diff options
author | dim <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 |
commit | 169d2bd06003c39970bc94c99669a34b61bb7e45 (patch) | |
tree | 06099edc18d30894081a822b756f117cbe0b8207 /docs/tutorial/OCamlLangImpl6.html | |
parent | 0ac5f94c68a3d8fbd1380dbba26d891ea7816b5e (diff) | |
download | FreeBSD-src-169d2bd06003c39970bc94c99669a34b61bb7e45.zip FreeBSD-src-169d2bd06003c39970bc94c99669a34b61bb7e45.tar.gz |
Vendor import of llvm trunk r178860:
http://llvm.org/svn/llvm-project/llvm/trunk@178860
Diffstat (limited to 'docs/tutorial/OCamlLangImpl6.html')
-rw-r--r-- | docs/tutorial/OCamlLangImpl6.html | 1574 |
1 files changed, 0 insertions, 1574 deletions
diff --git a/docs/tutorial/OCamlLangImpl6.html b/docs/tutorial/OCamlLangImpl6.html deleted file mode 100644 index db25240..0000000 --- a/docs/tutorial/OCamlLangImpl6.html +++ /dev/null @@ -1,1574 +0,0 @@ -<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" - "http://www.w3.org/TR/html4/strict.dtd"> - -<html> -<head> - <title>Kaleidoscope: Extending the Language: User-defined Operators</title> - <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> - <meta name="author" content="Chris Lattner"> - <meta name="author" content="Erick Tryzelaar"> - <link rel="stylesheet" href="../_static/llvm.css" type="text/css"> -</head> - -<body> - -<h1>Kaleidoscope: Extending the Language: User-defined Operators</h1> - -<ul> -<li><a href="index.html">Up to Tutorial Index</a></li> -<li>Chapter 6 - <ol> - <li><a href="#intro">Chapter 6 Introduction</a></li> - <li><a href="#idea">User-defined Operators: the Idea</a></li> - <li><a href="#binary">User-defined Binary Operators</a></li> - <li><a href="#unary">User-defined Unary Operators</a></li> - <li><a href="#example">Kicking the Tires</a></li> - <li><a href="#code">Full Code Listing</a></li> - </ol> -</li> -<li><a href="OCamlLangImpl7.html">Chapter 7</a>: Extending the Language: Mutable -Variables / SSA Construction</li> -</ul> - -<div class="doc_author"> - <p> - Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> - and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a> - </p> -</div> - -<!-- *********************************************************************** --> -<h2><a name="intro">Chapter 6 Introduction</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language -with LLVM</a>" tutorial. At this point in our tutorial, we now have a fully -functional language that is fairly minimal, but also useful. There -is still one big problem with it, however. Our language doesn't have many -useful operators (like division, logical negation, or even any comparisons -besides less-than).</p> - -<p>This chapter of the tutorial takes a wild digression into adding user-defined -operators to the simple and beautiful Kaleidoscope language. This digression now -gives us a simple and ugly language in some ways, but also a powerful one at the -same time. One of the great things about creating your own language is that you -get to decide what is good or bad. In this tutorial we'll assume that it is -okay to use this as a way to show some interesting parsing techniques.</p> - -<p>At the end of this tutorial, we'll run through an example Kaleidoscope -application that <a href="#example">renders the Mandelbrot set</a>. This gives -an example of what you can build with Kaleidoscope and its feature set.</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="idea">User-defined Operators: the Idea</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p> -The "operator overloading" that we will add to Kaleidoscope is more general than -languages like C++. In C++, you are only allowed to redefine existing -operators: you can't programatically change the grammar, introduce new -operators, change precedence levels, etc. In this chapter, we will add this -capability to Kaleidoscope, which will let the user round out the set of -operators that are supported.</p> - -<p>The point of going into user-defined operators in a tutorial like this is to -show the power and flexibility of using a hand-written parser. Thus far, the parser -we have been implementing uses recursive descent for most parts of the grammar and -operator precedence parsing for the expressions. See <a -href="OCamlLangImpl2.html">Chapter 2</a> for details. Without using operator -precedence parsing, it would be very difficult to allow the programmer to -introduce new operators into the grammar: the grammar is dynamically extensible -as the JIT runs.</p> - -<p>The two specific features we'll add are programmable unary operators (right -now, Kaleidoscope has no unary operators at all) as well as binary operators. -An example of this is:</p> - -<div class="doc_code"> -<pre> -# Logical unary not. -def unary!(v) - if v then - 0 - else - 1; - -# Define > with the same precedence as <. -def binary> 10 (LHS RHS) - RHS < LHS; - -# Binary "logical or", (note that it does not "short circuit") -def binary| 5 (LHS RHS) - if LHS then - 1 - else if RHS then - 1 - else - 0; - -# Define = with slightly lower precedence than relationals. -def binary= 9 (LHS RHS) - !(LHS < RHS | LHS > RHS); -</pre> -</div> - -<p>Many languages aspire to being able to implement their standard runtime -library in the language itself. In Kaleidoscope, we can implement significant -parts of the language in the library!</p> - -<p>We will break down implementation of these features into two parts: -implementing support for user-defined binary operators and adding unary -operators.</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="binary">User-defined Binary Operators</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>Adding support for user-defined binary operators is pretty simple with our -current framework. We'll first add support for the unary/binary keywords:</p> - -<div class="doc_code"> -<pre> -type token = - ... - <b>(* operators *) - | Binary | Unary</b> - -... - -and lex_ident buffer = parser - ... - | "for" -> [< 'Token.For; stream >] - | "in" -> [< 'Token.In; stream >] - <b>| "binary" -> [< 'Token.Binary; stream >] - | "unary" -> [< 'Token.Unary; stream >]</b> -</pre> -</div> - -<p>This just adds lexer support for the unary and binary keywords, like we -did in <a href="OCamlLangImpl5.html#iflexer">previous chapters</a>. One nice -thing about our current AST, is that we represent binary operators with full -generalisation by using their ASCII code as the opcode. For our extended -operators, we'll use this same representation, so we don't need any new AST or -parser support.</p> - -<p>On the other hand, we have to be able to represent the definitions of these -new operators, in the "def binary| 5" part of the function definition. In our -grammar so far, the "name" for the function definition is parsed as the -"prototype" production and into the <tt>Ast.Prototype</tt> AST node. To -represent our new user-defined operators as prototypes, we have to extend -the <tt>Ast.Prototype</tt> AST node like this:</p> - -<div class="doc_code"> -<pre> -(* proto - This type represents the "prototype" for a function, which captures - * its name, and its argument names (thus implicitly the number of arguments the - * function takes). *) -type proto = - | Prototype of string * string array - <b>| BinOpPrototype of string * string array * int</b> -</pre> -</div> - -<p>Basically, in addition to knowing a name for the prototype, we now keep track -of whether it was an operator, and if it was, what precedence level the operator -is at. The precedence is only used for binary operators (as you'll see below, -it just doesn't apply for unary operators). Now that we have a way to represent -the prototype for a user-defined operator, we need to parse it:</p> - -<div class="doc_code"> -<pre> -(* prototype - * ::= id '(' id* ')' - <b>* ::= binary LETTER number? (id, id) - * ::= unary LETTER number? (id) *)</b> -let parse_prototype = - let rec parse_args accumulator = parser - | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e - | [< >] -> accumulator - in - let parse_operator = parser - | [< 'Token.Unary >] -> "unary", 1 - | [< 'Token.Binary >] -> "binary", 2 - in - let parse_binary_precedence = parser - | [< 'Token.Number n >] -> int_of_float n - | [< >] -> 30 - in - parser - | [< 'Token.Ident id; - 'Token.Kwd '(' ?? "expected '(' in prototype"; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> - (* success. *) - Ast.Prototype (id, Array.of_list (List.rev args)) - <b>| [< (prefix, kind)=parse_operator; - 'Token.Kwd op ?? "expected an operator"; - (* Read the precedence if present. *) - binary_precedence=parse_binary_precedence; - 'Token.Kwd '(' ?? "expected '(' in prototype"; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> - let name = prefix ^ (String.make 1 op) in - let args = Array.of_list (List.rev args) in - - (* Verify right number of arguments for operator. *) - if Array.length args != kind - then raise (Stream.Error "invalid number of operands for operator") - else - if kind == 1 then - Ast.Prototype (name, args) - else - Ast.BinOpPrototype (name, args, binary_precedence)</b> - | [< >] -> - raise (Stream.Error "expected function name in prototype") -</pre> -</div> - -<p>This is all fairly straightforward parsing code, and we have already seen -a lot of similar code in the past. One interesting part about the code above is -the couple lines that set up <tt>name</tt> for binary operators. This builds -names like "binary@" for a newly defined "@" operator. This then takes -advantage of the fact that symbol names in the LLVM symbol table are allowed to -have any character in them, including embedded nul characters.</p> - -<p>The next interesting thing to add, is codegen support for these binary -operators. Given our current structure, this is a simple addition of a default -case for our existing binary operator node:</p> - -<div class="doc_code"> -<pre> -let codegen_expr = function - ... - | Ast.Binary (op, lhs, rhs) -> - let lhs_val = codegen_expr lhs in - let rhs_val = codegen_expr rhs in - begin - match op with - | '+' -> build_add lhs_val rhs_val "addtmp" builder - | '-' -> build_sub lhs_val rhs_val "subtmp" builder - | '*' -> build_mul lhs_val rhs_val "multmp" builder - | '<' -> - (* Convert bool 0/1 to double 0.0 or 1.0 *) - let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in - build_uitofp i double_type "booltmp" builder - <b>| _ -> - (* If it wasn't a builtin binary operator, it must be a user defined - * one. Emit a call to it. *) - let callee = "binary" ^ (String.make 1 op) in - let callee = - match lookup_function callee the_module with - | Some callee -> callee - | None -> raise (Error "binary operator not found!") - in - build_call callee [|lhs_val; rhs_val|] "binop" builder</b> - end -</pre> -</div> - -<p>As you can see above, the new code is actually really simple. It just does -a lookup for the appropriate operator in the symbol table and generates a -function call to it. Since user-defined operators are just built as normal -functions (because the "prototype" boils down to a function with the right -name) everything falls into place.</p> - -<p>The final piece of code we are missing, is a bit of top level magic:</p> - -<div class="doc_code"> -<pre> -let codegen_func the_fpm = function - | Ast.Function (proto, body) -> - Hashtbl.clear named_values; - let the_function = codegen_proto proto in - - <b>(* If this is an operator, install it. *) - begin match proto with - | Ast.BinOpPrototype (name, args, prec) -> - let op = name.[String.length name - 1] in - Hashtbl.add Parser.binop_precedence op prec; - | _ -> () - end;</b> - - (* Create a new basic block to start insertion into. *) - let bb = append_block context "entry" the_function in - position_at_end bb builder; - ... -</pre> -</div> - -<p>Basically, before codegening a function, if it is a user-defined operator, we -register it in the precedence table. This allows the binary operator parsing -logic we already have in place to handle it. Since we are working on a -fully-general operator precedence parser, this is all we need to do to "extend -the grammar".</p> - -<p>Now we have useful user-defined binary operators. This builds a lot -on the previous framework we built for other operators. Adding unary operators -is a bit more challenging, because we don't have any framework for it yet - lets -see what it takes.</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="unary">User-defined Unary Operators</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>Since we don't currently support unary operators in the Kaleidoscope -language, we'll need to add everything to support them. Above, we added simple -support for the 'unary' keyword to the lexer. In addition to that, we need an -AST node:</p> - -<div class="doc_code"> -<pre> -type expr = - ... - (* variant for a unary operator. *) - | Unary of char * expr - ... -</pre> -</div> - -<p>This AST node is very simple and obvious by now. It directly mirrors the -binary operator AST node, except that it only has one child. With this, we -need to add the parsing logic. Parsing a unary operator is pretty simple: we'll -add a new function to do it:</p> - -<div class="doc_code"> -<pre> -(* unary - * ::= primary - * ::= '!' unary *) -and parse_unary = parser - (* If this is a unary operator, read it. *) - | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] -> - Ast.Unary (op, operand) - - (* If the current token is not an operator, it must be a primary expr. *) - | [< stream >] -> parse_primary stream -</pre> -</div> - -<p>The grammar we add is pretty straightforward here. If we see a unary -operator when parsing a primary operator, we eat the operator as a prefix and -parse the remaining piece as another unary operator. This allows us to handle -multiple unary operators (e.g. "!!x"). Note that unary operators can't have -ambiguous parses like binary operators can, so there is no need for precedence -information.</p> - -<p>The problem with this function, is that we need to call ParseUnary from -somewhere. To do this, we change previous callers of ParsePrimary to call -<tt>parse_unary</tt> instead:</p> - -<div class="doc_code"> -<pre> -(* binoprhs - * ::= ('+' primary)* *) -and parse_bin_rhs expr_prec lhs stream = - ... - <b>(* Parse the unary expression after the binary operator. *) - let rhs = parse_unary stream in</b> - ... - -... - -(* expression - * ::= primary binoprhs *) -and parse_expr = parser - | [< lhs=<b>parse_unary</b>; stream >] -> parse_bin_rhs 0 lhs stream -</pre> -</div> - -<p>With these two simple changes, we are now able to parse unary operators and build the -AST for them. Next up, we need to add parser support for prototypes, to parse -the unary operator prototype. We extend the binary operator code above -with:</p> - -<div class="doc_code"> -<pre> -(* prototype - * ::= id '(' id* ')' - * ::= binary LETTER number? (id, id) - <b>* ::= unary LETTER number? (id)</b> *) -let parse_prototype = - let rec parse_args accumulator = parser - | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e - | [< >] -> accumulator - in - <b>let parse_operator = parser - | [< 'Token.Unary >] -> "unary", 1 - | [< 'Token.Binary >] -> "binary", 2 - in</b> - let parse_binary_precedence = parser - | [< 'Token.Number n >] -> int_of_float n - | [< >] -> 30 - in - parser - | [< 'Token.Ident id; - 'Token.Kwd '(' ?? "expected '(' in prototype"; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> - (* success. *) - Ast.Prototype (id, Array.of_list (List.rev args)) - <b>| [< (prefix, kind)=parse_operator; - 'Token.Kwd op ?? "expected an operator"; - (* Read the precedence if present. *) - binary_precedence=parse_binary_precedence; - 'Token.Kwd '(' ?? "expected '(' in prototype"; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> - let name = prefix ^ (String.make 1 op) in - let args = Array.of_list (List.rev args) in - - (* Verify right number of arguments for operator. *) - if Array.length args != kind - then raise (Stream.Error "invalid number of operands for operator") - else - if kind == 1 then - Ast.Prototype (name, args) - else - Ast.BinOpPrototype (name, args, binary_precedence)</b> - | [< >] -> - raise (Stream.Error "expected function name in prototype") -</pre> -</div> - -<p>As with binary operators, we name unary operators with a name that includes -the operator character. This assists us at code generation time. Speaking of, -the final piece we need to add is codegen support for unary operators. It looks -like this:</p> - -<div class="doc_code"> -<pre> -let rec codegen_expr = function - ... - | Ast.Unary (op, operand) -> - let operand = codegen_expr operand in - let callee = "unary" ^ (String.make 1 op) in - let callee = - match lookup_function callee the_module with - | Some callee -> callee - | None -> raise (Error "unknown unary operator") - in - build_call callee [|operand|] "unop" builder -</pre> -</div> - -<p>This code is similar to, but simpler than, the code for binary operators. It -is simpler primarily because it doesn't need to handle any predefined operators. -</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="example">Kicking the Tires</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>It is somewhat hard to believe, but with a few simple extensions we've -covered in the last chapters, we have grown a real-ish language. With this, we -can do a lot of interesting things, including I/O, math, and a bunch of other -things. For example, we can now add a nice sequencing operator (printd is -defined to print out the specified value and a newline):</p> - -<div class="doc_code"> -<pre> -ready> <b>extern printd(x);</b> -Read extern: declare double @printd(double) -ready> <b>def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.</b> -.. -ready> <b>printd(123) : printd(456) : printd(789);</b> -123.000000 -456.000000 -789.000000 -Evaluated to 0.000000 -</pre> -</div> - -<p>We can also define a bunch of other "primitive" operations, such as:</p> - -<div class="doc_code"> -<pre> -# Logical unary not. -def unary!(v) - if v then - 0 - else - 1; - -# Unary negate. -def unary-(v) - 0-v; - -# Define > with the same precedence as <. -def binary> 10 (LHS RHS) - RHS < LHS; - -# Binary logical or, which does not short circuit. -def binary| 5 (LHS RHS) - if LHS then - 1 - else if RHS then - 1 - else - 0; - -# Binary logical and, which does not short circuit. -def binary& 6 (LHS RHS) - if !LHS then - 0 - else - !!RHS; - -# Define = with slightly lower precedence than relationals. -def binary = 9 (LHS RHS) - !(LHS < RHS | LHS > RHS); - -</pre> -</div> - - -<p>Given the previous if/then/else support, we can also define interesting -functions for I/O. For example, the following prints out a character whose -"density" reflects the value passed in: the lower the value, the denser the -character:</p> - -<div class="doc_code"> -<pre> -ready> -<b> -extern putchard(char) -def printdensity(d) - if d > 8 then - putchard(32) # ' ' - else if d > 4 then - putchard(46) # '.' - else if d > 2 then - putchard(43) # '+' - else - putchard(42); # '*'</b> -... -ready> <b>printdensity(1): printdensity(2): printdensity(3) : - printdensity(4): printdensity(5): printdensity(9): putchard(10);</b> -*++.. -Evaluated to 0.000000 -</pre> -</div> - -<p>Based on these simple primitive operations, we can start to define more -interesting things. For example, here's a little function that solves for the -number of iterations it takes a function in the complex plane to -converge:</p> - -<div class="doc_code"> -<pre> -# determine whether the specific location diverges. -# Solve for z = z^2 + c in the complex plane. -def mandleconverger(real imag iters creal cimag) - if iters > 255 | (real*real + imag*imag > 4) then - iters - else - mandleconverger(real*real - imag*imag + creal, - 2*real*imag + cimag, - iters+1, creal, cimag); - -# return the number of iterations required for the iteration to escape -def mandleconverge(real imag) - mandleconverger(real, imag, 0, real, imag); -</pre> -</div> - -<p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis -for computation of the <a -href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>. Our -<tt>mandelconverge</tt> function returns the number of iterations that it takes -for a complex orbit to escape, saturating to 255. This is not a very useful -function by itself, but if you plot its value over a two-dimensional plane, -you can see the Mandelbrot set. Given that we are limited to using putchard -here, our amazing graphical output is limited, but we can whip together -something using the density plotter above:</p> - -<div class="doc_code"> -<pre> -# compute and plot the mandlebrot set with the specified 2 dimensional range -# info. -def mandelhelp(xmin xmax xstep ymin ymax ystep) - for y = ymin, y < ymax, ystep in ( - (for x = xmin, x < xmax, xstep in - printdensity(mandleconverge(x,y))) - : putchard(10) - ) - -# mandel - This is a convenient helper function for plotting the mandelbrot set -# from the specified position with the specified Magnification. -def mandel(realstart imagstart realmag imagmag) - mandelhelp(realstart, realstart+realmag*78, realmag, - imagstart, imagstart+imagmag*40, imagmag); -</pre> -</div> - -<p>Given this, we can try plotting out the mandlebrot set! Lets try it out:</p> - -<div class="doc_code"> -<pre> -ready> <b>mandel(-2.3, -1.3, 0.05, 0.07);</b> -*******************************+++++++++++************************************* -*************************+++++++++++++++++++++++******************************* -**********************+++++++++++++++++++++++++++++**************************** -*******************+++++++++++++++++++++.. ...++++++++************************* -*****************++++++++++++++++++++++.... ...+++++++++*********************** -***************+++++++++++++++++++++++..... ...+++++++++********************* -**************+++++++++++++++++++++++.... ....+++++++++******************** -*************++++++++++++++++++++++...... .....++++++++******************* -************+++++++++++++++++++++....... .......+++++++****************** -***********+++++++++++++++++++.... ... .+++++++***************** -**********+++++++++++++++++....... .+++++++**************** -*********++++++++++++++........... ...+++++++*************** -********++++++++++++............ ...++++++++************** -********++++++++++... .......... .++++++++************** -*******+++++++++..... .+++++++++************* -*******++++++++...... ..+++++++++************* -*******++++++....... ..+++++++++************* -*******+++++...... ..+++++++++************* -*******.... .... ...+++++++++************* -*******.... . ...+++++++++************* -*******+++++...... ...+++++++++************* -*******++++++....... ..+++++++++************* -*******++++++++...... .+++++++++************* -*******+++++++++..... ..+++++++++************* -********++++++++++... .......... .++++++++************** -********++++++++++++............ ...++++++++************** -*********++++++++++++++.......... ...+++++++*************** -**********++++++++++++++++........ .+++++++**************** -**********++++++++++++++++++++.... ... ..+++++++**************** -***********++++++++++++++++++++++....... .......++++++++***************** -************+++++++++++++++++++++++...... ......++++++++****************** -**************+++++++++++++++++++++++.... ....++++++++******************** -***************+++++++++++++++++++++++..... ...+++++++++********************* -*****************++++++++++++++++++++++.... ...++++++++*********************** -*******************+++++++++++++++++++++......++++++++************************* -*********************++++++++++++++++++++++.++++++++*************************** -*************************+++++++++++++++++++++++******************************* -******************************+++++++++++++************************************ -******************************************************************************* -******************************************************************************* -******************************************************************************* -Evaluated to 0.000000 -ready> <b>mandel(-2, -1, 0.02, 0.04);</b> -**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++ -***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++. -*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++... -*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++..... -***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........ -**************++++++++++++++++++++++++++++++++++++++++++++++++++++++........... -************+++++++++++++++++++++++++++++++++++++++++++++++++++++.............. -***********++++++++++++++++++++++++++++++++++++++++++++++++++........ . -**********++++++++++++++++++++++++++++++++++++++++++++++............. -********+++++++++++++++++++++++++++++++++++++++++++.................. -*******+++++++++++++++++++++++++++++++++++++++....................... -******+++++++++++++++++++++++++++++++++++........................... -*****++++++++++++++++++++++++++++++++............................ -*****++++++++++++++++++++++++++++............................... -****++++++++++++++++++++++++++...... ......................... -***++++++++++++++++++++++++......... ...... ........... -***++++++++++++++++++++++............ -**+++++++++++++++++++++.............. -**+++++++++++++++++++................ -*++++++++++++++++++................. -*++++++++++++++++............ ... -*++++++++++++++.............. -*+++....++++................ -*.......... ........... -* -*.......... ........... -*+++....++++................ -*++++++++++++++.............. -*++++++++++++++++............ ... -*++++++++++++++++++................. -**+++++++++++++++++++................ -**+++++++++++++++++++++.............. -***++++++++++++++++++++++............ -***++++++++++++++++++++++++......... ...... ........... -****++++++++++++++++++++++++++...... ......................... -*****++++++++++++++++++++++++++++............................... -*****++++++++++++++++++++++++++++++++............................ -******+++++++++++++++++++++++++++++++++++........................... -*******+++++++++++++++++++++++++++++++++++++++....................... -********+++++++++++++++++++++++++++++++++++++++++++.................. -Evaluated to 0.000000 -ready> <b>mandel(-0.9, -1.4, 0.02, 0.03);</b> -******************************************************************************* -******************************************************************************* -******************************************************************************* -**********+++++++++++++++++++++************************************************ -*+++++++++++++++++++++++++++++++++++++++*************************************** -+++++++++++++++++++++++++++++++++++++++++++++********************************** -++++++++++++++++++++++++++++++++++++++++++++++++++***************************** -++++++++++++++++++++++++++++++++++++++++++++++++++++++************************* -+++++++++++++++++++++++++++++++++++++++++++++++++++++++++********************** -+++++++++++++++++++++++++++++++++.........++++++++++++++++++******************* -+++++++++++++++++++++++++++++++.... ......+++++++++++++++++++**************** -+++++++++++++++++++++++++++++....... ........+++++++++++++++++++************** -++++++++++++++++++++++++++++........ ........++++++++++++++++++++************ -+++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++********** -++++++++++++++++++++++++++........... ....++++++++++++++++++++++******** -++++++++++++++++++++++++............. .......++++++++++++++++++++++****** -+++++++++++++++++++++++............. ........+++++++++++++++++++++++**** -++++++++++++++++++++++........... ..........++++++++++++++++++++++*** -++++++++++++++++++++........... .........++++++++++++++++++++++* -++++++++++++++++++............ ...........++++++++++++++++++++ -++++++++++++++++............... .............++++++++++++++++++ -++++++++++++++................. ...............++++++++++++++++ -++++++++++++.................. .................++++++++++++++ -+++++++++.................. .................+++++++++++++ -++++++........ . ......... ..++++++++++++ -++............ ...... ....++++++++++ -.............. ...++++++++++ -.............. ....+++++++++ -.............. .....++++++++ -............. ......++++++++ -........... .......++++++++ -......... ........+++++++ -......... ........+++++++ -......... ....+++++++ -........ ...+++++++ -....... ...+++++++ - ....+++++++ - .....+++++++ - ....+++++++ - ....+++++++ - ....+++++++ -Evaluated to 0.000000 -ready> <b>^D</b> -</pre> -</div> - -<p>At this point, you may be starting to realize that Kaleidoscope is a real -and powerful language. It may not be self-similar :), but it can be used to -plot things that are!</p> - -<p>With this, we conclude the "adding user-defined operators" chapter of the -tutorial. We have successfully augmented our language, adding the ability to -extend the language in the library, and we have shown how this can be used to -build a simple but interesting end-user application in Kaleidoscope. At this -point, Kaleidoscope can build a variety of applications that are functional and -can call functions with side-effects, but it can't actually define and mutate a -variable itself.</p> - -<p>Strikingly, variable mutation is an important feature of some -languages, and it is not at all obvious how to <a href="OCamlLangImpl7.html">add -support for mutable variables</a> without having to add an "SSA construction" -phase to your front-end. In the next chapter, we will describe how you can -add variable mutation without building SSA in your front-end.</p> - -</div> - - -<!-- *********************************************************************** --> -<h2><a name="code">Full Code Listing</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p> -Here is the complete code listing for our running example, enhanced with the -if/then/else and for expressions.. To build this example, use: -</p> - -<div class="doc_code"> -<pre> -# Compile -ocamlbuild toy.byte -# Run -./toy.byte -</pre> -</div> - -<p>Here is the code:</p> - -<dl> -<dt>_tags:</dt> -<dd class="doc_code"> -<pre> -<{lexer,parser}.ml>: use_camlp4, pp(camlp4of) -<*.{byte,native}>: g++, use_llvm, use_llvm_analysis -<*.{byte,native}>: use_llvm_executionengine, use_llvm_target -<*.{byte,native}>: use_llvm_scalar_opts, use_bindings -</pre> -</dd> - -<dt>myocamlbuild.ml:</dt> -<dd class="doc_code"> -<pre> -open Ocamlbuild_plugin;; - -ocaml_lib ~extern:true "llvm";; -ocaml_lib ~extern:true "llvm_analysis";; -ocaml_lib ~extern:true "llvm_executionengine";; -ocaml_lib ~extern:true "llvm_target";; -ocaml_lib ~extern:true "llvm_scalar_opts";; - -flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);; -dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];; -</pre> -</dd> - -<dt>token.ml:</dt> -<dd class="doc_code"> -<pre> -(*===----------------------------------------------------------------------=== - * Lexer Tokens - *===----------------------------------------------------------------------===*) - -(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of - * these others for known things. *) -type token = - (* commands *) - | Def | Extern - - (* primary *) - | Ident of string | Number of float - - (* unknown *) - | Kwd of char - - (* control *) - | If | Then | Else - | For | In - - (* operators *) - | Binary | Unary -</pre> -</dd> - -<dt>lexer.ml:</dt> -<dd class="doc_code"> -<pre> -(*===----------------------------------------------------------------------=== - * Lexer - *===----------------------------------------------------------------------===*) - -let rec lex = parser - (* Skip any whitespace. *) - | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream - - (* identifier: [a-zA-Z][a-zA-Z0-9] *) - | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> - let buffer = Buffer.create 1 in - Buffer.add_char buffer c; - lex_ident buffer stream - - (* number: [0-9.]+ *) - | [< ' ('0' .. '9' as c); stream >] -> - let buffer = Buffer.create 1 in - Buffer.add_char buffer c; - lex_number buffer stream - - (* Comment until end of line. *) - | [< ' ('#'); stream >] -> - lex_comment stream - - (* Otherwise, just return the character as its ascii value. *) - | [< 'c; stream >] -> - [< 'Token.Kwd c; lex stream >] - - (* end of stream. *) - | [< >] -> [< >] - -and lex_number buffer = parser - | [< ' ('0' .. '9' | '.' as c); stream >] -> - Buffer.add_char buffer c; - lex_number buffer stream - | [< stream=lex >] -> - [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] - -and lex_ident buffer = parser - | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> - Buffer.add_char buffer c; - lex_ident buffer stream - | [< stream=lex >] -> - match Buffer.contents buffer with - | "def" -> [< 'Token.Def; stream >] - | "extern" -> [< 'Token.Extern; stream >] - | "if" -> [< 'Token.If; stream >] - | "then" -> [< 'Token.Then; stream >] - | "else" -> [< 'Token.Else; stream >] - | "for" -> [< 'Token.For; stream >] - | "in" -> [< 'Token.In; stream >] - | "binary" -> [< 'Token.Binary; stream >] - | "unary" -> [< 'Token.Unary; stream >] - | id -> [< 'Token.Ident id; stream >] - -and lex_comment = parser - | [< ' ('\n'); stream=lex >] -> stream - | [< 'c; e=lex_comment >] -> e - | [< >] -> [< >] -</pre> -</dd> - -<dt>ast.ml:</dt> -<dd class="doc_code"> -<pre> -(*===----------------------------------------------------------------------=== - * Abstract Syntax Tree (aka Parse Tree) - *===----------------------------------------------------------------------===*) - -(* expr - Base type for all expression nodes. *) -type expr = - (* variant for numeric literals like "1.0". *) - | Number of float - - (* variant for referencing a variable, like "a". *) - | Variable of string - - (* variant for a unary operator. *) - | Unary of char * expr - - (* variant for a binary operator. *) - | Binary of char * expr * expr - - (* variant for function calls. *) - | Call of string * expr array - - (* variant for if/then/else. *) - | If of expr * expr * expr - - (* variant for for/in. *) - | For of string * expr * expr * expr option * expr - -(* proto - This type represents the "prototype" for a function, which captures - * its name, and its argument names (thus implicitly the number of arguments the - * function takes). *) -type proto = - | Prototype of string * string array - | BinOpPrototype of string * string array * int - -(* func - This type represents a function definition itself. *) -type func = Function of proto * expr -</pre> -</dd> - -<dt>parser.ml:</dt> -<dd class="doc_code"> -<pre> -(*===---------------------------------------------------------------------=== - * Parser - *===---------------------------------------------------------------------===*) - -(* binop_precedence - This holds the precedence for each binary operator that is - * defined *) -let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 - -(* precedence - Get the precedence of the pending binary operator token. *) -let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 - -(* primary - * ::= identifier - * ::= numberexpr - * ::= parenexpr - * ::= ifexpr - * ::= forexpr *) -let rec parse_primary = parser - (* numberexpr ::= number *) - | [< 'Token.Number n >] -> Ast.Number n - - (* parenexpr ::= '(' expression ')' *) - | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e - - (* identifierexpr - * ::= identifier - * ::= identifier '(' argumentexpr ')' *) - | [< 'Token.Ident id; stream >] -> - let rec parse_args accumulator = parser - | [< e=parse_expr; stream >] -> - begin parser - | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e - | [< >] -> e :: accumulator - end stream - | [< >] -> accumulator - in - let rec parse_ident id = parser - (* Call. *) - | [< 'Token.Kwd '('; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')'">] -> - Ast.Call (id, Array.of_list (List.rev args)) - - (* Simple variable ref. *) - | [< >] -> Ast.Variable id - in - parse_ident id stream - - (* ifexpr ::= 'if' expr 'then' expr 'else' expr *) - | [< 'Token.If; c=parse_expr; - 'Token.Then ?? "expected 'then'"; t=parse_expr; - 'Token.Else ?? "expected 'else'"; e=parse_expr >] -> - Ast.If (c, t, e) - - (* forexpr - ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *) - | [< 'Token.For; - 'Token.Ident id ?? "expected identifier after for"; - 'Token.Kwd '=' ?? "expected '=' after for"; - stream >] -> - begin parser - | [< - start=parse_expr; - 'Token.Kwd ',' ?? "expected ',' after for"; - end_=parse_expr; - stream >] -> - let step = - begin parser - | [< 'Token.Kwd ','; step=parse_expr >] -> Some step - | [< >] -> None - end stream - in - begin parser - | [< 'Token.In; body=parse_expr >] -> - Ast.For (id, start, end_, step, body) - | [< >] -> - raise (Stream.Error "expected 'in' after for") - end stream - | [< >] -> - raise (Stream.Error "expected '=' after for") - end stream - - | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") - -(* unary - * ::= primary - * ::= '!' unary *) -and parse_unary = parser - (* If this is a unary operator, read it. *) - | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] -> - Ast.Unary (op, operand) - - (* If the current token is not an operator, it must be a primary expr. *) - | [< stream >] -> parse_primary stream - -(* binoprhs - * ::= ('+' primary)* *) -and parse_bin_rhs expr_prec lhs stream = - match Stream.peek stream with - (* If this is a binop, find its precedence. *) - | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> - let token_prec = precedence c in - - (* If this is a binop that binds at least as tightly as the current binop, - * consume it, otherwise we are done. *) - if token_prec < expr_prec then lhs else begin - (* Eat the binop. *) - Stream.junk stream; - - (* Parse the unary expression after the binary operator. *) - let rhs = parse_unary stream in - - (* Okay, we know this is a binop. *) - let rhs = - match Stream.peek stream with - | Some (Token.Kwd c2) -> - (* If BinOp binds less tightly with rhs than the operator after - * rhs, let the pending operator take rhs as its lhs. *) - let next_prec = precedence c2 in - if token_prec < next_prec - then parse_bin_rhs (token_prec + 1) rhs stream - else rhs - | _ -> rhs - in - - (* Merge lhs/rhs. *) - let lhs = Ast.Binary (c, lhs, rhs) in - parse_bin_rhs expr_prec lhs stream - end - | _ -> lhs - -(* expression - * ::= primary binoprhs *) -and parse_expr = parser - | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream - -(* prototype - * ::= id '(' id* ')' - * ::= binary LETTER number? (id, id) - * ::= unary LETTER number? (id) *) -let parse_prototype = - let rec parse_args accumulator = parser - | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e - | [< >] -> accumulator - in - let parse_operator = parser - | [< 'Token.Unary >] -> "unary", 1 - | [< 'Token.Binary >] -> "binary", 2 - in - let parse_binary_precedence = parser - | [< 'Token.Number n >] -> int_of_float n - | [< >] -> 30 - in - parser - | [< 'Token.Ident id; - 'Token.Kwd '(' ?? "expected '(' in prototype"; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> - (* success. *) - Ast.Prototype (id, Array.of_list (List.rev args)) - | [< (prefix, kind)=parse_operator; - 'Token.Kwd op ?? "expected an operator"; - (* Read the precedence if present. *) - binary_precedence=parse_binary_precedence; - 'Token.Kwd '(' ?? "expected '(' in prototype"; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> - let name = prefix ^ (String.make 1 op) in - let args = Array.of_list (List.rev args) in - - (* Verify right number of arguments for operator. *) - if Array.length args != kind - then raise (Stream.Error "invalid number of operands for operator") - else - if kind == 1 then - Ast.Prototype (name, args) - else - Ast.BinOpPrototype (name, args, binary_precedence) - | [< >] -> - raise (Stream.Error "expected function name in prototype") - -(* definition ::= 'def' prototype expression *) -let parse_definition = parser - | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> - Ast.Function (p, e) - -(* toplevelexpr ::= expression *) -let parse_toplevel = parser - | [< e=parse_expr >] -> - (* Make an anonymous proto. *) - Ast.Function (Ast.Prototype ("", [||]), e) - -(* external ::= 'extern' prototype *) -let parse_extern = parser - | [< 'Token.Extern; e=parse_prototype >] -> e -</pre> -</dd> - -<dt>codegen.ml:</dt> -<dd class="doc_code"> -<pre> -(*===----------------------------------------------------------------------=== - * Code Generation - *===----------------------------------------------------------------------===*) - -open Llvm - -exception Error of string - -let context = global_context () -let the_module = create_module context "my cool jit" -let builder = builder context -let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 -let double_type = double_type context - -let rec codegen_expr = function - | Ast.Number n -> const_float double_type n - | Ast.Variable name -> - (try Hashtbl.find named_values name with - | Not_found -> raise (Error "unknown variable name")) - | Ast.Unary (op, operand) -> - let operand = codegen_expr operand in - let callee = "unary" ^ (String.make 1 op) in - let callee = - match lookup_function callee the_module with - | Some callee -> callee - | None -> raise (Error "unknown unary operator") - in - build_call callee [|operand|] "unop" builder - | Ast.Binary (op, lhs, rhs) -> - let lhs_val = codegen_expr lhs in - let rhs_val = codegen_expr rhs in - begin - match op with - | '+' -> build_add lhs_val rhs_val "addtmp" builder - | '-' -> build_sub lhs_val rhs_val "subtmp" builder - | '*' -> build_mul lhs_val rhs_val "multmp" builder - | '<' -> - (* Convert bool 0/1 to double 0.0 or 1.0 *) - let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in - build_uitofp i double_type "booltmp" builder - | _ -> - (* If it wasn't a builtin binary operator, it must be a user defined - * one. Emit a call to it. *) - let callee = "binary" ^ (String.make 1 op) in - let callee = - match lookup_function callee the_module with - | Some callee -> callee - | None -> raise (Error "binary operator not found!") - in - build_call callee [|lhs_val; rhs_val|] "binop" builder - end - | Ast.Call (callee, args) -> - (* Look up the name in the module table. *) - let callee = - match lookup_function callee the_module with - | Some callee -> callee - | None -> raise (Error "unknown function referenced") - in - let params = params callee in - - (* If argument mismatch error. *) - if Array.length params == Array.length args then () else - raise (Error "incorrect # arguments passed"); - let args = Array.map codegen_expr args in - build_call callee args "calltmp" builder - | Ast.If (cond, then_, else_) -> - let cond = codegen_expr cond in - - (* Convert condition to a bool by comparing equal to 0.0 *) - let zero = const_float double_type 0.0 in - let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in - - (* Grab the first block so that we might later add the conditional branch - * to it at the end of the function. *) - let start_bb = insertion_block builder in - let the_function = block_parent start_bb in - - let then_bb = append_block context "then" the_function in - - (* Emit 'then' value. *) - position_at_end then_bb builder; - let then_val = codegen_expr then_ in - - (* Codegen of 'then' can change the current block, update then_bb for the - * phi. We create a new name because one is used for the phi node, and the - * other is used for the conditional branch. *) - let new_then_bb = insertion_block builder in - - (* Emit 'else' value. *) - let else_bb = append_block context "else" the_function in - position_at_end else_bb builder; - let else_val = codegen_expr else_ in - - (* Codegen of 'else' can change the current block, update else_bb for the - * phi. *) - let new_else_bb = insertion_block builder in - - (* Emit merge block. *) - let merge_bb = append_block context "ifcont" the_function in - position_at_end merge_bb builder; - let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in - let phi = build_phi incoming "iftmp" builder in - - (* Return to the start block to add the conditional branch. *) - position_at_end start_bb builder; - ignore (build_cond_br cond_val then_bb else_bb builder); - - (* Set a unconditional branch at the end of the 'then' block and the - * 'else' block to the 'merge' block. *) - position_at_end new_then_bb builder; ignore (build_br merge_bb builder); - position_at_end new_else_bb builder; ignore (build_br merge_bb builder); - - (* Finally, set the builder to the end of the merge block. *) - position_at_end merge_bb builder; - - phi - | Ast.For (var_name, start, end_, step, body) -> - (* Emit the start code first, without 'variable' in scope. *) - let start_val = codegen_expr start in - - (* Make the new basic block for the loop header, inserting after current - * block. *) - let preheader_bb = insertion_block builder in - let the_function = block_parent preheader_bb in - let loop_bb = append_block context "loop" the_function in - - (* Insert an explicit fall through from the current block to the - * loop_bb. *) - ignore (build_br loop_bb builder); - - (* Start insertion in loop_bb. *) - position_at_end loop_bb builder; - - (* Start the PHI node with an entry for start. *) - let variable = build_phi [(start_val, preheader_bb)] var_name builder in - - (* Within the loop, the variable is defined equal to the PHI node. If it - * shadows an existing variable, we have to restore it, so save it - * now. *) - let old_val = - try Some (Hashtbl.find named_values var_name) with Not_found -> None - in - Hashtbl.add named_values var_name variable; - - (* Emit the body of the loop. This, like any other expr, can change the - * current BB. Note that we ignore the value computed by the body, but - * don't allow an error *) - ignore (codegen_expr body); - - (* Emit the step value. *) - let step_val = - match step with - | Some step -> codegen_expr step - (* If not specified, use 1.0. *) - | None -> const_float double_type 1.0 - in - - let next_var = build_add variable step_val "nextvar" builder in - - (* Compute the end condition. *) - let end_cond = codegen_expr end_ in - - (* Convert condition to a bool by comparing equal to 0.0. *) - let zero = const_float double_type 0.0 in - let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in - - (* Create the "after loop" block and insert it. *) - let loop_end_bb = insertion_block builder in - let after_bb = append_block context "afterloop" the_function in - - (* Insert the conditional branch into the end of loop_end_bb. *) - ignore (build_cond_br end_cond loop_bb after_bb builder); - - (* Any new code will be inserted in after_bb. *) - position_at_end after_bb builder; - - (* Add a new entry to the PHI node for the backedge. *) - add_incoming (next_var, loop_end_bb) variable; - - (* Restore the unshadowed variable. *) - begin match old_val with - | Some old_val -> Hashtbl.add named_values var_name old_val - | None -> () - end; - - (* for expr always returns 0.0. *) - const_null double_type - -let codegen_proto = function - | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -> - (* Make the function type: double(double,double) etc. *) - let doubles = Array.make (Array.length args) double_type in - let ft = function_type double_type doubles in - let f = - match lookup_function name the_module with - | None -> declare_function name ft the_module - - (* If 'f' conflicted, there was already something named 'name'. If it - * has a body, don't allow redefinition or reextern. *) - | Some f -> - (* If 'f' already has a body, reject this. *) - if block_begin f <> At_end f then - raise (Error "redefinition of function"); - - (* If 'f' took a different number of arguments, reject. *) - if element_type (type_of f) <> ft then - raise (Error "redefinition of function with different # args"); - f - in - - (* Set names for all arguments. *) - Array.iteri (fun i a -> - let n = args.(i) in - set_value_name n a; - Hashtbl.add named_values n a; - ) (params f); - f - -let codegen_func the_fpm = function - | Ast.Function (proto, body) -> - Hashtbl.clear named_values; - let the_function = codegen_proto proto in - - (* If this is an operator, install it. *) - begin match proto with - | Ast.BinOpPrototype (name, args, prec) -> - let op = name.[String.length name - 1] in - Hashtbl.add Parser.binop_precedence op prec; - | _ -> () - end; - - (* Create a new basic block to start insertion into. *) - let bb = append_block context "entry" the_function in - position_at_end bb builder; - - try - let ret_val = codegen_expr body in - - (* Finish off the function. *) - let _ = build_ret ret_val builder in - - (* Validate the generated code, checking for consistency. *) - Llvm_analysis.assert_valid_function the_function; - - (* Optimize the function. *) - let _ = PassManager.run_function the_function the_fpm in - - the_function - with e -> - delete_function the_function; - raise e -</pre> -</dd> - -<dt>toplevel.ml:</dt> -<dd class="doc_code"> -<pre> -(*===----------------------------------------------------------------------=== - * Top-Level parsing and JIT Driver - *===----------------------------------------------------------------------===*) - -open Llvm -open Llvm_executionengine - -(* top ::= definition | external | expression | ';' *) -let rec main_loop the_fpm the_execution_engine stream = - match Stream.peek stream with - | None -> () - - (* ignore top-level semicolons. *) - | Some (Token.Kwd ';') -> - Stream.junk stream; - main_loop the_fpm the_execution_engine stream - - | Some token -> - begin - try match token with - | Token.Def -> - let e = Parser.parse_definition stream in - print_endline "parsed a function definition."; - dump_value (Codegen.codegen_func the_fpm e); - | Token.Extern -> - let e = Parser.parse_extern stream in - print_endline "parsed an extern."; - dump_value (Codegen.codegen_proto e); - | _ -> - (* Evaluate a top-level expression into an anonymous function. *) - let e = Parser.parse_toplevel stream in - print_endline "parsed a top-level expr"; - let the_function = Codegen.codegen_func the_fpm e in - dump_value the_function; - - (* JIT the function, returning a function pointer. *) - let result = ExecutionEngine.run_function the_function [||] - the_execution_engine in - - print_string "Evaluated to "; - print_float (GenericValue.as_float Codegen.double_type result); - print_newline (); - with Stream.Error s | Codegen.Error s -> - (* Skip token for error recovery. *) - Stream.junk stream; - print_endline s; - end; - print_string "ready> "; flush stdout; - main_loop the_fpm the_execution_engine stream -</pre> -</dd> - -<dt>toy.ml:</dt> -<dd class="doc_code"> -<pre> -(*===----------------------------------------------------------------------=== - * Main driver code. - *===----------------------------------------------------------------------===*) - -open Llvm -open Llvm_executionengine -open Llvm_target -open Llvm_scalar_opts - -let main () = - ignore (initialize_native_target ()); - - (* Install standard binary operators. - * 1 is the lowest precedence. *) - Hashtbl.add Parser.binop_precedence '<' 10; - Hashtbl.add Parser.binop_precedence '+' 20; - Hashtbl.add Parser.binop_precedence '-' 20; - Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) - - (* Prime the first token. *) - print_string "ready> "; flush stdout; - let stream = Lexer.lex (Stream.of_channel stdin) in - - (* Create the JIT. *) - let the_execution_engine = ExecutionEngine.create Codegen.the_module in - let the_fpm = PassManager.create_function Codegen.the_module in - - (* Set up the optimizer pipeline. Start with registering info about how the - * target lays out data structures. *) - DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm; - - (* Do simple "peephole" optimizations and bit-twiddling optzn. *) - add_instruction_combination the_fpm; - - (* reassociate expressions. *) - add_reassociation the_fpm; - - (* Eliminate Common SubExpressions. *) - add_gvn the_fpm; - - (* Simplify the control flow graph (deleting unreachable blocks, etc). *) - add_cfg_simplification the_fpm; - - ignore (PassManager.initialize the_fpm); - - (* Run the main "interpreter loop" now. *) - Toplevel.main_loop the_fpm the_execution_engine stream; - - (* Print out all the generated code. *) - dump_module Codegen.the_module -;; - -main () -</pre> -</dd> - -<dt>bindings.c</dt> -<dd class="doc_code"> -<pre> -#include <stdio.h> - -/* putchard - putchar that takes a double and returns 0. */ -extern double putchard(double X) { - putchar((char)X); - return 0; -} - -/* printd - printf that takes a double prints it as "%f\n", returning 0. */ -extern double printd(double X) { - printf("%f\n", X); - return 0; -} -</pre> -</dd> -</dl> - -<a href="OCamlLangImpl7.html">Next: Extending the language: mutable variables / -SSA construction</a> -</div> - -<!-- *********************************************************************** --> -<hr> -<address> - <a href="http://jigsaw.w3.org/css-validator/check/referer"><img - src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> - <a href="http://validator.w3.org/check/referer"><img - src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> - - <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> - <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br> - <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> - Last modified: $Date: 2012-10-08 18:39:34 +0200 (Mon, 08 Oct 2012) $ -</address> -</body> -</html> |