summaryrefslogtreecommitdiffstats
path: root/include/clang/Sema/Ownership.h
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2010-09-17 15:54:40 +0000
committerdim <dim@FreeBSD.org>2010-09-17 15:54:40 +0000
commit36c49e3f258dced101949edabd72e9bc3f1dedc4 (patch)
tree0bbe07708f7571f8b5291f6d7b96c102b7c99dee /include/clang/Sema/Ownership.h
parentfc84956ac8b7cd244ef30e7a4d4d38a58dec5904 (diff)
downloadFreeBSD-src-36c49e3f258dced101949edabd72e9bc3f1dedc4.zip
FreeBSD-src-36c49e3f258dced101949edabd72e9bc3f1dedc4.tar.gz
Vendor import of clang r114020 (from the release_28 branch):
http://llvm.org/svn/llvm-project/cfe/branches/release_28@114020 Approved by: rpaulo (mentor)
Diffstat (limited to 'include/clang/Sema/Ownership.h')
-rw-r--r--include/clang/Sema/Ownership.h462
1 files changed, 462 insertions, 0 deletions
diff --git a/include/clang/Sema/Ownership.h b/include/clang/Sema/Ownership.h
new file mode 100644
index 0000000..7739f3a
--- /dev/null
+++ b/include/clang/Sema/Ownership.h
@@ -0,0 +1,462 @@
+//===--- Ownership.h - Parser ownership helpers -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains classes for managing ownership of Stmt and Expr nodes.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_SEMA_OWNERSHIP_H
+#define LLVM_CLANG_SEMA_OWNERSHIP_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/PointerIntPair.h"
+
+//===----------------------------------------------------------------------===//
+// OpaquePtr
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+ class Attr;
+ class CXXBaseOrMemberInitializer;
+ class CXXBaseSpecifier;
+ class Decl;
+ class DeclGroupRef;
+ class Expr;
+ class NestedNameSpecifier;
+ class QualType;
+ class Sema;
+ class Stmt;
+ class TemplateName;
+ class TemplateParameterList;
+
+ /// OpaquePtr - This is a very simple POD type that wraps a pointer that the
+ /// Parser doesn't know about but that Sema or another client does. The UID
+ /// template argument is used to make sure that "Decl" pointers are not
+ /// compatible with "Type" pointers for example.
+ template <class PtrTy>
+ class OpaquePtr {
+ void *Ptr;
+ explicit OpaquePtr(void *Ptr) : Ptr(Ptr) {}
+
+ typedef llvm::PointerLikeTypeTraits<PtrTy> Traits;
+
+ public:
+ OpaquePtr() : Ptr(0) {}
+
+ static OpaquePtr make(PtrTy P) { OpaquePtr OP; OP.set(P); return OP; }
+
+ template <typename T> T* getAs() const {
+ return get();
+ }
+
+ template <typename T> T getAsVal() const {
+ return get();
+ }
+
+ PtrTy get() const {
+ return Traits::getFromVoidPointer(Ptr);
+ }
+
+ void set(PtrTy P) {
+ Ptr = Traits::getAsVoidPointer(P);
+ }
+
+ operator bool() const { return Ptr != 0; }
+
+ void *getAsOpaquePtr() const { return Ptr; }
+ static OpaquePtr getFromOpaquePtr(void *P) { return OpaquePtr(P); }
+ };
+
+ /// UnionOpaquePtr - A version of OpaquePtr suitable for membership
+ /// in a union.
+ template <class T> struct UnionOpaquePtr {
+ void *Ptr;
+
+ static UnionOpaquePtr make(OpaquePtr<T> P) {
+ UnionOpaquePtr OP = { P.getAsOpaquePtr() };
+ return OP;
+ }
+
+ OpaquePtr<T> get() const { return OpaquePtr<T>::getFromOpaquePtr(Ptr); }
+ operator OpaquePtr<T>() const { return get(); }
+
+ UnionOpaquePtr &operator=(OpaquePtr<T> P) {
+ Ptr = P.getAsOpaquePtr();
+ return *this;
+ }
+ };
+}
+
+namespace llvm {
+ template <class T>
+ class PointerLikeTypeTraits<clang::OpaquePtr<T> > {
+ public:
+ static inline void *getAsVoidPointer(clang::OpaquePtr<T> P) {
+ // FIXME: Doesn't work? return P.getAs< void >();
+ return P.getAsOpaquePtr();
+ }
+ static inline clang::OpaquePtr<T> getFromVoidPointer(void *P) {
+ return clang::OpaquePtr<T>::getFromOpaquePtr(P);
+ }
+ enum { NumLowBitsAvailable = 0 };
+ };
+}
+
+
+
+// -------------------------- About Move Emulation -------------------------- //
+// The smart pointer classes in this file attempt to emulate move semantics
+// as they appear in C++0x with rvalue references. Since C++03 doesn't have
+// rvalue references, some tricks are needed to get similar results.
+// Move semantics in C++0x have the following properties:
+// 1) "Moving" means transferring the value of an object to another object,
+// similar to copying, but without caring what happens to the old object.
+// In particular, this means that the new object can steal the old object's
+// resources instead of creating a copy.
+// 2) Since moving can modify the source object, it must either be explicitly
+// requested by the user, or the modifications must be unnoticeable.
+// 3) As such, C++0x moving is only allowed in three contexts:
+// * By explicitly using std::move() to request it.
+// * From a temporary object, since that object cannot be accessed
+// afterwards anyway, thus making the state unobservable.
+// * On function return, since the object is not observable afterwards.
+//
+// To sum up: moving from a named object should only be possible with an
+// explicit std::move(), or on function return. Moving from a temporary should
+// be implicitly done. Moving from a const object is forbidden.
+//
+// The emulation is not perfect, and has the following shortcomings:
+// * move() is not in namespace std.
+// * move() is required on function return.
+// * There are difficulties with implicit conversions.
+// * Microsoft's compiler must be given the /Za switch to successfully compile.
+//
+// -------------------------- Implementation -------------------------------- //
+// The move emulation relies on the peculiar reference binding semantics of
+// C++03: as a rule, a non-const reference may not bind to a temporary object,
+// except for the implicit object parameter in a member function call, which
+// can refer to a temporary even when not being const.
+// The moveable object has five important functions to facilitate moving:
+// * A private, unimplemented constructor taking a non-const reference to its
+// own class. This constructor serves a two-fold purpose.
+// - It prevents the creation of a copy constructor that takes a const
+// reference. Temporaries would be able to bind to the argument of such a
+// constructor, and that would be bad.
+// - Named objects will bind to the non-const reference, but since it's
+// private, this will fail to compile. This prevents implicit moving from
+// named objects.
+// There's also a copy assignment operator for the same purpose.
+// * An implicit, non-const conversion operator to a special mover type. This
+// type represents the rvalue reference of C++0x. Being a non-const member,
+// its implicit this parameter can bind to temporaries.
+// * A constructor that takes an object of this mover type. This constructor
+// performs the actual move operation. There is an equivalent assignment
+// operator.
+// There is also a free move() function that takes a non-const reference to
+// an object and returns a temporary. Internally, this function uses explicit
+// constructor calls to move the value from the referenced object to the return
+// value.
+//
+// There are now three possible scenarios of use.
+// * Copying from a const object. Constructor overload resolution will find the
+// non-const copy constructor, and the move constructor. The first is not
+// viable because the const object cannot be bound to the non-const reference.
+// The second fails because the conversion to the mover object is non-const.
+// Moving from a const object fails as intended.
+// * Copying from a named object. Constructor overload resolution will select
+// the non-const copy constructor, but fail as intended, because this
+// constructor is private.
+// * Copying from a temporary. Constructor overload resolution cannot select
+// the non-const copy constructor, because the temporary cannot be bound to
+// the non-const reference. It thus selects the move constructor. The
+// temporary can be bound to the implicit this parameter of the conversion
+// operator, because of the special binding rule. Construction succeeds.
+// Note that the Microsoft compiler, as an extension, allows binding
+// temporaries against non-const references. The compiler thus selects the
+// non-const copy constructor and fails, because the constructor is private.
+// Passing /Za (disable extensions) disables this behaviour.
+// The free move() function is used to move from a named object.
+//
+// Note that when passing an object of a different type (the classes below
+// have OwningResult and OwningPtr, which should be mixable), you get a problem.
+// Argument passing and function return use copy initialization rules. The
+// effect of this is that, when the source object is not already of the target
+// type, the compiler will first seek a way to convert the source object to the
+// target type, and only then attempt to copy the resulting object. This means
+// that when passing an OwningResult where an OwningPtr is expected, the
+// compiler will first seek a conversion from OwningResult to OwningPtr, then
+// copy the OwningPtr. The resulting conversion sequence is:
+// OwningResult object -> ResultMover -> OwningResult argument to
+// OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
+// This conversion sequence is too complex to be allowed. Thus the special
+// move_* functions, which help the compiler out with some explicit
+// conversions.
+
+namespace clang {
+ // Basic
+ class DiagnosticBuilder;
+
+ // Determines whether the low bit of the result pointer for the
+ // given UID is always zero. If so, ActionResult will use that bit
+ // for it's "invalid" flag.
+ template<class Ptr>
+ struct IsResultPtrLowBitFree {
+ static const bool value = false;
+ };
+
+ /// ActionResult - This structure is used while parsing/acting on
+ /// expressions, stmts, etc. It encapsulates both the object returned by
+ /// the action, plus a sense of whether or not it is valid.
+ /// When CompressInvalid is true, the "invalid" flag will be
+ /// stored in the low bit of the Val pointer.
+ template<class PtrTy,
+ bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value>
+ class ActionResult {
+ PtrTy Val;
+ bool Invalid;
+
+ public:
+ ActionResult(bool Invalid = false)
+ : Val(PtrTy()), Invalid(Invalid) {}
+ ActionResult(PtrTy val) : Val(val), Invalid(false) {}
+ ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}
+
+ // These two overloads prevent void* -> bool conversions.
+ ActionResult(const void *);
+ ActionResult(volatile void *);
+
+ bool isInvalid() const { return Invalid; }
+ bool isUsable() const { return !Invalid && Val; }
+
+ PtrTy get() const { return Val; }
+ PtrTy release() const { return Val; }
+ PtrTy take() const { return Val; }
+ template <typename T> T *takeAs() { return static_cast<T*>(get()); }
+
+ void set(PtrTy V) { Val = V; }
+
+ const ActionResult &operator=(PtrTy RHS) {
+ Val = RHS;
+ Invalid = false;
+ return *this;
+ }
+ };
+
+ // This ActionResult partial specialization places the "invalid"
+ // flag into the low bit of the pointer.
+ template<typename PtrTy>
+ class ActionResult<PtrTy, true> {
+ // A pointer whose low bit is 1 if this result is invalid, 0
+ // otherwise.
+ uintptr_t PtrWithInvalid;
+ typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
+ public:
+ ActionResult(bool Invalid = false)
+ : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }
+
+ ActionResult(PtrTy V) {
+ void *VP = PtrTraits::getAsVoidPointer(V);
+ PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
+ assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
+ }
+ ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }
+
+ // These two overloads prevent void* -> bool conversions.
+ ActionResult(const void *);
+ ActionResult(volatile void *);
+
+ bool isInvalid() const { return PtrWithInvalid & 0x01; }
+ bool isUsable() const { return PtrWithInvalid > 0x01; }
+
+ PtrTy get() const {
+ void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
+ return PtrTraits::getFromVoidPointer(VP);
+ }
+ PtrTy take() const { return get(); }
+ PtrTy release() const { return get(); }
+ template <typename T> T *takeAs() { return static_cast<T*>(get()); }
+
+ void set(PtrTy V) {
+ void *VP = PtrTraits::getAsVoidPointer(V);
+ PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
+ assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
+ }
+
+ const ActionResult &operator=(PtrTy RHS) {
+ void *VP = PtrTraits::getAsVoidPointer(RHS);
+ PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
+ assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
+ return *this;
+ }
+ };
+
+ /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
+ /// the individual pointers, not the array holding them.
+ template <typename PtrTy> class ASTMultiPtr;
+
+ template <class PtrTy>
+ class ASTMultiPtr {
+ PtrTy *Nodes;
+ unsigned Count;
+
+ public:
+ // Normal copying implicitly defined
+ ASTMultiPtr() : Nodes(0), Count(0) {}
+ explicit ASTMultiPtr(Sema &) : Nodes(0), Count(0) {}
+ ASTMultiPtr(Sema &, PtrTy *nodes, unsigned count)
+ : Nodes(nodes), Count(count) {}
+ // Fake mover in Parse/AstGuard.h needs this:
+ ASTMultiPtr(PtrTy *nodes, unsigned count) : Nodes(nodes), Count(count) {}
+
+ /// Access to the raw pointers.
+ PtrTy *get() const { return Nodes; }
+
+ /// Access to the count.
+ unsigned size() const { return Count; }
+
+ PtrTy *release() {
+ return Nodes;
+ }
+ };
+
+ class ParsedTemplateArgument;
+
+ class ASTTemplateArgsPtr {
+ ParsedTemplateArgument *Args;
+ mutable unsigned Count;
+
+ public:
+ ASTTemplateArgsPtr(Sema &actions, ParsedTemplateArgument *args,
+ unsigned count) :
+ Args(args), Count(count) { }
+
+ // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
+ ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) :
+ Args(Other.Args), Count(Other.Count) {
+ }
+
+ // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
+ ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other) {
+ Args = Other.Args;
+ Count = Other.Count;
+ return *this;
+ }
+
+ ParsedTemplateArgument *getArgs() const { return Args; }
+ unsigned size() const { return Count; }
+
+ void reset(ParsedTemplateArgument *args, unsigned count) {
+ Args = args;
+ Count = count;
+ }
+
+ const ParsedTemplateArgument &operator[](unsigned Arg) const;
+
+ ParsedTemplateArgument *release() const {
+ return Args;
+ }
+ };
+
+ /// \brief A small vector that owns a set of AST nodes.
+ template <class PtrTy, unsigned N = 8>
+ class ASTOwningVector : public llvm::SmallVector<PtrTy, N> {
+ ASTOwningVector(ASTOwningVector &); // do not implement
+ ASTOwningVector &operator=(ASTOwningVector &); // do not implement
+
+ public:
+ explicit ASTOwningVector(Sema &Actions)
+ { }
+
+ PtrTy *take() {
+ return &this->front();
+ }
+
+ template<typename T> T **takeAs() { return reinterpret_cast<T**>(take()); }
+ };
+
+ /// A SmallVector of statements, with stack size 32 (as that is the only one
+ /// used.)
+ typedef ASTOwningVector<Stmt*, 32> StmtVector;
+ /// A SmallVector of expressions, with stack size 12 (the maximum used.)
+ typedef ASTOwningVector<Expr*, 12> ExprVector;
+
+ template <class T, unsigned N> inline
+ ASTMultiPtr<T> move_arg(ASTOwningVector<T, N> &vec) {
+ return ASTMultiPtr<T>(vec.take(), vec.size());
+ }
+
+ // These versions are hopefully no-ops.
+ template <class T, bool C>
+ inline ActionResult<T,C> move(ActionResult<T,C> &ptr) {
+ return ptr;
+ }
+
+ template <class T> inline
+ ASTMultiPtr<T>& move(ASTMultiPtr<T> &ptr) {
+ return ptr;
+ }
+
+ // We can re-use the low bit of expression, statement, base, and
+ // member-initializer pointers for the "invalid" flag of
+ // ActionResult.
+ template<> struct IsResultPtrLowBitFree<Expr*> {
+ static const bool value = true;
+ };
+ template<> struct IsResultPtrLowBitFree<Stmt*> {
+ static const bool value = true;
+ };
+ template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> {
+ static const bool value = true;
+ };
+ template<> struct IsResultPtrLowBitFree<CXXBaseOrMemberInitializer*> {
+ static const bool value = true;
+ };
+
+ /// An opaque type for threading parsed type information through the
+ /// parser.
+ typedef OpaquePtr<QualType> ParsedType;
+ typedef UnionOpaquePtr<QualType> UnionParsedType;
+
+ typedef ActionResult<Expr*> ExprResult;
+ typedef ActionResult<Stmt*> StmtResult;
+ typedef ActionResult<ParsedType> TypeResult;
+ typedef ActionResult<CXXBaseSpecifier*> BaseResult;
+ typedef ActionResult<CXXBaseOrMemberInitializer*> MemInitResult;
+
+ typedef ActionResult<Decl*> DeclResult;
+ typedef OpaquePtr<TemplateName> ParsedTemplateTy;
+
+ inline Expr *move(Expr *E) { return E; }
+ inline Stmt *move(Stmt *S) { return S; }
+
+ typedef ASTMultiPtr<Expr*> MultiExprArg;
+ typedef ASTMultiPtr<Stmt*> MultiStmtArg;
+ typedef ASTMultiPtr<TemplateParameterList*> MultiTemplateParamsArg;
+
+ inline ExprResult ExprError() { return ExprResult(true); }
+ inline StmtResult StmtError() { return StmtResult(true); }
+
+ inline ExprResult ExprError(const DiagnosticBuilder&) { return ExprError(); }
+ inline StmtResult StmtError(const DiagnosticBuilder&) { return StmtError(); }
+
+ inline ExprResult ExprEmpty() { return ExprResult(false); }
+ inline StmtResult StmtEmpty() { return StmtResult(false); }
+
+ inline Expr *AssertSuccess(ExprResult R) {
+ assert(!R.isInvalid() && "operation was asserted to never fail!");
+ return R.get();
+ }
+
+ inline Stmt *AssertSuccess(StmtResult R) {
+ assert(!R.isInvalid() && "operation was asserted to never fail!");
+ return R.get();
+ }
+}
+
+#endif
OpenPOWER on IntegriCloud