diff options
author | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
---|---|---|
committer | ed <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 |
commit | 3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch) | |
tree | 64ba909838c23261cace781ece27d106134ea451 /include/llvm/ADT/ImmutableSet.h | |
download | FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz |
Import LLVM, at r72732.
Diffstat (limited to 'include/llvm/ADT/ImmutableSet.h')
-rw-r--r-- | include/llvm/ADT/ImmutableSet.h | 1070 |
1 files changed, 1070 insertions, 0 deletions
diff --git a/include/llvm/ADT/ImmutableSet.h b/include/llvm/ADT/ImmutableSet.h new file mode 100644 index 0000000..be274db --- /dev/null +++ b/include/llvm/ADT/ImmutableSet.h @@ -0,0 +1,1070 @@ +//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the ImutAVLTree and ImmutableSet classes. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_IMSET_H +#define LLVM_ADT_IMSET_H + +#include "llvm/Support/Allocator.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/Support/DataTypes.h" +#include <cassert> +#include <functional> + +namespace llvm { + +//===----------------------------------------------------------------------===// +// Immutable AVL-Tree Definition. +//===----------------------------------------------------------------------===// + +template <typename ImutInfo> class ImutAVLFactory; +template <typename ImutInfo> class ImutAVLTreeInOrderIterator; +template <typename ImutInfo> class ImutAVLTreeGenericIterator; + +template <typename ImutInfo > +class ImutAVLTree : public FoldingSetNode { +public: + typedef typename ImutInfo::key_type_ref key_type_ref; + typedef typename ImutInfo::value_type value_type; + typedef typename ImutInfo::value_type_ref value_type_ref; + + typedef ImutAVLFactory<ImutInfo> Factory; + friend class ImutAVLFactory<ImutInfo>; + + friend class ImutAVLTreeGenericIterator<ImutInfo>; + friend class FoldingSet<ImutAVLTree>; + + typedef ImutAVLTreeInOrderIterator<ImutInfo> iterator; + + //===----------------------------------------------------===// + // Public Interface. + //===----------------------------------------------------===// + + /// getLeft - Returns a pointer to the left subtree. This value + /// is NULL if there is no left subtree. + ImutAVLTree* getLeft() const { + assert (!isMutable() && "Node is incorrectly marked mutable."); + + return reinterpret_cast<ImutAVLTree*>(Left); + } + + /// getRight - Returns a pointer to the right subtree. This value is + /// NULL if there is no right subtree. + ImutAVLTree* getRight() const { return Right; } + + /// getHeight - Returns the height of the tree. A tree with no subtrees + /// has a height of 1. + unsigned getHeight() const { return Height; } + + /// getValue - Returns the data value associated with the tree node. + const value_type& getValue() const { return Value; } + + /// find - Finds the subtree associated with the specified key value. + /// This method returns NULL if no matching subtree is found. + ImutAVLTree* find(key_type_ref K) { + ImutAVLTree *T = this; + + while (T) { + key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); + + if (ImutInfo::isEqual(K,CurrentKey)) + return T; + else if (ImutInfo::isLess(K,CurrentKey)) + T = T->getLeft(); + else + T = T->getRight(); + } + + return NULL; + } + + /// getMaxElement - Find the subtree associated with the highest ranged + /// key value. + ImutAVLTree* getMaxElement() { + ImutAVLTree *T = this; + ImutAVLTree *Right = T->getRight(); + while (Right) { T = Right; Right = T->getRight(); } + return T; + } + + /// size - Returns the number of nodes in the tree, which includes + /// both leaves and non-leaf nodes. + unsigned size() const { + unsigned n = 1; + + if (const ImutAVLTree* L = getLeft()) n += L->size(); + if (const ImutAVLTree* R = getRight()) n += R->size(); + + return n; + } + + /// begin - Returns an iterator that iterates over the nodes of the tree + /// in an inorder traversal. The returned iterator thus refers to the + /// the tree node with the minimum data element. + iterator begin() const { return iterator(this); } + + /// end - Returns an iterator for the tree that denotes the end of an + /// inorder traversal. + iterator end() const { return iterator(); } + + bool ElementEqual(value_type_ref V) const { + // Compare the keys. + if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), + ImutInfo::KeyOfValue(V))) + return false; + + // Also compare the data values. + if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), + ImutInfo::DataOfValue(V))) + return false; + + return true; + } + + bool ElementEqual(const ImutAVLTree* RHS) const { + return ElementEqual(RHS->getValue()); + } + + /// isEqual - Compares two trees for structural equality and returns true + /// if they are equal. This worst case performance of this operation is + // linear in the sizes of the trees. + bool isEqual(const ImutAVLTree& RHS) const { + if (&RHS == this) + return true; + + iterator LItr = begin(), LEnd = end(); + iterator RItr = RHS.begin(), REnd = RHS.end(); + + while (LItr != LEnd && RItr != REnd) { + if (*LItr == *RItr) { + LItr.SkipSubTree(); + RItr.SkipSubTree(); + continue; + } + + if (!LItr->ElementEqual(*RItr)) + return false; + + ++LItr; + ++RItr; + } + + return LItr == LEnd && RItr == REnd; + } + + /// isNotEqual - Compares two trees for structural inequality. Performance + /// is the same is isEqual. + bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } + + /// contains - Returns true if this tree contains a subtree (node) that + /// has an data element that matches the specified key. Complexity + /// is logarithmic in the size of the tree. + bool contains(const key_type_ref K) { return (bool) find(K); } + + /// foreach - A member template the accepts invokes operator() on a functor + /// object (specifed by Callback) for every node/subtree in the tree. + /// Nodes are visited using an inorder traversal. + template <typename Callback> + void foreach(Callback& C) { + if (ImutAVLTree* L = getLeft()) L->foreach(C); + + C(Value); + + if (ImutAVLTree* R = getRight()) R->foreach(C); + } + + /// verify - A utility method that checks that the balancing and + /// ordering invariants of the tree are satisifed. It is a recursive + /// method that returns the height of the tree, which is then consumed + /// by the enclosing verify call. External callers should ignore the + /// return value. An invalid tree will cause an assertion to fire in + /// a debug build. + unsigned verify() const { + unsigned HL = getLeft() ? getLeft()->verify() : 0; + unsigned HR = getRight() ? getRight()->verify() : 0; + + assert (getHeight() == ( HL > HR ? HL : HR ) + 1 + && "Height calculation wrong."); + + assert ((HL > HR ? HL-HR : HR-HL) <= 2 + && "Balancing invariant violated."); + + + assert (!getLeft() + || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), + ImutInfo::KeyOfValue(getValue())) + && "Value in left child is not less that current value."); + + + assert (!getRight() + || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), + ImutInfo::KeyOfValue(getRight()->getValue())) + && "Current value is not less that value of right child."); + + return getHeight(); + } + + /// Profile - Profiling for ImutAVLTree. + void Profile(llvm::FoldingSetNodeID& ID) { + ID.AddInteger(ComputeDigest()); + } + + //===----------------------------------------------------===// + // Internal Values. + //===----------------------------------------------------===// + +private: + uintptr_t Left; + ImutAVLTree* Right; + unsigned Height; + value_type Value; + unsigned Digest; + + //===----------------------------------------------------===// + // Internal methods (node manipulation; used by Factory). + //===----------------------------------------------------===// + +private: + + enum { Mutable = 0x1 }; + + /// ImutAVLTree - Internal constructor that is only called by + /// ImutAVLFactory. + ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height) + : Left(reinterpret_cast<uintptr_t>(l) | Mutable), + Right(r), Height(height), Value(v), Digest(0) {} + + + /// isMutable - Returns true if the left and right subtree references + /// (as well as height) can be changed. If this method returns false, + /// the tree is truly immutable. Trees returned from an ImutAVLFactory + /// object should always have this method return true. Further, if this + /// method returns false for an instance of ImutAVLTree, all subtrees + /// will also have this method return false. The converse is not true. + bool isMutable() const { return Left & Mutable; } + + /// getSafeLeft - Returns the pointer to the left tree by always masking + /// out the mutable bit. This is used internally by ImutAVLFactory, + /// as no trees returned to the client should have the mutable flag set. + ImutAVLTree* getSafeLeft() const { + return reinterpret_cast<ImutAVLTree*>(Left & ~Mutable); + } + + //===----------------------------------------------------===// + // Mutating operations. A tree root can be manipulated as + // long as its reference has not "escaped" from internal + // methods of a factory object (see below). When a tree + // pointer is externally viewable by client code, the + // internal "mutable bit" is cleared to mark the tree + // immutable. Note that a tree that still has its mutable + // bit set may have children (subtrees) that are themselves + // immutable. + //===----------------------------------------------------===// + + + /// MarkImmutable - Clears the mutable flag for a tree. After this happens, + /// it is an error to call setLeft(), setRight(), and setHeight(). It + /// is also then safe to call getLeft() instead of getSafeLeft(). + void MarkImmutable() { + assert (isMutable() && "Mutable flag already removed."); + Left &= ~Mutable; + } + + /// setLeft - Changes the reference of the left subtree. Used internally + /// by ImutAVLFactory. + void setLeft(ImutAVLTree* NewLeft) { + assert (isMutable() && + "Only a mutable tree can have its left subtree changed."); + + Left = reinterpret_cast<uintptr_t>(NewLeft) | Mutable; + } + + /// setRight - Changes the reference of the right subtree. Used internally + /// by ImutAVLFactory. + void setRight(ImutAVLTree* NewRight) { + assert (isMutable() && + "Only a mutable tree can have its right subtree changed."); + + Right = NewRight; + } + + /// setHeight - Changes the height of the tree. Used internally by + /// ImutAVLFactory. + void setHeight(unsigned h) { + assert (isMutable() && "Only a mutable tree can have its height changed."); + Height = h; + } + + + static inline + unsigned ComputeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) { + unsigned digest = 0; + + if (L) digest += L->ComputeDigest(); + + { // Compute digest of stored data. + FoldingSetNodeID ID; + ImutInfo::Profile(ID,V); + digest += ID.ComputeHash(); + } + + if (R) digest += R->ComputeDigest(); + + return digest; + } + + inline unsigned ComputeDigest() { + if (Digest) return Digest; + + unsigned X = ComputeDigest(getSafeLeft(), getRight(), getValue()); + if (!isMutable()) Digest = X; + + return X; + } +}; + +//===----------------------------------------------------------------------===// +// Immutable AVL-Tree Factory class. +//===----------------------------------------------------------------------===// + +template <typename ImutInfo > +class ImutAVLFactory { + typedef ImutAVLTree<ImutInfo> TreeTy; + typedef typename TreeTy::value_type_ref value_type_ref; + typedef typename TreeTy::key_type_ref key_type_ref; + + typedef FoldingSet<TreeTy> CacheTy; + + CacheTy Cache; + uintptr_t Allocator; + + bool ownsAllocator() const { + return Allocator & 0x1 ? false : true; + } + + BumpPtrAllocator& getAllocator() const { + return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1); + } + + //===--------------------------------------------------===// + // Public interface. + //===--------------------------------------------------===// + +public: + ImutAVLFactory() + : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {} + + ImutAVLFactory(BumpPtrAllocator& Alloc) + : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {} + + ~ImutAVLFactory() { + if (ownsAllocator()) delete &getAllocator(); + } + + TreeTy* Add(TreeTy* T, value_type_ref V) { + T = Add_internal(V,T); + MarkImmutable(T); + return T; + } + + TreeTy* Remove(TreeTy* T, key_type_ref V) { + T = Remove_internal(V,T); + MarkImmutable(T); + return T; + } + + TreeTy* GetEmptyTree() const { return NULL; } + + //===--------------------------------------------------===// + // A bunch of quick helper functions used for reasoning + // about the properties of trees and their children. + // These have succinct names so that the balancing code + // is as terse (and readable) as possible. + //===--------------------------------------------------===// +private: + + bool isEmpty(TreeTy* T) const { return !T; } + unsigned Height(TreeTy* T) const { return T ? T->getHeight() : 0; } + TreeTy* Left(TreeTy* T) const { return T->getSafeLeft(); } + TreeTy* Right(TreeTy* T) const { return T->getRight(); } + value_type_ref Value(TreeTy* T) const { return T->Value; } + + unsigned IncrementHeight(TreeTy* L, TreeTy* R) const { + unsigned hl = Height(L); + unsigned hr = Height(R); + return ( hl > hr ? hl : hr ) + 1; + } + + + static bool CompareTreeWithSection(TreeTy* T, + typename TreeTy::iterator& TI, + typename TreeTy::iterator& TE) { + + typename TreeTy::iterator I = T->begin(), E = T->end(); + + for ( ; I!=E ; ++I, ++TI) + if (TI == TE || !I->ElementEqual(*TI)) + return false; + + return true; + } + + //===--------------------------------------------------===// + // "CreateNode" is used to generate new tree roots that link + // to other trees. The functon may also simply move links + // in an existing root if that root is still marked mutable. + // This is necessary because otherwise our balancing code + // would leak memory as it would create nodes that are + // then discarded later before the finished tree is + // returned to the caller. + //===--------------------------------------------------===// + + TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) { + // Search the FoldingSet bucket for a Tree with the same digest. + FoldingSetNodeID ID; + unsigned digest = TreeTy::ComputeDigest(L, R, V); + ID.AddInteger(digest); + unsigned hash = ID.ComputeHash(); + + typename CacheTy::bucket_iterator I = Cache.bucket_begin(hash); + typename CacheTy::bucket_iterator E = Cache.bucket_end(hash); + + for (; I != E; ++I) { + TreeTy* T = &*I; + + if (T->ComputeDigest() != digest) + continue; + + // We found a collision. Perform a comparison of Contents('T') + // with Contents('L')+'V'+Contents('R'). + + typename TreeTy::iterator TI = T->begin(), TE = T->end(); + + // First compare Contents('L') with the (initial) contents of T. + if (!CompareTreeWithSection(L, TI, TE)) + continue; + + // Now compare the new data element. + if (TI == TE || !TI->ElementEqual(V)) + continue; + + ++TI; + + // Now compare the remainder of 'T' with 'R'. + if (!CompareTreeWithSection(R, TI, TE)) + continue; + + if (TI != TE) // Contents('R') did not match suffix of 'T'. + continue; + + // Trees did match! Return 'T'. + return T; + } + + // No tree with the contents: Contents('L')+'V'+Contents('R'). + // Create it. + + // Allocate the new tree node and insert it into the cache. + BumpPtrAllocator& A = getAllocator(); + TreeTy* T = (TreeTy*) A.Allocate<TreeTy>(); + new (T) TreeTy(L,R,V,IncrementHeight(L,R)); + + // We do not insert 'T' into the FoldingSet here. This is because + // this tree is still mutable and things may get rebalanced. + // Because our digest is associative and based on the contents of + // the set, this should hopefully not cause any strange bugs. + // 'T' is inserted by 'MarkImmutable'. + + return T; + } + + TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) { + assert (!isEmpty(OldTree)); + + if (OldTree->isMutable()) { + OldTree->setLeft(L); + OldTree->setRight(R); + OldTree->setHeight(IncrementHeight(L,R)); + return OldTree; + } + else return CreateNode(L, Value(OldTree), R); + } + + /// Balance - Used by Add_internal and Remove_internal to + /// balance a newly created tree. + TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) { + + unsigned hl = Height(L); + unsigned hr = Height(R); + + if (hl > hr + 2) { + assert (!isEmpty(L) && + "Left tree cannot be empty to have a height >= 2."); + + TreeTy* LL = Left(L); + TreeTy* LR = Right(L); + + if (Height(LL) >= Height(LR)) + return CreateNode(LL, L, CreateNode(LR,V,R)); + + assert (!isEmpty(LR) && + "LR cannot be empty because it has a height >= 1."); + + TreeTy* LRL = Left(LR); + TreeTy* LRR = Right(LR); + + return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R)); + } + else if (hr > hl + 2) { + assert (!isEmpty(R) && + "Right tree cannot be empty to have a height >= 2."); + + TreeTy* RL = Left(R); + TreeTy* RR = Right(R); + + if (Height(RR) >= Height(RL)) + return CreateNode(CreateNode(L,V,RL), R, RR); + + assert (!isEmpty(RL) && + "RL cannot be empty because it has a height >= 1."); + + TreeTy* RLL = Left(RL); + TreeTy* RLR = Right(RL); + + return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR)); + } + else + return CreateNode(L,V,R); + } + + /// Add_internal - Creates a new tree that includes the specified + /// data and the data from the original tree. If the original tree + /// already contained the data item, the original tree is returned. + TreeTy* Add_internal(value_type_ref V, TreeTy* T) { + if (isEmpty(T)) + return CreateNode(T, V, T); + + assert (!T->isMutable()); + + key_type_ref K = ImutInfo::KeyOfValue(V); + key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T)); + + if (ImutInfo::isEqual(K,KCurrent)) + return CreateNode(Left(T), V, Right(T)); + else if (ImutInfo::isLess(K,KCurrent)) + return Balance(Add_internal(V,Left(T)), Value(T), Right(T)); + else + return Balance(Left(T), Value(T), Add_internal(V,Right(T))); + } + + /// Remove_internal - Creates a new tree that includes all the data + /// from the original tree except the specified data. If the + /// specified data did not exist in the original tree, the original + /// tree is returned. + TreeTy* Remove_internal(key_type_ref K, TreeTy* T) { + if (isEmpty(T)) + return T; + + assert (!T->isMutable()); + + key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T)); + + if (ImutInfo::isEqual(K,KCurrent)) + return CombineLeftRightTrees(Left(T),Right(T)); + else if (ImutInfo::isLess(K,KCurrent)) + return Balance(Remove_internal(K,Left(T)), Value(T), Right(T)); + else + return Balance(Left(T), Value(T), Remove_internal(K,Right(T))); + } + + TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) { + if (isEmpty(L)) return R; + if (isEmpty(R)) return L; + + TreeTy* OldNode; + TreeTy* NewRight = RemoveMinBinding(R,OldNode); + return Balance(L,Value(OldNode),NewRight); + } + + TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) { + assert (!isEmpty(T)); + + if (isEmpty(Left(T))) { + NodeRemoved = T; + return Right(T); + } + + return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T)); + } + + /// MarkImmutable - Clears the mutable bits of a root and all of its + /// descendants. + void MarkImmutable(TreeTy* T) { + if (!T || !T->isMutable()) + return; + + T->MarkImmutable(); + MarkImmutable(Left(T)); + MarkImmutable(Right(T)); + + // Now that the node is immutable it can safely be inserted + // into the node cache. + llvm::FoldingSetNodeID ID; + ID.AddInteger(T->ComputeDigest()); + Cache.InsertNode(T, (void*) &*Cache.bucket_end(ID.ComputeHash())); + } +}; + + +//===----------------------------------------------------------------------===// +// Immutable AVL-Tree Iterators. +//===----------------------------------------------------------------------===// + +template <typename ImutInfo> +class ImutAVLTreeGenericIterator { + SmallVector<uintptr_t,20> stack; +public: + enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, + Flags=0x3 }; + + typedef ImutAVLTree<ImutInfo> TreeTy; + typedef ImutAVLTreeGenericIterator<ImutInfo> _Self; + + inline ImutAVLTreeGenericIterator() {} + inline ImutAVLTreeGenericIterator(const TreeTy* Root) { + if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root)); + } + + TreeTy* operator*() const { + assert (!stack.empty()); + return reinterpret_cast<TreeTy*>(stack.back() & ~Flags); + } + + uintptr_t getVisitState() { + assert (!stack.empty()); + return stack.back() & Flags; + } + + + bool AtEnd() const { return stack.empty(); } + + bool AtBeginning() const { + return stack.size() == 1 && getVisitState() == VisitedNone; + } + + void SkipToParent() { + assert (!stack.empty()); + stack.pop_back(); + + if (stack.empty()) + return; + + switch (getVisitState()) { + case VisitedNone: + stack.back() |= VisitedLeft; + break; + case VisitedLeft: + stack.back() |= VisitedRight; + break; + default: + assert (false && "Unreachable."); + } + } + + inline bool operator==(const _Self& x) const { + if (stack.size() != x.stack.size()) + return false; + + for (unsigned i = 0 ; i < stack.size(); i++) + if (stack[i] != x.stack[i]) + return false; + + return true; + } + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + + _Self& operator++() { + assert (!stack.empty()); + + TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); + assert (Current); + + switch (getVisitState()) { + case VisitedNone: + if (TreeTy* L = Current->getSafeLeft()) + stack.push_back(reinterpret_cast<uintptr_t>(L)); + else + stack.back() |= VisitedLeft; + + break; + + case VisitedLeft: + if (TreeTy* R = Current->getRight()) + stack.push_back(reinterpret_cast<uintptr_t>(R)); + else + stack.back() |= VisitedRight; + + break; + + case VisitedRight: + SkipToParent(); + break; + + default: + assert (false && "Unreachable."); + } + + return *this; + } + + _Self& operator--() { + assert (!stack.empty()); + + TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); + assert (Current); + + switch (getVisitState()) { + case VisitedNone: + stack.pop_back(); + break; + + case VisitedLeft: + stack.back() &= ~Flags; // Set state to "VisitedNone." + + if (TreeTy* L = Current->getLeft()) + stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight); + + break; + + case VisitedRight: + stack.back() &= ~Flags; + stack.back() |= VisitedLeft; + + if (TreeTy* R = Current->getRight()) + stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight); + + break; + + default: + assert (false && "Unreachable."); + } + + return *this; + } +}; + +template <typename ImutInfo> +class ImutAVLTreeInOrderIterator { + typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy; + InternalIteratorTy InternalItr; + +public: + typedef ImutAVLTree<ImutInfo> TreeTy; + typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self; + + ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { + if (Root) operator++(); // Advance to first element. + } + + ImutAVLTreeInOrderIterator() : InternalItr() {} + + inline bool operator==(const _Self& x) const { + return InternalItr == x.InternalItr; + } + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + + inline TreeTy* operator*() const { return *InternalItr; } + inline TreeTy* operator->() const { return *InternalItr; } + + inline _Self& operator++() { + do ++InternalItr; + while (!InternalItr.AtEnd() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); + + return *this; + } + + inline _Self& operator--() { + do --InternalItr; + while (!InternalItr.AtBeginning() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); + + return *this; + } + + inline void SkipSubTree() { + InternalItr.SkipToParent(); + + while (!InternalItr.AtEnd() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) + ++InternalItr; + } +}; + +//===----------------------------------------------------------------------===// +// Trait classes for Profile information. +//===----------------------------------------------------------------------===// + +/// Generic profile template. The default behavior is to invoke the +/// profile method of an object. Specializations for primitive integers +/// and generic handling of pointers is done below. +template <typename T> +struct ImutProfileInfo { + typedef const T value_type; + typedef const T& value_type_ref; + + static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { + FoldingSetTrait<T>::Profile(X,ID); + } +}; + +/// Profile traits for integers. +template <typename T> +struct ImutProfileInteger { + typedef const T value_type; + typedef const T& value_type_ref; + + static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { + ID.AddInteger(X); + } +}; + +#define PROFILE_INTEGER_INFO(X)\ +template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {}; + +PROFILE_INTEGER_INFO(char) +PROFILE_INTEGER_INFO(unsigned char) +PROFILE_INTEGER_INFO(short) +PROFILE_INTEGER_INFO(unsigned short) +PROFILE_INTEGER_INFO(unsigned) +PROFILE_INTEGER_INFO(signed) +PROFILE_INTEGER_INFO(long) +PROFILE_INTEGER_INFO(unsigned long) +PROFILE_INTEGER_INFO(long long) +PROFILE_INTEGER_INFO(unsigned long long) + +#undef PROFILE_INTEGER_INFO + +/// Generic profile trait for pointer types. We treat pointers as +/// references to unique objects. +template <typename T> +struct ImutProfileInfo<T*> { + typedef const T* value_type; + typedef value_type value_type_ref; + + static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) { + ID.AddPointer(X); + } +}; + +//===----------------------------------------------------------------------===// +// Trait classes that contain element comparison operators and type +// definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These +// inherit from the profile traits (ImutProfileInfo) to include operations +// for element profiling. +//===----------------------------------------------------------------------===// + + +/// ImutContainerInfo - Generic definition of comparison operations for +/// elements of immutable containers that defaults to using +/// std::equal_to<> and std::less<> to perform comparison of elements. +template <typename T> +struct ImutContainerInfo : public ImutProfileInfo<T> { + typedef typename ImutProfileInfo<T>::value_type value_type; + typedef typename ImutProfileInfo<T>::value_type_ref value_type_ref; + typedef value_type key_type; + typedef value_type_ref key_type_ref; + typedef bool data_type; + typedef bool data_type_ref; + + static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } + static inline data_type_ref DataOfValue(value_type_ref) { return true; } + + static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { + return std::equal_to<key_type>()(LHS,RHS); + } + + static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { + return std::less<key_type>()(LHS,RHS); + } + + static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } +}; + +/// ImutContainerInfo - Specialization for pointer values to treat pointers +/// as references to unique objects. Pointers are thus compared by +/// their addresses. +template <typename T> +struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> { + typedef typename ImutProfileInfo<T*>::value_type value_type; + typedef typename ImutProfileInfo<T*>::value_type_ref value_type_ref; + typedef value_type key_type; + typedef value_type_ref key_type_ref; + typedef bool data_type; + typedef bool data_type_ref; + + static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } + static inline data_type_ref DataOfValue(value_type_ref) { return true; } + + static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { + return LHS == RHS; + } + + static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { + return LHS < RHS; + } + + static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } +}; + +//===----------------------------------------------------------------------===// +// Immutable Set +//===----------------------------------------------------------------------===// + +template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> > +class ImmutableSet { +public: + typedef typename ValInfo::value_type value_type; + typedef typename ValInfo::value_type_ref value_type_ref; + typedef ImutAVLTree<ValInfo> TreeTy; + +private: + TreeTy* Root; + +public: + /// Constructs a set from a pointer to a tree root. In general one + /// should use a Factory object to create sets instead of directly + /// invoking the constructor, but there are cases where make this + /// constructor public is useful. + explicit ImmutableSet(TreeTy* R) : Root(R) {} + + class Factory { + typename TreeTy::Factory F; + + public: + Factory() {} + + Factory(BumpPtrAllocator& Alloc) + : F(Alloc) {} + + /// GetEmptySet - Returns an immutable set that contains no elements. + ImmutableSet GetEmptySet() { return ImmutableSet(F.GetEmptyTree()); } + + /// Add - Creates a new immutable set that contains all of the values + /// of the original set with the addition of the specified value. If + /// the original set already included the value, then the original set is + /// returned and no memory is allocated. The time and space complexity + /// of this operation is logarithmic in the size of the original set. + /// The memory allocated to represent the set is released when the + /// factory object that created the set is destroyed. + ImmutableSet Add(ImmutableSet Old, value_type_ref V) { + return ImmutableSet(F.Add(Old.Root,V)); + } + + /// Remove - Creates a new immutable set that contains all of the values + /// of the original set with the exception of the specified value. If + /// the original set did not contain the value, the original set is + /// returned and no memory is allocated. The time and space complexity + /// of this operation is logarithmic in the size of the original set. + /// The memory allocated to represent the set is released when the + /// factory object that created the set is destroyed. + ImmutableSet Remove(ImmutableSet Old, value_type_ref V) { + return ImmutableSet(F.Remove(Old.Root,V)); + } + + BumpPtrAllocator& getAllocator() { return F.getAllocator(); } + + private: + Factory(const Factory& RHS) {}; + void operator=(const Factory& RHS) {}; + }; + + friend class Factory; + + /// contains - Returns true if the set contains the specified value. + bool contains(const value_type_ref V) const { + return Root ? Root->contains(V) : false; + } + + bool operator==(ImmutableSet RHS) const { + return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; + } + + bool operator!=(ImmutableSet RHS) const { + return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; + } + + TreeTy* getRoot() const { return Root; } + + /// isEmpty - Return true if the set contains no elements. + bool isEmpty() const { return !Root; } + + /// isSingleton - Return true if the set contains exactly one element. + /// This method runs in constant time. + bool isSingleton() const { return getHeight() == 1; } + + template <typename Callback> + void foreach(Callback& C) { if (Root) Root->foreach(C); } + + template <typename Callback> + void foreach() { if (Root) { Callback C; Root->foreach(C); } } + + //===--------------------------------------------------===// + // Iterators. + //===--------------------------------------------------===// + + class iterator { + typename TreeTy::iterator itr; + + iterator() {} + iterator(TreeTy* t) : itr(t) {} + friend class ImmutableSet<ValT,ValInfo>; + public: + inline value_type_ref operator*() const { return itr->getValue(); } + inline iterator& operator++() { ++itr; return *this; } + inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } + inline iterator& operator--() { --itr; return *this; } + inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; } + inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; } + inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } + inline value_type *operator->() const { return &(operator*()); } + }; + + iterator begin() const { return iterator(Root); } + iterator end() const { return iterator(); } + + //===--------------------------------------------------===// + // Utility methods. + //===--------------------------------------------------===// + + inline unsigned getHeight() const { return Root ? Root->getHeight() : 0; } + + static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) { + ID.AddPointer(S.Root); + } + + inline void Profile(FoldingSetNodeID& ID) const { + return Profile(ID,*this); + } + + //===--------------------------------------------------===// + // For testing. + //===--------------------------------------------------===// + + void verify() const { if (Root) Root->verify(); } +}; + +} // end namespace llvm + +#endif |