (e.g., blocks of + // infinite loops). In these cases an artificial exit node is required. + MultipleRoots |= (DT.isPostDominator() && N != F.size()); + + for (unsigned i = N; i >= 2; --i) { + typename GraphT::NodeType* W = DT.Vertex[i]; + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo = + DT.Info[W]; + + // Step #2: Calculate the semidominators of all vertices + bool HasChildOutsideDFS = false; + + // initialize the semi dominator to point to the parent node + WInfo.Semi = WInfo.Parent; + for (typename GraphTraits<Inverse<NodeT> >::ChildIteratorType CI = + GraphTraits<Inverse<NodeT> >::child_begin(W), + E = GraphTraits<Inverse<NodeT> >::child_end(W); CI != E; ++CI) { + if (DT.Info.count(*CI)) { // Only if this predecessor is reachable! + unsigned SemiU = DT.Info[Eval<GraphT>(DT, *CI)].Semi; + if (SemiU < WInfo.Semi) + WInfo.Semi = SemiU; + } + else { + // if the child has no DFS number it is not post-dominated by any exit, + // and so is the current block. + HasChildOutsideDFS = true; + } + } + + // if some child has no DFS number it is not post-dominated by any exit, + // and so is the current block. + if (DT.isPostDominator() && HasChildOutsideDFS) + WInfo.Semi = 0; + + DT.Info[DT.Vertex[WInfo.Semi]].Bucket.push_back(W); + + typename GraphT::NodeType* WParent = DT.Vertex[WInfo.Parent]; + Link<GraphT>(DT, WInfo.Parent, W, WInfo); + + // Step #3: Implicitly define the immediate dominator of vertices + std::vector<typename GraphT::NodeType*> &WParentBucket = + DT.Info[WParent].Bucket; + while (!WParentBucket.empty()) { + typename GraphT::NodeType* V = WParentBucket.back(); + WParentBucket.pop_back(); + typename GraphT::NodeType* U = Eval<GraphT>(DT, V); + DT.IDoms[V] = DT.Info[U].Semi < DT.Info[V].Semi ? U : WParent; + } + } + + // Step #4: Explicitly define the immediate dominator of each vertex + for (unsigned i = 2; i <= N; ++i) { + typename GraphT::NodeType* W = DT.Vertex[i]; + typename GraphT::NodeType*& WIDom = DT.IDoms[W]; + if (WIDom != DT.Vertex[DT.Info[W].Semi]) + WIDom = DT.IDoms[WIDom]; + } + + if (DT.Roots.empty()) return; + + // Add a node for the root. This node might be the actual root, if there is + // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) + // which postdominates all real exits if there are multiple exit blocks, or + // an infinite loop. + typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0; + + DT.DomTreeNodes[Root] = DT.RootNode = + new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0); + + // Loop over all of the reachable blocks in the function... + for (unsigned i = 2; i <= N; ++i) { + typename GraphT::NodeType* W = DT.Vertex[i]; + + DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W]; + if (BBNode) continue; // Haven't calculated this node yet? + + typename GraphT::NodeType* ImmDom = DT.getIDom(W); + + assert(ImmDom || DT.DomTreeNodes[NULL]); + + // Get or calculate the node for the immediate dominator + DomTreeNodeBase<typename GraphT::NodeType> *IDomNode = + DT.getNodeForBlock(ImmDom); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + DomTreeNodeBase<typename GraphT::NodeType> *C = + new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode); + DT.DomTreeNodes[W] = IDomNode->addChild(C); + } + + // Free temporary memory used to construct idom's + DT.IDoms.clear(); + DT.Info.clear(); + std::vector<typename GraphT::NodeType*>().swap(DT.Vertex); + + // FIXME: This does not work on PostDomTrees. It seems likely that this is + // due to an error in the algorithm for post-dominators. This really should + // be investigated and fixed at some point. + // DT.updateDFSNumbers(); + + // Start out with the DFS numbers being invalid. Let them be computed if + // demanded. + DT.DFSInfoValid = false; +} + +} + +#endif |