diff options
author | paul <paul@FreeBSD.org> | 1993-11-03 00:56:24 +0000 |
---|---|---|
committer | paul <paul@FreeBSD.org> | 1993-11-03 00:56:24 +0000 |
commit | cebee5f5697360ad333f15d82bb2adc29ce8fab5 (patch) | |
tree | c6947a527e76f67f3d2eb22488df6f6ca9734b47 /gnu/usr.bin/as/config/tc-i960.c | |
parent | 6d8373f3a9c123c2c2a312938e462e8a95d834b9 (diff) | |
download | FreeBSD-src-cebee5f5697360ad333f15d82bb2adc29ce8fab5.zip FreeBSD-src-cebee5f5697360ad333f15d82bb2adc29ce8fab5.tar.gz |
Brought over NetBSD's gas ready for pk's shared libs.
Diffstat (limited to 'gnu/usr.bin/as/config/tc-i960.c')
-rw-r--r-- | gnu/usr.bin/as/config/tc-i960.c | 2759 |
1 files changed, 2759 insertions, 0 deletions
diff --git a/gnu/usr.bin/as/config/tc-i960.c b/gnu/usr.bin/as/config/tc-i960.c new file mode 100644 index 0000000..8f9091c --- /dev/null +++ b/gnu/usr.bin/as/config/tc-i960.c @@ -0,0 +1,2759 @@ +/* tc-i960.c - All the i80960-specific stuff + Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc. + + This file is part of GAS. + + GAS is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + GAS is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with GAS; see the file COPYING. If not, write to + the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ + +/* See comment on md_parse_option for 80960-specific invocation options. */ + +/****************************************************************************** + * i80690 NOTE!!!: + * Header, symbol, and relocation info will be used on the host machine + * only -- only executable code is actually downloaded to the i80960. + * Therefore, leave all such information in host byte order. + * + * (That's a slight lie -- we DO download some header information, but + * the downloader converts the file format and corrects the byte-ordering + * of the relevant fields while doing so.) + * + ***************************************************************************** */ + +/* There are 4 different lengths of (potentially) symbol-based displacements + * in the 80960 instruction set, each of which could require address fix-ups + * and (in the case of external symbols) emission of relocation directives: + * + * 32-bit (MEMB) + * This is a standard length for the base assembler and requires no + * special action. + * + * 13-bit (COBR) + * This is a non-standard length, but the base assembler has a hook for + * bit field address fixups: the fixS structure can point to a descriptor + * of the field, in which case our md_number_to_field() routine gets called + * to process it. + * + * I made the hook a little cleaner by having fix_new() (in the base + * assembler) return a pointer to the fixS in question. And I made it a + * little simpler by storing the field size (in this case 13) instead of + * of a pointer to another structure: 80960 displacements are ALWAYS + * stored in the low-order bits of a 4-byte word. + * + * Since the target of a COBR cannot be external, no relocation directives + * for this size displacement have to be generated. But the base assembler + * had to be modified to issue error messages if the symbol did turn out + * to be external. + * + * 24-bit (CTRL) + * Fixups are handled as for the 13-bit case (except that 24 is stored + * in the fixS). + * + * The relocation directive generated is the same as that for the 32-bit + * displacement, except that it's PC-relative (the 32-bit displacement + * never is). The i80960 version of the linker needs a mod to + * distinguish and handle the 24-bit case. + * + * 12-bit (MEMA) + * MEMA formats are always promoted to MEMB (32-bit) if the displacement + * is based on a symbol, because it could be relocated at link time. + * The only time we use the 12-bit format is if an absolute value of + * less than 4096 is specified, in which case we need neither a fixup nor + * a relocation directive. + */ + +#include <stdio.h> +#include <ctype.h> + +#include "as.h" + +#include "obstack.h" + +#include "opcode/i960.h" + +extern char *input_line_pointer; +extern struct hash_control *po_hash; +extern char *next_object_file_charP; + +#ifdef OBJ_COFF +int md_reloc_size = sizeof(struct reloc); +#else /* OBJ_COFF */ +int md_reloc_size = sizeof(struct relocation_info); +#endif /* OBJ_COFF */ + +/*************************** + * Local i80960 routines * + ************************** */ + +static void brcnt_emit(); /* Emit branch-prediction instrumentation code */ +static char * brlab_next(); /* Return next branch local label */ +void brtab_emit(); /* Emit br-predict instrumentation table */ +static void cobr_fmt(); /* Generate COBR instruction */ +static void ctrl_fmt(); /* Generate CTRL instruction */ +static char * emit(); /* Emit (internally) binary */ +static int get_args(); /* Break arguments out of comma-separated list */ +static void get_cdisp(); /* Handle COBR or CTRL displacement */ +static char * get_ispec(); /* Find index specification string */ +static int get_regnum(); /* Translate text to register number */ +static int i_scan(); /* Lexical scan of instruction source */ +static void mem_fmt(); /* Generate MEMA or MEMB instruction */ +static void mema_to_memb(); /* Convert MEMA instruction to MEMB format */ +static segT parse_expr(); /* Parse an expression */ +static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */ +static void parse_memop(); /* Parse a memory operand */ +static void parse_po(); /* Parse machine-dependent pseudo-op */ +static void parse_regop(); /* Parse a register operand */ +static void reg_fmt(); /* Generate a REG format instruction */ +void reloc_callj(); /* Relocate a 'callj' instruction */ +static void relax_cobr(); /* "De-optimize" cobr into compare/branch */ +static void s_leafproc(); /* Process '.leafproc' pseudo-op */ +static void s_sysproc(); /* Process '.sysproc' pseudo-op */ +static int shift_ok(); /* Will a 'shlo' substiture for a 'ldconst'? */ +static void syntax(); /* Give syntax error */ +static int targ_has_sfr(); /* Target chip supports spec-func register? */ +static int targ_has_iclass();/* Target chip supports instruction set? */ +/* static void unlink_sym(); */ /* Remove a symbol from the symbol list */ + +/* See md_parse_option() for meanings of these options */ +static char norelax = 0; /* True if -norelax switch seen */ +static char instrument_branches = 0; /* True if -b switch seen */ + +/* Characters that always start a comment. + * If the pre-processor is disabled, these aren't very useful. + */ +char comment_chars[] = "#"; + +/* Characters that only start a comment at the beginning of + * a line. If the line seems to have the form '# 123 filename' + * .line and .file directives will appear in the pre-processed output. + * + * Note that input_file.c hand checks for '#' at the beginning of the + * first line of the input file. This is because the compiler outputs + * #NO_APP at the beginning of its output. + */ + +/* Also note that comments started like this one will always work. */ + +char line_comment_chars[] = ""; + +/* Chars that can be used to separate mant from exp in floating point nums */ +char EXP_CHARS[] = "eE"; + +/* Chars that mean this number is a floating point constant, + * as in 0f12.456 or 0d1.2345e12 + */ +char FLT_CHARS[] = "fFdDtT"; + + +/* Table used by base assembler to relax addresses based on varying length + * instructions. The fields are: + * 1) most positive reach of this state, + * 2) most negative reach of this state, + * 3) how many bytes this mode will add to the size of the current frag + * 4) which index into the table to try if we can't fit into this one. + * + * For i80960, the only application is the (de-)optimization of cobr + * instructions into separate compare and branch instructions when a 13-bit + * displacement won't hack it. + */ +const relax_typeS + md_relax_table[] = { + {0, 0, 0,0}, /* State 0 => no more relaxation possible */ + {4088, -4096, 0,2}, /* State 1: conditional branch (cobr) */ + {0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */ + }; + + +/* These are the machine dependent pseudo-ops. + * + * This table describes all the machine specific pseudo-ops the assembler + * has to support. The fields are: + * pseudo-op name without dot + * function to call to execute this pseudo-op + * integer arg to pass to the function + */ +#define S_LEAFPROC 1 +#define S_SYSPROC 2 + +const pseudo_typeS + md_pseudo_table[] = { + + { "bss", s_lcomm, 1 }, + { "extended", float_cons, 't' }, + { "leafproc", parse_po, S_LEAFPROC }, + { "sysproc", parse_po, S_SYSPROC }, + + { "word", cons, 4 }, + { "quad", big_cons, 16 }, + + { 0, 0, 0 } + }; + +/* Macros to extract info from an 'expressionS' structure 'e' */ +#define adds(e) e.X_add_symbol +#define subs(e) e.X_subtract_symbol +#define offs(e) e.X_add_number +#define segs(e) e.X_seg + + + /* Branch-prediction bits for CTRL/COBR format opcodes */ +#define BP_MASK 0x00000002 /* Mask for branch-prediction bit */ +#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */ +#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */ + + + /* Some instruction opcodes that we need explicitly */ +#define BE 0x12000000 +#define BG 0x11000000 +#define BGE 0x13000000 +#define BL 0x14000000 +#define BLE 0x16000000 +#define BNE 0x15000000 +#define BNO 0x10000000 +#define BO 0x17000000 +#define CHKBIT 0x5a002700 +#define CMPI 0x5a002080 +#define CMPO 0x5a002000 + +#define B 0x08000000 +#define BAL 0x0b000000 +#define CALL 0x09000000 +#define CALLS 0x66003800 +#define RET 0x0a000000 + + + /* These masks are used to build up a set of MEMB mode bits. */ +#define A_BIT 0x0400 +#define I_BIT 0x0800 +#define MEMB_BIT 0x1000 +#define D_BIT 0x2000 + + + /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */ +#define MEMA_ABASE 0x2000 + + /* Info from which a MEMA or MEMB format instruction can be generated */ + typedef struct { + long opcode; /* (First) 32 bits of instruction */ + int disp; /* 0-(none), 12- or, 32-bit displacement needed */ + char *e; /* The expression in the source instruction from + * which the displacement should be determined + */ + } memS; + + +/* The two pieces of info we need to generate a register operand */ +struct regop { + int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */ + int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */ + int n; /* Register number or literal value */ +}; + + +/* Number and assembler mnemonic for all registers that can appear in operands */ +static struct { + char *reg_name; + int reg_num; +} regnames[] = { + { "pfp", 0 }, { "sp", 1 }, { "rip", 2 }, { "r3", 3 }, + { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, + { "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 }, + { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, + { "g0", 16 }, { "g1", 17 }, { "g2", 18 }, { "g3", 19 }, + { "g4", 20 }, { "g5", 21 }, { "g6", 22 }, { "g7", 23 }, + { "g8", 24 }, { "g9", 25 }, { "g10", 26 }, { "g11", 27 }, + { "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp", 31 }, + + /* Numbers for special-function registers are for assembler internal + * use only: they are scaled back to range [0-31] for binary output. + */ +# define SF0 32 + + { "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 }, + { "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 }, + { "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 }, + { "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 }, + { "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 }, + { "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 }, + { "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 }, + { "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 }, + + /* Numbers for floating point registers are for assembler internal use + * only: they are scaled back to [0-3] for binary output. + */ +# define FP0 64 + + { "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 }, + + { NULL, 0 }, /* END OF LIST */ +}; + +#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0)) +#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0)) +#define IS_FP_REG(n) ((n) >= FP0) + +/* Number and assembler mnemonic for all registers that can appear as 'abase' + * (indirect addressing) registers. + */ +static struct { + char *areg_name; + int areg_num; +} aregs[] = { + { "(pfp)", 0 }, { "(sp)", 1 }, { "(rip)", 2 }, { "(r3)", 3 }, + { "(r4)", 4 }, { "(r5)", 5 }, { "(r6)", 6 }, { "(r7)", 7 }, + { "(r8)", 8 }, { "(r9)", 9 }, { "(r10)", 10 }, { "(r11)", 11 }, + { "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 }, + { "(g0)", 16 }, { "(g1)", 17 }, { "(g2)", 18 }, { "(g3)", 19 }, + { "(g4)", 20 }, { "(g5)", 21 }, { "(g6)", 22 }, { "(g7)", 23 }, + { "(g8)", 24 }, { "(g9)", 25 }, { "(g10)", 26 }, { "(g11)", 27 }, + { "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)", 31 }, + +# define IPREL 32 + /* for assembler internal use only: this number never appears in binary + * output. + */ + { "(ip)", IPREL }, + + { NULL, 0 }, /* END OF LIST */ +}; + + +/* Hash tables */ +static struct hash_control *op_hash = NULL; /* Opcode mnemonics */ +static struct hash_control *reg_hash = NULL; /* Register name hash table */ +static struct hash_control *areg_hash = NULL; /* Abase register hash table */ + + +/* Architecture for which we are assembling */ +#define ARCH_ANY 0 /* Default: no architecture checking done */ +#define ARCH_KA 1 +#define ARCH_KB 2 +#define ARCH_MC 3 +#define ARCH_CA 4 +int architecture = ARCH_ANY; /* Architecture requested on invocation line */ +int iclasses_seen = 0; /* OR of instruction classes (I_* constants) + * for which we've actually assembled + * instructions. + */ + + +/* BRANCH-PREDICTION INSTRUMENTATION + * + * The following supports generation of branch-prediction instrumentation + * (turned on by -b switch). The instrumentation collects counts + * of branches taken/not-taken for later input to a utility that will + * set the branch prediction bits of the instructions in accordance with + * the behavior observed. (Note that the KX series does not have + * brach-prediction.) + * + * The instrumentation consists of: + * + * (1) before and after each conditional branch, a call to an external + * routine that increments and steps over an inline counter. The + * counter itself, initialized to 0, immediately follows the call + * instruction. For each branch, the counter following the branch + * is the number of times the branch was not taken, and the difference + * between the counters is the number of times it was taken. An + * example of an instrumented conditional branch: + * + * call BR_CNT_FUNC + * .word 0 + * LBRANCH23: be label + * call BR_CNT_FUNC + * .word 0 + * + * (2) a table of pointers to the instrumented branches, so that an + * external postprocessing routine can locate all of the counters. + * the table begins with a 2-word header: a pointer to the next in + * a linked list of such tables (initialized to 0); and a count + * of the number of entries in the table (exclusive of the header. + * + * Note that input source code is expected to already contain calls + * an external routine that will link the branch local table into a + * list of such tables. + */ + +static int br_cnt = 0; /* Number of branches instrumented so far. + * Also used to generate unique local labels + * for each instrumented branch + */ + +#define BR_LABEL_BASE "LBRANCH" +/* Basename of local labels on instrumented + * branches, to avoid conflict with compiler- + * generated local labels. + */ + +#define BR_CNT_FUNC "__inc_branch" +/* Name of the external routine that will + * increment (and step over) an inline counter. + */ + +#define BR_TAB_NAME "__BRANCH_TABLE__" +/* Name of the table of pointers to branches. + * A local (i.e., non-external) symbol. + */ + +/***************************************************************************** + * md_begin: One-time initialization. + * + * Set up hash tables. + * + **************************************************************************** */ +void + md_begin() +{ + int i; /* Loop counter */ + const struct i960_opcode *oP; /* Pointer into opcode table */ + char *retval; /* Value returned by hash functions */ + + if (((op_hash = hash_new()) == 0) + || ((reg_hash = hash_new()) == 0) + || ((areg_hash = hash_new()) == 0)) { + as_fatal("virtual memory exceeded"); + } + + retval = ""; /* For some reason, the base assembler uses an empty + * string for "no error message", instead of a NULL + * pointer. + */ + + for (oP=i960_opcodes; oP->name && !*retval; oP++) { + retval = hash_insert(op_hash, oP->name, oP); + } + + for (i=0; regnames[i].reg_name && !*retval; i++) { + retval = hash_insert(reg_hash, regnames[i].reg_name, + ®names[i].reg_num); + } + + for (i=0; aregs[i].areg_name && !*retval; i++){ + retval = hash_insert(areg_hash, aregs[i].areg_name, + &aregs[i].areg_num); + } + + if (*retval) { + as_fatal("Hashing returned \"%s\".", retval); + } +} /* md_begin() */ + +/***************************************************************************** + * md_end: One-time final cleanup + * + * None necessary + * + **************************************************************************** */ +void + md_end() +{ +} + +/***************************************************************************** + * md_assemble: Assemble an instruction + * + * Assumptions about the passed-in text: + * - all comments, labels removed + * - text is an instruction + * - all white space compressed to single blanks + * - all character constants have been replaced with decimal + * + **************************************************************************** */ +void + md_assemble(textP) +char *textP; /* Source text of instruction */ +{ + char *args[4]; /* Parsed instruction text, containing NO whitespace: + * arg[0]->opcode mnemonic + * arg[1-3]->operands, with char constants + * replaced by decimal numbers + */ + int n_ops; /* Number of instruction operands */ + + struct i960_opcode *oP; + /* Pointer to instruction description */ + int branch_predict; + /* TRUE iff opcode mnemonic included branch-prediction + * suffix (".f" or ".t") + */ + long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd + * into instruction opcode of CTRL/COBR format + * instructions. + */ + int n; /* Offset of last character in opcode mnemonic */ + + static const char bp_error_msg[] = "branch prediction invalid on this opcode"; + + + /* Parse instruction into opcode and operands */ + memset(args, '\0', sizeof(args)); + n_ops = i_scan(textP, args); + if (n_ops == -1){ + return; /* Error message already issued */ + } + + /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */ + if (!strcmp(args[0],"ldconst")){ + n_ops = parse_ldconst(args); + if (n_ops == -1){ + return; + } + } + + /* Check for branch-prediction suffix on opcode mnemonic, strip it off */ + n = strlen(args[0]) - 1; + branch_predict = 0; + bp_bits = 0; + if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){ + /* We could check here to see if the target architecture + * supports branch prediction, but why bother? The bit + * will just be ignored by processors that don't use it. + */ + branch_predict = 1; + bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN; + args[0][n-1] = '\0'; /* Strip suffix from opcode mnemonic */ + } + + /* Look up opcode mnemonic in table and check number of operands. + * Check that opcode is legal for the target architecture. + * If all looks good, assemble instruction. + */ + oP = (struct i960_opcode *) hash_find(op_hash, args[0]); + if (!oP || !targ_has_iclass(oP->iclass)) { + as_bad("invalid opcode, \"%s\".", args[0]); + + } else if (n_ops != oP->num_ops) { + as_bad("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops); + + } else { + switch (oP->format){ + case FBRA: + case CTRL: + ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops); + if (oP->format == FBRA){ + /* Now generate a 'bno' to same arg */ + ctrl_fmt(args[1], BNO | bp_bits, 1); + } + break; + case COBR: + case COJ: + cobr_fmt(args, oP->opcode | bp_bits, oP); + break; + case REG: + if (branch_predict){ + as_warn(bp_error_msg); + } + reg_fmt(args, oP); + break; + case MEM1: + case MEM2: + case MEM4: + case MEM8: + case MEM12: + case MEM16: + if (branch_predict){ + as_warn(bp_error_msg); + } + mem_fmt(args, oP); + break; + case CALLJ: + if (branch_predict){ + as_warn(bp_error_msg); + } + /* Output opcode & set up "fixup" (relocation); + * flag relocation as 'callj' type. + */ + know(oP->num_ops == 1); + get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1); + break; + default: + BAD_CASE(oP->format); + break; + } + } +} /* md_assemble() */ + +/***************************************************************************** + * md_number_to_chars: convert a number to target byte order + * + **************************************************************************** */ +void + md_number_to_chars(buf, value, n) +char *buf; /* Put output here */ +long value; /* The integer to be converted */ +int n; /* Number of bytes to output (significant bytes + * in 'value') + */ +{ + while (n--){ + *buf++ = value; + value >>= 8; + } + + /* XXX line number probably botched for this warning message. */ + if (value != 0 && value != -1){ + as_bad("Displacement too long for instruction field length."); + } + + return; +} /* md_number_to_chars() */ + +/***************************************************************************** + * md_chars_to_number: convert from target byte order to host byte order. + * + **************************************************************************** */ +int + md_chars_to_number(val, n) +unsigned char *val; /* Value in target byte order */ +int n; /* Number of bytes in the input */ +{ + int retval; + + for (retval=0; n--;){ + retval <<= 8; + retval |= val[n]; + } + return retval; +} + + +#define MAX_LITTLENUMS 6 +#define LNUM_SIZE sizeof(LITTLENUM_TYPE) + +/***************************************************************************** + * md_atof: convert ascii to floating point + * + * Turn a string at input_line_pointer into a floating point constant of type + * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS + * emitted is returned at 'sizeP'. An error message is returned, or a pointer + * to an empty message if OK. + * + * Note we call the i386 floating point routine, rather than complicating + * things with more files or symbolic links. + * + **************************************************************************** */ +char * md_atof(type, litP, sizeP) +int type; +char *litP; +int *sizeP; +{ + LITTLENUM_TYPE words[MAX_LITTLENUMS]; + LITTLENUM_TYPE *wordP; + int prec; + char *t; + char *atof_ieee(); + + switch (type) { + case 'f': + case 'F': + prec = 2; + break; + + case 'd': + case 'D': + prec = 4; + break; + + case 't': + case 'T': + prec = 5; + type = 'x'; /* That's what atof_ieee() understands */ + break; + + default: + *sizeP=0; + return "Bad call to md_atof()"; + } + + t = atof_ieee(input_line_pointer, type, words); + if (t){ + input_line_pointer = t; + } + + *sizeP = prec * LNUM_SIZE; + + /* Output the LITTLENUMs in REVERSE order in accord with i80960 + * word-order. (Dunno why atof_ieee doesn't do it in the right + * order in the first place -- probably because it's a hack of + * atof_m68k.) + */ + + for (wordP = words + prec - 1; prec--;){ + md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE); + litP += sizeof(LITTLENUM_TYPE); + } + + return ""; /* Someone should teach Dean about null pointers */ +} + + +/***************************************************************************** + * md_number_to_imm + * + **************************************************************************** */ +void + md_number_to_imm(buf, val, n) +char *buf; +long val; +int n; +{ + md_number_to_chars(buf, val, n); +} + + +/***************************************************************************** + * md_number_to_disp + * + **************************************************************************** */ +void + md_number_to_disp(buf, val, n) +char *buf; +long val; +int n; +{ + md_number_to_chars(buf, val, n); +} + +/***************************************************************************** + * md_number_to_field: + * + * Stick a value (an address fixup) into a bit field of + * previously-generated instruction. + * + **************************************************************************** */ +void + md_number_to_field(instrP, val, bfixP) +char *instrP; /* Pointer to instruction to be fixed */ +long val; /* Address fixup value */ +bit_fixS *bfixP; /* Description of bit field to be fixed up */ +{ + int numbits; /* Length of bit field to be fixed */ + long instr; /* 32-bit instruction to be fixed-up */ + long sign; /* 0 or -1, according to sign bit of 'val' */ + + /* Convert instruction back to host byte order + */ + instr = md_chars_to_number(instrP, 4); + + /* Surprise! -- we stored the number of bits + * to be modified rather than a pointer to a structure. + */ + numbits = (int)bfixP; + if (numbits == 1){ + /* This is a no-op, stuck here by reloc_callj() */ + return; + } + + know ((numbits == 13) || (numbits == 24)); + + /* Propagate sign bit of 'val' for the given number of bits. + * Result should be all 0 or all 1 + */ + sign = val >> ((int)numbits - 1); + if (((val < 0) && (sign != -1)) + || ((val > 0) && (sign != 0))){ + as_bad("Fixup of %d too large for field width of %d", + val, numbits); + } else { + /* Put bit field into instruction and write back in target + * byte order. + */ + val &= ~(-1 << (int)numbits); /* Clear unused sign bits */ + instr |= val; + md_number_to_chars(instrP, instr, 4); + } +} /* md_number_to_field() */ + + +/***************************************************************************** + * md_parse_option + * Invocation line includes a switch not recognized by the base assembler. + * See if it's a processor-specific option. For the 960, these are: + * + * -norelax: + * Conditional branch instructions that require displacements + * greater than 13 bits (or that have external targets) should + * generate errors. The default is to replace each such + * instruction with the corresponding compare (or chkbit) and + * branch instructions. Note that the Intel "j" cobr directives + * are ALWAYS "de-optimized" in this way when necessary, + * regardless of the setting of this option. + * + * -b: + * Add code to collect information about branches taken, for + * later optimization of branch prediction bits by a separate + * tool. COBR and CNTL format instructions have branch + * prediction bits (in the CX architecture); if "BR" represents + * an instruction in one of these classes, the following rep- + * resents the code generated by the assembler: + * + * call <increment routine> + * .word 0 # pre-counter + * Label: BR + * call <increment routine> + * .word 0 # post-counter + * + * A table of all such "Labels" is also generated. + * + * + * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA: + * Select the 80960 architecture. Instructions or features not + * supported by the selected architecture cause fatal errors. + * The default is to generate code for any instruction or feature + * that is supported by SOME version of the 960 (even if this + * means mixing architectures!). + * + **************************************************************************** */ +int + md_parse_option(argP, cntP, vecP) +char **argP; +int *cntP; +char ***vecP; +{ + char *p; + struct tabentry { char *flag; int arch; }; + static struct tabentry arch_tab[] = { + "KA", ARCH_KA, + "KB", ARCH_KB, + "SA", ARCH_KA, /* Synonym for KA */ + "SB", ARCH_KB, /* Synonym for KB */ + "KC", ARCH_MC, /* Synonym for MC */ + "MC", ARCH_MC, + "CA", ARCH_CA, + NULL, 0 + }; + struct tabentry *tp; + + if (!strcmp(*argP,"norelax")){ + norelax = 1; + + } else if (**argP == 'b'){ + instrument_branches = 1; + + } else if (**argP == 'A'){ + p = (*argP) + 1; + + for (tp = arch_tab; tp->flag != NULL; tp++){ + if (!strcmp(p,tp->flag)){ + break; + } + } + + if (tp->flag == NULL){ + as_bad("unknown architecture: %s", p); + } else { + architecture = tp->arch; + } + } else { + /* Unknown option */ + (*argP)++; + return 0; + } + **argP = '\0'; /* Done parsing this switch */ + return 1; +} + +/***************************************************************************** + * md_convert_frag: + * Called by base assembler after address relaxation is finished: modify + * variable fragments according to how much relaxation was done. + * + * If the fragment substate is still 1, a 13-bit displacement was enough + * to reach the symbol in question. Set up an address fixup, but otherwise + * leave the cobr instruction alone. + * + * If the fragment substate is 2, a 13-bit displacement was not enough. + * Replace the cobr with a two instructions (a compare and a branch). + * + **************************************************************************** */ +void + md_convert_frag(headers, fragP) +object_headers *headers; +fragS * fragP; +{ + fixS *fixP; /* Structure describing needed address fix */ + + switch (fragP->fr_subtype){ + case 1: + /* LEAVE SINGLE COBR INSTRUCTION */ + fixP = fix_new(fragP, + fragP->fr_opcode-fragP->fr_literal, + 4, + fragP->fr_symbol, + 0, + fragP->fr_offset, + 1, + 0); + + fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */ + break; + case 2: + /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */ + relax_cobr(fragP); + break; + default: + BAD_CASE(fragP->fr_subtype); + break; + } +} + +/***************************************************************************** + * md_estimate_size_before_relax: How much does it look like *fragP will grow? + * + * Called by base assembler just before address relaxation. + * Return the amount by which the fragment will grow. + * + * Any symbol that is now undefined will not become defined; cobr's + * based on undefined symbols will have to be replaced with a compare + * instruction and a branch instruction, and the code fragment will grow + * by 4 bytes. + * + **************************************************************************** */ +int + md_estimate_size_before_relax(fragP, segment_type) +register fragS *fragP; +register segT segment_type; +{ + /* If symbol is undefined in this segment, go to "relaxed" state + * (compare and branch instructions instead of cobr) right now. + */ + if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) { + relax_cobr(fragP); + return 4; + } + return 0; +} /* md_estimate_size_before_relax() */ + + +/***************************************************************************** + * md_ri_to_chars: + * This routine exists in order to overcome machine byte-order problems + * when dealing with bit-field entries in the relocation_info struct. + * + * But relocation info will be used on the host machine only (only + * executable code is actually downloaded to the i80960). Therefore, + * we leave it in host byte order. + * + **************************************************************************** */ +void md_ri_to_chars(where, ri) +char *where; +struct relocation_info *ri; +{ + *((struct relocation_info *) where) = *ri; /* structure assignment */ +} /* md_ri_to_chars() */ + +#ifndef WORKING_DOT_WORD + +int md_short_jump_size = 0; +int md_long_jump_size = 0; + +void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol) +char *ptr; +long from_addr; +long to_addr; +fragS *frag; +symbolS *to_symbol; +{ + as_fatal("failed sanity check."); +} + +void + md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol) +char *ptr; +long from_addr, to_addr; +fragS *frag; +symbolS *to_symbol; +{ + as_fatal("failed sanity check."); +} +#endif + +/************************************************************* + * * + * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER * + * * + ************************************************************ */ + + + +/***************************************************************************** + * brcnt_emit: Emit code to increment inline branch counter. + * + * See the comments above the declaration of 'br_cnt' for details on + * branch-prediction instrumentation. + **************************************************************************** */ +static void + brcnt_emit() +{ + ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */ + emit(0); /* Emit inline counter to be incremented */ +} + +/***************************************************************************** + * brlab_next: generate the next branch local label + * + * See the comments above the declaration of 'br_cnt' for details on + * branch-prediction instrumentation. + **************************************************************************** */ +static char * + brlab_next() +{ + static char buf[20]; + + sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++); + return buf; +} + +/***************************************************************************** + * brtab_emit: generate the fetch-prediction branch table. + * + * See the comments above the declaration of 'br_cnt' for details on + * branch-prediction instrumentation. + * + * The code emitted here would be functionally equivalent to the following + * example assembler source. + * + * .data + * .align 2 + * BR_TAB_NAME: + * .word 0 # link to next table + * .word 3 # length of table + * .word LBRANCH0 # 1st entry in table proper + * .word LBRANCH1 + * .word LBRANCH2 + ***************************************************************************** */ +void + brtab_emit() +{ + int i; + char buf[20]; + char *p; /* Where the binary was output to */ + fixS *fixP; /*->description of deferred address fixup */ + + if (!instrument_branches){ + return; + } + + subseg_new(SEG_DATA,0); /* .data */ + frag_align(2,0); /* .align 2 */ + record_alignment(now_seg,2); + colon(BR_TAB_NAME); /* BR_TAB_NAME: */ + emit(0); /* .word 0 #link to next table */ + emit(br_cnt); /* .word n #length of table */ + + for (i=0; i<br_cnt; i++){ + sprintf(buf, "%s%d", BR_LABEL_BASE, i); + p = emit(0); + fixP = fix_new(frag_now, + p - frag_now->fr_literal, + 4, + symbol_find(buf), + 0, + 0, + 0, + 0); + fixP->fx_im_disp = 2; /* 32-bit displacement fix */ + } +} + +/***************************************************************************** + * cobr_fmt: generate a COBR-format instruction + * + **************************************************************************** */ +static + void + cobr_fmt(arg, opcode, oP) +char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */ +long opcode; /* Opcode, with branch-prediction bits already set + * if necessary. + */ +struct i960_opcode *oP; +/*->description of instruction */ +{ + long instr; /* 32-bit instruction */ + struct regop regop; /* Description of register operand */ + int n; /* Number of operands */ + int var_frag; /* 1 if varying length code fragment should + * be emitted; 0 if an address fix + * should be emitted. + */ + + instr = opcode; + n = oP->num_ops; + + if (n >= 1) { + /* First operand (if any) of a COBR is always a register + * operand. Parse it. + */ + parse_regop(®op, arg[1], oP->operand[0]); + instr |= (regop.n << 19) | (regop.mode << 13); + } + if (n >= 2) { + /* Second operand (if any) of a COBR is always a register + * operand. Parse it. + */ + parse_regop(®op, arg[2], oP->operand[1]); + instr |= (regop.n << 14) | regop.special; + } + + + if (n < 3){ + emit(instr); + + } else { + if (instrument_branches){ + brcnt_emit(); + colon(brlab_next()); + } + + /* A third operand to a COBR is always a displacement. + * Parse it; if it's relaxable (a cobr "j" directive, or any + * cobr other than bbs/bbc when the "-norelax" option is not in + * use) set up a variable code fragment; otherwise set up an + * address fix. + */ + var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */ + get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0); + + if (instrument_branches){ + brcnt_emit(); + } + } +} /* cobr_fmt() */ + + +/***************************************************************************** + * ctrl_fmt: generate a CTRL-format instruction + * + **************************************************************************** */ +static + void + ctrl_fmt(targP, opcode, num_ops) +char *targP; /* Pointer to text of lone operand (if any) */ +long opcode; /* Template of instruction */ +int num_ops; /* Number of operands */ +{ + int instrument; /* TRUE iff we should add instrumentation to track + * how often the branch is taken + */ + + + if (num_ops == 0){ + emit(opcode); /* Output opcode */ + } else { + + instrument = instrument_branches && (opcode != CALL) + && (opcode != B) && (opcode != RET) && (opcode != BAL); + + if (instrument){ + brcnt_emit(); + colon(brlab_next()); + } + + /* The operand MUST be an ip-relative displacment. Parse it + * and set up address fix for the instruction we just output. + */ + get_cdisp(targP, "CTRL", opcode, 24, 0, 0); + + if (instrument){ + brcnt_emit(); + } + } + +} + + +/***************************************************************************** + * emit: output instruction binary + * + * Output instruction binary, in target byte order, 4 bytes at a time. + * Return pointer to where it was placed. + * + **************************************************************************** */ +static + char * + emit(instr) +long instr; /* Word to be output, host byte order */ +{ + char *toP; /* Where to output it */ + + toP = frag_more(4); /* Allocate storage */ + md_number_to_chars(toP, instr, 4); /* Convert to target byte order */ + return toP; +} + + +/***************************************************************************** + * get_args: break individual arguments out of comma-separated list + * + * Input assumptions: + * - all comments and labels have been removed + * - all strings of whitespace have been collapsed to a single blank. + * - all character constants ('x') have been replaced with decimal + * + * Output: + * args[0] is untouched. args[1] points to first operand, etc. All args: + * - are NULL-terminated + * - contain no whitespace + * + * Return value: + * Number of operands (0,1,2, or 3) or -1 on error. + * + **************************************************************************** */ +static int get_args(p, args) +register char *p; /* Pointer to comma-separated operands; MUCKED BY US */ +char *args[]; /* Output arg: pointers to operands placed in args[1-3]. + * MUST ACCOMMODATE 4 ENTRIES (args[0-3]). + */ +{ + register int n; /* Number of operands */ + register char *to; + /* char buf[4]; */ + /* int len; */ + + + /* Skip lead white space */ + while (*p == ' '){ + p++; + } + + if (*p == '\0'){ + return 0; + } + + n = 1; + args[1] = p; + + /* Squeze blanks out by moving non-blanks toward start of string. + * Isolate operands, whenever comma is found. + */ + to = p; + while (*p != '\0'){ + + if (*p == ' '){ + p++; + + } else if (*p == ','){ + + /* Start of operand */ + if (n == 3){ + as_bad("too many operands"); + return -1; + } + *to++ = '\0'; /* Terminate argument */ + args[++n] = to; /* Start next argument */ + p++; + + } else { + *to++ = *p++; + } + } + *to = '\0'; + return n; +} + + +/***************************************************************************** + * get_cdisp: handle displacement for a COBR or CTRL instruction. + * + * Parse displacement for a COBR or CTRL instruction. + * + * If successful, output the instruction opcode and set up for it, + * depending on the arg 'var_frag', either: + * o an address fixup to be done when all symbol values are known, or + * o a varying length code fragment, with address fixup info. This + * will be done for cobr instructions that may have to be relaxed + * in to compare/branch instructions (8 bytes) if the final address + * displacement is greater than 13 bits. + * + **************************************************************************** */ +static + void + get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj) +char *dispP; /*->displacement as specified in source instruction */ +char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */ +long instr; /* Instruction needing the displacement */ +int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */ +int var_frag; /* 1 if varying length code fragment should be emitted; + * 0 if an address fix should be emitted. + */ +int callj; /* 1 if callj relocation should be done; else 0 */ +{ + expressionS e; /* Parsed expression */ + fixS *fixP; /* Structure describing needed address fix */ + char *outP; /* Where instruction binary is output to */ + + fixP = NULL; + + switch (parse_expr(dispP,&e)) { + + case SEG_GOOF: + as_bad("expression syntax error"); + break; + + case SEG_TEXT: + case SEG_UNKNOWN: + if (var_frag) { + outP = frag_more(8); /* Allocate worst-case storage */ + md_number_to_chars(outP, instr, 4); + frag_variant(rs_machine_dependent, 4, 4, 1, + adds(e), offs(e), outP, 0, 0); + } else { + /* Set up a new fix structure, so address can be updated + * when all symbol values are known. + */ + outP = emit(instr); + fixP = fix_new(frag_now, + outP - frag_now->fr_literal, + 4, + adds(e), + 0, + offs(e), + 1, + 0); + + fixP->fx_callj = callj; + + /* We want to modify a bit field when the address is + * known. But we don't need all the garbage in the + * bit_fix structure. So we're going to lie and store + * the number of bits affected instead of a pointer. + */ + fixP->fx_bit_fixP = (bit_fixS *) numbits; + } + break; + + case SEG_DATA: + case SEG_BSS: + as_bad("attempt to branch into different segment"); + break; + + default: + as_bad("target of %s instruction must be a label", ifmtP); + break; + } +} + + +/***************************************************************************** + * get_ispec: parse a memory operand for an index specification + * + * Here, an "index specification" is taken to be anything surrounded + * by square brackets and NOT followed by anything else. + * + * If it's found, detach it from the input string, remove the surrounding + * square brackets, and return a pointer to it. Otherwise, return NULL. + * + **************************************************************************** */ +static + char * + get_ispec(textP) +char *textP; /*->memory operand from source instruction, no white space */ +{ + char *start; /*->start of index specification */ + char *end; /*->end of index specification */ + + /* Find opening square bracket, if any + */ + start = strchr(textP, '['); + + if (start != NULL){ + + /* Eliminate '[', detach from rest of operand */ + *start++ = '\0'; + + end = strchr(start, ']'); + + if (end == NULL){ + as_bad("unmatched '['"); + + } else { + /* Eliminate ']' and make sure it was the last thing + * in the string. + */ + *end = '\0'; + if (*(end+1) != '\0'){ + as_bad("garbage after index spec ignored"); + } + } + } + return start; +} + +/***************************************************************************** + * get_regnum: + * + * Look up a (suspected) register name in the register table and return the + * associated register number (or -1 if not found). + * + **************************************************************************** */ +static + int + get_regnum(regname) +char *regname; /* Suspected register name */ +{ + int *rP; + + rP = (int *) hash_find(reg_hash, regname); + return (rP == NULL) ? -1 : *rP; +} + + +/***************************************************************************** + * i_scan: perform lexical scan of ascii assembler instruction. + * + * Input assumptions: + * - input string is an i80960 instruction (not a pseudo-op) + * - all comments and labels have been removed + * - all strings of whitespace have been collapsed to a single blank. + * + * Output: + * args[0] points to opcode, other entries point to operands. All strings: + * - are NULL-terminated + * - contain no whitespace + * - have character constants ('x') replaced with a decimal number + * + * Return value: + * Number of operands (0,1,2, or 3) or -1 on error. + * + **************************************************************************** */ +static int i_scan(iP, args) +register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */ +char *args[]; /* Output arg: pointers to opcode and operands placed + * here. MUST ACCOMMODATE 4 ENTRIES. + */ +{ + + /* Isolate opcode */ + if (*(iP) == ' ') { + iP++; + } /* Skip lead space, if any */ + args[0] = iP; + for (; *iP != ' '; iP++) { + if (*iP == '\0') { + /* There are no operands */ + if (args[0] == iP) { + /* We never moved: there was no opcode either! */ + as_bad("missing opcode"); + return -1; + } + return 0; + } + } + *iP++ = '\0'; /* Terminate opcode */ + return(get_args(iP, args)); +} /* i_scan() */ + + +/***************************************************************************** + * mem_fmt: generate a MEMA- or MEMB-format instruction + * + **************************************************************************** */ +static void mem_fmt(args, oP) +char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ +struct i960_opcode *oP; /* Pointer to description of instruction */ +{ + int i; /* Loop counter */ + struct regop regop; /* Description of register operand */ + char opdesc; /* Operand descriptor byte */ + memS instr; /* Description of binary to be output */ + char *outP; /* Where the binary was output to */ + expressionS expr; /* Parsed expression */ + fixS *fixP; /*->description of deferred address fixup */ + + memset(&instr, '\0', sizeof(memS)); + instr.opcode = oP->opcode; + + /* Process operands. */ + for (i = 1; i <= oP->num_ops; i++){ + opdesc = oP->operand[i-1]; + + if (MEMOP(opdesc)){ + parse_memop(&instr, args[i], oP->format); + } else { + parse_regop(®op, args[i], opdesc); + instr.opcode |= regop.n << 19; + } + } + + /* Output opcode */ + outP = emit(instr.opcode); + + if (instr.disp == 0){ + return; + } + + /* Parse and process the displacement */ + switch (parse_expr(instr.e,&expr)){ + + case SEG_GOOF: + as_bad("expression syntax error"); + break; + + case SEG_ABSOLUTE: + if (instr.disp == 32){ + (void) emit(offs(expr)); /* Output displacement */ + } else { + /* 12-bit displacement */ + if (offs(expr) & ~0xfff){ + /* Won't fit in 12 bits: convert already-output + * instruction to MEMB format, output + * displacement. + */ + mema_to_memb(outP); + (void) emit(offs(expr)); + } else { + /* WILL fit in 12 bits: OR into opcode and + * overwrite the binary we already put out + */ + instr.opcode |= offs(expr); + md_number_to_chars(outP, instr.opcode, 4); + } + } + break; + + case SEG_DIFFERENCE: + case SEG_TEXT: + case SEG_DATA: + case SEG_BSS: + case SEG_UNKNOWN: + if (instr.disp == 12){ + /* Displacement is dependent on a symbol, whose value + * may change at link time. We HAVE to reserve 32 bits. + * Convert already-output opcode to MEMB format. + */ + mema_to_memb(outP); + } + + /* Output 0 displacement and set up address fixup for when + * this symbol's value becomes known. + */ + outP = emit((long) 0); + fixP = fix_new(frag_now, + outP - frag_now->fr_literal, + 4, + adds(expr), + subs(expr), + offs(expr), + 0, + 0); + fixP->fx_im_disp = 2; /* 32-bit displacement fix */ + break; + + default: + BAD_CASE(segs(expr)); + break; + } +} /* memfmt() */ + + +/***************************************************************************** + * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode. + * + * There are 2 possible MEMA formats: + * - displacement only + * - displacement + abase + * + * They are distinguished by the setting of the MEMA_ABASE bit. + * + **************************************************************************** */ +static void mema_to_memb(opcodeP) +char *opcodeP; /* Where to find the opcode, in target byte order */ +{ + long opcode; /* Opcode in host byte order */ + long mode; /* Mode bits for MEMB instruction */ + + opcode = md_chars_to_number(opcodeP, 4); + know(!(opcode & MEMB_BIT)); + + mode = MEMB_BIT | D_BIT; + if (opcode & MEMA_ABASE){ + mode |= A_BIT; + } + + opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */ + opcode |= mode; /* Set MEMB mode bits */ + + md_number_to_chars(opcodeP, opcode, 4); +} /* mema_to_memb() */ + + +/***************************************************************************** + * parse_expr: parse an expression + * + * Use base assembler's expression parser to parse an expression. + * It, unfortunately, runs off a global which we have to save/restore + * in order to make it work for us. + * + * An empty expression string is treated as an absolute 0. + * + * Return "segment" to which the expression evaluates. + * Return SEG_GOOF regardless of expression evaluation if entire input + * string is not consumed in the evaluation -- tolerate no dangling junk! + * + **************************************************************************** */ +static + segT + parse_expr(textP, expP) +char *textP; /* Text of expression to be parsed */ +expressionS *expP; /* Where to put the results of parsing */ +{ + char *save_in; /* Save global here */ + segT seg; /* Segment to which expression evaluates */ + symbolS *symP; + + know(textP); + + if (*textP == '\0') { + /* Treat empty string as absolute 0 */ + expP->X_add_symbol = expP->X_subtract_symbol = NULL; + expP->X_add_number = 0; + seg = expP->X_seg = SEG_ABSOLUTE; + + } else { + save_in = input_line_pointer; /* Save global */ + input_line_pointer = textP; /* Make parser work for us */ + + seg = expression(expP); + if (input_line_pointer - textP != strlen(textP)) { + /* Did not consume all of the input */ + seg = SEG_GOOF; + } + symP = expP->X_add_symbol; + if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) { + /* Register name in an expression */ + seg = SEG_GOOF; + } + + input_line_pointer = save_in; /* Restore global */ + } + return seg; +} + + +/***************************************************************************** + * parse_ldcont: + * Parse and replace a 'ldconst' pseudo-instruction with an appropriate + * i80960 instruction. + * + * Assumes the input consists of: + * arg[0] opcode mnemonic ('ldconst') + * arg[1] first operand (constant) + * arg[2] name of register to be loaded + * + * Replaces opcode and/or operands as appropriate. + * + * Returns the new number of arguments, or -1 on failure. + * + **************************************************************************** */ +static + int + parse_ldconst(arg) +char *arg[]; /* See above */ +{ + int n; /* Constant to be loaded */ + int shift; /* Shift count for "shlo" instruction */ + static char buf[5]; /* Literal for first operand */ + static char buf2[5]; /* Literal for second operand */ + expressionS e; /* Parsed expression */ + + + arg[3] = NULL; /* So we can tell at the end if it got used or not */ + + switch (parse_expr(arg[1],&e)){ + + case SEG_TEXT: + case SEG_DATA: + case SEG_BSS: + case SEG_UNKNOWN: + case SEG_DIFFERENCE: + /* We're dependent on one or more symbols -- use "lda" */ + arg[0] = "lda"; + break; + + case SEG_ABSOLUTE: + /* Try the following mappings: + * ldconst 0,<reg> ->mov 0,<reg> + * ldconst 31,<reg> ->mov 31,<reg> + * ldconst 32,<reg> ->addo 1,31,<reg> + * ldconst 62,<reg> ->addo 31,31,<reg> + * ldconst 64,<reg> ->shlo 8,3,<reg> + * ldconst -1,<reg> ->subo 1,0,<reg> + * ldconst -31,<reg>->subo 31,0,<reg> + * + * anthing else becomes: + * lda xxx,<reg> + */ + n = offs(e); + if ((0 <= n) && (n <= 31)){ + arg[0] = "mov"; + + } else if ((-31 <= n) && (n <= -1)){ + arg[0] = "subo"; + arg[3] = arg[2]; + sprintf(buf, "%d", -n); + arg[1] = buf; + arg[2] = "0"; + + } else if ((32 <= n) && (n <= 62)){ + arg[0] = "addo"; + arg[3] = arg[2]; + arg[1] = "31"; + sprintf(buf, "%d", n-31); + arg[2] = buf; + + } else if ((shift = shift_ok(n)) != 0){ + arg[0] = "shlo"; + arg[3] = arg[2]; + sprintf(buf, "%d", shift); + arg[1] = buf; + sprintf(buf2, "%d", n >> shift); + arg[2] = buf2; + + } else { + arg[0] = "lda"; + } + break; + + default: + as_bad("invalid constant"); + return -1; + break; + } + return (arg[3] == 0) ? 2: 3; +} + +/***************************************************************************** + * parse_memop: parse a memory operand + * + * This routine is based on the observation that the 4 mode bits of the + * MEMB format, taken individually, have fairly consistent meaning: + * + * M3 (bit 13): 1 if displacement is present (D_BIT) + * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT) + * M1 (bit 11): 1 if index is present (I_BIT) + * M0 (bit 10): 1 if abase is present (A_BIT) + * + * So we parse the memory operand and set bits in the mode as we find + * things. Then at the end, if we go to MEMB format, we need only set + * the MEMB bit (M2) and our mode is built for us. + * + * Unfortunately, I said "fairly consistent". The exceptions: + * + * DBIA + * 0100 Would seem illegal, but means "abase-only". + * + * 0101 Would seem to mean "abase-only" -- it means IP-relative. + * Must be converted to 0100. + * + * 0110 Would seem to mean "index-only", but is reserved. + * We turn on the D bit and provide a 0 displacement. + * + * The other thing to observe is that we parse from the right, peeling + * things * off as we go: first any index spec, then any abase, then + * the displacement. + * + **************************************************************************** */ +static + void + parse_memop(memP, argP, optype) +memS *memP; /* Where to put the results */ +char *argP; /* Text of the operand to be parsed */ +int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */ +{ + char *indexP; /* Pointer to index specification with "[]" removed */ + char *p; /* Temp char pointer */ + char iprel_flag;/* True if this is an IP-relative operand */ + int regnum; /* Register number */ + int scale; /* Scale factor: 1,2,4,8, or 16. Later converted + * to internal format (0,1,2,3,4 respectively). + */ + int mode; /* MEMB mode bits */ + int *intP; /* Pointer to register number */ + + /* The following table contains the default scale factors for each + * type of memory instruction. It is accessed using (optype-MEM1) + * as an index -- thus it assumes the 'optype' constants are assigned + * consecutive values, in the order they appear in this table + */ + static int def_scale[] = { + 1, /* MEM1 */ + 2, /* MEM2 */ + 4, /* MEM4 */ + 8, /* MEM8 */ + -1, /* MEM12 -- no valid default */ + 16 /* MEM16 */ + }; + + + iprel_flag = mode = 0; + + /* Any index present? */ + indexP = get_ispec(argP); + if (indexP) { + p = strchr(indexP, '*'); + if (p == NULL) { + /* No explicit scale -- use default for this + *instruction type. + */ + scale = def_scale[ optype - MEM1 ]; + } else { + *p++ = '\0'; /* Eliminate '*' */ + + /* Now indexP->a '\0'-terminated register name, + * and p->a scale factor. + */ + + if (!strcmp(p,"16")){ + scale = 16; + } else if (strchr("1248",*p) && (p[1] == '\0')){ + scale = *p - '0'; + } else { + scale = -1; + } + } + + regnum = get_regnum(indexP); /* Get index reg. # */ + if (!IS_RG_REG(regnum)){ + as_bad("invalid index register"); + return; + } + + /* Convert scale to its binary encoding */ + switch (scale){ + case 1: scale = 0 << 7; break; + case 2: scale = 1 << 7; break; + case 4: scale = 2 << 7; break; + case 8: scale = 3 << 7; break; + case 16: scale = 4 << 7; break; + default: as_bad("invalid scale factor"); return; + }; + + memP->opcode |= scale | regnum; /* Set index bits in opcode */ + mode |= I_BIT; /* Found a valid index spec */ + } + + /* Any abase (Register Indirect) specification present? */ + if ((p = strrchr(argP,'(')) != NULL) { + /* "(" is there -- does it start a legal abase spec? + * (If not it could be part of a displacement expression.) + */ + intP = (int *) hash_find(areg_hash, p); + if (intP != NULL){ + /* Got an abase here */ + regnum = *intP; + *p = '\0'; /* discard register spec */ + if (regnum == IPREL){ + /* We have to specialcase ip-rel mode */ + iprel_flag = 1; + } else { + memP->opcode |= regnum << 14; + mode |= A_BIT; + } + } + } + + /* Any expression present? */ + memP->e = argP; + if (*argP != '\0'){ + mode |= D_BIT; + } + + /* Special-case ip-relative addressing */ + if (iprel_flag){ + if (mode & I_BIT){ + syntax(); + } else { + memP->opcode |= 5 << 10; /* IP-relative mode */ + memP->disp = 32; + } + return; + } + + /* Handle all other modes */ + switch (mode){ + case D_BIT | A_BIT: + /* Go with MEMA instruction format for now (grow to MEMB later + * if 12 bits is not enough for the displacement). + * MEMA format has a single mode bit: set it to indicate + * that abase is present. + */ + memP->opcode |= MEMA_ABASE; + memP->disp = 12; + break; + + case D_BIT: + /* Go with MEMA instruction format for now (grow to MEMB later + * if 12 bits is not enough for the displacement). + */ + memP->disp = 12; + break; + + case A_BIT: + /* For some reason, the bit string for this mode is not + * consistent: it should be 0 (exclusive of the MEMB bit), + * so we set it "by hand" here. + */ + memP->opcode |= MEMB_BIT; + break; + + case A_BIT | I_BIT: + /* set MEMB bit in mode, and OR in mode bits */ + memP->opcode |= mode | MEMB_BIT; + break; + + case I_BIT: + /* Treat missing displacement as displacement of 0 */ + mode |= D_BIT; + /*********************** + * Fall into next case * + ********************** */ + case D_BIT | A_BIT | I_BIT: + case D_BIT | I_BIT: + /* set MEMB bit in mode, and OR in mode bits */ + memP->opcode |= mode | MEMB_BIT; + memP->disp = 32; + break; + + default: + syntax(); + break; + } +} + +/***************************************************************************** + * parse_po: parse machine-dependent pseudo-op + * + * This is a top-level routine for machine-dependent pseudo-ops. It slurps + * up the rest of the input line, breaks out the individual arguments, + * and dispatches them to the correct handler. + **************************************************************************** */ +static + void + parse_po(po_num) +int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */ +{ + char *args[4]; /* Pointers operands, with no embedded whitespace. + * arg[0] unused. + * arg[1-3]->operands + */ + int n_ops; /* Number of operands */ + char *p; /* Pointer to beginning of unparsed argument string */ + char eol; /* Character that indicated end of line */ + + extern char is_end_of_line[]; + + /* Advance input pointer to end of line. */ + p = input_line_pointer; + while (!is_end_of_line[ *input_line_pointer ]){ + input_line_pointer++; + } + eol = *input_line_pointer; /* Save end-of-line char */ + *input_line_pointer = '\0'; /* Terminate argument list */ + + /* Parse out operands */ + n_ops = get_args(p, args); + if (n_ops == -1){ + return; + } + + /* Dispatch to correct handler */ + switch (po_num){ + case S_SYSPROC: s_sysproc(n_ops, args); break; + case S_LEAFPROC: s_leafproc(n_ops, args); break; + default: BAD_CASE(po_num); break; + } + + /* Restore eol, so line numbers get updated correctly. Base assembler + * assumes we leave input pointer pointing at char following the eol. + */ + *input_line_pointer++ = eol; +} + +/***************************************************************************** + * parse_regop: parse a register operand. + * + * In case of illegal operand, issue a message and return some valid + * information so instruction processing can continue. + **************************************************************************** */ +static + void + parse_regop(regopP, optext, opdesc) +struct regop *regopP; /* Where to put description of register operand */ +char *optext; /* Text of operand */ +char opdesc; /* Descriptor byte: what's legal for this operand */ +{ + int n; /* Register number */ + expressionS e; /* Parsed expression */ + + /* See if operand is a register */ + n = get_regnum(optext); + if (n >= 0){ + if (IS_RG_REG(n)){ + /* global or local register */ + if (!REG_ALIGN(opdesc,n)){ + as_bad("unaligned register"); + } + regopP->n = n; + regopP->mode = 0; + regopP->special = 0; + return; + } else if (IS_FP_REG(n) && FP_OK(opdesc)){ + /* Floating point register, and it's allowed */ + regopP->n = n - FP0; + regopP->mode = 1; + regopP->special = 0; + return; + } else if (IS_SF_REG(n) && SFR_OK(opdesc)){ + /* Special-function register, and it's allowed */ + regopP->n = n - SF0; + regopP->mode = 0; + regopP->special = 1; + if (!targ_has_sfr(regopP->n)){ + as_bad("no such sfr in this architecture"); + } + return; + } + } else if (LIT_OK(opdesc)){ + /* + * How about a literal? + */ + regopP->mode = 1; + regopP->special = 0; + if (FP_OK(opdesc)){ /* floating point literal acceptable */ + /* Skip over 0f, 0d, or 0e prefix */ + if ( (optext[0] == '0') + && (optext[1] >= 'd') + && (optext[1] <= 'f') ){ + optext += 2; + } + + if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){ + regopP->n = 0x10; + return; + } + if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){ + regopP->n = 0x16; + return; + } + + } else { /* fixed point literal acceptable */ + if ((parse_expr(optext,&e) != SEG_ABSOLUTE) + || (offs(e) < 0) || (offs(e) > 31)){ + as_bad("illegal literal"); + offs(e) = 0; + } + regopP->n = offs(e); + return; + } + } + + /* Nothing worked */ + syntax(); + regopP->mode = 0; /* Register r0 is always a good one */ + regopP->n = 0; + regopP->special = 0; +} /* parse_regop() */ + +/***************************************************************************** + * reg_fmt: generate a REG-format instruction + * + **************************************************************************** */ +static void reg_fmt(args, oP) +char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ +struct i960_opcode *oP; /* Pointer to description of instruction */ +{ + long instr; /* Binary to be output */ + struct regop regop; /* Description of register operand */ + int n_ops; /* Number of operands */ + + + instr = oP->opcode; + n_ops = oP->num_ops; + + if (n_ops >= 1){ + parse_regop(®op, args[1], oP->operand[0]); + + if ((n_ops == 1) && !(instr & M3)){ + /* 1-operand instruction in which the dst field should + * be used (instead of src1). + */ + regop.n <<= 19; + if (regop.special){ + regop.mode = regop.special; + } + regop.mode <<= 13; + regop.special = 0; + } else { + /* regop.n goes in bit 0, needs no shifting */ + regop.mode <<= 11; + regop.special <<= 5; + } + instr |= regop.n | regop.mode | regop.special; + } + + if (n_ops >= 2) { + parse_regop(®op, args[2], oP->operand[1]); + + if ((n_ops == 2) && !(instr & M3)){ + /* 2-operand instruction in which the dst field should + * be used instead of src2). + */ + regop.n <<= 19; + if (regop.special){ + regop.mode = regop.special; + } + regop.mode <<= 13; + regop.special = 0; + } else { + regop.n <<= 14; + regop.mode <<= 12; + regop.special <<= 6; + } + instr |= regop.n | regop.mode | regop.special; + } + if (n_ops == 3){ + parse_regop(®op, args[3], oP->operand[2]); + if (regop.special){ + regop.mode = regop.special; + } + instr |= (regop.n <<= 19) | (regop.mode <<= 13); + } + emit(instr); +} + + +/***************************************************************************** + * relax_cobr: + * Replace cobr instruction in a code fragment with equivalent branch and + * compare instructions, so it can reach beyond a 13-bit displacement. + * Set up an address fix/relocation for the new branch instruction. + * + **************************************************************************** */ + +/* This "conditional jump" table maps cobr instructions into equivalent + * compare and branch opcodes. + */ +static + struct { + long compare; + long branch; + } coj[] = { /* COBR OPCODE: */ + CHKBIT, BNO, /* 0x30 - bbc */ + CMPO, BG, /* 0x31 - cmpobg */ + CMPO, BE, /* 0x32 - cmpobe */ + CMPO, BGE, /* 0x33 - cmpobge */ + CMPO, BL, /* 0x34 - cmpobl */ + CMPO, BNE, /* 0x35 - cmpobne */ + CMPO, BLE, /* 0x36 - cmpoble */ + CHKBIT, BO, /* 0x37 - bbs */ + CMPI, BNO, /* 0x38 - cmpibno */ + CMPI, BG, /* 0x39 - cmpibg */ + CMPI, BE, /* 0x3a - cmpibe */ + CMPI, BGE, /* 0x3b - cmpibge */ + CMPI, BL, /* 0x3c - cmpibl */ + CMPI, BNE, /* 0x3d - cmpibne */ + CMPI, BLE, /* 0x3e - cmpible */ + CMPI, BO, /* 0x3f - cmpibo */ + }; + +static + void + relax_cobr(fragP) +register fragS *fragP; /* fragP->fr_opcode is assumed to point to + * the cobr instruction, which comes at the + * end of the code fragment. + */ +{ + int opcode, src1, src2, m1, s2; + /* Bit fields from cobr instruction */ + long bp_bits; /* Branch prediction bits from cobr instruction */ + long instr; /* A single i960 instruction */ + char *iP; /*->instruction to be replaced */ + fixS *fixP; /* Relocation that can be done at assembly time */ + + /* PICK UP & PARSE COBR INSTRUCTION */ + iP = fragP->fr_opcode; + instr = md_chars_to_number(iP, 4); + opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */ + src1 = (instr >> 19) & 0x1f; + m1 = (instr >> 13) & 1; + s2 = instr & 1; + src2 = (instr >> 14) & 0x1f; + bp_bits= instr & BP_MASK; + + /* GENERATE AND OUTPUT COMPARE INSTRUCTION */ + instr = coj[opcode].compare + | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14); + md_number_to_chars(iP, instr, 4); + + /* OUTPUT BRANCH INSTRUCTION */ + md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4); + + /* SET UP ADDRESS FIXUP/RELOCATION */ + fixP = fix_new(fragP, + iP+4 - fragP->fr_literal, + 4, + fragP->fr_symbol, + 0, + fragP->fr_offset, + 1, + 0); + + fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */ + + fragP->fr_fix += 4; + frag_wane(fragP); +} + + +/***************************************************************************** + * reloc_callj: Relocate a 'callj' instruction + * + * This is a "non-(GNU)-standard" machine-dependent hook. The base + * assembler calls it when it decides it can relocate an address at + * assembly time instead of emitting a relocation directive. + * + * Check to see if the relocation involves a 'callj' instruction to a: + * sysproc: Replace the default 'call' instruction with a 'calls' + * leafproc: Replace the default 'call' instruction with a 'bal'. + * other proc: Do nothing. + * + * See b.out.h for details on the 'n_other' field in a symbol structure. + * + * IMPORTANT!: + * Assumes the caller has already figured out, in the case of a leafproc, + * to use the 'bal' entry point, and has substituted that symbol into the + * passed fixup structure. + * + **************************************************************************** */ +void reloc_callj(fixP) +fixS *fixP; /* Relocation that can be done at assembly time */ +{ + char *where; /*->the binary for the instruction being relocated */ + + if (!fixP->fx_callj) { + return; + } /* This wasn't a callj instruction in the first place */ + + where = fixP->fx_frag->fr_literal + fixP->fx_where; + + if (TC_S_IS_SYSPROC(fixP->fx_addsy)) { + /* Symbol is a .sysproc: replace 'call' with 'calls'. + * System procedure number is (other-1). + */ + md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4); + + /* Nothing else needs to be done for this instruction. + * Make sure 'md_number_to_field()' will perform a no-op. + */ + fixP->fx_bit_fixP = (bit_fixS *) 1; + + } else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) { + /* Should not happen: see block comment above */ + as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy)); + + } else if (TC_S_IS_BALNAME(fixP->fx_addsy)) { + /* Replace 'call' with 'bal'; both instructions have + * the same format, so calling code should complete + * relocation as if nothing happened here. + */ + md_number_to_chars(where, BAL, 4); + } else if (TC_S_IS_BADPROC(fixP->fx_addsy)) { + as_bad("Looks like a proc, but can't tell what kind.\n"); + } /* switch on proc type */ + + /* else Symbol is neither a sysproc nor a leafproc */ + + return; +} /* reloc_callj() */ + + +/***************************************************************************** + * s_leafproc: process .leafproc pseudo-op + * + * .leafproc takes two arguments, the second one is optional: + * arg[1]: name of 'call' entry point to leaf procedure + * arg[2]: name of 'bal' entry point to leaf procedure + * + * If the two arguments are identical, or if the second one is missing, + * the first argument is taken to be the 'bal' entry point. + * + * If there are 2 distinct arguments, we must make sure that the 'bal' + * entry point immediately follows the 'call' entry point in the linked + * list of symbols. + * + **************************************************************************** */ +static void s_leafproc(n_ops, args) +int n_ops; /* Number of operands */ +char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ +{ + symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */ + symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */ + + if ((n_ops != 1) && (n_ops != 2)) { + as_bad("should have 1 or 2 operands"); + return; + } /* Check number of arguments */ + + /* Find or create symbol for 'call' entry point. */ + callP = symbol_find_or_make(args[1]); + + if (TC_S_IS_CALLNAME(callP)) { + as_warn("Redefining leafproc %s", S_GET_NAME(callP)); + } /* is leafproc */ + + /* If that was the only argument, use it as the 'bal' entry point. + * Otherwise, mark it as the 'call' entry point and find or create + * another symbol for the 'bal' entry point. + */ + if ((n_ops == 1) || !strcmp(args[1],args[2])) { + TC_S_FORCE_TO_BALNAME(callP); + + } else { + TC_S_FORCE_TO_CALLNAME(callP); + + balP = symbol_find_or_make(args[2]); + if (TC_S_IS_CALLNAME(balP)) { + as_warn("Redefining leafproc %s", S_GET_NAME(balP)); + } + TC_S_FORCE_TO_BALNAME(balP); + + tc_set_bal_of_call(callP, balP); + } /* if only one arg, or the args are the same */ + + return; +} /* s_leafproc() */ + + +/* + * s_sysproc: process .sysproc pseudo-op + * + * .sysproc takes two arguments: + * arg[1]: name of entry point to system procedure + * arg[2]: 'entry_num' (index) of system procedure in the range + * [0,31] inclusive. + * + * For [ab].out, we store the 'entrynum' in the 'n_other' field of + * the symbol. Since that entry is normally 0, we bias 'entrynum' + * by adding 1 to it. It must be unbiased before it is used. + */ +static void s_sysproc(n_ops, args) +int n_ops; /* Number of operands */ +char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ +{ + expressionS exp; + symbolS *symP; + + if (n_ops != 2) { + as_bad("should have two operands"); + return; + } /* bad arg count */ + + /* Parse "entry_num" argument and check it for validity. */ + if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE) + || (offs(exp) < 0) + || (offs(exp) > 31)) { + as_bad("'entry_num' must be absolute number in [0,31]"); + return; + } + + /* Find/make symbol and stick entry number (biased by +1) into it */ + symP = symbol_find_or_make(args[1]); + + if (TC_S_IS_SYSPROC(symP)) { + as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP)); + } /* redefining */ + + TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */ + TC_S_FORCE_TO_SYSPROC(symP); + + return; +} /* s_sysproc() */ + + +/***************************************************************************** + * shift_ok: + * Determine if a "shlo" instruction can be used to implement a "ldconst". + * This means that some number X < 32 can be shifted left to produce the + * constant of interest. + * + * Return the shift count, or 0 if we can't do it. + * Caller calculates X by shifting original constant right 'shift' places. + * + **************************************************************************** */ +static + int + shift_ok(n) +int n; /* The constant of interest */ +{ + int shift; /* The shift count */ + + if (n <= 0){ + /* Can't do it for negative numbers */ + return 0; + } + + /* Shift 'n' right until a 1 is about to be lost */ + for (shift = 0; (n & 1) == 0; shift++){ + n >>= 1; + } + + if (n >= 32){ + return 0; + } + return shift; +} + + +/***************************************************************************** + * syntax: issue syntax error + * + **************************************************************************** */ +static void syntax() { + as_bad("syntax error"); +} /* syntax() */ + + +/***************************************************************************** + * targ_has_sfr: + * Return TRUE iff the target architecture supports the specified + * special-function register (sfr). + * + **************************************************************************** */ +static + int + targ_has_sfr(n) +int n; /* Number (0-31) of sfr */ +{ + switch (architecture){ + case ARCH_KA: + case ARCH_KB: + case ARCH_MC: + return 0; + case ARCH_CA: + default: + return ((0 <= n) && (n <= 2)); + } +} + + +/***************************************************************************** + * targ_has_iclass: + * Return TRUE iff the target architecture supports the indicated + * class of instructions. + * + **************************************************************************** */ +static + int + targ_has_iclass(ic) +int ic; /* Instruction class; one of: + * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM + */ +{ + iclasses_seen |= ic; + switch (architecture){ + case ARCH_KA: return ic & (I_BASE | I_KX); + case ARCH_KB: return ic & (I_BASE | I_KX | I_FP | I_DEC); + case ARCH_MC: return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL); + case ARCH_CA: return ic & (I_BASE | I_CX | I_CASIM); + default: + if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL)) + && (iclasses_seen & I_CX)){ + as_warn("architecture of opcode conflicts with that of earlier instruction(s)"); + iclasses_seen &= ~ic; + } + return 1; + } +} + + +/* Parse an operand that is machine-specific. + We just return without modifying the expression if we have nothing + to do. */ + +/* ARGSUSED */ +void + md_operand (expressionP) +expressionS *expressionP; +{ +} + +/* We have no need to default values of symbols. */ + +/* ARGSUSED */ +symbolS *md_undefined_symbol(name) +char *name; +{ + return 0; +} /* md_undefined_symbol() */ + +/* Exactly what point is a PC-relative offset relative TO? + On the i960, they're relative to the address of the instruction, + which we have set up as the address of the fixup too. */ +long + md_pcrel_from (fixP) +fixS *fixP; +{ + return fixP->fx_where + fixP->fx_frag->fr_address; +} + +void + md_apply_fix(fixP, val) +fixS *fixP; +long val; +{ + char *place = fixP->fx_where + fixP->fx_frag->fr_literal; + + if (!fixP->fx_bit_fixP) { + + switch (fixP->fx_im_disp) { + case 0: + fixP->fx_addnumber = val; + md_number_to_imm(place, val, fixP->fx_size, fixP); + break; + case 1: + md_number_to_disp(place, + fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val, + fixP->fx_size); + break; + case 2: /* fix requested for .long .word etc */ + md_number_to_chars(place, val, fixP->fx_size); + break; + default: + as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__); + } /* OVE: maybe one ought to put _imm _disp _chars in one md-func */ + } else { + md_number_to_field(place, val, fixP->fx_bit_fixP); + } + + return; +} /* md_apply_fix() */ + +#if defined(OBJ_AOUT) | defined(OBJ_BOUT) +void tc_bout_fix_to_chars(where, fixP, segment_address_in_file) +char *where; +fixS *fixP; +relax_addressT segment_address_in_file; +{ + static unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 }; + struct relocation_info ri; + symbolS *symbolP; + + /* JF this is for paranoia */ + memset((char *)&ri, '\0', sizeof(ri)); + + know((symbolP = fixP->fx_addsy) != 0); + + /* These two 'cuz of NS32K */ + ri.r_callj = fixP->fx_callj; + + ri.r_length = nbytes_r_length[fixP->fx_size]; + ri.r_pcrel = fixP->fx_pcrel; + ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file; + + if (!S_IS_DEFINED(symbolP)) { + ri.r_extern = 1; + ri.r_index = symbolP->sy_number; + } else { + ri.r_extern = 0; + ri.r_index = S_GET_TYPE(symbolP); + } + + /* Output the relocation information in machine-dependent form. */ + md_ri_to_chars(where, &ri); + + return; +} /* tc_bout_fix_to_chars() */ + +#endif /* OBJ_AOUT or OBJ_BOUT */ + +/* Align an address by rounding it up to the specified boundary. + */ +long md_section_align(seg, addr) +segT seg; +long addr; /* Address to be rounded up */ +{ + return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg])); +} /* md_section_align() */ + +#ifdef OBJ_COFF +void tc_headers_hook(headers) +object_headers *headers; +{ + /* FIXME: remove this line */ /* unsigned short arch_flag = 0; */ + + if ((iclasses_seen == I_BASE) || (iclasses_seen == 0)) { + headers->filehdr.f_flags |= F_I960CORE; + } else if (iclasses_seen & I_CX){ + headers->filehdr.f_flags |= F_I960CA; + } else if (iclasses_seen & I_MIL){ + headers->filehdr.f_flags |= F_I960MC; + } else if (iclasses_seen & (I_DEC|I_FP)){ + headers->filehdr.f_flags |= F_I960KB; + } else { + headers->filehdr.f_flags |= F_I960KA; + } /* set arch flag */ + + if (flagseen['R']) { + headers->filehdr.f_magic = I960RWMAGIC; + headers->aouthdr.magic = OMAGIC; + } else { + headers->filehdr.f_magic = I960ROMAGIC; + headers->aouthdr.magic = NMAGIC; + } /* set magic numbers */ + + return; +} /* tc_headers_hook() */ +#endif /* OBJ_COFF */ + +/* + * Things going on here: + * + * For bout, We need to assure a couple of simplifying + * assumptions about leafprocs for the linker: the leafproc + * entry symbols will be defined in the same assembly in + * which they're declared with the '.leafproc' directive; + * and if a leafproc has both 'call' and 'bal' entry points + * they are both global or both local. + * + * For coff, the call symbol has a second aux entry that + * contains the bal entry point. The bal symbol becomes a + * label. + * + * For coff representation, the call symbol has a second aux entry that + * contains the bal entry point. The bal symbol becomes a label. + * + */ + +void tc_crawl_symbol_chain(headers) +object_headers *headers; +{ + symbolS *symbolP; + + for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) { +#ifdef OBJ_COFF + if (TC_S_IS_SYSPROC(symbolP)) { + /* second aux entry already contains the sysproc number */ + S_SET_NUMBER_AUXILIARY(symbolP, 2); + S_SET_STORAGE_CLASS(symbolP, C_SCALL); + S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT)); + continue; + } /* rewrite sysproc */ +#endif /* OBJ_COFF */ + + if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) { + continue; + } /* Not a leafproc symbol */ + + if (!S_IS_DEFINED(symbolP)) { + as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP)); + } /* undefined leaf */ + + if (TC_S_IS_CALLNAME(symbolP)) { + symbolS *balP = tc_get_bal_of_call(symbolP); + if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) { + S_SET_EXTERNAL(symbolP); + S_SET_EXTERNAL(balP); + as_warn("Warning: making leafproc entries %s and %s both global\n", + S_GET_NAME(symbolP), S_GET_NAME(balP)); + } /* externality mismatch */ + } /* if callname */ + } /* walk the symbol chain */ + + return; +} /* tc_crawl_symbol_chain() */ + +/* + * For aout or bout, the bal immediately follows the call. + * + * For coff, we cheat and store a pointer to the bal symbol + * in the second aux entry of the call. + */ + +void tc_set_bal_of_call(callP, balP) +symbolS *callP; +symbolS *balP; +{ + know(TC_S_IS_CALLNAME(callP)); + know(TC_S_IS_BALNAME(balP)); + +#ifdef OBJ_COFF + + callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP; + S_SET_NUMBER_AUXILIARY(callP,2); + +#elif defined(OBJ_AOUT) || defined(OBJ_BOUT) + + /* If the 'bal' entry doesn't immediately follow the 'call' + * symbol, unlink it from the symbol list and re-insert it. + */ + if (symbol_next(callP) != balP) { + symbol_remove(balP, &symbol_rootP, &symbol_lastP); + symbol_append(balP, callP, &symbol_rootP, &symbol_lastP); + } /* if not in order */ + +#else + (as yet unwritten.); +#endif /* switch on OBJ_FORMAT */ + + return; +} /* tc_set_bal_of_call() */ + +char *_tc_get_bal_of_call(callP) +symbolS *callP; +{ + symbolS *retval; + + know(TC_S_IS_CALLNAME(callP)); + +#ifdef OBJ_COFF + retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry); +#elif defined(OBJ_AOUT) || defined(OBJ_BOUT) + retval = symbol_next(callP); +#else + (as yet unwritten.); +#endif /* switch on OBJ_FORMAT */ + + know(TC_S_IS_BALNAME(retval)); + return((char *) retval); +} /* _tc_get_bal_of_call() */ + +void tc_coff_symbol_emit_hook(symbolP) +symbolS *symbolP; +{ + if (TC_S_IS_CALLNAME(symbolP)) { +#ifdef OBJ_COFF + symbolS *balP = tc_get_bal_of_call(symbolP); + + /* second aux entry contains the bal entry point */ + /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */ + symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP); + S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT)); + S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT)); + /* fix up the bal symbol */ + S_SET_STORAGE_CLASS(balP, C_LABEL); +#endif /* OBJ_COFF */ + } /* only on calls */ + + return; +} /* tc_coff_symbol_emit_hook() */ + +/* + * Local Variables: + * comment-column: 0 + * fill-column: 131 + * End: + */ + +/* end of tc-i960.c */ |