summaryrefslogtreecommitdiffstats
path: root/include/llvm/ADT/ImmutableSet.h
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /include/llvm/ADT/ImmutableSet.h
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'include/llvm/ADT/ImmutableSet.h')
-rw-r--r--include/llvm/ADT/ImmutableSet.h1070
1 files changed, 1070 insertions, 0 deletions
diff --git a/include/llvm/ADT/ImmutableSet.h b/include/llvm/ADT/ImmutableSet.h
new file mode 100644
index 0000000..be274db
--- /dev/null
+++ b/include/llvm/ADT/ImmutableSet.h
@@ -0,0 +1,1070 @@
+//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ImutAVLTree and ImmutableSet classes.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_IMSET_H
+#define LLVM_ADT_IMSET_H
+
+#include "llvm/Support/Allocator.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Support/DataTypes.h"
+#include <cassert>
+#include <functional>
+
+namespace llvm {
+
+//===----------------------------------------------------------------------===//
+// Immutable AVL-Tree Definition.
+//===----------------------------------------------------------------------===//
+
+template <typename ImutInfo> class ImutAVLFactory;
+template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
+template <typename ImutInfo> class ImutAVLTreeGenericIterator;
+
+template <typename ImutInfo >
+class ImutAVLTree : public FoldingSetNode {
+public:
+ typedef typename ImutInfo::key_type_ref key_type_ref;
+ typedef typename ImutInfo::value_type value_type;
+ typedef typename ImutInfo::value_type_ref value_type_ref;
+
+ typedef ImutAVLFactory<ImutInfo> Factory;
+ friend class ImutAVLFactory<ImutInfo>;
+
+ friend class ImutAVLTreeGenericIterator<ImutInfo>;
+ friend class FoldingSet<ImutAVLTree>;
+
+ typedef ImutAVLTreeInOrderIterator<ImutInfo> iterator;
+
+ //===----------------------------------------------------===//
+ // Public Interface.
+ //===----------------------------------------------------===//
+
+ /// getLeft - Returns a pointer to the left subtree. This value
+ /// is NULL if there is no left subtree.
+ ImutAVLTree* getLeft() const {
+ assert (!isMutable() && "Node is incorrectly marked mutable.");
+
+ return reinterpret_cast<ImutAVLTree*>(Left);
+ }
+
+ /// getRight - Returns a pointer to the right subtree. This value is
+ /// NULL if there is no right subtree.
+ ImutAVLTree* getRight() const { return Right; }
+
+ /// getHeight - Returns the height of the tree. A tree with no subtrees
+ /// has a height of 1.
+ unsigned getHeight() const { return Height; }
+
+ /// getValue - Returns the data value associated with the tree node.
+ const value_type& getValue() const { return Value; }
+
+ /// find - Finds the subtree associated with the specified key value.
+ /// This method returns NULL if no matching subtree is found.
+ ImutAVLTree* find(key_type_ref K) {
+ ImutAVLTree *T = this;
+
+ while (T) {
+ key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
+
+ if (ImutInfo::isEqual(K,CurrentKey))
+ return T;
+ else if (ImutInfo::isLess(K,CurrentKey))
+ T = T->getLeft();
+ else
+ T = T->getRight();
+ }
+
+ return NULL;
+ }
+
+ /// getMaxElement - Find the subtree associated with the highest ranged
+ /// key value.
+ ImutAVLTree* getMaxElement() {
+ ImutAVLTree *T = this;
+ ImutAVLTree *Right = T->getRight();
+ while (Right) { T = Right; Right = T->getRight(); }
+ return T;
+ }
+
+ /// size - Returns the number of nodes in the tree, which includes
+ /// both leaves and non-leaf nodes.
+ unsigned size() const {
+ unsigned n = 1;
+
+ if (const ImutAVLTree* L = getLeft()) n += L->size();
+ if (const ImutAVLTree* R = getRight()) n += R->size();
+
+ return n;
+ }
+
+ /// begin - Returns an iterator that iterates over the nodes of the tree
+ /// in an inorder traversal. The returned iterator thus refers to the
+ /// the tree node with the minimum data element.
+ iterator begin() const { return iterator(this); }
+
+ /// end - Returns an iterator for the tree that denotes the end of an
+ /// inorder traversal.
+ iterator end() const { return iterator(); }
+
+ bool ElementEqual(value_type_ref V) const {
+ // Compare the keys.
+ if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
+ ImutInfo::KeyOfValue(V)))
+ return false;
+
+ // Also compare the data values.
+ if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
+ ImutInfo::DataOfValue(V)))
+ return false;
+
+ return true;
+ }
+
+ bool ElementEqual(const ImutAVLTree* RHS) const {
+ return ElementEqual(RHS->getValue());
+ }
+
+ /// isEqual - Compares two trees for structural equality and returns true
+ /// if they are equal. This worst case performance of this operation is
+ // linear in the sizes of the trees.
+ bool isEqual(const ImutAVLTree& RHS) const {
+ if (&RHS == this)
+ return true;
+
+ iterator LItr = begin(), LEnd = end();
+ iterator RItr = RHS.begin(), REnd = RHS.end();
+
+ while (LItr != LEnd && RItr != REnd) {
+ if (*LItr == *RItr) {
+ LItr.SkipSubTree();
+ RItr.SkipSubTree();
+ continue;
+ }
+
+ if (!LItr->ElementEqual(*RItr))
+ return false;
+
+ ++LItr;
+ ++RItr;
+ }
+
+ return LItr == LEnd && RItr == REnd;
+ }
+
+ /// isNotEqual - Compares two trees for structural inequality. Performance
+ /// is the same is isEqual.
+ bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
+
+ /// contains - Returns true if this tree contains a subtree (node) that
+ /// has an data element that matches the specified key. Complexity
+ /// is logarithmic in the size of the tree.
+ bool contains(const key_type_ref K) { return (bool) find(K); }
+
+ /// foreach - A member template the accepts invokes operator() on a functor
+ /// object (specifed by Callback) for every node/subtree in the tree.
+ /// Nodes are visited using an inorder traversal.
+ template <typename Callback>
+ void foreach(Callback& C) {
+ if (ImutAVLTree* L = getLeft()) L->foreach(C);
+
+ C(Value);
+
+ if (ImutAVLTree* R = getRight()) R->foreach(C);
+ }
+
+ /// verify - A utility method that checks that the balancing and
+ /// ordering invariants of the tree are satisifed. It is a recursive
+ /// method that returns the height of the tree, which is then consumed
+ /// by the enclosing verify call. External callers should ignore the
+ /// return value. An invalid tree will cause an assertion to fire in
+ /// a debug build.
+ unsigned verify() const {
+ unsigned HL = getLeft() ? getLeft()->verify() : 0;
+ unsigned HR = getRight() ? getRight()->verify() : 0;
+
+ assert (getHeight() == ( HL > HR ? HL : HR ) + 1
+ && "Height calculation wrong.");
+
+ assert ((HL > HR ? HL-HR : HR-HL) <= 2
+ && "Balancing invariant violated.");
+
+
+ assert (!getLeft()
+ || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
+ ImutInfo::KeyOfValue(getValue()))
+ && "Value in left child is not less that current value.");
+
+
+ assert (!getRight()
+ || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
+ ImutInfo::KeyOfValue(getRight()->getValue()))
+ && "Current value is not less that value of right child.");
+
+ return getHeight();
+ }
+
+ /// Profile - Profiling for ImutAVLTree.
+ void Profile(llvm::FoldingSetNodeID& ID) {
+ ID.AddInteger(ComputeDigest());
+ }
+
+ //===----------------------------------------------------===//
+ // Internal Values.
+ //===----------------------------------------------------===//
+
+private:
+ uintptr_t Left;
+ ImutAVLTree* Right;
+ unsigned Height;
+ value_type Value;
+ unsigned Digest;
+
+ //===----------------------------------------------------===//
+ // Internal methods (node manipulation; used by Factory).
+ //===----------------------------------------------------===//
+
+private:
+
+ enum { Mutable = 0x1 };
+
+ /// ImutAVLTree - Internal constructor that is only called by
+ /// ImutAVLFactory.
+ ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height)
+ : Left(reinterpret_cast<uintptr_t>(l) | Mutable),
+ Right(r), Height(height), Value(v), Digest(0) {}
+
+
+ /// isMutable - Returns true if the left and right subtree references
+ /// (as well as height) can be changed. If this method returns false,
+ /// the tree is truly immutable. Trees returned from an ImutAVLFactory
+ /// object should always have this method return true. Further, if this
+ /// method returns false for an instance of ImutAVLTree, all subtrees
+ /// will also have this method return false. The converse is not true.
+ bool isMutable() const { return Left & Mutable; }
+
+ /// getSafeLeft - Returns the pointer to the left tree by always masking
+ /// out the mutable bit. This is used internally by ImutAVLFactory,
+ /// as no trees returned to the client should have the mutable flag set.
+ ImutAVLTree* getSafeLeft() const {
+ return reinterpret_cast<ImutAVLTree*>(Left & ~Mutable);
+ }
+
+ //===----------------------------------------------------===//
+ // Mutating operations. A tree root can be manipulated as
+ // long as its reference has not "escaped" from internal
+ // methods of a factory object (see below). When a tree
+ // pointer is externally viewable by client code, the
+ // internal "mutable bit" is cleared to mark the tree
+ // immutable. Note that a tree that still has its mutable
+ // bit set may have children (subtrees) that are themselves
+ // immutable.
+ //===----------------------------------------------------===//
+
+
+ /// MarkImmutable - Clears the mutable flag for a tree. After this happens,
+ /// it is an error to call setLeft(), setRight(), and setHeight(). It
+ /// is also then safe to call getLeft() instead of getSafeLeft().
+ void MarkImmutable() {
+ assert (isMutable() && "Mutable flag already removed.");
+ Left &= ~Mutable;
+ }
+
+ /// setLeft - Changes the reference of the left subtree. Used internally
+ /// by ImutAVLFactory.
+ void setLeft(ImutAVLTree* NewLeft) {
+ assert (isMutable() &&
+ "Only a mutable tree can have its left subtree changed.");
+
+ Left = reinterpret_cast<uintptr_t>(NewLeft) | Mutable;
+ }
+
+ /// setRight - Changes the reference of the right subtree. Used internally
+ /// by ImutAVLFactory.
+ void setRight(ImutAVLTree* NewRight) {
+ assert (isMutable() &&
+ "Only a mutable tree can have its right subtree changed.");
+
+ Right = NewRight;
+ }
+
+ /// setHeight - Changes the height of the tree. Used internally by
+ /// ImutAVLFactory.
+ void setHeight(unsigned h) {
+ assert (isMutable() && "Only a mutable tree can have its height changed.");
+ Height = h;
+ }
+
+
+ static inline
+ unsigned ComputeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) {
+ unsigned digest = 0;
+
+ if (L) digest += L->ComputeDigest();
+
+ { // Compute digest of stored data.
+ FoldingSetNodeID ID;
+ ImutInfo::Profile(ID,V);
+ digest += ID.ComputeHash();
+ }
+
+ if (R) digest += R->ComputeDigest();
+
+ return digest;
+ }
+
+ inline unsigned ComputeDigest() {
+ if (Digest) return Digest;
+
+ unsigned X = ComputeDigest(getSafeLeft(), getRight(), getValue());
+ if (!isMutable()) Digest = X;
+
+ return X;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Immutable AVL-Tree Factory class.
+//===----------------------------------------------------------------------===//
+
+template <typename ImutInfo >
+class ImutAVLFactory {
+ typedef ImutAVLTree<ImutInfo> TreeTy;
+ typedef typename TreeTy::value_type_ref value_type_ref;
+ typedef typename TreeTy::key_type_ref key_type_ref;
+
+ typedef FoldingSet<TreeTy> CacheTy;
+
+ CacheTy Cache;
+ uintptr_t Allocator;
+
+ bool ownsAllocator() const {
+ return Allocator & 0x1 ? false : true;
+ }
+
+ BumpPtrAllocator& getAllocator() const {
+ return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
+ }
+
+ //===--------------------------------------------------===//
+ // Public interface.
+ //===--------------------------------------------------===//
+
+public:
+ ImutAVLFactory()
+ : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
+
+ ImutAVLFactory(BumpPtrAllocator& Alloc)
+ : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
+
+ ~ImutAVLFactory() {
+ if (ownsAllocator()) delete &getAllocator();
+ }
+
+ TreeTy* Add(TreeTy* T, value_type_ref V) {
+ T = Add_internal(V,T);
+ MarkImmutable(T);
+ return T;
+ }
+
+ TreeTy* Remove(TreeTy* T, key_type_ref V) {
+ T = Remove_internal(V,T);
+ MarkImmutable(T);
+ return T;
+ }
+
+ TreeTy* GetEmptyTree() const { return NULL; }
+
+ //===--------------------------------------------------===//
+ // A bunch of quick helper functions used for reasoning
+ // about the properties of trees and their children.
+ // These have succinct names so that the balancing code
+ // is as terse (and readable) as possible.
+ //===--------------------------------------------------===//
+private:
+
+ bool isEmpty(TreeTy* T) const { return !T; }
+ unsigned Height(TreeTy* T) const { return T ? T->getHeight() : 0; }
+ TreeTy* Left(TreeTy* T) const { return T->getSafeLeft(); }
+ TreeTy* Right(TreeTy* T) const { return T->getRight(); }
+ value_type_ref Value(TreeTy* T) const { return T->Value; }
+
+ unsigned IncrementHeight(TreeTy* L, TreeTy* R) const {
+ unsigned hl = Height(L);
+ unsigned hr = Height(R);
+ return ( hl > hr ? hl : hr ) + 1;
+ }
+
+
+ static bool CompareTreeWithSection(TreeTy* T,
+ typename TreeTy::iterator& TI,
+ typename TreeTy::iterator& TE) {
+
+ typename TreeTy::iterator I = T->begin(), E = T->end();
+
+ for ( ; I!=E ; ++I, ++TI)
+ if (TI == TE || !I->ElementEqual(*TI))
+ return false;
+
+ return true;
+ }
+
+ //===--------------------------------------------------===//
+ // "CreateNode" is used to generate new tree roots that link
+ // to other trees. The functon may also simply move links
+ // in an existing root if that root is still marked mutable.
+ // This is necessary because otherwise our balancing code
+ // would leak memory as it would create nodes that are
+ // then discarded later before the finished tree is
+ // returned to the caller.
+ //===--------------------------------------------------===//
+
+ TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) {
+ // Search the FoldingSet bucket for a Tree with the same digest.
+ FoldingSetNodeID ID;
+ unsigned digest = TreeTy::ComputeDigest(L, R, V);
+ ID.AddInteger(digest);
+ unsigned hash = ID.ComputeHash();
+
+ typename CacheTy::bucket_iterator I = Cache.bucket_begin(hash);
+ typename CacheTy::bucket_iterator E = Cache.bucket_end(hash);
+
+ for (; I != E; ++I) {
+ TreeTy* T = &*I;
+
+ if (T->ComputeDigest() != digest)
+ continue;
+
+ // We found a collision. Perform a comparison of Contents('T')
+ // with Contents('L')+'V'+Contents('R').
+
+ typename TreeTy::iterator TI = T->begin(), TE = T->end();
+
+ // First compare Contents('L') with the (initial) contents of T.
+ if (!CompareTreeWithSection(L, TI, TE))
+ continue;
+
+ // Now compare the new data element.
+ if (TI == TE || !TI->ElementEqual(V))
+ continue;
+
+ ++TI;
+
+ // Now compare the remainder of 'T' with 'R'.
+ if (!CompareTreeWithSection(R, TI, TE))
+ continue;
+
+ if (TI != TE) // Contents('R') did not match suffix of 'T'.
+ continue;
+
+ // Trees did match! Return 'T'.
+ return T;
+ }
+
+ // No tree with the contents: Contents('L')+'V'+Contents('R').
+ // Create it.
+
+ // Allocate the new tree node and insert it into the cache.
+ BumpPtrAllocator& A = getAllocator();
+ TreeTy* T = (TreeTy*) A.Allocate<TreeTy>();
+ new (T) TreeTy(L,R,V,IncrementHeight(L,R));
+
+ // We do not insert 'T' into the FoldingSet here. This is because
+ // this tree is still mutable and things may get rebalanced.
+ // Because our digest is associative and based on the contents of
+ // the set, this should hopefully not cause any strange bugs.
+ // 'T' is inserted by 'MarkImmutable'.
+
+ return T;
+ }
+
+ TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) {
+ assert (!isEmpty(OldTree));
+
+ if (OldTree->isMutable()) {
+ OldTree->setLeft(L);
+ OldTree->setRight(R);
+ OldTree->setHeight(IncrementHeight(L,R));
+ return OldTree;
+ }
+ else return CreateNode(L, Value(OldTree), R);
+ }
+
+ /// Balance - Used by Add_internal and Remove_internal to
+ /// balance a newly created tree.
+ TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) {
+
+ unsigned hl = Height(L);
+ unsigned hr = Height(R);
+
+ if (hl > hr + 2) {
+ assert (!isEmpty(L) &&
+ "Left tree cannot be empty to have a height >= 2.");
+
+ TreeTy* LL = Left(L);
+ TreeTy* LR = Right(L);
+
+ if (Height(LL) >= Height(LR))
+ return CreateNode(LL, L, CreateNode(LR,V,R));
+
+ assert (!isEmpty(LR) &&
+ "LR cannot be empty because it has a height >= 1.");
+
+ TreeTy* LRL = Left(LR);
+ TreeTy* LRR = Right(LR);
+
+ return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R));
+ }
+ else if (hr > hl + 2) {
+ assert (!isEmpty(R) &&
+ "Right tree cannot be empty to have a height >= 2.");
+
+ TreeTy* RL = Left(R);
+ TreeTy* RR = Right(R);
+
+ if (Height(RR) >= Height(RL))
+ return CreateNode(CreateNode(L,V,RL), R, RR);
+
+ assert (!isEmpty(RL) &&
+ "RL cannot be empty because it has a height >= 1.");
+
+ TreeTy* RLL = Left(RL);
+ TreeTy* RLR = Right(RL);
+
+ return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR));
+ }
+ else
+ return CreateNode(L,V,R);
+ }
+
+ /// Add_internal - Creates a new tree that includes the specified
+ /// data and the data from the original tree. If the original tree
+ /// already contained the data item, the original tree is returned.
+ TreeTy* Add_internal(value_type_ref V, TreeTy* T) {
+ if (isEmpty(T))
+ return CreateNode(T, V, T);
+
+ assert (!T->isMutable());
+
+ key_type_ref K = ImutInfo::KeyOfValue(V);
+ key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
+
+ if (ImutInfo::isEqual(K,KCurrent))
+ return CreateNode(Left(T), V, Right(T));
+ else if (ImutInfo::isLess(K,KCurrent))
+ return Balance(Add_internal(V,Left(T)), Value(T), Right(T));
+ else
+ return Balance(Left(T), Value(T), Add_internal(V,Right(T)));
+ }
+
+ /// Remove_internal - Creates a new tree that includes all the data
+ /// from the original tree except the specified data. If the
+ /// specified data did not exist in the original tree, the original
+ /// tree is returned.
+ TreeTy* Remove_internal(key_type_ref K, TreeTy* T) {
+ if (isEmpty(T))
+ return T;
+
+ assert (!T->isMutable());
+
+ key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
+
+ if (ImutInfo::isEqual(K,KCurrent))
+ return CombineLeftRightTrees(Left(T),Right(T));
+ else if (ImutInfo::isLess(K,KCurrent))
+ return Balance(Remove_internal(K,Left(T)), Value(T), Right(T));
+ else
+ return Balance(Left(T), Value(T), Remove_internal(K,Right(T)));
+ }
+
+ TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) {
+ if (isEmpty(L)) return R;
+ if (isEmpty(R)) return L;
+
+ TreeTy* OldNode;
+ TreeTy* NewRight = RemoveMinBinding(R,OldNode);
+ return Balance(L,Value(OldNode),NewRight);
+ }
+
+ TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) {
+ assert (!isEmpty(T));
+
+ if (isEmpty(Left(T))) {
+ NodeRemoved = T;
+ return Right(T);
+ }
+
+ return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T));
+ }
+
+ /// MarkImmutable - Clears the mutable bits of a root and all of its
+ /// descendants.
+ void MarkImmutable(TreeTy* T) {
+ if (!T || !T->isMutable())
+ return;
+
+ T->MarkImmutable();
+ MarkImmutable(Left(T));
+ MarkImmutable(Right(T));
+
+ // Now that the node is immutable it can safely be inserted
+ // into the node cache.
+ llvm::FoldingSetNodeID ID;
+ ID.AddInteger(T->ComputeDigest());
+ Cache.InsertNode(T, (void*) &*Cache.bucket_end(ID.ComputeHash()));
+ }
+};
+
+
+//===----------------------------------------------------------------------===//
+// Immutable AVL-Tree Iterators.
+//===----------------------------------------------------------------------===//
+
+template <typename ImutInfo>
+class ImutAVLTreeGenericIterator {
+ SmallVector<uintptr_t,20> stack;
+public:
+ enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
+ Flags=0x3 };
+
+ typedef ImutAVLTree<ImutInfo> TreeTy;
+ typedef ImutAVLTreeGenericIterator<ImutInfo> _Self;
+
+ inline ImutAVLTreeGenericIterator() {}
+ inline ImutAVLTreeGenericIterator(const TreeTy* Root) {
+ if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
+ }
+
+ TreeTy* operator*() const {
+ assert (!stack.empty());
+ return reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
+ }
+
+ uintptr_t getVisitState() {
+ assert (!stack.empty());
+ return stack.back() & Flags;
+ }
+
+
+ bool AtEnd() const { return stack.empty(); }
+
+ bool AtBeginning() const {
+ return stack.size() == 1 && getVisitState() == VisitedNone;
+ }
+
+ void SkipToParent() {
+ assert (!stack.empty());
+ stack.pop_back();
+
+ if (stack.empty())
+ return;
+
+ switch (getVisitState()) {
+ case VisitedNone:
+ stack.back() |= VisitedLeft;
+ break;
+ case VisitedLeft:
+ stack.back() |= VisitedRight;
+ break;
+ default:
+ assert (false && "Unreachable.");
+ }
+ }
+
+ inline bool operator==(const _Self& x) const {
+ if (stack.size() != x.stack.size())
+ return false;
+
+ for (unsigned i = 0 ; i < stack.size(); i++)
+ if (stack[i] != x.stack[i])
+ return false;
+
+ return true;
+ }
+
+ inline bool operator!=(const _Self& x) const { return !operator==(x); }
+
+ _Self& operator++() {
+ assert (!stack.empty());
+
+ TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
+ assert (Current);
+
+ switch (getVisitState()) {
+ case VisitedNone:
+ if (TreeTy* L = Current->getSafeLeft())
+ stack.push_back(reinterpret_cast<uintptr_t>(L));
+ else
+ stack.back() |= VisitedLeft;
+
+ break;
+
+ case VisitedLeft:
+ if (TreeTy* R = Current->getRight())
+ stack.push_back(reinterpret_cast<uintptr_t>(R));
+ else
+ stack.back() |= VisitedRight;
+
+ break;
+
+ case VisitedRight:
+ SkipToParent();
+ break;
+
+ default:
+ assert (false && "Unreachable.");
+ }
+
+ return *this;
+ }
+
+ _Self& operator--() {
+ assert (!stack.empty());
+
+ TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
+ assert (Current);
+
+ switch (getVisitState()) {
+ case VisitedNone:
+ stack.pop_back();
+ break;
+
+ case VisitedLeft:
+ stack.back() &= ~Flags; // Set state to "VisitedNone."
+
+ if (TreeTy* L = Current->getLeft())
+ stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
+
+ break;
+
+ case VisitedRight:
+ stack.back() &= ~Flags;
+ stack.back() |= VisitedLeft;
+
+ if (TreeTy* R = Current->getRight())
+ stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
+
+ break;
+
+ default:
+ assert (false && "Unreachable.");
+ }
+
+ return *this;
+ }
+};
+
+template <typename ImutInfo>
+class ImutAVLTreeInOrderIterator {
+ typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
+ InternalIteratorTy InternalItr;
+
+public:
+ typedef ImutAVLTree<ImutInfo> TreeTy;
+ typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self;
+
+ ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
+ if (Root) operator++(); // Advance to first element.
+ }
+
+ ImutAVLTreeInOrderIterator() : InternalItr() {}
+
+ inline bool operator==(const _Self& x) const {
+ return InternalItr == x.InternalItr;
+ }
+
+ inline bool operator!=(const _Self& x) const { return !operator==(x); }
+
+ inline TreeTy* operator*() const { return *InternalItr; }
+ inline TreeTy* operator->() const { return *InternalItr; }
+
+ inline _Self& operator++() {
+ do ++InternalItr;
+ while (!InternalItr.AtEnd() &&
+ InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
+
+ return *this;
+ }
+
+ inline _Self& operator--() {
+ do --InternalItr;
+ while (!InternalItr.AtBeginning() &&
+ InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
+
+ return *this;
+ }
+
+ inline void SkipSubTree() {
+ InternalItr.SkipToParent();
+
+ while (!InternalItr.AtEnd() &&
+ InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
+ ++InternalItr;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Trait classes for Profile information.
+//===----------------------------------------------------------------------===//
+
+/// Generic profile template. The default behavior is to invoke the
+/// profile method of an object. Specializations for primitive integers
+/// and generic handling of pointers is done below.
+template <typename T>
+struct ImutProfileInfo {
+ typedef const T value_type;
+ typedef const T& value_type_ref;
+
+ static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
+ FoldingSetTrait<T>::Profile(X,ID);
+ }
+};
+
+/// Profile traits for integers.
+template <typename T>
+struct ImutProfileInteger {
+ typedef const T value_type;
+ typedef const T& value_type_ref;
+
+ static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
+ ID.AddInteger(X);
+ }
+};
+
+#define PROFILE_INTEGER_INFO(X)\
+template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
+
+PROFILE_INTEGER_INFO(char)
+PROFILE_INTEGER_INFO(unsigned char)
+PROFILE_INTEGER_INFO(short)
+PROFILE_INTEGER_INFO(unsigned short)
+PROFILE_INTEGER_INFO(unsigned)
+PROFILE_INTEGER_INFO(signed)
+PROFILE_INTEGER_INFO(long)
+PROFILE_INTEGER_INFO(unsigned long)
+PROFILE_INTEGER_INFO(long long)
+PROFILE_INTEGER_INFO(unsigned long long)
+
+#undef PROFILE_INTEGER_INFO
+
+/// Generic profile trait for pointer types. We treat pointers as
+/// references to unique objects.
+template <typename T>
+struct ImutProfileInfo<T*> {
+ typedef const T* value_type;
+ typedef value_type value_type_ref;
+
+ static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
+ ID.AddPointer(X);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Trait classes that contain element comparison operators and type
+// definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These
+// inherit from the profile traits (ImutProfileInfo) to include operations
+// for element profiling.
+//===----------------------------------------------------------------------===//
+
+
+/// ImutContainerInfo - Generic definition of comparison operations for
+/// elements of immutable containers that defaults to using
+/// std::equal_to<> and std::less<> to perform comparison of elements.
+template <typename T>
+struct ImutContainerInfo : public ImutProfileInfo<T> {
+ typedef typename ImutProfileInfo<T>::value_type value_type;
+ typedef typename ImutProfileInfo<T>::value_type_ref value_type_ref;
+ typedef value_type key_type;
+ typedef value_type_ref key_type_ref;
+ typedef bool data_type;
+ typedef bool data_type_ref;
+
+ static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
+ static inline data_type_ref DataOfValue(value_type_ref) { return true; }
+
+ static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
+ return std::equal_to<key_type>()(LHS,RHS);
+ }
+
+ static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
+ return std::less<key_type>()(LHS,RHS);
+ }
+
+ static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
+};
+
+/// ImutContainerInfo - Specialization for pointer values to treat pointers
+/// as references to unique objects. Pointers are thus compared by
+/// their addresses.
+template <typename T>
+struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
+ typedef typename ImutProfileInfo<T*>::value_type value_type;
+ typedef typename ImutProfileInfo<T*>::value_type_ref value_type_ref;
+ typedef value_type key_type;
+ typedef value_type_ref key_type_ref;
+ typedef bool data_type;
+ typedef bool data_type_ref;
+
+ static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
+ static inline data_type_ref DataOfValue(value_type_ref) { return true; }
+
+ static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
+ return LHS == RHS;
+ }
+
+ static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
+ return LHS < RHS;
+ }
+
+ static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
+};
+
+//===----------------------------------------------------------------------===//
+// Immutable Set
+//===----------------------------------------------------------------------===//
+
+template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
+class ImmutableSet {
+public:
+ typedef typename ValInfo::value_type value_type;
+ typedef typename ValInfo::value_type_ref value_type_ref;
+ typedef ImutAVLTree<ValInfo> TreeTy;
+
+private:
+ TreeTy* Root;
+
+public:
+ /// Constructs a set from a pointer to a tree root. In general one
+ /// should use a Factory object to create sets instead of directly
+ /// invoking the constructor, but there are cases where make this
+ /// constructor public is useful.
+ explicit ImmutableSet(TreeTy* R) : Root(R) {}
+
+ class Factory {
+ typename TreeTy::Factory F;
+
+ public:
+ Factory() {}
+
+ Factory(BumpPtrAllocator& Alloc)
+ : F(Alloc) {}
+
+ /// GetEmptySet - Returns an immutable set that contains no elements.
+ ImmutableSet GetEmptySet() { return ImmutableSet(F.GetEmptyTree()); }
+
+ /// Add - Creates a new immutable set that contains all of the values
+ /// of the original set with the addition of the specified value. If
+ /// the original set already included the value, then the original set is
+ /// returned and no memory is allocated. The time and space complexity
+ /// of this operation is logarithmic in the size of the original set.
+ /// The memory allocated to represent the set is released when the
+ /// factory object that created the set is destroyed.
+ ImmutableSet Add(ImmutableSet Old, value_type_ref V) {
+ return ImmutableSet(F.Add(Old.Root,V));
+ }
+
+ /// Remove - Creates a new immutable set that contains all of the values
+ /// of the original set with the exception of the specified value. If
+ /// the original set did not contain the value, the original set is
+ /// returned and no memory is allocated. The time and space complexity
+ /// of this operation is logarithmic in the size of the original set.
+ /// The memory allocated to represent the set is released when the
+ /// factory object that created the set is destroyed.
+ ImmutableSet Remove(ImmutableSet Old, value_type_ref V) {
+ return ImmutableSet(F.Remove(Old.Root,V));
+ }
+
+ BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
+
+ private:
+ Factory(const Factory& RHS) {};
+ void operator=(const Factory& RHS) {};
+ };
+
+ friend class Factory;
+
+ /// contains - Returns true if the set contains the specified value.
+ bool contains(const value_type_ref V) const {
+ return Root ? Root->contains(V) : false;
+ }
+
+ bool operator==(ImmutableSet RHS) const {
+ return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
+ }
+
+ bool operator!=(ImmutableSet RHS) const {
+ return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
+ }
+
+ TreeTy* getRoot() const { return Root; }
+
+ /// isEmpty - Return true if the set contains no elements.
+ bool isEmpty() const { return !Root; }
+
+ /// isSingleton - Return true if the set contains exactly one element.
+ /// This method runs in constant time.
+ bool isSingleton() const { return getHeight() == 1; }
+
+ template <typename Callback>
+ void foreach(Callback& C) { if (Root) Root->foreach(C); }
+
+ template <typename Callback>
+ void foreach() { if (Root) { Callback C; Root->foreach(C); } }
+
+ //===--------------------------------------------------===//
+ // Iterators.
+ //===--------------------------------------------------===//
+
+ class iterator {
+ typename TreeTy::iterator itr;
+
+ iterator() {}
+ iterator(TreeTy* t) : itr(t) {}
+ friend class ImmutableSet<ValT,ValInfo>;
+ public:
+ inline value_type_ref operator*() const { return itr->getValue(); }
+ inline iterator& operator++() { ++itr; return *this; }
+ inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; }
+ inline iterator& operator--() { --itr; return *this; }
+ inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; }
+ inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
+ inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
+ inline value_type *operator->() const { return &(operator*()); }
+ };
+
+ iterator begin() const { return iterator(Root); }
+ iterator end() const { return iterator(); }
+
+ //===--------------------------------------------------===//
+ // Utility methods.
+ //===--------------------------------------------------===//
+
+ inline unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
+
+ static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) {
+ ID.AddPointer(S.Root);
+ }
+
+ inline void Profile(FoldingSetNodeID& ID) const {
+ return Profile(ID,*this);
+ }
+
+ //===--------------------------------------------------===//
+ // For testing.
+ //===--------------------------------------------------===//
+
+ void verify() const { if (Root) Root->verify(); }
+};
+
+} // end namespace llvm
+
+#endif
OpenPOWER on IntegriCloud