summaryrefslogtreecommitdiffstats
path: root/docs/LanguageExtensions.html
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
committered <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
commitf27e5a09a0d815b8a4814152954ff87dadfdefc0 (patch)
treece7d964cbb5e39695b71481698f10cb099c23d4a /docs/LanguageExtensions.html
downloadFreeBSD-src-f27e5a09a0d815b8a4814152954ff87dadfdefc0.zip
FreeBSD-src-f27e5a09a0d815b8a4814152954ff87dadfdefc0.tar.gz
Import Clang, at r72732.
Diffstat (limited to 'docs/LanguageExtensions.html')
-rw-r--r--docs/LanguageExtensions.html327
1 files changed, 327 insertions, 0 deletions
diff --git a/docs/LanguageExtensions.html b/docs/LanguageExtensions.html
new file mode 100644
index 0000000..c486562
--- /dev/null
+++ b/docs/LanguageExtensions.html
@@ -0,0 +1,327 @@
+<html>
+<head>
+<title>Clang Language Extensions</title>
+<link type="text/css" rel="stylesheet" href="../menu.css" />
+<link type="text/css" rel="stylesheet" href="../content.css" />
+<style type="text/css">
+td {
+ vertical-align: top;
+}
+</style>
+</head>
+<body>
+
+<!--#include virtual="../menu.html.incl"-->
+
+<div id="content">
+
+<h1>Clang Language Extensions</h1>
+
+<ul>
+<li><a href="#intro">Introduction</a></li>
+<li><a href="#builtinmacros">Builtin Macros</a></li>
+<li><a href="#vectors">Vectors and Extended Vectors</a></li>
+<li><a href="#blocks">Blocks</a></li>
+<li><a href="#overloading-in-c">Function Overloading in C</a></li>
+<li><a href="#builtins">Builtin Functions</a>
+ <ul>
+ <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
+ </ul>
+</li>
+<li><a href="#targetspecific">Target-Specific Extensions</a>
+ <ul>
+ <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
+ </ul>
+</li>
+<li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a>
+ <ul>
+ <li><a href="#analyzerattributes">Analyzer Attributes</a></li>
+ </ul>
+</li>
+</ul>
+
+<!-- ======================================================================= -->
+<h2 id="intro">Introduction</h2>
+<!-- ======================================================================= -->
+
+<p>This document describes the language extensions provided by Clang. In
+addition to the langauge extensions listed here, Clang aims to support a broad
+range of GCC extensions. Please see the <a
+href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
+more information on these extensions.</p>
+
+<!-- ======================================================================= -->
+<h2 id="builtinmacros">Builtin Macros</h2>
+<!-- ======================================================================= -->
+
+<p>__BASE_FILE__, __INCLUDE_LEVEL__, __TIMESTAMP__, __COUNTER__</p>
+
+<!-- ======================================================================= -->
+<h2 id="vectors">Vectors and Extended Vectors</h2>
+<!-- ======================================================================= -->
+
+<p>Supports the GCC vector extensions, plus some stuff like V[1]. ext_vector
+with V.xyzw syntax and other tidbits. See also <a
+href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
+
+<!-- ======================================================================= -->
+<h2 id="blocks">Blocks</h2>
+<!-- ======================================================================= -->
+
+<p>The syntax and high level language feature description is in <a
+href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI
+details for the clang implementation are in <a
+href="BlockImplementation.txt">BlockImplementation.txt</a>.</p>
+
+<!-- ======================================================================= -->
+<h2 id="overloading-in-c">Function Overloading in C</h2>
+<!-- ======================================================================= -->
+
+<p>Clang provides support for C++ function overloading in C. Function
+overloading in C is introduced using the <tt>overloadable</tt> attribute. For
+example, one might provide several overloaded versions of a <tt>tgsin</tt>
+function that invokes the appropriate standard function computing the sine of a
+value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
+precision:</p>
+
+<blockquote>
+<pre>
+#include &lt;math.h&gt;
+float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
+double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
+long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
+</pre>
+</blockquote>
+
+<p>Given these declarations, one can call <tt>tgsin</tt> with a
+<tt>float</tt> value to receive a <tt>float</tt> result, with a
+<tt>double</tt> to receive a <tt>double</tt> result, etc. Function
+overloading in C follows the rules of C++ function overloading to pick
+the best overload given the call arguments, with a few C-specific
+semantics:</p>
+<ul>
+ <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
+ double</tt> is ranked as a floating-point promotion (per C99) rather
+ than as a floating-point conversion (as in C++).</li>
+
+ <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
+ <tt>U*</tt> is considered a pointer conversion (with conversion
+ rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
+
+ <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
+ is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
+ conversion is given "conversion" rank.</li>
+</ul>
+
+<p>The declaration of <tt>overloadable</tt> functions is restricted to
+function declarations and definitions. Most importantly, if any
+function with a given name is given the <tt>overloadable</tt>
+attribute, then all function declarations and definitions with that
+name (and in that scope) must have the <tt>overloadable</tt>
+attribute. This rule even applies to redeclarations of functions whose original
+declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
+
+<blockquote>
+<pre>
+int f(int) __attribute__((overloadable));
+float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
+
+int g(int) __attribute__((overloadable));
+int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
+</pre>
+</blockquote>
+
+<p>Functions marked <tt>overloadable</tt> must have
+prototypes. Therefore, the following code is ill-formed:</p>
+
+<blockquote>
+<pre>
+int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
+</pre>
+</blockquote>
+
+<p>However, <tt>overloadable</tt> functions are allowed to use a
+ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
+
+<blockquote>
+<pre>
+void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
+</pre>
+</blockquote>
+
+<p>Functions declared with the <tt>overloadable</tt> attribute have
+their names mangled according to the same rules as C++ function
+names. For example, the three <tt>tgsin</tt> functions in our
+motivating example get the mangled names <tt>_Z5tgsinf</tt>,
+<tt>_Z5tgsind</tt>, and <tt>Z5tgsine</tt>, respectively. There are two
+caveats to this use of name mangling:</p>
+
+<ul>
+
+ <li>Future versions of Clang may change the name mangling of
+ functions overloaded in C, so you should not depend on an specific
+ mangling. To be completely safe, we strongly urge the use of
+ <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
+
+ <li>The <tt>overloadable</tt> attribute has almost no meaning when
+ used in C++, because names will already be mangled and functions are
+ already overloadable. However, when an <tt>overloadable</tt>
+ function occurs within an <tt>extern "C"</tt> linkage specification,
+ it's name <i>will</i> be mangled in the same way as it would in
+ C.</li>
+</ul>
+
+<!-- ======================================================================= -->
+<h2 id="builtins">Builtin Functions</h2>
+<!-- ======================================================================= -->
+
+<p>Clang supports a number of builtin library functions with the same syntax as
+GCC, including things like <tt>__builtin_nan</tt>,
+<tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
+<tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
+addition to the GCC builtins, Clang supports a number of builtins that GCC does
+not, which are listed here.</p>
+
+<p>Please note that Clang does not and will not support all of the GCC builtins
+for vector operations. Instead of using builtins, you should use the functions
+defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
+define portable wrappers for these. Many of the Clang versions of these
+functions are implemented directly in terms of <a href="#vectors">extended
+vector support</a> instead of builtins, in order to reduce the number of
+builtins that we need to implement.</p>
+
+<!-- ======================================================================= -->
+<h3 id="__builtin_shufflevector">__builtin_shufflevector</h3>
+<!-- ======================================================================= -->
+
+<p><tt>__builtin_shufflevector</tt> is used to expression generic vector
+permutation/shuffle/swizzle operations. This builtin is also very important for
+the implementation of various target-specific header files like
+<tt>&lt;xmmintrin.h&gt;</tt>.
+</p>
+
+<p><b>Syntax:</b></p>
+
+<pre>
+__builtin_shufflevector(vec1, vec2, index1, index2, ...)
+</pre>
+
+<p><b>Examples:</b></p>
+
+<pre>
+ // Identity operation - return 4-element vector V1.
+ __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
+
+ // "Splat" element 0 of V1 into a 4-element result.
+ __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
+
+ // Reverse 4-element vector V1.
+ __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
+
+ // Concatenate every other element of 4-element vectors V1 and V2.
+ __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
+
+ // Concatenate every other element of 8-element vectors V1 and V2.
+ __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
+</pre>
+
+<p><b>Description:</b></p>
+
+<p>The first two arguments to __builtin_shufflevector are vectors that have the
+same element type. The remaining arguments are a list of integers that specify
+the elements indices of the first two vectors that should be extracted and
+returned in a new vector. These element indices are numbered sequentially
+starting with the first vector, continuing into the second vector. Thus, if
+vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
+</p>
+
+<p>The result of __builtin_shufflevector is a vector
+with the same element type as vec1/vec2 but that has an element count equal to
+the number of indices specified.
+</p>
+
+<!-- ======================================================================= -->
+<h2 id="targetspecific">Target-Specific Extensions</h2>
+<!-- ======================================================================= -->
+
+<p>Clang supports some language features conditionally on some targets.</p>
+
+<!-- ======================================================================= -->
+<h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
+<!-- ======================================================================= -->
+
+<p>The X86 backend has these language extensions:</p>
+
+<!-- ======================================================================= -->
+<h4 id="x86-gs-segment">Memory references off the GS segment</h4>
+<!-- ======================================================================= -->
+
+<p>Annotating a pointer with address space #256 causes it to be code generated
+relative to the X86 GS segment register, and address space #257 causes it to be
+relative to the X86 FS segment. Note that this is a very very low-level
+feature that should only be used if you know what you're doing (for example in
+an OS kernel).</p>
+
+<p>Here is an example:</p>
+
+<pre>
+#define GS_RELATIVE __attribute__((address_space(256)))
+int foo(int GS_RELATIVE *P) {
+ return *P;
+}
+</pre>
+
+<p>Which compiles to (on X86-32):</p>
+
+<pre>
+_foo:
+ movl 4(%esp), %eax
+ movl %gs:(%eax), %eax
+ ret
+</pre>
+
+<!-- ======================================================================= -->
+<h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
+<!-- ======================================================================= -->
+
+<p>Clang supports additional attributes that are useful for documenting program
+invariants and rules for static analysis tools. The extensions documented here
+are used by the <a
+href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
+engine</a> that is part of Clang's Analysis library.</p>
+
+<!-- ======================================================================= -->
+<h3 id="analyzerattributes">Analyzer Attributes</h3>
+<!-- ======================================================================= -->
+
+<h4 id="attr_analyzer_noreturn"><tt>analyzer_noreturn</tt></h4>
+
+<p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
+attribute. This attribute, which is typically affixed to a function prototype,
+indicates that a call to a given function never returns. Function prototypes for
+common functions like <tt>exit</tt> are typically annotated with this attribute,
+as well as a variety of common assertion handlers. Users can educate the static
+analyzer about their own custom assertion handles (thus cutting down on false
+positives due to false paths) by marking their own &quot;panic&quot; functions
+with this attribute.</p>
+
+<p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
+there are special functions that for all intensive purposes should be considered
+panic functions (i.e., they are only called when an internal program error
+occurs) but may actually return so that the program can fail gracefully. The
+<tt>analyzer_noreturn</tt> attribute allows one to annotate such functions as
+being interpreted as &quot;no return&quot; functions by the analyzer (thus
+pruning bogus paths) but will not affect compilation (as in the case of
+<tt>noreturn</tt>).</p>
+
+<p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
+same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
+placed at the end of function prototypes:</p>
+
+<pre>
+ void foo() <b>__attribute__((analyzer_noreturn))</b>;
+</p>
+
+</div>
+</body>
+</html>
OpenPOWER on IntegriCloud