summaryrefslogtreecommitdiffstats
path: root/docs/LangRef.html
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /docs/LangRef.html
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'docs/LangRef.html')
-rw-r--r--docs/LangRef.html7111
1 files changed, 7111 insertions, 0 deletions
diff --git a/docs/LangRef.html b/docs/LangRef.html
new file mode 100644
index 0000000..32441cc
--- /dev/null
+++ b/docs/LangRef.html
@@ -0,0 +1,7111 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+ <title>LLVM Assembly Language Reference Manual</title>
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+ <meta name="author" content="Chris Lattner">
+ <meta name="description"
+ content="LLVM Assembly Language Reference Manual.">
+ <link rel="stylesheet" href="llvm.css" type="text/css">
+</head>
+
+<body>
+
+<div class="doc_title"> LLVM Language Reference Manual </div>
+<ol>
+ <li><a href="#abstract">Abstract</a></li>
+ <li><a href="#introduction">Introduction</a></li>
+ <li><a href="#identifiers">Identifiers</a></li>
+ <li><a href="#highlevel">High Level Structure</a>
+ <ol>
+ <li><a href="#modulestructure">Module Structure</a></li>
+ <li><a href="#linkage">Linkage Types</a></li>
+ <li><a href="#callingconv">Calling Conventions</a></li>
+ <li><a href="#namedtypes">Named Types</a></li>
+ <li><a href="#globalvars">Global Variables</a></li>
+ <li><a href="#functionstructure">Functions</a></li>
+ <li><a href="#aliasstructure">Aliases</a></li>
+ <li><a href="#paramattrs">Parameter Attributes</a></li>
+ <li><a href="#fnattrs">Function Attributes</a></li>
+ <li><a href="#gc">Garbage Collector Names</a></li>
+ <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
+ <li><a href="#datalayout">Data Layout</a></li>
+ </ol>
+ </li>
+ <li><a href="#typesystem">Type System</a>
+ <ol>
+ <li><a href="#t_classifications">Type Classifications</a></li>
+ <li><a href="#t_primitive">Primitive Types</a>
+ <ol>
+ <li><a href="#t_floating">Floating Point Types</a></li>
+ <li><a href="#t_void">Void Type</a></li>
+ <li><a href="#t_label">Label Type</a></li>
+ <li><a href="#t_metadata">Metadata Type</a></li>
+ </ol>
+ </li>
+ <li><a href="#t_derived">Derived Types</a>
+ <ol>
+ <li><a href="#t_integer">Integer Type</a></li>
+ <li><a href="#t_array">Array Type</a></li>
+ <li><a href="#t_function">Function Type</a></li>
+ <li><a href="#t_pointer">Pointer Type</a></li>
+ <li><a href="#t_struct">Structure Type</a></li>
+ <li><a href="#t_pstruct">Packed Structure Type</a></li>
+ <li><a href="#t_vector">Vector Type</a></li>
+ <li><a href="#t_opaque">Opaque Type</a></li>
+ </ol>
+ </li>
+ <li><a href="#t_uprefs">Type Up-references</a></li>
+ </ol>
+ </li>
+ <li><a href="#constants">Constants</a>
+ <ol>
+ <li><a href="#simpleconstants">Simple Constants</a></li>
+ <li><a href="#complexconstants">Complex Constants</a></li>
+ <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
+ <li><a href="#undefvalues">Undefined Values</a></li>
+ <li><a href="#constantexprs">Constant Expressions</a></li>
+ <li><a href="#metadata">Embedded Metadata</a></li>
+ </ol>
+ </li>
+ <li><a href="#othervalues">Other Values</a>
+ <ol>
+ <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
+ </ol>
+ </li>
+ <li><a href="#instref">Instruction Reference</a>
+ <ol>
+ <li><a href="#terminators">Terminator Instructions</a>
+ <ol>
+ <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
+ <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
+ <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
+ <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
+ <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
+ <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
+ </ol>
+ </li>
+ <li><a href="#binaryops">Binary Operations</a>
+ <ol>
+ <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
+ <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
+ <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
+ <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
+ <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
+ <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
+ <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
+ <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
+ <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
+ </ol>
+ </li>
+ <li><a href="#bitwiseops">Bitwise Binary Operations</a>
+ <ol>
+ <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
+ <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
+ <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
+ <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
+ <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
+ <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
+ </ol>
+ </li>
+ <li><a href="#vectorops">Vector Operations</a>
+ <ol>
+ <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
+ <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
+ <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
+ </ol>
+ </li>
+ <li><a href="#aggregateops">Aggregate Operations</a>
+ <ol>
+ <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
+ <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
+ </ol>
+ </li>
+ <li><a href="#memoryops">Memory Access and Addressing Operations</a>
+ <ol>
+ <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
+ <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
+ <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
+ <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
+ <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
+ <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
+ </ol>
+ </li>
+ <li><a href="#convertops">Conversion Operations</a>
+ <ol>
+ <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
+ <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
+ <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
+ <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
+ <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
+ <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
+ <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
+ <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
+ <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
+ <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
+ <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
+ <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
+ </ol>
+ </li>
+ <li><a href="#otherops">Other Operations</a>
+ <ol>
+ <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
+ <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
+ <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
+ <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
+ <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
+ <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
+ <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
+ <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
+ </ol>
+ </li>
+ </ol>
+ </li>
+ <li><a href="#intrinsics">Intrinsic Functions</a>
+ <ol>
+ <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
+ <ol>
+ <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
+ <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
+ <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
+ </ol>
+ </li>
+ <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
+ <ol>
+ <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
+ <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
+ <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
+ </ol>
+ </li>
+ <li><a href="#int_codegen">Code Generator Intrinsics</a>
+ <ol>
+ <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
+ <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
+ <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
+ <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
+ <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
+ <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
+ <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
+ </ol>
+ </li>
+ <li><a href="#int_libc">Standard C Library Intrinsics</a>
+ <ol>
+ <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
+ </ol>
+ </li>
+ <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
+ <ol>
+ <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
+ <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
+ <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
+ <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
+ <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
+ <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
+ </ol>
+ </li>
+ <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
+ <ol>
+ <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
+ <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
+ <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
+ <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
+ <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
+ <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
+ </ol>
+ </li>
+ <li><a href="#int_debugger">Debugger intrinsics</a></li>
+ <li><a href="#int_eh">Exception Handling intrinsics</a></li>
+ <li><a href="#int_trampoline">Trampoline Intrinsic</a>
+ <ol>
+ <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
+ </ol>
+ </li>
+ <li><a href="#int_atomics">Atomic intrinsics</a>
+ <ol>
+ <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
+ <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
+ <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
+ <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
+ <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
+ <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
+ <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
+ <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
+ <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
+ <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
+ <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
+ <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
+ <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
+ </ol>
+ </li>
+ <li><a href="#int_general">General intrinsics</a>
+ <ol>
+ <li><a href="#int_var_annotation">
+ '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
+ <li><a href="#int_annotation">
+ '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
+ <li><a href="#int_trap">
+ '<tt>llvm.trap</tt>' Intrinsic</a></li>
+ <li><a href="#int_stackprotector">
+ '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
+ </ol>
+ </li>
+ </ol>
+ </li>
+</ol>
+
+<div class="doc_author">
+ <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
+ and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="abstract">Abstract </a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>This document is a reference manual for the LLVM assembly language.
+LLVM is a Static Single Assignment (SSA) based representation that provides
+type safety, low-level operations, flexibility, and the capability of
+representing 'all' high-level languages cleanly. It is the common code
+representation used throughout all phases of the LLVM compilation
+strategy.</p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="introduction">Introduction</a> </div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The LLVM code representation is designed to be used in three
+different forms: as an in-memory compiler IR, as an on-disk bitcode
+representation (suitable for fast loading by a Just-In-Time compiler),
+and as a human readable assembly language representation. This allows
+LLVM to provide a powerful intermediate representation for efficient
+compiler transformations and analysis, while providing a natural means
+to debug and visualize the transformations. The three different forms
+of LLVM are all equivalent. This document describes the human readable
+representation and notation.</p>
+
+<p>The LLVM representation aims to be light-weight and low-level
+while being expressive, typed, and extensible at the same time. It
+aims to be a "universal IR" of sorts, by being at a low enough level
+that high-level ideas may be cleanly mapped to it (similar to how
+microprocessors are "universal IR's", allowing many source languages to
+be mapped to them). By providing type information, LLVM can be used as
+the target of optimizations: for example, through pointer analysis, it
+can be proven that a C automatic variable is never accessed outside of
+the current function... allowing it to be promoted to a simple SSA
+value instead of a memory location.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
+
+<div class="doc_text">
+
+<p>It is important to note that this document describes 'well formed'
+LLVM assembly language. There is a difference between what the parser
+accepts and what is considered 'well formed'. For example, the
+following instruction is syntactically okay, but not well formed:</p>
+
+<div class="doc_code">
+<pre>
+%x = <a href="#i_add">add</a> i32 1, %x
+</pre>
+</div>
+
+<p>...because the definition of <tt>%x</tt> does not dominate all of
+its uses. The LLVM infrastructure provides a verification pass that may
+be used to verify that an LLVM module is well formed. This pass is
+automatically run by the parser after parsing input assembly and by
+the optimizer before it outputs bitcode. The violations pointed out
+by the verifier pass indicate bugs in transformation passes or input to
+the parser.</p>
+</div>
+
+<!-- Describe the typesetting conventions here. -->
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+ <p>LLVM identifiers come in two basic types: global and local. Global
+ identifiers (functions, global variables) begin with the @ character. Local
+ identifiers (register names, types) begin with the % character. Additionally,
+ there are three different formats for identifiers, for different purposes:</p>
+
+<ol>
+ <li>Named values are represented as a string of characters with their prefix.
+ For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
+ regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
+ Identifiers which require other characters in their names can be surrounded
+ with quotes. Special characters may be escaped using "\xx" where xx is the
+ ASCII code for the character in hexadecimal. In this way, any character can
+ be used in a name value, even quotes themselves.
+
+ <li>Unnamed values are represented as an unsigned numeric value with their
+ prefix. For example, %12, @2, %44.</li>
+
+ <li>Constants, which are described in a <a href="#constants">section about
+ constants</a>, below.</li>
+</ol>
+
+<p>LLVM requires that values start with a prefix for two reasons: Compilers
+don't need to worry about name clashes with reserved words, and the set of
+reserved words may be expanded in the future without penalty. Additionally,
+unnamed identifiers allow a compiler to quickly come up with a temporary
+variable without having to avoid symbol table conflicts.</p>
+
+<p>Reserved words in LLVM are very similar to reserved words in other
+languages. There are keywords for different opcodes
+('<tt><a href="#i_add">add</a></tt>',
+ '<tt><a href="#i_bitcast">bitcast</a></tt>',
+ '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
+href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
+and others. These reserved words cannot conflict with variable names, because
+none of them start with a prefix character ('%' or '@').</p>
+
+<p>Here is an example of LLVM code to multiply the integer variable
+'<tt>%X</tt>' by 8:</p>
+
+<p>The easy way:</p>
+
+<div class="doc_code">
+<pre>
+%result = <a href="#i_mul">mul</a> i32 %X, 8
+</pre>
+</div>
+
+<p>After strength reduction:</p>
+
+<div class="doc_code">
+<pre>
+%result = <a href="#i_shl">shl</a> i32 %X, i8 3
+</pre>
+</div>
+
+<p>And the hard way:</p>
+
+<div class="doc_code">
+<pre>
+<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
+<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
+%result = <a href="#i_add">add</a> i32 %1, %1
+</pre>
+</div>
+
+<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
+important lexical features of LLVM:</p>
+
+<ol>
+
+ <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
+ line.</li>
+
+ <li>Unnamed temporaries are created when the result of a computation is not
+ assigned to a named value.</li>
+
+ <li>Unnamed temporaries are numbered sequentially</li>
+
+</ol>
+
+<p>...and it also shows a convention that we follow in this document. When
+demonstrating instructions, we will follow an instruction with a comment that
+defines the type and name of value produced. Comments are shown in italic
+text.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
+<!-- *********************************************************************** -->
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
+</div>
+
+<div class="doc_text">
+
+<p>LLVM programs are composed of "Module"s, each of which is a
+translation unit of the input programs. Each module consists of
+functions, global variables, and symbol table entries. Modules may be
+combined together with the LLVM linker, which merges function (and
+global variable) definitions, resolves forward declarations, and merges
+symbol table entries. Here is an example of the "hello world" module:</p>
+
+<div class="doc_code">
+<pre><i>; Declare the string constant as a global constant...</i>
+<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
+ href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
+
+<i>; External declaration of the puts function</i>
+<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
+
+<i>; Definition of main function</i>
+define i32 @main() { <i>; i32()* </i>
+ <i>; Convert [13 x i8]* to i8 *...</i>
+ %cast210 = <a
+ href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
+
+ <i>; Call puts function to write out the string to stdout...</i>
+ <a
+ href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
+ <a
+ href="#i_ret">ret</a> i32 0<br>}<br>
+</pre>
+</div>
+
+<p>This example is made up of a <a href="#globalvars">global variable</a>
+named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
+function, and a <a href="#functionstructure">function definition</a>
+for "<tt>main</tt>".</p>
+
+<p>In general, a module is made up of a list of global values,
+where both functions and global variables are global values. Global values are
+represented by a pointer to a memory location (in this case, a pointer to an
+array of char, and a pointer to a function), and have one of the following <a
+href="#linkage">linkage types</a>.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="linkage">Linkage Types</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+All Global Variables and Functions have one of the following types of linkage:
+</p>
+
+<dl>
+
+ <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
+
+ <dd>Global values with private linkage are only directly accessible by
+ objects in the current module. In particular, linking code into a module with
+ an private global value may cause the private to be renamed as necessary to
+ avoid collisions. Because the symbol is private to the module, all
+ references can be updated. This doesn't show up in any symbol table in the
+ object file.
+ </dd>
+
+ <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
+
+ <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
+ the case of ELF) in the object file. This corresponds to the notion of the
+ '<tt>static</tt>' keyword in C.
+ </dd>
+
+ <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
+ </dt>
+
+ <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
+ into the object file corresponding to the LLVM module. They exist to
+ allow inlining and other optimizations to take place given knowledge of the
+ definition of the global, which is known to be somewhere outside the module.
+ Globals with <tt>available_externally</tt> linkage are allowed to be discarded
+ at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
+ type is only allowed on definitions, not declarations.</dd>
+
+ <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
+
+ <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
+ the same name when linkage occurs. This is typically used to implement
+ inline functions, templates, or other code which must be generated in each
+ translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
+ allowed to be discarded.
+ </dd>
+
+ <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
+
+ <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
+ linkage, except that unreferenced <tt>common</tt> globals may not be
+ discarded. This is used for globals that may be emitted in multiple
+ translation units, but that are not guaranteed to be emitted into every
+ translation unit that uses them. One example of this is tentative
+ definitions in C, such as "<tt>int X;</tt>" at global scope.
+ </dd>
+
+ <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
+
+ <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
+ that some targets may choose to emit different assembly sequences for them
+ for target-dependent reasons. This is used for globals that are declared
+ "weak" in C source code.
+ </dd>
+
+ <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
+
+ <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
+ pointer to array type. When two global variables with appending linkage are
+ linked together, the two global arrays are appended together. This is the
+ LLVM, typesafe, equivalent of having the system linker append together
+ "sections" with identical names when .o files are linked.
+ </dd>
+
+ <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
+
+ <dd>The semantics of this linkage follow the ELF object file model: the
+ symbol is weak until linked, if not linked, the symbol becomes null instead
+ of being an undefined reference.
+ </dd>
+
+ <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
+ <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
+ <dd>Some languages allow differing globals to be merged, such as two
+ functions with different semantics. Other languages, such as <tt>C++</tt>,
+ ensure that only equivalent globals are ever merged (the "one definition
+ rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
+ and <tt>weak_odr</tt> linkage types to indicate that the global will only
+ be merged with equivalent globals. These linkage types are otherwise the
+ same as their non-<tt>odr</tt> versions.
+ </dd>
+
+ <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
+
+ <dd>If none of the above identifiers are used, the global is externally
+ visible, meaning that it participates in linkage and can be used to resolve
+ external symbol references.
+ </dd>
+</dl>
+
+ <p>
+ The next two types of linkage are targeted for Microsoft Windows platform
+ only. They are designed to support importing (exporting) symbols from (to)
+ DLLs (Dynamic Link Libraries).
+ </p>
+
+ <dl>
+ <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
+
+ <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
+ or variable via a global pointer to a pointer that is set up by the DLL
+ exporting the symbol. On Microsoft Windows targets, the pointer name is
+ formed by combining <code>__imp_</code> and the function or variable name.
+ </dd>
+
+ <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
+
+ <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
+ pointer to a pointer in a DLL, so that it can be referenced with the
+ <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
+ name is formed by combining <code>__imp_</code> and the function or variable
+ name.
+ </dd>
+
+</dl>
+
+<p>For example, since the "<tt>.LC0</tt>"
+variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
+variable and was linked with this one, one of the two would be renamed,
+preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
+external (i.e., lacking any linkage declarations), they are accessible
+outside of the current module.</p>
+<p>It is illegal for a function <i>declaration</i>
+to have any linkage type other than "externally visible", <tt>dllimport</tt>
+or <tt>extern_weak</tt>.</p>
+<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
+or <tt>weak_odr</tt> linkages.</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="callingconv">Calling Conventions</a>
+</div>
+
+<div class="doc_text">
+
+<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
+and <a href="#i_invoke">invokes</a> can all have an optional calling convention
+specified for the call. The calling convention of any pair of dynamic
+caller/callee must match, or the behavior of the program is undefined. The
+following calling conventions are supported by LLVM, and more may be added in
+the future:</p>
+
+<dl>
+ <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
+
+ <dd>This calling convention (the default if no other calling convention is
+ specified) matches the target C calling conventions. This calling convention
+ supports varargs function calls and tolerates some mismatch in the declared
+ prototype and implemented declaration of the function (as does normal C).
+ </dd>
+
+ <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
+
+ <dd>This calling convention attempts to make calls as fast as possible
+ (e.g. by passing things in registers). This calling convention allows the
+ target to use whatever tricks it wants to produce fast code for the target,
+ without having to conform to an externally specified ABI (Application Binary
+ Interface). Implementations of this convention should allow arbitrary
+ <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
+ supported. This calling convention does not support varargs and requires the
+ prototype of all callees to exactly match the prototype of the function
+ definition.
+ </dd>
+
+ <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
+
+ <dd>This calling convention attempts to make code in the caller as efficient
+ as possible under the assumption that the call is not commonly executed. As
+ such, these calls often preserve all registers so that the call does not break
+ any live ranges in the caller side. This calling convention does not support
+ varargs and requires the prototype of all callees to exactly match the
+ prototype of the function definition.
+ </dd>
+
+ <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
+
+ <dd>Any calling convention may be specified by number, allowing
+ target-specific calling conventions to be used. Target specific calling
+ conventions start at 64.
+ </dd>
+</dl>
+
+<p>More calling conventions can be added/defined on an as-needed basis, to
+support pascal conventions or any other well-known target-independent
+convention.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="visibility">Visibility Styles</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+All Global Variables and Functions have one of the following visibility styles:
+</p>
+
+<dl>
+ <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
+
+ <dd>On targets that use the ELF object file format, default visibility means
+ that the declaration is visible to other
+ modules and, in shared libraries, means that the declared entity may be
+ overridden. On Darwin, default visibility means that the declaration is
+ visible to other modules. Default visibility corresponds to "external
+ linkage" in the language.
+ </dd>
+
+ <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
+
+ <dd>Two declarations of an object with hidden visibility refer to the same
+ object if they are in the same shared object. Usually, hidden visibility
+ indicates that the symbol will not be placed into the dynamic symbol table,
+ so no other module (executable or shared library) can reference it
+ directly.
+ </dd>
+
+ <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
+
+ <dd>On ELF, protected visibility indicates that the symbol will be placed in
+ the dynamic symbol table, but that references within the defining module will
+ bind to the local symbol. That is, the symbol cannot be overridden by another
+ module.
+ </dd>
+</dl>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="namedtypes">Named Types</a>
+</div>
+
+<div class="doc_text">
+
+<p>LLVM IR allows you to specify name aliases for certain types. This can make
+it easier to read the IR and make the IR more condensed (particularly when
+recursive types are involved). An example of a name specification is:
+</p>
+
+<div class="doc_code">
+<pre>
+%mytype = type { %mytype*, i32 }
+</pre>
+</div>
+
+<p>You may give a name to any <a href="#typesystem">type</a> except "<a
+href="t_void">void</a>". Type name aliases may be used anywhere a type is
+expected with the syntax "%mytype".</p>
+
+<p>Note that type names are aliases for the structural type that they indicate,
+and that you can therefore specify multiple names for the same type. This often
+leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
+structural typing, the name is not part of the type. When printing out LLVM IR,
+the printer will pick <em>one name</em> to render all types of a particular
+shape. This means that if you have code where two different source types end up
+having the same LLVM type, that the dumper will sometimes print the "wrong" or
+unexpected type. This is an important design point and isn't going to
+change.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="globalvars">Global Variables</a>
+</div>
+
+<div class="doc_text">
+
+<p>Global variables define regions of memory allocated at compilation time
+instead of run-time. Global variables may optionally be initialized, may have
+an explicit section to be placed in, and may have an optional explicit alignment
+specified. A variable may be defined as "thread_local", which means that it
+will not be shared by threads (each thread will have a separated copy of the
+variable). A variable may be defined as a global "constant," which indicates
+that the contents of the variable will <b>never</b> be modified (enabling better
+optimization, allowing the global data to be placed in the read-only section of
+an executable, etc). Note that variables that need runtime initialization
+cannot be marked "constant" as there is a store to the variable.</p>
+
+<p>
+LLVM explicitly allows <em>declarations</em> of global variables to be marked
+constant, even if the final definition of the global is not. This capability
+can be used to enable slightly better optimization of the program, but requires
+the language definition to guarantee that optimizations based on the
+'constantness' are valid for the translation units that do not include the
+definition.
+</p>
+
+<p>As SSA values, global variables define pointer values that are in
+scope (i.e. they dominate) all basic blocks in the program. Global
+variables always define a pointer to their "content" type because they
+describe a region of memory, and all memory objects in LLVM are
+accessed through pointers.</p>
+
+<p>A global variable may be declared to reside in a target-specifc numbered
+address space. For targets that support them, address spaces may affect how
+optimizations are performed and/or what target instructions are used to access
+the variable. The default address space is zero. The address space qualifier
+must precede any other attributes.</p>
+
+<p>LLVM allows an explicit section to be specified for globals. If the target
+supports it, it will emit globals to the section specified.</p>
+
+<p>An explicit alignment may be specified for a global. If not present, or if
+the alignment is set to zero, the alignment of the global is set by the target
+to whatever it feels convenient. If an explicit alignment is specified, the
+global is forced to have at least that much alignment. All alignments must be
+a power of 2.</p>
+
+<p>For example, the following defines a global in a numbered address space with
+an initializer, section, and alignment:</p>
+
+<div class="doc_code">
+<pre>
+@G = addrspace(5) constant float 1.0, section "foo", align 4
+</pre>
+</div>
+
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="functionstructure">Functions</a>
+</div>
+
+<div class="doc_text">
+
+<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
+an optional <a href="#linkage">linkage type</a>, an optional
+<a href="#visibility">visibility style</a>, an optional
+<a href="#callingconv">calling convention</a>, a return type, an optional
+<a href="#paramattrs">parameter attribute</a> for the return type, a function
+name, a (possibly empty) argument list (each with optional
+<a href="#paramattrs">parameter attributes</a>), optional
+<a href="#fnattrs">function attributes</a>, an optional section,
+an optional alignment, an optional <a href="#gc">garbage collector name</a>,
+an opening curly brace, a list of basic blocks, and a closing curly brace.
+
+LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
+optional <a href="#linkage">linkage type</a>, an optional
+<a href="#visibility">visibility style</a>, an optional
+<a href="#callingconv">calling convention</a>, a return type, an optional
+<a href="#paramattrs">parameter attribute</a> for the return type, a function
+name, a possibly empty list of arguments, an optional alignment, and an optional
+<a href="#gc">garbage collector name</a>.</p>
+
+<p>A function definition contains a list of basic blocks, forming the CFG
+(Control Flow Graph) for
+the function. Each basic block may optionally start with a label (giving the
+basic block a symbol table entry), contains a list of instructions, and ends
+with a <a href="#terminators">terminator</a> instruction (such as a branch or
+function return).</p>
+
+<p>The first basic block in a function is special in two ways: it is immediately
+executed on entrance to the function, and it is not allowed to have predecessor
+basic blocks (i.e. there can not be any branches to the entry block of a
+function). Because the block can have no predecessors, it also cannot have any
+<a href="#i_phi">PHI nodes</a>.</p>
+
+<p>LLVM allows an explicit section to be specified for functions. If the target
+supports it, it will emit functions to the section specified.</p>
+
+<p>An explicit alignment may be specified for a function. If not present, or if
+the alignment is set to zero, the alignment of the function is set by the target
+to whatever it feels convenient. If an explicit alignment is specified, the
+function is forced to have at least that much alignment. All alignments must be
+a power of 2.</p>
+
+ <h5>Syntax:</h5>
+
+<div class="doc_code">
+<tt>
+define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
+ [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
+ &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
+ [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
+ [<a href="#gc">gc</a>] { ... }
+</tt>
+</div>
+
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="aliasstructure">Aliases</a>
+</div>
+<div class="doc_text">
+ <p>Aliases act as "second name" for the aliasee value (which can be either
+ function, global variable, another alias or bitcast of global value). Aliases
+ may have an optional <a href="#linkage">linkage type</a>, and an
+ optional <a href="#visibility">visibility style</a>.</p>
+
+ <h5>Syntax:</h5>
+
+<div class="doc_code">
+<pre>
+@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
+</pre>
+</div>
+
+</div>
+
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
+<div class="doc_text">
+ <p>The return type and each parameter of a function type may have a set of
+ <i>parameter attributes</i> associated with them. Parameter attributes are
+ used to communicate additional information about the result or parameters of
+ a function. Parameter attributes are considered to be part of the function,
+ not of the function type, so functions with different parameter attributes
+ can have the same function type.</p>
+
+ <p>Parameter attributes are simple keywords that follow the type specified. If
+ multiple parameter attributes are needed, they are space separated. For
+ example:</p>
+
+<div class="doc_code">
+<pre>
+declare i32 @printf(i8* noalias nocapture, ...)
+declare i32 @atoi(i8 zeroext)
+declare signext i8 @returns_signed_char()
+</pre>
+</div>
+
+ <p>Note that any attributes for the function result (<tt>nounwind</tt>,
+ <tt>readonly</tt>) come immediately after the argument list.</p>
+
+ <p>Currently, only the following parameter attributes are defined:</p>
+ <dl>
+ <dt><tt>zeroext</tt></dt>
+ <dd>This indicates to the code generator that the parameter or return value
+ should be zero-extended to a 32-bit value by the caller (for a parameter)
+ or the callee (for a return value).</dd>
+
+ <dt><tt>signext</tt></dt>
+ <dd>This indicates to the code generator that the parameter or return value
+ should be sign-extended to a 32-bit value by the caller (for a parameter)
+ or the callee (for a return value).</dd>
+
+ <dt><tt>inreg</tt></dt>
+ <dd>This indicates that this parameter or return value should be treated
+ in a special target-dependent fashion during while emitting code for a
+ function call or return (usually, by putting it in a register as opposed
+ to memory, though some targets use it to distinguish between two different
+ kinds of registers). Use of this attribute is target-specific.</dd>
+
+ <dt><tt><a name="byval">byval</a></tt></dt>
+ <dd>This indicates that the pointer parameter should really be passed by
+ value to the function. The attribute implies that a hidden copy of the
+ pointee is made between the caller and the callee, so the callee is unable
+ to modify the value in the callee. This attribute is only valid on LLVM
+ pointer arguments. It is generally used to pass structs and arrays by
+ value, but is also valid on pointers to scalars. The copy is considered to
+ belong to the caller not the callee (for example,
+ <tt><a href="#readonly">readonly</a></tt> functions should not write to
+ <tt>byval</tt> parameters). This is not a valid attribute for return
+ values. The byval attribute also supports specifying an alignment with the
+ align attribute. This has a target-specific effect on the code generator
+ that usually indicates a desired alignment for the synthesized stack
+ slot.</dd>
+
+ <dt><tt>sret</tt></dt>
+ <dd>This indicates that the pointer parameter specifies the address of a
+ structure that is the return value of the function in the source program.
+ This pointer must be guaranteed by the caller to be valid: loads and stores
+ to the structure may be assumed by the callee to not to trap. This may only
+ be applied to the first parameter. This is not a valid attribute for
+ return values. </dd>
+
+ <dt><tt>noalias</tt></dt>
+ <dd>This indicates that the pointer does not alias any global or any other
+ parameter. The caller is responsible for ensuring that this is the
+ case. On a function return value, <tt>noalias</tt> additionally indicates
+ that the pointer does not alias any other pointers visible to the
+ caller. For further details, please see the discussion of the NoAlias
+ response in
+ <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
+ analysis</a>.</dd>
+
+ <dt><tt>nocapture</tt></dt>
+ <dd>This indicates that the callee does not make any copies of the pointer
+ that outlive the callee itself. This is not a valid attribute for return
+ values.</dd>
+
+ <dt><tt>nest</tt></dt>
+ <dd>This indicates that the pointer parameter can be excised using the
+ <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
+ attribute for return values.</dd>
+ </dl>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="gc">Garbage Collector Names</a>
+</div>
+
+<div class="doc_text">
+<p>Each function may specify a garbage collector name, which is simply a
+string.</p>
+
+<div class="doc_code"><pre
+>define void @f() gc "name" { ...</pre></div>
+
+<p>The compiler declares the supported values of <i>name</i>. Specifying a
+collector which will cause the compiler to alter its output in order to support
+the named garbage collection algorithm.</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="fnattrs">Function Attributes</a>
+</div>
+
+<div class="doc_text">
+
+<p>Function attributes are set to communicate additional information about
+ a function. Function attributes are considered to be part of the function,
+ not of the function type, so functions with different parameter attributes
+ can have the same function type.</p>
+
+ <p>Function attributes are simple keywords that follow the type specified. If
+ multiple attributes are needed, they are space separated. For
+ example:</p>
+
+<div class="doc_code">
+<pre>
+define void @f() noinline { ... }
+define void @f() alwaysinline { ... }
+define void @f() alwaysinline optsize { ... }
+define void @f() optsize
+</pre>
+</div>
+
+<dl>
+<dt><tt>alwaysinline</tt></dt>
+<dd>This attribute indicates that the inliner should attempt to inline this
+function into callers whenever possible, ignoring any active inlining size
+threshold for this caller.</dd>
+
+<dt><tt>noinline</tt></dt>
+<dd>This attribute indicates that the inliner should never inline this function
+in any situation. This attribute may not be used together with the
+<tt>alwaysinline</tt> attribute.</dd>
+
+<dt><tt>optsize</tt></dt>
+<dd>This attribute suggests that optimization passes and code generator passes
+make choices that keep the code size of this function low, and otherwise do
+optimizations specifically to reduce code size.</dd>
+
+<dt><tt>noreturn</tt></dt>
+<dd>This function attribute indicates that the function never returns normally.
+This produces undefined behavior at runtime if the function ever does
+dynamically return.</dd>
+
+<dt><tt>nounwind</tt></dt>
+<dd>This function attribute indicates that the function never returns with an
+unwind or exceptional control flow. If the function does unwind, its runtime
+behavior is undefined.</dd>
+
+<dt><tt>readnone</tt></dt>
+<dd>This attribute indicates that the function computes its result (or decides to
+unwind an exception) based strictly on its arguments, without dereferencing any
+pointer arguments or otherwise accessing any mutable state (e.g. memory, control
+registers, etc) visible to caller functions. It does not write through any
+pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
+never changes any state visible to callers. This means that it cannot unwind
+exceptions by calling the <tt>C++</tt> exception throwing methods, but could
+use the <tt>unwind</tt> instruction.</dd>
+
+<dt><tt><a name="readonly">readonly</a></tt></dt>
+<dd>This attribute indicates that the function does not write through any
+pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
+or otherwise modify any state (e.g. memory, control registers, etc) visible to
+caller functions. It may dereference pointer arguments and read state that may
+be set in the caller. A readonly function always returns the same value (or
+unwinds an exception identically) when called with the same set of arguments
+and global state. It cannot unwind an exception by calling the <tt>C++</tt>
+exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
+
+<dt><tt><a name="ssp">ssp</a></tt></dt>
+<dd>This attribute indicates that the function should emit a stack smashing
+protector. It is in the form of a "canary"&mdash;a random value placed on the
+stack before the local variables that's checked upon return from the function to
+see if it has been overwritten. A heuristic is used to determine if a function
+needs stack protectors or not.
+
+<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
+that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
+have an <tt>ssp</tt> attribute.</p></dd>
+
+<dt><tt>sspreq</tt></dt>
+<dd>This attribute indicates that the function should <em>always</em> emit a
+stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
+function attribute.
+
+<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
+function that doesn't have an <tt>sspreq</tt> attribute or which has
+an <tt>ssp</tt> attribute, then the resulting function will have
+an <tt>sspreq</tt> attribute.</p></dd>
+</dl>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="moduleasm">Module-Level Inline Assembly</a>
+</div>
+
+<div class="doc_text">
+<p>
+Modules may contain "module-level inline asm" blocks, which corresponds to the
+GCC "file scope inline asm" blocks. These blocks are internally concatenated by
+LLVM and treated as a single unit, but may be separated in the .ll file if
+desired. The syntax is very simple:
+</p>
+
+<div class="doc_code">
+<pre>
+module asm "inline asm code goes here"
+module asm "more can go here"
+</pre>
+</div>
+
+<p>The strings can contain any character by escaping non-printable characters.
+ The escape sequence used is simply "\xx" where "xx" is the two digit hex code
+ for the number.
+</p>
+
+<p>
+ The inline asm code is simply printed to the machine code .s file when
+ assembly code is generated.
+</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="datalayout">Data Layout</a>
+</div>
+
+<div class="doc_text">
+<p>A module may specify a target specific data layout string that specifies how
+data is to be laid out in memory. The syntax for the data layout is simply:</p>
+<pre> target datalayout = "<i>layout specification</i>"</pre>
+<p>The <i>layout specification</i> consists of a list of specifications
+separated by the minus sign character ('-'). Each specification starts with a
+letter and may include other information after the letter to define some
+aspect of the data layout. The specifications accepted are as follows: </p>
+<dl>
+ <dt><tt>E</tt></dt>
+ <dd>Specifies that the target lays out data in big-endian form. That is, the
+ bits with the most significance have the lowest address location.</dd>
+ <dt><tt>e</tt></dt>
+ <dd>Specifies that the target lays out data in little-endian form. That is,
+ the bits with the least significance have the lowest address location.</dd>
+ <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
+ <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
+ <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
+ alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
+ too.</dd>
+ <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
+ <dd>This specifies the alignment for an integer type of a given bit
+ <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
+ <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
+ <dd>This specifies the alignment for a vector type of a given bit
+ <i>size</i>.</dd>
+ <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
+ <dd>This specifies the alignment for a floating point type of a given bit
+ <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
+ (double).</dd>
+ <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
+ <dd>This specifies the alignment for an aggregate type of a given bit
+ <i>size</i>.</dd>
+</dl>
+<p>When constructing the data layout for a given target, LLVM starts with a
+default set of specifications which are then (possibly) overriden by the
+specifications in the <tt>datalayout</tt> keyword. The default specifications
+are given in this list:</p>
+<ul>
+ <li><tt>E</tt> - big endian</li>
+ <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
+ <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
+ <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
+ <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
+ <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
+ <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
+ alignment of 64-bits</li>
+ <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
+ <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
+ <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
+ <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
+ <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
+</ul>
+<p>When LLVM is determining the alignment for a given type, it uses the
+following rules:</p>
+<ol>
+ <li>If the type sought is an exact match for one of the specifications, that
+ specification is used.</li>
+ <li>If no match is found, and the type sought is an integer type, then the
+ smallest integer type that is larger than the bitwidth of the sought type is
+ used. If none of the specifications are larger than the bitwidth then the the
+ largest integer type is used. For example, given the default specifications
+ above, the i7 type will use the alignment of i8 (next largest) while both
+ i65 and i256 will use the alignment of i64 (largest specified).</li>
+ <li>If no match is found, and the type sought is a vector type, then the
+ largest vector type that is smaller than the sought vector type will be used
+ as a fall back. This happens because &lt;128 x double&gt; can be implemented
+ in terms of 64 &lt;2 x double&gt;, for example.</li>
+</ol>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="typesystem">Type System</a> </div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The LLVM type system is one of the most important features of the
+intermediate representation. Being typed enables a number of
+optimizations to be performed on the intermediate representation directly,
+without having to do
+extra analyses on the side before the transformation. A strong type
+system makes it easier to read the generated code and enables novel
+analyses and transformations that are not feasible to perform on normal
+three address code representations.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="t_classifications">Type
+Classifications</a> </div>
+<div class="doc_text">
+<p>The types fall into a few useful
+classifications:</p>
+
+<table border="1" cellspacing="0" cellpadding="4">
+ <tbody>
+ <tr><th>Classification</th><th>Types</th></tr>
+ <tr>
+ <td><a href="#t_integer">integer</a></td>
+ <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
+ </tr>
+ <tr>
+ <td><a href="#t_floating">floating point</a></td>
+ <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
+ </tr>
+ <tr>
+ <td><a name="t_firstclass">first class</a></td>
+ <td><a href="#t_integer">integer</a>,
+ <a href="#t_floating">floating point</a>,
+ <a href="#t_pointer">pointer</a>,
+ <a href="#t_vector">vector</a>,
+ <a href="#t_struct">structure</a>,
+ <a href="#t_array">array</a>,
+ <a href="#t_label">label</a>,
+ <a href="#t_metadata">metadata</a>.
+ </td>
+ </tr>
+ <tr>
+ <td><a href="#t_primitive">primitive</a></td>
+ <td><a href="#t_label">label</a>,
+ <a href="#t_void">void</a>,
+ <a href="#t_floating">floating point</a>,
+ <a href="#t_metadata">metadata</a>.</td>
+ </tr>
+ <tr>
+ <td><a href="#t_derived">derived</a></td>
+ <td><a href="#t_integer">integer</a>,
+ <a href="#t_array">array</a>,
+ <a href="#t_function">function</a>,
+ <a href="#t_pointer">pointer</a>,
+ <a href="#t_struct">structure</a>,
+ <a href="#t_pstruct">packed structure</a>,
+ <a href="#t_vector">vector</a>,
+ <a href="#t_opaque">opaque</a>.
+ </td>
+ </tr>
+ </tbody>
+</table>
+
+<p>The <a href="#t_firstclass">first class</a> types are perhaps the
+most important. Values of these types are the only ones which can be
+produced by instructions, passed as arguments, or used as operands to
+instructions.</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
+
+<div class="doc_text">
+<p>The primitive types are the fundamental building blocks of the LLVM
+system.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
+
+<div class="doc_text">
+ <table>
+ <tbody>
+ <tr><th>Type</th><th>Description</th></tr>
+ <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
+ <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
+ <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
+ <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
+ <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
+ </tbody>
+ </table>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
+
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>The void type does not represent any value and has no size.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+ void
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
+
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>The label type represents code labels.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+ label
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
+
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>The metadata type represents embedded metadata. The only derived type that
+may contain metadata is <tt>metadata*</tt> or a function type that returns or
+takes metadata typed parameters, but not pointer to metadata types.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+ metadata
+</pre>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
+
+<div class="doc_text">
+
+<p>The real power in LLVM comes from the derived types in the system.
+This is what allows a programmer to represent arrays, functions,
+pointers, and other useful types. Note that these derived types may be
+recursive: For example, it is possible to have a two dimensional array.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
+
+<div class="doc_text">
+
+<h5>Overview:</h5>
+<p>The integer type is a very simple derived type that simply specifies an
+arbitrary bit width for the integer type desired. Any bit width from 1 bit to
+2^23-1 (about 8 million) can be specified.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+ iN
+</pre>
+
+<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
+value.</p>
+
+<h5>Examples:</h5>
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>i1</tt></td>
+ <td class="left">a single-bit integer.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>i32</tt></td>
+ <td class="left">a 32-bit integer.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>i1942652</tt></td>
+ <td class="left">a really big integer of over 1 million bits.</td>
+ </tr>
+</table>
+
+<p>Note that the code generator does not yet support large integer types
+to be used as function return types. The specific limit on how large a
+return type the code generator can currently handle is target-dependent;
+currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
+targets.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
+
+<div class="doc_text">
+
+<h5>Overview:</h5>
+
+<p>The array type is a very simple derived type that arranges elements
+sequentially in memory. The array type requires a size (number of
+elements) and an underlying data type.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+ [&lt;# elements&gt; x &lt;elementtype&gt;]
+</pre>
+
+<p>The number of elements is a constant integer value; elementtype may
+be any type with a size.</p>
+
+<h5>Examples:</h5>
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>[40 x i32]</tt></td>
+ <td class="left">Array of 40 32-bit integer values.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>[41 x i32]</tt></td>
+ <td class="left">Array of 41 32-bit integer values.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>[4 x i8]</tt></td>
+ <td class="left">Array of 4 8-bit integer values.</td>
+ </tr>
+</table>
+<p>Here are some examples of multidimensional arrays:</p>
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>[3 x [4 x i32]]</tt></td>
+ <td class="left">3x4 array of 32-bit integer values.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>[12 x [10 x float]]</tt></td>
+ <td class="left">12x10 array of single precision floating point values.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
+ <td class="left">2x3x4 array of 16-bit integer values.</td>
+ </tr>
+</table>
+
+<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
+length array. Normally, accesses past the end of an array are undefined in
+LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
+As a special case, however, zero length arrays are recognized to be variable
+length. This allows implementation of 'pascal style arrays' with the LLVM
+type "{ i32, [0 x float]}", for example.</p>
+
+<p>Note that the code generator does not yet support large aggregate types
+to be used as function return types. The specific limit on how large an
+aggregate return type the code generator can currently handle is
+target-dependent, and also dependent on the aggregate element types.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
+<div class="doc_text">
+
+<h5>Overview:</h5>
+
+<p>The function type can be thought of as a function signature. It
+consists of a return type and a list of formal parameter types. The
+return type of a function type is a scalar type, a void type, or a struct type.
+If the return type is a struct type then all struct elements must be of first
+class types, and the struct must have at least one element.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;returntype list&gt; (&lt;parameter list&gt;)
+</pre>
+
+<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
+specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
+which indicates that the function takes a variable number of arguments.
+Variable argument functions can access their arguments with the <a
+ href="#int_varargs">variable argument handling intrinsic</a> functions.
+'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
+<a href="#t_firstclass">first class</a> type specifiers.</p>
+
+<h5>Examples:</h5>
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>i32 (i32)</tt></td>
+ <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
+ </td>
+ </tr><tr class="layout">
+ <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
+ </tt></td>
+ <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
+ an <tt>i16</tt> that should be sign extended and a
+ <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
+ <tt>float</tt>.
+ </td>
+ </tr><tr class="layout">
+ <td class="left"><tt>i32 (i8*, ...)</tt></td>
+ <td class="left">A vararg function that takes at least one
+ <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
+ which returns an integer. This is the signature for <tt>printf</tt> in
+ LLVM.
+ </td>
+ </tr><tr class="layout">
+ <td class="left"><tt>{i32, i32} (i32)</tt></td>
+ <td class="left">A function taking an <tt>i32</tt>, returning two
+ <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
+ </td>
+ </tr>
+</table>
+
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>The structure type is used to represent a collection of data members
+together in memory. The packing of the field types is defined to match
+the ABI of the underlying processor. The elements of a structure may
+be any type that has a size.</p>
+<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
+and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
+field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
+instruction.</p>
+<h5>Syntax:</h5>
+<pre> { &lt;type list&gt; }<br></pre>
+<h5>Examples:</h5>
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>{ i32, i32, i32 }</tt></td>
+ <td class="left">A triple of three <tt>i32</tt> values</td>
+ </tr><tr class="layout">
+ <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
+ <td class="left">A pair, where the first element is a <tt>float</tt> and the
+ second element is a <a href="#t_pointer">pointer</a> to a
+ <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
+ an <tt>i32</tt>.</td>
+ </tr>
+</table>
+
+<p>Note that the code generator does not yet support large aggregate types
+to be used as function return types. The specific limit on how large an
+aggregate return type the code generator can currently handle is
+target-dependent, and also dependent on the aggregate element types.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
+</div>
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>The packed structure type is used to represent a collection of data members
+together in memory. There is no padding between fields. Further, the alignment
+of a packed structure is 1 byte. The elements of a packed structure may
+be any type that has a size.</p>
+<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
+and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
+field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
+instruction.</p>
+<h5>Syntax:</h5>
+<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
+<h5>Examples:</h5>
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
+ <td class="left">A triple of three <tt>i32</tt> values</td>
+ </tr><tr class="layout">
+ <td class="left">
+<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
+ <td class="left">A pair, where the first element is a <tt>float</tt> and the
+ second element is a <a href="#t_pointer">pointer</a> to a
+ <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
+ an <tt>i32</tt>.</td>
+ </tr>
+</table>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>As in many languages, the pointer type represents a pointer or
+reference to another object, which must live in memory. Pointer types may have
+an optional address space attribute defining the target-specific numbered
+address space where the pointed-to object resides. The default address space is
+zero.</p>
+
+<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
+it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
+
+<h5>Syntax:</h5>
+<pre> &lt;type&gt; *<br></pre>
+<h5>Examples:</h5>
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>[4 x i32]*</tt></td>
+ <td class="left">A <a href="#t_pointer">pointer</a> to <a
+ href="#t_array">array</a> of four <tt>i32</tt> values.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>i32 (i32 *) *</tt></td>
+ <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
+ href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
+ <tt>i32</tt>.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>i32 addrspace(5)*</tt></td>
+ <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
+ that resides in address space #5.</td>
+ </tr>
+</table>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
+<div class="doc_text">
+
+<h5>Overview:</h5>
+
+<p>A vector type is a simple derived type that represents a vector
+of elements. Vector types are used when multiple primitive data
+are operated in parallel using a single instruction (SIMD).
+A vector type requires a size (number of
+elements) and an underlying primitive data type. Vectors must have a power
+of two length (1, 2, 4, 8, 16 ...). Vector types are
+considered <a href="#t_firstclass">first class</a>.</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
+</pre>
+
+<p>The number of elements is a constant integer value; elementtype may
+be any integer or floating point type.</p>
+
+<h5>Examples:</h5>
+
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
+ <td class="left">Vector of 4 32-bit integer values.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>&lt;8 x float&gt;</tt></td>
+ <td class="left">Vector of 8 32-bit floating-point values.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
+ <td class="left">Vector of 2 64-bit integer values.</td>
+ </tr>
+</table>
+
+<p>Note that the code generator does not yet support large vector types
+to be used as function return types. The specific limit on how large a
+vector return type codegen can currently handle is target-dependent;
+currently it's often a few times longer than a hardware vector register.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
+<div class="doc_text">
+
+<h5>Overview:</h5>
+
+<p>Opaque types are used to represent unknown types in the system. This
+corresponds (for example) to the C notion of a forward declared structure type.
+In LLVM, opaque types can eventually be resolved to any type (not just a
+structure type).</p>
+
+<h5>Syntax:</h5>
+
+<pre>
+ opaque
+</pre>
+
+<h5>Examples:</h5>
+
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>opaque</tt></td>
+ <td class="left">An opaque type.</td>
+ </tr>
+</table>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="t_uprefs">Type Up-references</a>
+</div>
+
+<div class="doc_text">
+<h5>Overview:</h5>
+<p>
+An "up reference" allows you to refer to a lexically enclosing type without
+requiring it to have a name. For instance, a structure declaration may contain a
+pointer to any of the types it is lexically a member of. Example of up
+references (with their equivalent as named type declarations) include:</p>
+
+<pre>
+ { \2 * } %x = type { %x* }
+ { \2 }* %y = type { %y }*
+ \1* %z = type %z*
+</pre>
+
+<p>
+An up reference is needed by the asmprinter for printing out cyclic types when
+there is no declared name for a type in the cycle. Because the asmprinter does
+not want to print out an infinite type string, it needs a syntax to handle
+recursive types that have no names (all names are optional in llvm IR).
+</p>
+
+<h5>Syntax:</h5>
+<pre>
+ \&lt;level&gt;
+</pre>
+
+<p>
+The level is the count of the lexical type that is being referred to.
+</p>
+
+<h5>Examples:</h5>
+
+<table class="layout">
+ <tr class="layout">
+ <td class="left"><tt>\1*</tt></td>
+ <td class="left">Self-referential pointer.</td>
+ </tr>
+ <tr class="layout">
+ <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
+ <td class="left">Recursive structure where the upref refers to the out-most
+ structure.</td>
+ </tr>
+</table>
+</div>
+
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="constants">Constants</a> </div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>LLVM has several different basic types of constants. This section describes
+them all and their syntax.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
+
+<div class="doc_text">
+
+<dl>
+ <dt><b>Boolean constants</b></dt>
+
+ <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
+ constants of the <tt><a href="#t_primitive">i1</a></tt> type.
+ </dd>
+
+ <dt><b>Integer constants</b></dt>
+
+ <dd>Standard integers (such as '4') are constants of the <a
+ href="#t_integer">integer</a> type. Negative numbers may be used with
+ integer types.
+ </dd>
+
+ <dt><b>Floating point constants</b></dt>
+
+ <dd>Floating point constants use standard decimal notation (e.g. 123.421),
+ exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
+ notation (see below). The assembler requires the exact decimal value of
+ a floating-point constant. For example, the assembler accepts 1.25 but
+ rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
+ constants must have a <a href="#t_floating">floating point</a> type. </dd>
+
+ <dt><b>Null pointer constants</b></dt>
+
+ <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
+ and must be of <a href="#t_pointer">pointer type</a>.</dd>
+
+</dl>
+
+<p>The one non-intuitive notation for constants is the hexadecimal form
+of floating point constants. For example, the form '<tt>double
+0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
+4.5e+15</tt>'. The only time hexadecimal floating point constants are required
+(and the only time that they are generated by the disassembler) is when a
+floating point constant must be emitted but it cannot be represented as a
+decimal floating point number in a reasonable number of digits. For example,
+NaN's, infinities, and other
+special values are represented in their IEEE hexadecimal format so that
+assembly and disassembly do not cause any bits to change in the constants.</p>
+<p>When using the hexadecimal form, constants of types float and double are
+represented using the 16-digit form shown above (which matches the IEEE754
+representation for double); float values must, however, be exactly representable
+as IEE754 single precision.
+Hexadecimal format is always used for long
+double, and there are three forms of long double. The 80-bit
+format used by x86 is represented as <tt>0xK</tt>
+followed by 20 hexadecimal digits.
+The 128-bit format used by PowerPC (two adjacent doubles) is represented
+by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
+format is represented
+by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
+target uses this format. Long doubles will only work if they match
+the long double format on your target. All hexadecimal formats are big-endian
+(sign bit at the left).</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+<a name="aggregateconstants"> <!-- old anchor -->
+<a name="complexconstants">Complex Constants</a></a>
+</div>
+
+<div class="doc_text">
+<p>Complex constants are a (potentially recursive) combination of simple
+constants and smaller complex constants.</p>
+
+<dl>
+ <dt><b>Structure constants</b></dt>
+
+ <dd>Structure constants are represented with notation similar to structure
+ type definitions (a comma separated list of elements, surrounded by braces
+ (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
+ where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
+ must have <a href="#t_struct">structure type</a>, and the number and
+ types of elements must match those specified by the type.
+ </dd>
+
+ <dt><b>Array constants</b></dt>
+
+ <dd>Array constants are represented with notation similar to array type
+ definitions (a comma separated list of elements, surrounded by square brackets
+ (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
+ constants must have <a href="#t_array">array type</a>, and the number and
+ types of elements must match those specified by the type.
+ </dd>
+
+ <dt><b>Vector constants</b></dt>
+
+ <dd>Vector constants are represented with notation similar to vector type
+ definitions (a comma separated list of elements, surrounded by
+ less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
+ i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
+ href="#t_vector">vector type</a>, and the number and types of elements must
+ match those specified by the type.
+ </dd>
+
+ <dt><b>Zero initialization</b></dt>
+
+ <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
+ value to zero of <em>any</em> type, including scalar and aggregate types.
+ This is often used to avoid having to print large zero initializers (e.g. for
+ large arrays) and is always exactly equivalent to using explicit zero
+ initializers.
+ </dd>
+
+ <dt><b>Metadata node</b></dt>
+
+ <dd>A metadata node is a structure-like constant with
+ <a href="#t_metadata">metadata type</a>. For example:
+ "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
+ that are meant to be interpreted as part of the instruction stream, metadata
+ is a place to attach additional information such as debug info.
+ </dd>
+</dl>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="globalconstants">Global Variable and Function Addresses</a>
+</div>
+
+<div class="doc_text">
+
+<p>The addresses of <a href="#globalvars">global variables</a> and <a
+href="#functionstructure">functions</a> are always implicitly valid (link-time)
+constants. These constants are explicitly referenced when the <a
+href="#identifiers">identifier for the global</a> is used and always have <a
+href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
+file:</p>
+
+<div class="doc_code">
+<pre>
+@X = global i32 17
+@Y = global i32 42
+@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
+</pre>
+</div>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
+<div class="doc_text">
+ <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
+ no specific value. Undefined values may be of any type and be used anywhere
+ a constant is permitted.</p>
+
+ <p>Undefined values indicate to the compiler that the program is well defined
+ no matter what value is used, giving the compiler more freedom to optimize.
+ </p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
+</div>
+
+<div class="doc_text">
+
+<p>Constant expressions are used to allow expressions involving other constants
+to be used as constants. Constant expressions may be of any <a
+href="#t_firstclass">first class</a> type and may involve any LLVM operation
+that does not have side effects (e.g. load and call are not supported). The
+following is the syntax for constant expressions:</p>
+
+<dl>
+ <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
+ <dd>Truncate a constant to another type. The bit size of CST must be larger
+ than the bit size of TYPE. Both types must be integers.</dd>
+
+ <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
+ <dd>Zero extend a constant to another type. The bit size of CST must be
+ smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
+
+ <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
+ <dd>Sign extend a constant to another type. The bit size of CST must be
+ smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
+
+ <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
+ <dd>Truncate a floating point constant to another floating point type. The
+ size of CST must be larger than the size of TYPE. Both types must be
+ floating point.</dd>
+
+ <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
+ <dd>Floating point extend a constant to another type. The size of CST must be
+ smaller or equal to the size of TYPE. Both types must be floating point.</dd>
+
+ <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
+ <dd>Convert a floating point constant to the corresponding unsigned integer
+ constant. TYPE must be a scalar or vector integer type. CST must be of scalar
+ or vector floating point type. Both CST and TYPE must be scalars, or vectors
+ of the same number of elements. If the value won't fit in the integer type,
+ the results are undefined.</dd>
+
+ <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
+ <dd>Convert a floating point constant to the corresponding signed integer
+ constant. TYPE must be a scalar or vector integer type. CST must be of scalar
+ or vector floating point type. Both CST and TYPE must be scalars, or vectors
+ of the same number of elements. If the value won't fit in the integer type,
+ the results are undefined.</dd>
+
+ <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
+ <dd>Convert an unsigned integer constant to the corresponding floating point
+ constant. TYPE must be a scalar or vector floating point type. CST must be of
+ scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
+ of the same number of elements. If the value won't fit in the floating point
+ type, the results are undefined.</dd>
+
+ <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
+ <dd>Convert a signed integer constant to the corresponding floating point
+ constant. TYPE must be a scalar or vector floating point type. CST must be of
+ scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
+ of the same number of elements. If the value won't fit in the floating point
+ type, the results are undefined.</dd>
+
+ <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
+ <dd>Convert a pointer typed constant to the corresponding integer constant
+ TYPE must be an integer type. CST must be of pointer type. The CST value is
+ zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
+
+ <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
+ <dd>Convert a integer constant to a pointer constant. TYPE must be a
+ pointer type. CST must be of integer type. The CST value is zero extended,
+ truncated, or unchanged to make it fit in a pointer size. This one is
+ <i>really</i> dangerous!</dd>
+
+ <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
+ <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
+ are the same as those for the <a href="#i_bitcast">bitcast
+ instruction</a>.</dd>
+
+ <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
+
+ <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
+ constants. As with the <a href="#i_getelementptr">getelementptr</a>
+ instruction, the index list may have zero or more indexes, which are required
+ to make sense for the type of "CSTPTR".</dd>
+
+ <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
+
+ <dd>Perform the <a href="#i_select">select operation</a> on
+ constants.</dd>
+
+ <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
+ <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
+
+ <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
+ <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
+
+ <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
+ <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
+
+ <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
+ <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
+
+ <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
+
+ <dd>Perform the <a href="#i_extractelement">extractelement
+ operation</a> on constants.</dd>
+
+ <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
+
+ <dd>Perform the <a href="#i_insertelement">insertelement
+ operation</a> on constants.</dd>
+
+
+ <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
+
+ <dd>Perform the <a href="#i_shufflevector">shufflevector
+ operation</a> on constants.</dd>
+
+ <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
+
+ <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
+ be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
+ binary</a> operations. The constraints on operands are the same as those for
+ the corresponding instruction (e.g. no bitwise operations on floating point
+ values are allowed).</dd>
+</dl>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
+</div>
+
+<div class="doc_text">
+
+<p>Embedded metadata provides a way to attach arbitrary data to the
+instruction stream without affecting the behaviour of the program. There are
+two metadata primitives, strings and nodes. All metadata has the
+<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
+point ('<tt>!</tt>').
+</p>
+
+<p>A metadata string is a string surrounded by double quotes. It can contain
+any character by escaping non-printable characters with "\xx" where "xx" is
+the two digit hex code. For example: "<tt>!"test\00"</tt>".
+</p>
+
+<p>Metadata nodes are represented with notation similar to structure constants
+(a comma separated list of elements, surrounded by braces and preceeded by an
+exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
+</p>
+
+<p>A metadata node will attempt to track changes to the values it holds. In
+the event that a value is deleted, it will be replaced with a typeless
+"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
+
+<p>Optimizations may rely on metadata to provide additional information about
+the program that isn't available in the instructions, or that isn't easily
+computable. Similarly, the code generator may expect a certain metadata format
+to be used to express debugging information.</p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
+<!-- *********************************************************************** -->
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+<a name="inlineasm">Inline Assembler Expressions</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
+Module-Level Inline Assembly</a>) through the use of a special value. This
+value represents the inline assembler as a string (containing the instructions
+to emit), a list of operand constraints (stored as a string), and a flag that
+indicates whether or not the inline asm expression has side effects. An example
+inline assembler expression is:
+</p>
+
+<div class="doc_code">
+<pre>
+i32 (i32) asm "bswap $0", "=r,r"
+</pre>
+</div>
+
+<p>
+Inline assembler expressions may <b>only</b> be used as the callee operand of
+a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
+</p>
+
+<div class="doc_code">
+<pre>
+%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
+</pre>
+</div>
+
+<p>
+Inline asms with side effects not visible in the constraint list must be marked
+as having side effects. This is done through the use of the
+'<tt>sideeffect</tt>' keyword, like so:
+</p>
+
+<div class="doc_code">
+<pre>
+call void asm sideeffect "eieio", ""()
+</pre>
+</div>
+
+<p>TODO: The format of the asm and constraints string still need to be
+documented here. Constraints on what can be done (e.g. duplication, moving, etc
+need to be documented). This is probably best done by reference to another
+document that covers inline asm from a holistic perspective.
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The LLVM instruction set consists of several different
+classifications of instructions: <a href="#terminators">terminator
+instructions</a>, <a href="#binaryops">binary instructions</a>,
+<a href="#bitwiseops">bitwise binary instructions</a>, <a
+ href="#memoryops">memory instructions</a>, and <a href="#otherops">other
+instructions</a>.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="terminators">Terminator
+Instructions</a> </div>
+
+<div class="doc_text">
+
+<p>As mentioned <a href="#functionstructure">previously</a>, every
+basic block in a program ends with a "Terminator" instruction, which
+indicates which block should be executed after the current block is
+finished. These terminator instructions typically yield a '<tt>void</tt>'
+value: they produce control flow, not values (the one exception being
+the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
+<p>There are six different terminator instructions: the '<a
+ href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
+instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
+the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
+ href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
+ href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
+Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre>
+ ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
+ ret void <i>; Return from void function</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>ret</tt>' instruction is used to return control flow (and
+optionally a value) from a function back to the caller.</p>
+<p>There are two forms of the '<tt>ret</tt>' instruction: one that
+returns a value and then causes control flow, and one that just causes
+control flow to occur.</p>
+
+<h5>Arguments:</h5>
+
+<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
+the return value. The type of the return value must be a
+'<a href="#t_firstclass">first class</a>' type.</p>
+
+<p>A function is not <a href="#wellformed">well formed</a> if
+it it has a non-void return type and contains a '<tt>ret</tt>'
+instruction with no return value or a return value with a type that
+does not match its type, or if it has a void return type and contains
+a '<tt>ret</tt>' instruction with a return value.</p>
+
+<h5>Semantics:</h5>
+
+<p>When the '<tt>ret</tt>' instruction is executed, control flow
+returns back to the calling function's context. If the caller is a "<a
+ href="#i_call"><tt>call</tt></a>" instruction, execution continues at
+the instruction after the call. If the caller was an "<a
+ href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
+at the beginning of the "normal" destination block. If the instruction
+returns a value, that value shall set the call or invoke instruction's
+return value.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ ret i32 5 <i>; Return an integer value of 5</i>
+ ret void <i>; Return from a void function</i>
+ ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
+</pre>
+
+<p>Note that the code generator does not yet fully support large
+ return values. The specific sizes that are currently supported are
+ dependent on the target. For integers, on 32-bit targets the limit
+ is often 64 bits, and on 64-bit targets the limit is often 128 bits.
+ For aggregate types, the current limits are dependent on the element
+ types; for example targets are often limited to 2 total integer
+ elements and 2 total floating-point elements.</p>
+
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>br</tt>' instruction is used to cause control flow to
+transfer to a different basic block in the current function. There are
+two forms of this instruction, corresponding to a conditional branch
+and an unconditional branch.</p>
+<h5>Arguments:</h5>
+<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
+single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
+unconditional form of the '<tt>br</tt>' instruction takes a single
+'<tt>label</tt>' value as a target.</p>
+<h5>Semantics:</h5>
+<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
+argument is evaluated. If the value is <tt>true</tt>, control flows
+to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
+control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
+<h5>Example:</h5>
+<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
+ href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_switch">'<tt>switch</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+<h5>Syntax:</h5>
+
+<pre>
+ switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
+several different places. It is a generalization of the '<tt>br</tt>'
+instruction, allowing a branch to occur to one of many possible
+destinations.</p>
+
+
+<h5>Arguments:</h5>
+
+<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
+comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
+an array of pairs of comparison value constants and '<tt>label</tt>'s. The
+table is not allowed to contain duplicate constant entries.</p>
+
+<h5>Semantics:</h5>
+
+<p>The <tt>switch</tt> instruction specifies a table of values and
+destinations. When the '<tt>switch</tt>' instruction is executed, this
+table is searched for the given value. If the value is found, control flow is
+transfered to the corresponding destination; otherwise, control flow is
+transfered to the default destination.</p>
+
+<h5>Implementation:</h5>
+
+<p>Depending on properties of the target machine and the particular
+<tt>switch</tt> instruction, this instruction may be code generated in different
+ways. For example, it could be generated as a series of chained conditional
+branches or with a lookup table.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ <i>; Emulate a conditional br instruction</i>
+ %Val = <a href="#i_zext">zext</a> i1 %value to i32
+ switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
+
+ <i>; Emulate an unconditional br instruction</i>
+ switch i32 0, label %dest [ ]
+
+ <i>; Implement a jump table:</i>
+ switch i32 %val, label %otherwise [ i32 0, label %onzero
+ i32 1, label %onone
+ i32 2, label %ontwo ]
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
+ to label &lt;normal label&gt; unwind label &lt;exception label&gt;
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
+function, with the possibility of control flow transfer to either the
+'<tt>normal</tt>' label or the
+'<tt>exception</tt>' label. If the callee function returns with the
+"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
+"normal" label. If the callee (or any indirect callees) returns with the "<a
+href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
+continued at the dynamically nearest "exception" label.</p>
+
+<h5>Arguments:</h5>
+
+<p>This instruction requires several arguments:</p>
+
+<ol>
+ <li>
+ The optional "cconv" marker indicates which <a href="#callingconv">calling
+ convention</a> the call should use. If none is specified, the call defaults
+ to using C calling conventions.
+ </li>
+
+ <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
+ return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
+ and '<tt>inreg</tt>' attributes are valid here.</li>
+
+ <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
+ function value being invoked. In most cases, this is a direct function
+ invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
+ an arbitrary pointer to function value.
+ </li>
+
+ <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
+ function to be invoked. </li>
+
+ <li>'<tt>function args</tt>': argument list whose types match the function
+ signature argument types. If the function signature indicates the function
+ accepts a variable number of arguments, the extra arguments can be
+ specified. </li>
+
+ <li>'<tt>normal label</tt>': the label reached when the called function
+ executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
+
+ <li>'<tt>exception label</tt>': the label reached when a callee returns with
+ the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
+
+ <li>The optional <a href="#fnattrs">function attributes</a> list. Only
+ '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
+ '<tt>readnone</tt>' attributes are valid here.</li>
+</ol>
+
+<h5>Semantics:</h5>
+
+<p>This instruction is designed to operate as a standard '<tt><a
+href="#i_call">call</a></tt>' instruction in most regards. The primary
+difference is that it establishes an association with a label, which is used by
+the runtime library to unwind the stack.</p>
+
+<p>This instruction is used in languages with destructors to ensure that proper
+cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
+exception. Additionally, this is important for implementation of
+'<tt>catch</tt>' clauses in high-level languages that support them.</p>
+
+<p>It is not valid to reference the return value of an invoke call from
+anywhere not dominated by the normal label, since an unwind does not
+provide a return value.</p>
+
+<h5>Example:</h5>
+<pre>
+ %retval = invoke i32 @Test(i32 15) to label %Continue
+ unwind label %TestCleanup <i>; {i32}:retval set</i>
+ %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
+ unwind label %TestCleanup <i>; {i32}:retval set</i>
+</pre>
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
+Instruction</a> </div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ unwind
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
+at the first callee in the dynamic call stack which used an <a
+href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
+primarily used to implement exception handling.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
+immediately halt. The dynamic call stack is then searched for the first <a
+href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
+execution continues at the "exceptional" destination block specified by the
+<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
+dynamic call chain, undefined behavior results.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
+Instruction</a> </div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ unreachable
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
+instruction is used to inform the optimizer that a particular portion of the
+code is not reachable. This can be used to indicate that the code after a
+no-return function cannot be reached, and other facts.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
+</div>
+
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
+<div class="doc_text">
+<p>Binary operators are used to do most of the computation in a
+program. They require two operands of the same type, execute an operation on them, and
+produce a single value. The operands might represent
+multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
+The result value has the same type as its operands.</p>
+<p>There are several different binary operators:</p>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_add">'<tt>add</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
+
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>add</tt>' instruction must be <a
+ href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
+ <a href="#t_vector">vector</a> values. Both arguments must have identical
+ types.</p>
+
+<h5>Semantics:</h5>
+
+<p>The value produced is the integer or floating point sum of the two
+operands.</p>
+
+<p>If an integer sum has unsigned overflow, the result returned is the
+mathematical result modulo 2<sup>n</sup>, where n is the bit width of
+the result.</p>
+
+<p>Because LLVM integers use a two's complement representation, this
+instruction is appropriate for both signed and unsigned integers.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
+</pre>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_sub">'<tt>sub</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>sub</tt>' instruction returns the difference of its two
+operands.</p>
+
+<p>Note that the '<tt>sub</tt>' instruction is used to represent the
+'<tt>neg</tt>' instruction present in most other intermediate
+representations.</p>
+
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
+ href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
+ or <a href="#t_vector">vector</a> values. Both arguments must have identical
+ types.</p>
+
+<h5>Semantics:</h5>
+
+<p>The value produced is the integer or floating point difference of
+the two operands.</p>
+
+<p>If an integer difference has unsigned overflow, the result returned is the
+mathematical result modulo 2<sup>n</sup>, where n is the bit width of
+the result.</p>
+
+<p>Because LLVM integers use a two's complement representation, this
+instruction is appropriate for both signed and unsigned integers.</p>
+
+<h5>Example:</h5>
+<pre>
+ &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
+ &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_mul">'<tt>mul</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>mul</tt>' instruction returns the product of its two
+operands.</p>
+
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
+href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
+or <a href="#t_vector">vector</a> values. Both arguments must have identical
+types.</p>
+
+<h5>Semantics:</h5>
+
+<p>The value produced is the integer or floating point product of the
+two operands.</p>
+
+<p>If the result of an integer multiplication has unsigned overflow,
+the result returned is the mathematical result modulo
+2<sup>n</sup>, where n is the bit width of the result.</p>
+<p>Because LLVM integers use a two's complement representation, and the
+result is the same width as the operands, this instruction returns the
+correct result for both signed and unsigned integers. If a full product
+(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
+should be sign-extended or zero-extended as appropriate to the
+width of the full product.</p>
+<h5>Example:</h5>
+<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
+</a></div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
+operands.</p>
+
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>udiv</tt>' instruction must be
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+values. Both arguments must have identical types.</p>
+
+<h5>Semantics:</h5>
+
+<p>The value produced is the unsigned integer quotient of the two operands.</p>
+<p>Note that unsigned integer division and signed integer division are distinct
+operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
+<p>Division by zero leads to undefined behavior.</p>
+<h5>Example:</h5>
+<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
+</pre>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
+</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
+operands.</p>
+
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+values. Both arguments must have identical types.</p>
+
+<h5>Semantics:</h5>
+<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
+<p>Note that signed integer division and unsigned integer division are distinct
+operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
+<p>Division by zero leads to undefined behavior. Overflow also leads to
+undefined behavior; this is a rare case, but can occur, for example,
+by doing a 32-bit division of -2147483648 by -1.</p>
+<h5>Example:</h5>
+<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
+</pre>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
+Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+<h5>Overview:</h5>
+
+<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
+operands.</p>
+
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
+<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
+of floating point values. Both arguments must have identical types.</p>
+
+<h5>Semantics:</h5>
+
+<p>The value produced is the floating point quotient of the two operands.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>urem</tt>' instruction returns the remainder from the
+unsigned division of its two arguments.</p>
+<h5>Arguments:</h5>
+<p>The two arguments to the '<tt>urem</tt>' instruction must be
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+values. Both arguments must have identical types.</p>
+<h5>Semantics:</h5>
+<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
+This instruction always performs an unsigned division to get the remainder.</p>
+<p>Note that unsigned integer remainder and signed integer remainder are
+distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
+<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
+<h5>Example:</h5>
+<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
+</pre>
+
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_srem">'<tt>srem</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>srem</tt>' instruction returns the remainder from the
+signed division of its two operands. This instruction can also take
+<a href="#t_vector">vector</a> versions of the values in which case
+the elements must be integers.</p>
+
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>srem</tt>' instruction must be
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+values. Both arguments must have identical types.</p>
+
+<h5>Semantics:</h5>
+
+<p>This instruction returns the <i>remainder</i> of a division (where the result
+has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
+operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
+a value. For more information about the difference, see <a
+ href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
+Math Forum</a>. For a table of how this is implemented in various languages,
+please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
+Wikipedia: modulo operation</a>.</p>
+<p>Note that signed integer remainder and unsigned integer remainder are
+distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
+<p>Taking the remainder of a division by zero leads to undefined behavior.
+Overflow also leads to undefined behavior; this is a rare case, but can occur,
+for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
+(The remainder doesn't actually overflow, but this rule lets srem be
+implemented using instructions that return both the result of the division
+and the remainder.)</p>
+<h5>Example:</h5>
+<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
+</pre>
+
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>frem</tt>' instruction returns the remainder from the
+division of its two operands.</p>
+<h5>Arguments:</h5>
+<p>The two arguments to the '<tt>frem</tt>' instruction must be
+<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
+of floating point values. Both arguments must have identical types.</p>
+
+<h5>Semantics:</h5>
+
+<p>This instruction returns the <i>remainder</i> of a division.
+The remainder has the same sign as the dividend.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
+</pre>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
+Operations</a> </div>
+<div class="doc_text">
+<p>Bitwise binary operators are used to do various forms of
+bit-twiddling in a program. They are generally very efficient
+instructions and can commonly be strength reduced from other
+instructions. They require two operands of the same type, execute an operation on them,
+and produce a single value. The resulting value is the same type as its operands.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
+Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
+the left a specified number of bits.</p>
+
+<h5>Arguments:</h5>
+
+<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
+ href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+type. '<tt>op2</tt>' is treated as an unsigned value.</p>
+
+<h5>Semantics:</h5>
+
+<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
+where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
+equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
+If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
+corresponding shift amount in <tt>op2</tt>.</p>
+
+<h5>Example:</h5><pre>
+ &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
+ &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
+ &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
+ &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
+ &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
+</pre>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
+Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
+operand shifted to the right a specified number of bits with zero fill.</p>
+
+<h5>Arguments:</h5>
+<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+type. '<tt>op2</tt>' is treated as an unsigned value.</p>
+
+<h5>Semantics:</h5>
+
+<p>This instruction always performs a logical shift right operation. The most
+significant bits of the result will be filled with zero bits after the
+shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
+the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
+vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
+amount in <tt>op2</tt>.</p>
+
+<h5>Example:</h5>
+<pre>
+ &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
+ &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
+ &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
+ &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
+ &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
+ &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
+Instruction</a> </div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
+operand shifted to the right a specified number of bits with sign extension.</p>
+
+<h5>Arguments:</h5>
+<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+type. '<tt>op2</tt>' is treated as an unsigned value.</p>
+
+<h5>Semantics:</h5>
+<p>This instruction always performs an arithmetic shift right operation,
+The most significant bits of the result will be filled with the sign bit
+of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
+larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
+arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
+corresponding shift amount in <tt>op2</tt>.</p>
+
+<h5>Example:</h5>
+<pre>
+ &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
+ &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
+ &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
+ &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
+ &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
+ &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
+Instruction</a> </div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
+its two operands.</p>
+
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>and</tt>' instruction must be
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+values. Both arguments must have identical types.</p>
+
+<h5>Semantics:</h5>
+<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
+<p> </p>
+<div>
+<table border="1" cellspacing="0" cellpadding="4">
+ <tbody>
+ <tr>
+ <td>In0</td>
+ <td>In1</td>
+ <td>Out</td>
+ </tr>
+ <tr>
+ <td>0</td>
+ <td>0</td>
+ <td>0</td>
+ </tr>
+ <tr>
+ <td>0</td>
+ <td>1</td>
+ <td>0</td>
+ </tr>
+ <tr>
+ <td>1</td>
+ <td>0</td>
+ <td>0</td>
+ </tr>
+ <tr>
+ <td>1</td>
+ <td>1</td>
+ <td>1</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<h5>Example:</h5>
+<pre>
+ &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
+ &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
+ &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
+</pre>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
+or of its two operands.</p>
+<h5>Arguments:</h5>
+
+<p>The two arguments to the '<tt>or</tt>' instruction must be
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+values. Both arguments must have identical types.</p>
+<h5>Semantics:</h5>
+<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
+<p> </p>
+<div>
+<table border="1" cellspacing="0" cellpadding="4">
+ <tbody>
+ <tr>
+ <td>In0</td>
+ <td>In1</td>
+ <td>Out</td>
+ </tr>
+ <tr>
+ <td>0</td>
+ <td>0</td>
+ <td>0</td>
+ </tr>
+ <tr>
+ <td>0</td>
+ <td>1</td>
+ <td>1</td>
+ </tr>
+ <tr>
+ <td>1</td>
+ <td>0</td>
+ <td>1</td>
+ </tr>
+ <tr>
+ <td>1</td>
+ <td>1</td>
+ <td>1</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<h5>Example:</h5>
+<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
+ &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
+ &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
+</pre>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
+Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
+or of its two operands. The <tt>xor</tt> is used to implement the
+"one's complement" operation, which is the "~" operator in C.</p>
+<h5>Arguments:</h5>
+<p>The two arguments to the '<tt>xor</tt>' instruction must be
+<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
+values. Both arguments must have identical types.</p>
+
+<h5>Semantics:</h5>
+
+<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
+<p> </p>
+<div>
+<table border="1" cellspacing="0" cellpadding="4">
+ <tbody>
+ <tr>
+ <td>In0</td>
+ <td>In1</td>
+ <td>Out</td>
+ </tr>
+ <tr>
+ <td>0</td>
+ <td>0</td>
+ <td>0</td>
+ </tr>
+ <tr>
+ <td>0</td>
+ <td>1</td>
+ <td>1</td>
+ </tr>
+ <tr>
+ <td>1</td>
+ <td>0</td>
+ <td>1</td>
+ </tr>
+ <tr>
+ <td>1</td>
+ <td>1</td>
+ <td>0</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<p> </p>
+<h5>Example:</h5>
+<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
+ &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
+ &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
+ &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
+</pre>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="vectorops">Vector Operations</a>
+</div>
+
+<div class="doc_text">
+
+<p>LLVM supports several instructions to represent vector operations in a
+target-independent manner. These instructions cover the element-access and
+vector-specific operations needed to process vectors effectively. While LLVM
+does directly support these vector operations, many sophisticated algorithms
+will want to use target-specific intrinsics to take full advantage of a specific
+target.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>extractelement</tt>' instruction extracts a single scalar
+element from a vector at a specified index.
+</p>
+
+
+<h5>Arguments:</h5>
+
+<p>
+The first operand of an '<tt>extractelement</tt>' instruction is a
+value of <a href="#t_vector">vector</a> type. The second operand is
+an index indicating the position from which to extract the element.
+The index may be a variable.</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The result is a scalar of the same type as the element type of
+<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
+<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
+results are undefined.
+</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
+</pre>
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>insertelement</tt>' instruction inserts a scalar
+element into a vector at a specified index.
+</p>
+
+
+<h5>Arguments:</h5>
+
+<p>
+The first operand of an '<tt>insertelement</tt>' instruction is a
+value of <a href="#t_vector">vector</a> type. The second operand is a
+scalar value whose type must equal the element type of the first
+operand. The third operand is an index indicating the position at
+which to insert the value. The index may be a variable.</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The result is a vector of the same type as <tt>val</tt>. Its
+element values are those of <tt>val</tt> except at position
+<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
+exceeds the length of <tt>val</tt>, the results are undefined.
+</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
+from two input vectors, returning a vector with the same element type as
+the input and length that is the same as the shuffle mask.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
+with types that match each other. The third argument is a shuffle mask whose
+element type is always 'i32'. The result of the instruction is a vector whose
+length is the same as the shuffle mask and whose element type is the same as
+the element type of the first two operands.
+</p>
+
+<p>
+The shuffle mask operand is required to be a constant vector with either
+constant integer or undef values.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The elements of the two input vectors are numbered from left to right across
+both of the vectors. The shuffle mask operand specifies, for each element of
+the result vector, which element of the two input vectors the result element
+gets. The element selector may be undef (meaning "don't care") and the second
+operand may be undef if performing a shuffle from only one vector.
+</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
+ &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
+ %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
+ &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
+ %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
+ &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
+ %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
+ &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
+</pre>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="aggregateops">Aggregate Operations</a>
+</div>
+
+<div class="doc_text">
+
+<p>LLVM supports several instructions for working with aggregate values.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
+or array element from an aggregate value.
+</p>
+
+
+<h5>Arguments:</h5>
+
+<p>
+The first operand of an '<tt>extractvalue</tt>' instruction is a
+value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
+type. The operands are constant indices to specify which value to extract
+in a similar manner as indices in a
+'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The result is the value at the position in the aggregate specified by
+the index operands.
+</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
+</pre>
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>insertvalue</tt>' instruction inserts a value
+into a struct field or array element in an aggregate.
+</p>
+
+
+<h5>Arguments:</h5>
+
+<p>
+The first operand of an '<tt>insertvalue</tt>' instruction is a
+value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
+The second operand is a first-class value to insert.
+The following operands are constant indices
+indicating the position at which to insert the value in a similar manner as
+indices in a
+'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
+The value to insert must have the same type as the value identified
+by the indices.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The result is an aggregate of the same type as <tt>val</tt>. Its
+value is that of <tt>val</tt> except that the value at the position
+specified by the indices is that of <tt>elt</tt>.
+</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
+</pre>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="memoryops">Memory Access and Addressing Operations</a>
+</div>
+
+<div class="doc_text">
+
+<p>A key design point of an SSA-based representation is how it
+represents memory. In LLVM, no memory locations are in SSA form, which
+makes things very simple. This section describes how to read, write,
+allocate, and free memory in LLVM.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>malloc</tt>' instruction allocates memory from the system
+heap and returns a pointer to it. The object is always allocated in the generic
+address space (address space zero).</p>
+
+<h5>Arguments:</h5>
+
+<p>The '<tt>malloc</tt>' instruction allocates
+<tt>sizeof(&lt;type&gt;)*NumElements</tt>
+bytes of memory from the operating system and returns a pointer of the
+appropriate type to the program. If "NumElements" is specified, it is the
+number of elements allocated, otherwise "NumElements" is defaulted to be one.
+If a constant alignment is specified, the value result of the allocation is guaranteed to
+be aligned to at least that boundary. If not specified, or if zero, the target can
+choose to align the allocation on any convenient boundary.</p>
+
+<p>'<tt>type</tt>' must be a sized type.</p>
+
+<h5>Semantics:</h5>
+
+<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
+a pointer is returned. The result of a zero byte allocation is undefined. The
+result is null if there is insufficient memory available.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
+
+ %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
+ %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
+ %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
+ %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
+ %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
+</pre>
+
+<p>Note that the code generator does not yet respect the
+ alignment value.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_free">'<tt>free</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>free</tt>' instruction returns memory back to the unused
+memory heap to be reallocated in the future.</p>
+
+<h5>Arguments:</h5>
+
+<p>'<tt>value</tt>' shall be a pointer value that points to a value
+that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
+instruction.</p>
+
+<h5>Semantics:</h5>
+
+<p>Access to the memory pointed to by the pointer is no longer defined
+after this instruction executes. If the pointer is null, the operation
+is a noop.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
+ free [4 x i8]* %array
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
+currently executing function, to be automatically released when this function
+returns to its caller. The object is always allocated in the generic address
+space (address space zero).</p>
+
+<h5>Arguments:</h5>
+
+<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
+bytes of memory on the runtime stack, returning a pointer of the
+appropriate type to the program. If "NumElements" is specified, it is the
+number of elements allocated, otherwise "NumElements" is defaulted to be one.
+If a constant alignment is specified, the value result of the allocation is guaranteed
+to be aligned to at least that boundary. If not specified, or if zero, the target
+can choose to align the allocation on any convenient boundary.</p>
+
+<p>'<tt>type</tt>' may be any sized type.</p>
+
+<h5>Semantics:</h5>
+
+<p>Memory is allocated; a pointer is returned. The operation is undefined if
+there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
+memory is automatically released when the function returns. The '<tt>alloca</tt>'
+instruction is commonly used to represent automatic variables that must
+have an address available. When the function returns (either with the <tt><a
+ href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
+instructions), the memory is reclaimed. Allocating zero bytes
+is legal, but the result is undefined.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
+ %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
+ %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
+ %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
+Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
+<h5>Overview:</h5>
+<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
+<h5>Arguments:</h5>
+<p>The argument to the '<tt>load</tt>' instruction specifies the memory
+address from which to load. The pointer must point to a <a
+ href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
+marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
+the number or order of execution of this <tt>load</tt> with other
+volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
+instructions. </p>
+<p>
+The optional constant "align" argument specifies the alignment of the operation
+(that is, the alignment of the memory address). A value of 0 or an
+omitted "align" argument means that the operation has the preferential
+alignment for the target. It is the responsibility of the code emitter
+to ensure that the alignment information is correct. Overestimating
+the alignment results in an undefined behavior. Underestimating the
+alignment may produce less efficient code. An alignment of 1 is always
+safe.
+</p>
+<h5>Semantics:</h5>
+<p>The location of memory pointed to is loaded. If the value being loaded
+is of scalar type then the number of bytes read does not exceed the minimum
+number of bytes needed to hold all bits of the type. For example, loading an
+<tt>i24</tt> reads at most three bytes. When loading a value of a type like
+<tt>i20</tt> with a size that is not an integral number of bytes, the result
+is undefined if the value was not originally written using a store of the
+same type.</p>
+<h5>Examples:</h5>
+<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
+ <a
+ href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
+ %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
+</pre>
+</div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
+Instruction</a> </div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
+ volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
+<h5>Arguments:</h5>
+<p>There are two arguments to the '<tt>store</tt>' instruction: a value
+to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
+operand must be a pointer to the <a href="#t_firstclass">first class</a> type
+of the '<tt>&lt;value&gt;</tt>'
+operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
+optimizer is not allowed to modify the number or order of execution of
+this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
+ href="#i_store">store</a></tt> instructions.</p>
+<p>
+The optional constant "align" argument specifies the alignment of the operation
+(that is, the alignment of the memory address). A value of 0 or an
+omitted "align" argument means that the operation has the preferential
+alignment for the target. It is the responsibility of the code emitter
+to ensure that the alignment information is correct. Overestimating
+the alignment results in an undefined behavior. Underestimating the
+alignment may produce less efficient code. An alignment of 1 is always
+safe.
+</p>
+<h5>Semantics:</h5>
+<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
+at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
+If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
+written does not exceed the minimum number of bytes needed to hold all
+bits of the type. For example, storing an <tt>i24</tt> writes at most
+three bytes. When writing a value of a type like <tt>i20</tt> with a
+size that is not an integral number of bytes, it is unspecified what
+happens to the extra bits that do not belong to the type, but they will
+typically be overwritten.</p>
+<h5>Example:</h5>
+<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
+ store i32 3, i32* %ptr <i>; yields {void}</i>
+ %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>getelementptr</tt>' instruction is used to get the address of a
+subelement of an aggregate data structure. It performs address calculation only
+and does not access memory.</p>
+
+<h5>Arguments:</h5>
+
+<p>The first argument is always a pointer, and forms the basis of the
+calculation. The remaining arguments are indices, that indicate which of the
+elements of the aggregate object are indexed. The interpretation of each index
+is dependent on the type being indexed into. The first index always indexes the
+pointer value given as the first argument, the second index indexes a value of
+the type pointed to (not necessarily the value directly pointed to, since the
+first index can be non-zero), etc. The first type indexed into must be a pointer
+value, subsequent types can be arrays, vectors and structs. Note that subsequent
+types being indexed into can never be pointers, since that would require loading
+the pointer before continuing calculation.</p>
+
+<p>The type of each index argument depends on the type it is indexing into.
+When indexing into a (packed) structure, only <tt>i32</tt> integer
+<b>constants</b> are allowed. When indexing into an array, pointer or vector,
+integers of any width are allowed (also non-constants).</p>
+
+<p>For example, let's consider a C code fragment and how it gets
+compiled to LLVM:</p>
+
+<div class="doc_code">
+<pre>
+struct RT {
+ char A;
+ int B[10][20];
+ char C;
+};
+struct ST {
+ int X;
+ double Y;
+ struct RT Z;
+};
+
+int *foo(struct ST *s) {
+ return &amp;s[1].Z.B[5][13];
+}
+</pre>
+</div>
+
+<p>The LLVM code generated by the GCC frontend is:</p>
+
+<div class="doc_code">
+<pre>
+%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
+%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
+
+define i32* %foo(%ST* %s) {
+entry:
+ %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
+ ret i32* %reg
+}
+</pre>
+</div>
+
+<h5>Semantics:</h5>
+
+<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
+type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
+}</tt>' type, a structure. The second index indexes into the third element of
+the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
+i8 }</tt>' type, another structure. The third index indexes into the second
+element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
+array. The two dimensions of the array are subscripted into, yielding an
+'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
+to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
+
+<p>Note that it is perfectly legal to index partially through a
+structure, returning a pointer to an inner element. Because of this,
+the LLVM code for the given testcase is equivalent to:</p>
+
+<pre>
+ define i32* %foo(%ST* %s) {
+ %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
+ %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
+ %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
+ %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
+ %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
+ ret i32* %t5
+ }
+</pre>
+
+<p>Note that it is undefined to access an array out of bounds: array
+and pointer indexes must always be within the defined bounds of the
+array type when accessed with an instruction that dereferences the
+pointer (e.g. a load or store instruction). The one exception for
+this rule is zero length arrays. These arrays are defined to be
+accessible as variable length arrays, which requires access beyond the
+zero'th element.</p>
+
+<p>The getelementptr instruction is often confusing. For some more insight
+into how it works, see <a href="GetElementPtr.html">the getelementptr
+FAQ</a>.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ <i>; yields [12 x i8]*:aptr</i>
+ %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
+ <i>; yields i8*:vptr</i>
+ %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
+ <i>; yields i8*:eptr</i>
+ %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
+ <i>; yields i32*:iptr</i>
+ %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
+</pre>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
+</div>
+<div class="doc_text">
+<p>The instructions in this category are the conversion instructions (casting)
+which all take a single operand and a type. They perform various bit conversions
+on the operand.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>
+The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
+</p>
+
+<h5>Arguments:</h5>
+<p>
+The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
+be an <a href="#t_integer">integer</a> type, and a type that specifies the size
+and type of the result, which must be an <a href="#t_integer">integer</a>
+type. The bit size of <tt>value</tt> must be larger than the bit size of
+<tt>ty2</tt>. Equal sized types are not allowed.</p>
+
+<h5>Semantics:</h5>
+<p>
+The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
+and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
+larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
+It will always truncate bits.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = trunc i32 257 to i8 <i>; yields i8:1</i>
+ %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
+ %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>zext</tt>' instruction zero extends its operand to type
+<tt>ty2</tt>.</p>
+
+
+<h5>Arguments:</h5>
+<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
+<a href="#t_integer">integer</a> type, and a type to cast it to, which must
+also be of <a href="#t_integer">integer</a> type. The bit size of the
+<tt>value</tt> must be smaller than the bit size of the destination type,
+<tt>ty2</tt>.</p>
+
+<h5>Semantics:</h5>
+<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
+bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
+
+<p>When zero extending from i1, the result will always be either 0 or 1.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = zext i32 257 to i64 <i>; yields i64:257</i>
+ %Y = zext i1 true to i32 <i>; yields i32:1</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
+
+<h5>Arguments:</h5>
+<p>
+The '<tt>sext</tt>' instruction takes a value to cast, which must be of
+<a href="#t_integer">integer</a> type, and a type to cast it to, which must
+also be of <a href="#t_integer">integer</a> type. The bit size of the
+<tt>value</tt> must be smaller than the bit size of the destination type,
+<tt>ty2</tt>.</p>
+
+<h5>Semantics:</h5>
+<p>
+The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
+bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
+the type <tt>ty2</tt>.</p>
+
+<p>When sign extending from i1, the extension always results in -1 or 0.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
+ %Y = sext i1 true to i32 <i>; yields i32:-1</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
+<tt>ty2</tt>.</p>
+
+
+<h5>Arguments:</h5>
+<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
+ point</a> value to cast and a <a href="#t_floating">floating point</a> type to
+cast it to. The size of <tt>value</tt> must be larger than the size of
+<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
+<i>no-op cast</i>.</p>
+
+<h5>Semantics:</h5>
+<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
+<a href="#t_floating">floating point</a> type to a smaller
+<a href="#t_floating">floating point</a> type. If the value cannot fit within
+the destination type, <tt>ty2</tt>, then the results are undefined.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
+ %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
+floating point value.</p>
+
+<h5>Arguments:</h5>
+<p>The '<tt>fpext</tt>' instruction takes a
+<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
+and a <a href="#t_floating">floating point</a> type to cast it to. The source
+type must be smaller than the destination type.</p>
+
+<h5>Semantics:</h5>
+<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
+<a href="#t_floating">floating point</a> type to a larger
+<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
+used to make a <i>no-op cast</i> because it always changes bits. Use
+<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
+ %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
+unsigned integer equivalent of type <tt>ty2</tt>.
+</p>
+
+<h5>Arguments:</h5>
+<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
+scalar or vector <a href="#t_floating">floating point</a> value, and a type
+to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
+type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
+vector integer type with the same number of elements as <tt>ty</tt></p>
+
+<h5>Semantics:</h5>
+<p> The '<tt>fptoui</tt>' instruction converts its
+<a href="#t_floating">floating point</a> operand into the nearest (rounding
+towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
+the results are undefined.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
+ %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
+ %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>fptosi</tt>' instruction converts
+<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
+</p>
+
+<h5>Arguments:</h5>
+<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
+scalar or vector <a href="#t_floating">floating point</a> value, and a type
+to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
+type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
+vector integer type with the same number of elements as <tt>ty</tt></p>
+
+<h5>Semantics:</h5>
+<p>The '<tt>fptosi</tt>' instruction converts its
+<a href="#t_floating">floating point</a> operand into the nearest (rounding
+towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
+the results are undefined.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
+ %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
+ %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
+integer and converts that value to the <tt>ty2</tt> type.</p>
+
+<h5>Arguments:</h5>
+<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
+scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
+to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
+type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
+floating point type with the same number of elements as <tt>ty</tt></p>
+
+<h5>Semantics:</h5>
+<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
+integer quantity and converts it to the corresponding floating point value. If
+the value cannot fit in the floating point value, the results are undefined.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = uitofp i32 257 to float <i>; yields float:257.0</i>
+ %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
+integer and converts that value to the <tt>ty2</tt> type.</p>
+
+<h5>Arguments:</h5>
+<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
+scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
+to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
+type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
+floating point type with the same number of elements as <tt>ty</tt></p>
+
+<h5>Semantics:</h5>
+<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
+integer quantity and converts it to the corresponding floating point value. If
+the value cannot fit in the floating point value, the results are undefined.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = sitofp i32 257 to float <i>; yields float:257.0</i>
+ %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
+the integer type <tt>ty2</tt>.</p>
+
+<h5>Arguments:</h5>
+<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
+must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
+<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
+
+<h5>Semantics:</h5>
+<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
+<tt>ty2</tt> by interpreting the pointer value as an integer and either
+truncating or zero extending that value to the size of the integer type. If
+<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
+<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
+are the same size, then nothing is done (<i>no-op cast</i>) other than a type
+change.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
+ %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
+a pointer type, <tt>ty2</tt>.</p>
+
+<h5>Arguments:</h5>
+<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
+value to cast, and a type to cast it to, which must be a
+<a href="#t_pointer">pointer</a> type.</p>
+
+<h5>Semantics:</h5>
+<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
+<tt>ty2</tt> by applying either a zero extension or a truncation depending on
+the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
+size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
+the size of a pointer then a zero extension is done. If they are the same size,
+nothing is done (<i>no-op cast</i>).</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
+ %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
+ %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
+<tt>ty2</tt> without changing any bits.</p>
+
+<h5>Arguments:</h5>
+
+<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
+a non-aggregate first class value, and a type to cast it to, which must also be
+a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
+<tt>value</tt>
+and the destination type, <tt>ty2</tt>, must be identical. If the source
+type is a pointer, the destination type must also be a pointer. This
+instruction supports bitwise conversion of vectors to integers and to vectors
+of other types (as long as they have the same size).</p>
+
+<h5>Semantics:</h5>
+<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
+<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
+this conversion. The conversion is done as if the <tt>value</tt> had been
+stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
+converted to other pointer types with this instruction. To convert pointers to
+other types, use the <a href="#i_inttoptr">inttoptr</a> or
+<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
+
+<h5>Example:</h5>
+<pre>
+ %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
+ %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
+ %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
+</pre>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
+<div class="doc_text">
+<p>The instructions in this category are the "miscellaneous"
+instructions, which defy better classification.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>icmp</tt>' instruction returns a boolean value or
+a vector of boolean values based on comparison
+of its two integer, integer vector, or pointer operands.</p>
+<h5>Arguments:</h5>
+<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
+the condition code indicating the kind of comparison to perform. It is not
+a value, just a keyword. The possible condition code are:
+</p>
+<ol>
+ <li><tt>eq</tt>: equal</li>
+ <li><tt>ne</tt>: not equal </li>
+ <li><tt>ugt</tt>: unsigned greater than</li>
+ <li><tt>uge</tt>: unsigned greater or equal</li>
+ <li><tt>ult</tt>: unsigned less than</li>
+ <li><tt>ule</tt>: unsigned less or equal</li>
+ <li><tt>sgt</tt>: signed greater than</li>
+ <li><tt>sge</tt>: signed greater or equal</li>
+ <li><tt>slt</tt>: signed less than</li>
+ <li><tt>sle</tt>: signed less or equal</li>
+</ol>
+<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
+<a href="#t_pointer">pointer</a>
+or integer <a href="#t_vector">vector</a> typed.
+They must also be identical types.</p>
+<h5>Semantics:</h5>
+<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
+the condition code given as <tt>cond</tt>. The comparison performed always
+yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
+</p>
+<ol>
+ <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
+ <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
+ </li>
+ <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
+ <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
+ <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
+ <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
+ <li><tt>uge</tt>: interprets the operands as unsigned values and yields
+ <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
+ <li><tt>ult</tt>: interprets the operands as unsigned values and yields
+ <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
+ <li><tt>ule</tt>: interprets the operands as unsigned values and yields
+ <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+ <li><tt>sgt</tt>: interprets the operands as signed values and yields
+ <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
+ <li><tt>sge</tt>: interprets the operands as signed values and yields
+ <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
+ <li><tt>slt</tt>: interprets the operands as signed values and yields
+ <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
+ <li><tt>sle</tt>: interprets the operands as signed values and yields
+ <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+</ol>
+<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
+values are compared as if they were integers.</p>
+<p>If the operands are integer vectors, then they are compared
+element by element. The result is an <tt>i1</tt> vector with
+the same number of elements as the values being compared.
+Otherwise, the result is an <tt>i1</tt>.
+</p>
+
+<h5>Example:</h5>
+<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
+ &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
+ &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
+ &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
+ &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
+ &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
+</pre>
+
+<p>Note that the code generator does not yet support vector types with
+ the <tt>icmp</tt> instruction.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>fcmp</tt>' instruction returns a boolean value
+or vector of boolean values based on comparison
+of its operands.</p>
+<p>
+If the operands are floating point scalars, then the result
+type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
+</p>
+<p>If the operands are floating point vectors, then the result type
+is a vector of boolean with the same number of elements as the
+operands being compared.</p>
+<h5>Arguments:</h5>
+<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
+the condition code indicating the kind of comparison to perform. It is not
+a value, just a keyword. The possible condition code are:</p>
+<ol>
+ <li><tt>false</tt>: no comparison, always returns false</li>
+ <li><tt>oeq</tt>: ordered and equal</li>
+ <li><tt>ogt</tt>: ordered and greater than </li>
+ <li><tt>oge</tt>: ordered and greater than or equal</li>
+ <li><tt>olt</tt>: ordered and less than </li>
+ <li><tt>ole</tt>: ordered and less than or equal</li>
+ <li><tt>one</tt>: ordered and not equal</li>
+ <li><tt>ord</tt>: ordered (no nans)</li>
+ <li><tt>ueq</tt>: unordered or equal</li>
+ <li><tt>ugt</tt>: unordered or greater than </li>
+ <li><tt>uge</tt>: unordered or greater than or equal</li>
+ <li><tt>ult</tt>: unordered or less than </li>
+ <li><tt>ule</tt>: unordered or less than or equal</li>
+ <li><tt>une</tt>: unordered or not equal</li>
+ <li><tt>uno</tt>: unordered (either nans)</li>
+ <li><tt>true</tt>: no comparison, always returns true</li>
+</ol>
+<p><i>Ordered</i> means that neither operand is a QNAN while
+<i>unordered</i> means that either operand may be a QNAN.</p>
+<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
+either a <a href="#t_floating">floating point</a> type
+or a <a href="#t_vector">vector</a> of floating point type.
+They must have identical types.</p>
+<h5>Semantics:</h5>
+<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
+according to the condition code given as <tt>cond</tt>.
+If the operands are vectors, then the vectors are compared
+element by element.
+Each comparison performed
+always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
+<ol>
+ <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
+ <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+ <tt>op1</tt> is equal to <tt>op2</tt>.</li>
+ <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+ <tt>op1</tt> is greather than <tt>op2</tt>.</li>
+ <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+ <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
+ <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+ <tt>op1</tt> is less than <tt>op2</tt>.</li>
+ <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+ <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+ <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
+ <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
+ <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
+ <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
+ <tt>op1</tt> is equal to <tt>op2</tt>.</li>
+ <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
+ <tt>op1</tt> is greater than <tt>op2</tt>.</li>
+ <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
+ <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
+ <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
+ <tt>op1</tt> is less than <tt>op2</tt>.</li>
+ <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
+ <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
+ <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
+ <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
+ <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
+ <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
+</ol>
+
+<h5>Example:</h5>
+<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
+ &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
+ &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
+ &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
+</pre>
+
+<p>Note that the code generator does not yet support vector types with
+ the <tt>fcmp</tt> instruction.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
+</pre>
+<h5>Overview:</h5>
+<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
+element-wise comparison of its two integer vector operands.</p>
+<h5>Arguments:</h5>
+<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
+the condition code indicating the kind of comparison to perform. It is not
+a value, just a keyword. The possible condition code are:</p>
+<ol>
+ <li><tt>eq</tt>: equal</li>
+ <li><tt>ne</tt>: not equal </li>
+ <li><tt>ugt</tt>: unsigned greater than</li>
+ <li><tt>uge</tt>: unsigned greater or equal</li>
+ <li><tt>ult</tt>: unsigned less than</li>
+ <li><tt>ule</tt>: unsigned less or equal</li>
+ <li><tt>sgt</tt>: signed greater than</li>
+ <li><tt>sge</tt>: signed greater or equal</li>
+ <li><tt>slt</tt>: signed less than</li>
+ <li><tt>sle</tt>: signed less or equal</li>
+</ol>
+<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
+<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
+<h5>Semantics:</h5>
+<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
+according to the condition code given as <tt>cond</tt>. The comparison yields a
+<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
+identical type as the values being compared. The most significant bit in each
+element is 1 if the element-wise comparison evaluates to true, and is 0
+otherwise. All other bits of the result are undefined. The condition codes
+are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
+instruction</a>.</p>
+
+<h5>Example:</h5>
+<pre>
+ &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
+ &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
+<h5>Overview:</h5>
+<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
+element-wise comparison of its two floating point vector operands. The output
+elements have the same width as the input elements.</p>
+<h5>Arguments:</h5>
+<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
+the condition code indicating the kind of comparison to perform. It is not
+a value, just a keyword. The possible condition code are:</p>
+<ol>
+ <li><tt>false</tt>: no comparison, always returns false</li>
+ <li><tt>oeq</tt>: ordered and equal</li>
+ <li><tt>ogt</tt>: ordered and greater than </li>
+ <li><tt>oge</tt>: ordered and greater than or equal</li>
+ <li><tt>olt</tt>: ordered and less than </li>
+ <li><tt>ole</tt>: ordered and less than or equal</li>
+ <li><tt>one</tt>: ordered and not equal</li>
+ <li><tt>ord</tt>: ordered (no nans)</li>
+ <li><tt>ueq</tt>: unordered or equal</li>
+ <li><tt>ugt</tt>: unordered or greater than </li>
+ <li><tt>uge</tt>: unordered or greater than or equal</li>
+ <li><tt>ult</tt>: unordered or less than </li>
+ <li><tt>ule</tt>: unordered or less than or equal</li>
+ <li><tt>une</tt>: unordered or not equal</li>
+ <li><tt>uno</tt>: unordered (either nans)</li>
+ <li><tt>true</tt>: no comparison, always returns true</li>
+</ol>
+<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
+<a href="#t_floating">floating point</a> typed. They must also be identical
+types.</p>
+<h5>Semantics:</h5>
+<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
+according to the condition code given as <tt>cond</tt>. The comparison yields a
+<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
+an identical number of elements as the values being compared, and each element
+having identical with to the width of the floating point elements. The most
+significant bit in each element is 1 if the element-wise comparison evaluates to
+true, and is 0 otherwise. All other bits of the result are undefined. The
+condition codes are evaluated identically to the
+<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
+
+<h5>Example:</h5>
+<pre>
+ <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
+ &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
+
+ <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
+ &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_phi">'<tt>phi</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
+<h5>Overview:</h5>
+<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
+the SSA graph representing the function.</p>
+<h5>Arguments:</h5>
+
+<p>The type of the incoming values is specified with the first type
+field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
+as arguments, with one pair for each predecessor basic block of the
+current block. Only values of <a href="#t_firstclass">first class</a>
+type may be used as the value arguments to the PHI node. Only labels
+may be used as the label arguments.</p>
+
+<p>There must be no non-phi instructions between the start of a basic
+block and the PHI instructions: i.e. PHI instructions must be first in
+a basic block.</p>
+
+<h5>Semantics:</h5>
+
+<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
+specified by the pair corresponding to the predecessor basic block that executed
+just prior to the current block.</p>
+
+<h5>Example:</h5>
+<pre>
+Loop: ; Infinite loop that counts from 0 on up...
+ %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
+ %nextindvar = add i32 %indvar, 1
+ br label %Loop
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_select">'<tt>select</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
+
+ <i>selty</i> is either i1 or {&lt;N x i1&gt;}
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>select</tt>' instruction is used to choose one value based on a
+condition, without branching.
+</p>
+
+
+<h5>Arguments:</h5>
+
+<p>
+The '<tt>select</tt>' instruction requires an 'i1' value or
+a vector of 'i1' values indicating the
+condition, and two values of the same <a href="#t_firstclass">first class</a>
+type. If the val1/val2 are vectors and
+the condition is a scalar, then entire vectors are selected, not
+individual elements.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+If the condition is an i1 and it evaluates to 1, the instruction returns the first
+value argument; otherwise, it returns the second value argument.
+</p>
+<p>
+If the condition is a vector of i1, then the value arguments must
+be vectors of the same size, and the selection is done element
+by element.
+</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
+</pre>
+
+<p>Note that the code generator does not yet support conditions
+ with vector type.</p>
+
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_call">'<tt>call</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
+
+<h5>Arguments:</h5>
+
+<p>This instruction requires several arguments:</p>
+
+<ol>
+ <li>
+ <p>The optional "tail" marker indicates whether the callee function accesses
+ any allocas or varargs in the caller. If the "tail" marker is present, the
+ function call is eligible for tail call optimization. Note that calls may
+ be marked "tail" even if they do not occur before a <a
+ href="#i_ret"><tt>ret</tt></a> instruction.</p>
+ </li>
+ <li>
+ <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
+ convention</a> the call should use. If none is specified, the call defaults
+ to using C calling conventions.</p>
+ </li>
+
+ <li>
+ <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
+ return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
+ and '<tt>inreg</tt>' attributes are valid here.</p>
+ </li>
+
+ <li>
+ <p>'<tt>ty</tt>': the type of the call instruction itself which is also
+ the type of the return value. Functions that return no value are marked
+ <tt><a href="#t_void">void</a></tt>.</p>
+ </li>
+ <li>
+ <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
+ value being invoked. The argument types must match the types implied by
+ this signature. This type can be omitted if the function is not varargs
+ and if the function type does not return a pointer to a function.</p>
+ </li>
+ <li>
+ <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
+ be invoked. In most cases, this is a direct function invocation, but
+ indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
+ to function value.</p>
+ </li>
+ <li>
+ <p>'<tt>function args</tt>': argument list whose types match the
+ function signature argument types. All arguments must be of
+ <a href="#t_firstclass">first class</a> type. If the function signature
+ indicates the function accepts a variable number of arguments, the extra
+ arguments can be specified.</p>
+ </li>
+ <li>
+ <p>The optional <a href="#fnattrs">function attributes</a> list. Only
+ '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
+ '<tt>readnone</tt>' attributes are valid here.</p>
+ </li>
+</ol>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>call</tt>' instruction is used to cause control flow to
+transfer to a specified function, with its incoming arguments bound to
+the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
+instruction in the called function, control flow continues with the
+instruction after the function call, and the return value of the
+function is bound to the result argument.</p>
+
+<h5>Example:</h5>
+
+<pre>
+ %retval = call i32 @test(i32 %argc)
+ call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
+ %X = tail call i32 @foo() <i>; yields i32</i>
+ %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
+ call void %foo(i8 97 signext)
+
+ %struct.A = type { i32, i8 }
+ %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
+ %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
+ %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
+ %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
+ %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
+</pre>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
+the "variable argument" area of a function call. It is used to implement the
+<tt>va_arg</tt> macro in C.</p>
+
+<h5>Arguments:</h5>
+
+<p>This instruction takes a <tt>va_list*</tt> value and the type of
+the argument. It returns a value of the specified argument type and
+increments the <tt>va_list</tt> to point to the next argument. The
+actual type of <tt>va_list</tt> is target specific.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
+type from the specified <tt>va_list</tt> and causes the
+<tt>va_list</tt> to point to the next argument. For more information,
+see the variable argument handling <a href="#int_varargs">Intrinsic
+Functions</a>.</p>
+
+<p>It is legal for this instruction to be called in a function which does not
+take a variable number of arguments, for example, the <tt>vfprintf</tt>
+function.</p>
+
+<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
+href="#intrinsics">intrinsic function</a> because it takes a type as an
+argument.</p>
+
+<h5>Example:</h5>
+
+<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
+
+<p>Note that the code generator does not yet fully support va_arg
+ on many targets. Also, it does not currently support va_arg with
+ aggregate types on any target.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>LLVM supports the notion of an "intrinsic function". These functions have
+well known names and semantics and are required to follow certain restrictions.
+Overall, these intrinsics represent an extension mechanism for the LLVM
+language that does not require changing all of the transformations in LLVM when
+adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
+
+<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
+prefix is reserved in LLVM for intrinsic names; thus, function names may not
+begin with this prefix. Intrinsic functions must always be external functions:
+you cannot define the body of intrinsic functions. Intrinsic functions may
+only be used in call or invoke instructions: it is illegal to take the address
+of an intrinsic function. Additionally, because intrinsic functions are part
+of the LLVM language, it is required if any are added that they be documented
+here.</p>
+
+<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
+a family of functions that perform the same operation but on different data
+types. Because LLVM can represent over 8 million different integer types,
+overloading is used commonly to allow an intrinsic function to operate on any
+integer type. One or more of the argument types or the result type can be
+overloaded to accept any integer type. Argument types may also be defined as
+exactly matching a previous argument's type or the result type. This allows an
+intrinsic function which accepts multiple arguments, but needs all of them to
+be of the same type, to only be overloaded with respect to a single argument or
+the result.</p>
+
+<p>Overloaded intrinsics will have the names of its overloaded argument types
+encoded into its function name, each preceded by a period. Only those types
+which are overloaded result in a name suffix. Arguments whose type is matched
+against another type do not. For example, the <tt>llvm.ctpop</tt> function can
+take an integer of any width and returns an integer of exactly the same integer
+width. This leads to a family of functions such as
+<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
+Only one type, the return type, is overloaded, and only one type suffix is
+required. Because the argument's type is matched against the return type, it
+does not require its own name suffix.</p>
+
+<p>To learn how to add an intrinsic function, please see the
+<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
+</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_varargs">Variable Argument Handling Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<p>Variable argument support is defined in LLVM with the <a
+ href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
+intrinsic functions. These functions are related to the similarly
+named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
+
+<p>All of these functions operate on arguments that use a
+target-specific value type "<tt>va_list</tt>". The LLVM assembly
+language reference manual does not define what this type is, so all
+transformations should be prepared to handle these functions regardless of
+the type used.</p>
+
+<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
+instruction and the variable argument handling intrinsic functions are
+used.</p>
+
+<div class="doc_code">
+<pre>
+define i32 @test(i32 %X, ...) {
+ ; Initialize variable argument processing
+ %ap = alloca i8*
+ %ap2 = bitcast i8** %ap to i8*
+ call void @llvm.va_start(i8* %ap2)
+
+ ; Read a single integer argument
+ %tmp = va_arg i8** %ap, i32
+
+ ; Demonstrate usage of llvm.va_copy and llvm.va_end
+ %aq = alloca i8*
+ %aq2 = bitcast i8** %aq to i8*
+ call void @llvm.va_copy(i8* %aq2, i8* %ap2)
+ call void @llvm.va_end(i8* %aq2)
+
+ ; Stop processing of arguments.
+ call void @llvm.va_end(i8* %ap2)
+ ret i32 %tmp
+}
+
+declare void @llvm.va_start(i8*)
+declare void @llvm.va_copy(i8*, i8*)
+declare void @llvm.va_end(i8*)
+</pre>
+</div>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
+</div>
+
+
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
+<h5>Overview:</h5>
+<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
+<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
+href="#i_va_arg">va_arg</a></tt>.</p>
+
+<h5>Arguments:</h5>
+
+<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
+macro available in C. In a target-dependent way, it initializes the
+<tt>va_list</tt> element to which the argument points, so that the next call to
+<tt>va_arg</tt> will produce the first variable argument passed to the function.
+Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
+last argument of the function as the compiler can figure that out.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
+which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
+or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
+
+<h5>Arguments:</h5>
+
+<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
+macro available in C. In a target-dependent way, it destroys the
+<tt>va_list</tt> element to which the argument points. Calls to <a
+href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
+<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
+<tt>llvm.va_end</tt>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
+from the source argument list to the destination argument list.</p>
+
+<h5>Arguments:</h5>
+
+<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
+The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
+
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
+macro available in C. In a target-dependent way, it copies the source
+<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
+intrinsic is necessary because the <tt><a href="#int_va_start">
+llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
+example, memory allocation.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+LLVM support for <a href="GarbageCollection.html">Accurate Garbage
+Collection</a> (GC) requires the implementation and generation of these
+intrinsics.
+These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
+stack</a>, as well as garbage collector implementations that require <a
+href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
+Front-ends for type-safe garbage collected languages should generate these
+intrinsics to make use of the LLVM garbage collectors. For more details, see <a
+href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
+</p>
+
+<p>The garbage collection intrinsics only operate on objects in the generic
+ address space (address space zero).</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
+the code generator, and allows some metadata to be associated with it.</p>
+
+<h5>Arguments:</h5>
+
+<p>The first argument specifies the address of a stack object that contains the
+root pointer. The second pointer (which must be either a constant or a global
+value address) contains the meta-data to be associated with the root.</p>
+
+<h5>Semantics:</h5>
+
+<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
+location. At compile-time, the code generator generates information to allow
+the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
+intrinsic may only be used in a function which <a href="#gc">specifies a GC
+algorithm</a>.</p>
+
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
+locations, allowing garbage collector implementations that require read
+barriers.</p>
+
+<h5>Arguments:</h5>
+
+<p>The second argument is the address to read from, which should be an address
+allocated from the garbage collector. The first object is a pointer to the
+start of the referenced object, if needed by the language runtime (otherwise
+null).</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
+instruction, but may be replaced with substantially more complex code by the
+garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
+may only be used in a function which <a href="#gc">specifies a GC
+algorithm</a>.</p>
+
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<pre>
+ declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
+locations, allowing garbage collector implementations that require write
+barriers (such as generational or reference counting collectors).</p>
+
+<h5>Arguments:</h5>
+
+<p>The first argument is the reference to store, the second is the start of the
+object to store it to, and the third is the address of the field of Obj to
+store to. If the runtime does not require a pointer to the object, Obj may be
+null.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
+instruction, but may be replaced with substantially more complex code by the
+garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
+may only be used in a function which <a href="#gc">specifies a GC
+algorithm</a>.</p>
+
+</div>
+
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_codegen">Code Generator Intrinsics</a>
+</div>
+
+<div class="doc_text">
+<p>
+These intrinsics are provided by LLVM to expose special features that may only
+be implemented with code generator support.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
+target-specific value indicating the return address of the current function
+or one of its callers.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument to this intrinsic indicates which function to return the address
+for. Zero indicates the calling function, one indicates its caller, etc. The
+argument is <b>required</b> to be a constant integer value.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
+the return address of the specified call frame, or zero if it cannot be
+identified. The value returned by this intrinsic is likely to be incorrect or 0
+for arguments other than zero, so it should only be used for debugging purposes.
+</p>
+
+<p>
+Note that calling this intrinsic does not prevent function inlining or other
+aggressive transformations, so the value returned may not be that of the obvious
+source-language caller.
+</p>
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
+target-specific frame pointer value for the specified stack frame.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument to this intrinsic indicates which function to return the frame
+pointer for. Zero indicates the calling function, one indicates its caller,
+etc. The argument is <b>required</b> to be a constant integer value.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
+the frame address of the specified call frame, or zero if it cannot be
+identified. The value returned by this intrinsic is likely to be incorrect or 0
+for arguments other than zero, so it should only be used for debugging purposes.
+</p>
+
+<p>
+Note that calling this intrinsic does not prevent function inlining or other
+aggressive transformations, so the value returned may not be that of the obvious
+source-language caller.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare i8 *@llvm.stacksave()
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
+the function stack, for use with <a href="#int_stackrestore">
+<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
+features like scoped automatic variable sized arrays in C99.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This intrinsic returns a opaque pointer value that can be passed to <a
+href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
+<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
+<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
+state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
+practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
+that were allocated after the <tt>llvm.stacksave</tt> was executed.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare void @llvm.stackrestore(i8 * %ptr)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
+the function stack to the state it was in when the corresponding <a
+href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
+useful for implementing language features like scoped automatic variable sized
+arrays in C99.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
+</p>
+
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+
+<p>
+The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
+a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
+no
+effect on the behavior of the program but can change its performance
+characteristics.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
+determining if the fetch should be for a read (0) or write (1), and
+<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
+locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
+<tt>locality</tt> arguments must be constant integers.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This intrinsic does not modify the behavior of the program. In particular,
+prefetches cannot trap and do not produce a value. On targets that support this
+intrinsic, the prefetch can provide hints to the processor cache for better
+performance.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare void @llvm.pcmarker(i32 &lt;id&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+
+<p>
+The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
+(PC) in a region of
+code to simulators and other tools. The method is target specific, but it is
+expected that the marker will use exported symbols to transmit the PC of the
+marker.
+The marker makes no guarantees that it will remain with any specific instruction
+after optimizations. It is possible that the presence of a marker will inhibit
+optimizations. The intended use is to be inserted after optimizations to allow
+correlations of simulation runs.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+<tt>id</tt> is a numerical id identifying the marker.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This intrinsic does not modify the behavior of the program. Backends that do not
+support this intrinisic may ignore it.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare i64 @llvm.readcyclecounter( )
+</pre>
+
+<h5>Overview:</h5>
+
+
+<p>
+The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
+counter register (or similar low latency, high accuracy clocks) on those targets
+that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
+As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
+should only be used for small timings.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+When directly supported, reading the cycle counter should not modify any memory.
+Implementations are allowed to either return a application specific value or a
+system wide value. On backends without support, this is lowered to a constant 0.
+</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_libc">Standard C Library Intrinsics</a>
+</div>
+
+<div class="doc_text">
+<p>
+LLVM provides intrinsics for a few important standard C library functions.
+These intrinsics allow source-language front-ends to pass information about the
+alignment of the pointer arguments to the code generator, providing opportunity
+for more efficient code generation.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
+width. Not all targets support all bit widths however.</p>
+<pre>
+ declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
+ i8 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
+ i16 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
+ i32 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
+ i64 &lt;len&gt;, i32 &lt;align&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
+location to the destination location.
+</p>
+
+<p>
+Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
+intrinsics do not return a value, and takes an extra alignment argument.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The first argument is a pointer to the destination, the second is a pointer to
+the source. The third argument is an integer argument
+specifying the number of bytes to copy, and the fourth argument is the alignment
+of the source and destination locations.
+</p>
+
+<p>
+If the call to this intrinisic has an alignment value that is not 0 or 1, then
+the caller guarantees that both the source and destination pointers are aligned
+to that boundary.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
+location to the destination location, which are not allowed to overlap. It
+copies "len" bytes of memory over. If the argument is known to be aligned to
+some boundary, this can be specified as the fourth argument, otherwise it should
+be set to 0 or 1.
+</p>
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
+width. Not all targets support all bit widths however.</p>
+<pre>
+ declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
+ i8 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
+ i16 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
+ i32 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
+ i64 &lt;len&gt;, i32 &lt;align&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
+location to the destination location. It is similar to the
+'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
+</p>
+
+<p>
+Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
+intrinsics do not return a value, and takes an extra alignment argument.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The first argument is a pointer to the destination, the second is a pointer to
+the source. The third argument is an integer argument
+specifying the number of bytes to copy, and the fourth argument is the alignment
+of the source and destination locations.
+</p>
+
+<p>
+If the call to this intrinisic has an alignment value that is not 0 or 1, then
+the caller guarantees that the source and destination pointers are aligned to
+that boundary.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
+location to the destination location, which may overlap. It
+copies "len" bytes of memory over. If the argument is known to be aligned to
+some boundary, this can be specified as the fourth argument, otherwise it should
+be set to 0 or 1.
+</p>
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
+width. Not all targets support all bit widths however.</p>
+<pre>
+ declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
+ i8 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
+ i16 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
+ i32 &lt;len&gt;, i32 &lt;align&gt;)
+ declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
+ i64 &lt;len&gt;, i32 &lt;align&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
+byte value.
+</p>
+
+<p>
+Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
+does not return a value, and takes an extra alignment argument.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The first argument is a pointer to the destination to fill, the second is the
+byte value to fill it with, the third argument is an integer
+argument specifying the number of bytes to fill, and the fourth argument is the
+known alignment of destination location.
+</p>
+
+<p>
+If the call to this intrinisic has an alignment value that is not 0 or 1, then
+the caller guarantees that the destination pointer is aligned to that boundary.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
+the
+destination location. If the argument is known to be aligned to some boundary,
+this can be specified as the fourth argument, otherwise it should be set to 0 or
+1.
+</p>
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
+floating point or vector of floating point type. Not all targets support all
+types however.</p>
+<pre>
+ declare float @llvm.sqrt.f32(float %Val)
+ declare double @llvm.sqrt.f64(double %Val)
+ declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
+ declare fp128 @llvm.sqrt.f128(fp128 %Val)
+ declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
+returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
+<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
+negative numbers other than -0.0 (which allows for better optimization, because
+there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
+defined to return -0.0 like IEEE sqrt.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument and return value are floating point numbers of the same type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the sqrt of the specified operand if it is a nonnegative
+floating point number.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
+floating point or vector of floating point type. Not all targets support all
+types however.</p>
+<pre>
+ declare float @llvm.powi.f32(float %Val, i32 %power)
+ declare double @llvm.powi.f64(double %Val, i32 %power)
+ declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
+ declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
+ declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
+specified (positive or negative) power. The order of evaluation of
+multiplications is not defined. When a vector of floating point type is
+used, the second argument remains a scalar integer value.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The second argument is an integer power, and the first is a value to raise to
+that power.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the first value raised to the second power with an
+unspecified sequence of rounding operations.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
+floating point or vector of floating point type. Not all targets support all
+types however.</p>
+<pre>
+ declare float @llvm.sin.f32(float %Val)
+ declare double @llvm.sin.f64(double %Val)
+ declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
+ declare fp128 @llvm.sin.f128(fp128 %Val)
+ declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument and return value are floating point numbers of the same type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the sine of the specified operand, returning the
+same values as the libm <tt>sin</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
+floating point or vector of floating point type. Not all targets support all
+types however.</p>
+<pre>
+ declare float @llvm.cos.f32(float %Val)
+ declare double @llvm.cos.f64(double %Val)
+ declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
+ declare fp128 @llvm.cos.f128(fp128 %Val)
+ declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument and return value are floating point numbers of the same type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the cosine of the specified operand, returning the
+same values as the libm <tt>cos</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
+floating point or vector of floating point type. Not all targets support all
+types however.</p>
+<pre>
+ declare float @llvm.pow.f32(float %Val, float %Power)
+ declare double @llvm.pow.f64(double %Val, double %Power)
+ declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
+ declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
+ declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
+specified (positive or negative) power.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The second argument is a floating point power, and the first is a value to
+raise to that power.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the first value raised to the second power,
+returning the
+same values as the libm <tt>pow</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_manip">Bit Manipulation Intrinsics</a>
+</div>
+
+<div class="doc_text">
+<p>
+LLVM provides intrinsics for a few important bit manipulation operations.
+These allow efficient code generation for some algorithms.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic function. You can use bswap on any integer
+type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
+<pre>
+ declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
+ declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
+ declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
+values with an even number of bytes (positive multiple of 16 bits). These are
+useful for performing operations on data that is not in the target's native
+byte order.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
+and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
+intrinsic returns an i32 value that has the four bytes of the input i32
+swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
+i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
+<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
+additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
+width. Not all targets support all bit widths however.</p>
+<pre>
+ declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
+ declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
+ declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
+ declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
+ declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
+value.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The only argument is the value to be counted. The argument may be of any
+integer type. The return type must match the argument type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
+integer bit width. Not all targets support all bit widths however.</p>
+<pre>
+ declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
+ declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
+ declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
+ declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
+ declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
+leading zeros in a variable.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The only argument is the value to be counted. The argument may be of any
+integer type. The return type must match the argument type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
+in a variable. If the src == 0 then the result is the size in bits of the type
+of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
+</p>
+</div>
+
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
+integer bit width. Not all targets support all bit widths however.</p>
+<pre>
+ declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
+ declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
+ declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
+ declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
+ declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
+trailing zeros.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The only argument is the value to be counted. The argument may be of any
+integer type. The return type must match the argument type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
+in a variable. If the src == 0 then the result is the size in bits of the type
+of src. For example, <tt>llvm.cttz(2) = 1</tt>.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
+on any integer bit width.</p>
+<pre>
+ declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
+ declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
+range of bits from an integer value and returns them in the same bit width as
+the original value.</p>
+
+<h5>Arguments:</h5>
+<p>The first argument, <tt>%val</tt> and the result may be integer types of
+any bit width but they must have the same bit width. The second and third
+arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
+
+<h5>Semantics:</h5>
+<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
+of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
+<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
+operates in forward mode.</p>
+<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
+right by <tt>%loBit</tt> bits and then ANDing it with a mask with
+only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
+<ol>
+ <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
+ by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
+ <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
+ to determine the number of bits to retain.</li>
+ <li>A mask of the retained bits is created by shifting a -1 value.</li>
+ <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
+</ol>
+<p>In reverse mode, a similar computation is made except that the bits are
+returned in the reverse order. So, for example, if <tt>X</tt> has the value
+<tt>i16 0x0ACF (101011001111)</tt> and we apply
+<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
+<tt>i16 0x0026 (000000100110)</tt>.</p>
+</div>
+
+<div class="doc_subsubsection">
+ <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
+on any integer bit width.</p>
+<pre>
+ declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
+ declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
+</pre>
+
+<h5>Overview:</h5>
+<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
+of bits in an integer value with another integer value. It returns the integer
+with the replaced bits.</p>
+
+<h5>Arguments:</h5>
+<p>The first argument, <tt>%val</tt>, and the result may be integer types of
+any bit width, but they must have the same bit width. <tt>%val</tt> is the value
+whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
+integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
+type since they specify only a bit index.</p>
+
+<h5>Semantics:</h5>
+<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
+of operation: forwards and reverse. If <tt>%lo</tt> is greater than
+<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
+operates in forward mode.</p>
+
+<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
+truncating it down to the size of the replacement area or zero extending it
+up to that size.</p>
+
+<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
+are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
+in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
+to the <tt>%hi</tt>th bit.</p>
+
+<p>In reverse mode, a similar computation is made except that the bits are
+reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
+<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
+
+<h5>Examples:</h5>
+
+<pre>
+ llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
+ llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
+ llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
+ llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
+ llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
+</pre>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
+</div>
+
+<div class="doc_text">
+<p>
+LLVM provides intrinsics for some arithmetic with overflow operations.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
+on any integer bit width.</p>
+
+<pre>
+ declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
+ declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
+ declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
+a signed addition of the two arguments, and indicate whether an overflow
+occurred during the signed summation.</p>
+
+<h5>Arguments:</h5>
+
+<p>The arguments (%a and %b) and the first element of the result structure may
+be of integer types of any bit width, but they must have the same bit width. The
+second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
+and <tt>%b</tt> are the two values that will undergo signed addition.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
+a signed addition of the two variables. They return a structure &mdash; the
+first element of which is the signed summation, and the second element of which
+is a bit specifying if the signed summation resulted in an overflow.</p>
+
+<h5>Examples:</h5>
+<pre>
+ %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
+ %sum = extractvalue {i32, i1} %res, 0
+ %obit = extractvalue {i32, i1} %res, 1
+ br i1 %obit, label %overflow, label %normal
+</pre>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
+on any integer bit width.</p>
+
+<pre>
+ declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
+ declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
+ declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
+an unsigned addition of the two arguments, and indicate whether a carry occurred
+during the unsigned summation.</p>
+
+<h5>Arguments:</h5>
+
+<p>The arguments (%a and %b) and the first element of the result structure may
+be of integer types of any bit width, but they must have the same bit width. The
+second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
+and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
+an unsigned addition of the two arguments. They return a structure &mdash; the
+first element of which is the sum, and the second element of which is a bit
+specifying if the unsigned summation resulted in a carry.</p>
+
+<h5>Examples:</h5>
+<pre>
+ %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
+ %sum = extractvalue {i32, i1} %res, 0
+ %obit = extractvalue {i32, i1} %res, 1
+ br i1 %obit, label %carry, label %normal
+</pre>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
+on any integer bit width.</p>
+
+<pre>
+ declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
+ declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
+ declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
+a signed subtraction of the two arguments, and indicate whether an overflow
+occurred during the signed subtraction.</p>
+
+<h5>Arguments:</h5>
+
+<p>The arguments (%a and %b) and the first element of the result structure may
+be of integer types of any bit width, but they must have the same bit width. The
+second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
+and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
+a signed subtraction of the two arguments. They return a structure &mdash; the
+first element of which is the subtraction, and the second element of which is a bit
+specifying if the signed subtraction resulted in an overflow.</p>
+
+<h5>Examples:</h5>
+<pre>
+ %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
+ %sum = extractvalue {i32, i1} %res, 0
+ %obit = extractvalue {i32, i1} %res, 1
+ br i1 %obit, label %overflow, label %normal
+</pre>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
+on any integer bit width.</p>
+
+<pre>
+ declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
+ declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
+ declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
+an unsigned subtraction of the two arguments, and indicate whether an overflow
+occurred during the unsigned subtraction.</p>
+
+<h5>Arguments:</h5>
+
+<p>The arguments (%a and %b) and the first element of the result structure may
+be of integer types of any bit width, but they must have the same bit width. The
+second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
+and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
+an unsigned subtraction of the two arguments. They return a structure &mdash; the
+first element of which is the subtraction, and the second element of which is a bit
+specifying if the unsigned subtraction resulted in an overflow.</p>
+
+<h5>Examples:</h5>
+<pre>
+ %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
+ %sum = extractvalue {i32, i1} %res, 0
+ %obit = extractvalue {i32, i1} %res, 1
+ br i1 %obit, label %overflow, label %normal
+</pre>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
+on any integer bit width.</p>
+
+<pre>
+ declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
+ declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
+ declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
+a signed multiplication of the two arguments, and indicate whether an overflow
+occurred during the signed multiplication.</p>
+
+<h5>Arguments:</h5>
+
+<p>The arguments (%a and %b) and the first element of the result structure may
+be of integer types of any bit width, but they must have the same bit width. The
+second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
+and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
+a signed multiplication of the two arguments. They return a structure &mdash;
+the first element of which is the multiplication, and the second element of
+which is a bit specifying if the signed multiplication resulted in an
+overflow.</p>
+
+<h5>Examples:</h5>
+<pre>
+ %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
+ %sum = extractvalue {i32, i1} %res, 0
+ %obit = extractvalue {i32, i1} %res, 1
+ br i1 %obit, label %overflow, label %normal
+</pre>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+
+<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
+on any integer bit width.</p>
+
+<pre>
+ declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
+ declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
+ declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
+</pre>
+
+<h5>Overview:</h5>
+
+<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
+actively being fixed, but it should not currently be used!</i></p>
+
+<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
+a unsigned multiplication of the two arguments, and indicate whether an overflow
+occurred during the unsigned multiplication.</p>
+
+<h5>Arguments:</h5>
+
+<p>The arguments (%a and %b) and the first element of the result structure may
+be of integer types of any bit width, but they must have the same bit width. The
+second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
+and <tt>%b</tt> are the two values that will undergo unsigned
+multiplication.</p>
+
+<h5>Semantics:</h5>
+
+<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
+an unsigned multiplication of the two arguments. They return a structure &mdash;
+the first element of which is the multiplication, and the second element of
+which is a bit specifying if the unsigned multiplication resulted in an
+overflow.</p>
+
+<h5>Examples:</h5>
+<pre>
+ %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
+ %sum = extractvalue {i32, i1} %res, 0
+ %obit = extractvalue {i32, i1} %res, 1
+ br i1 %obit, label %overflow, label %normal
+</pre>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_debugger">Debugger Intrinsics</a>
+</div>
+
+<div class="doc_text">
+<p>
+The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
+are described in the <a
+href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
+Debugging</a> document.
+</p>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_eh">Exception Handling Intrinsics</a>
+</div>
+
+<div class="doc_text">
+<p> The LLVM exception handling intrinsics (which all start with
+<tt>llvm.eh.</tt> prefix), are described in the <a
+href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
+Handling</a> document. </p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_trampoline">Trampoline Intrinsic</a>
+</div>
+
+<div class="doc_text">
+<p>
+ This intrinsic makes it possible to excise one parameter, marked with
+ the <tt>nest</tt> attribute, from a function. The result is a callable
+ function pointer lacking the nest parameter - the caller does not need
+ to provide a value for it. Instead, the value to use is stored in
+ advance in a "trampoline", a block of memory usually allocated
+ on the stack, which also contains code to splice the nest value into the
+ argument list. This is used to implement the GCC nested function address
+ extension.
+</p>
+<p>
+ For example, if the function is
+ <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
+ pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
+<pre>
+ %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
+ %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
+ %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
+ %fp = bitcast i8* %p to i32 (i32, i32)*
+</pre>
+ <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
+ to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre>
+declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
+</pre>
+<h5>Overview:</h5>
+<p>
+ This fills the memory pointed to by <tt>tramp</tt> with code
+ and returns a function pointer suitable for executing it.
+</p>
+<h5>Arguments:</h5>
+<p>
+ The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
+ pointers. The <tt>tramp</tt> argument must point to a sufficiently large
+ and sufficiently aligned block of memory; this memory is written to by the
+ intrinsic. Note that the size and the alignment are target-specific - LLVM
+ currently provides no portable way of determining them, so a front-end that
+ generates this intrinsic needs to have some target-specific knowledge.
+ The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
+</p>
+<h5>Semantics:</h5>
+<p>
+ The block of memory pointed to by <tt>tramp</tt> is filled with target
+ dependent code, turning it into a function. A pointer to this function is
+ returned, but needs to be bitcast to an
+ <a href="#int_trampoline">appropriate function pointer type</a>
+ before being called. The new function's signature is the same as that of
+ <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
+ removed. At most one such <tt>nest</tt> argument is allowed, and it must be
+ of pointer type. Calling the new function is equivalent to calling
+ <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
+ missing <tt>nest</tt> argument. If, after calling
+ <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
+ modified, then the effect of any later call to the returned function pointer is
+ undefined.
+</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
+</div>
+
+<div class="doc_text">
+<p>
+ These intrinsic functions expand the "universal IR" of LLVM to represent
+ hardware constructs for atomic operations and memory synchronization. This
+ provides an interface to the hardware, not an interface to the programmer. It
+ is aimed at a low enough level to allow any programming models or APIs
+ (Application Programming Interfaces) which
+ need atomic behaviors to map cleanly onto it. It is also modeled primarily on
+ hardware behavior. Just as hardware provides a "universal IR" for source
+ languages, it also provides a starting point for developing a "universal"
+ atomic operation and synchronization IR.
+</p>
+<p>
+ These do <em>not</em> form an API such as high-level threading libraries,
+ software transaction memory systems, atomic primitives, and intrinsic
+ functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
+ application libraries. The hardware interface provided by LLVM should allow
+ a clean implementation of all of these APIs and parallel programming models.
+ No one model or paradigm should be selected above others unless the hardware
+ itself ubiquitously does so.
+
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre>
+declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
+i1 &lt;device&gt; )
+
+</pre>
+<h5>Overview:</h5>
+<p>
+ The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
+ specific pairs of memory access types.
+</p>
+<h5>Arguments:</h5>
+<p>
+ The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
+ The first four arguments enables a specific barrier as listed below. The fith
+ argument specifies that the barrier applies to io or device or uncached memory.
+
+</p>
+ <ul>
+ <li><tt>ll</tt>: load-load barrier</li>
+ <li><tt>ls</tt>: load-store barrier</li>
+ <li><tt>sl</tt>: store-load barrier</li>
+ <li><tt>ss</tt>: store-store barrier</li>
+ <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
+ </ul>
+<h5>Semantics:</h5>
+<p>
+ This intrinsic causes the system to enforce some ordering constraints upon
+ the loads and stores of the program. This barrier does not indicate
+ <em>when</em> any events will occur, it only enforces an <em>order</em> in
+ which they occur. For any of the specified pairs of load and store operations
+ (f.ex. load-load, or store-load), all of the first operations preceding the
+ barrier will complete before any of the second operations succeeding the
+ barrier begin. Specifically the semantics for each pairing is as follows:
+</p>
+ <ul>
+ <li><tt>ll</tt>: All loads before the barrier must complete before any load
+ after the barrier begins.</li>
+
+ <li><tt>ls</tt>: All loads before the barrier must complete before any
+ store after the barrier begins.</li>
+ <li><tt>ss</tt>: All stores before the barrier must complete before any
+ store after the barrier begins.</li>
+ <li><tt>sl</tt>: All stores before the barrier must complete before any
+ load after the barrier begins.</li>
+ </ul>
+<p>
+ These semantics are applied with a logical "and" behavior when more than one
+ is enabled in a single memory barrier intrinsic.
+</p>
+<p>
+ Backends may implement stronger barriers than those requested when they do not
+ support as fine grained a barrier as requested. Some architectures do not
+ need all types of barriers and on such architectures, these become noops.
+</p>
+<h5>Example:</h5>
+<pre>
+%ptr = malloc i32
+ store i32 4, %ptr
+
+%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
+ call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
+ <i>; guarantee the above finishes</i>
+ store i32 8, %ptr <i>; before this begins</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<p>
+ This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
+ any integer bit width and for different address spaces. Not all targets
+ support all bit widths however.</p>
+
+<pre>
+declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
+declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
+declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
+declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
+
+</pre>
+<h5>Overview:</h5>
+<p>
+ This loads a value in memory and compares it to a given value. If they are
+ equal, it stores a new value into the memory.
+</p>
+<h5>Arguments:</h5>
+<p>
+ The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
+ well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
+ same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
+ this integer type. While any bit width integer may be used, targets may only
+ lower representations they support in hardware.
+
+</p>
+<h5>Semantics:</h5>
+<p>
+ This entire intrinsic must be executed atomically. It first loads the value
+ in memory pointed to by <tt>ptr</tt> and compares it with the value
+ <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
+ loaded value is yielded in all cases. This provides the equivalent of an
+ atomic compare-and-swap operation within the SSA framework.
+</p>
+<h5>Examples:</h5>
+
+<pre>
+%ptr = malloc i32
+ store i32 4, %ptr
+
+%val1 = add i32 4, 4
+%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
+ <i>; yields {i32}:result1 = 4</i>
+%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
+%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
+
+%val2 = add i32 1, 1
+%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
+ <i>; yields {i32}:result2 = 8</i>
+%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
+
+%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+
+<p>
+ This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
+ integer bit width. Not all targets support all bit widths however.</p>
+<pre>
+declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
+declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
+declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
+declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
+
+</pre>
+<h5>Overview:</h5>
+<p>
+ This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
+ the value from memory. It then stores the value in <tt>val</tt> in the memory
+ at <tt>ptr</tt>.
+</p>
+<h5>Arguments:</h5>
+
+<p>
+ The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
+ <tt>val</tt> argument and the result must be integers of the same bit width.
+ The first argument, <tt>ptr</tt>, must be a pointer to a value of this
+ integer type. The targets may only lower integer representations they
+ support.
+</p>
+<h5>Semantics:</h5>
+<p>
+ This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
+ stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
+ equivalent of an atomic swap operation within the SSA framework.
+
+</p>
+<h5>Examples:</h5>
+<pre>
+%ptr = malloc i32
+ store i32 4, %ptr
+
+%val1 = add i32 4, 4
+%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
+ <i>; yields {i32}:result1 = 4</i>
+%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
+%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
+
+%val2 = add i32 1, 1
+%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
+ <i>; yields {i32}:result2 = 8</i>
+
+%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
+%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
+
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<p>
+ This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
+ integer bit width. Not all targets support all bit widths however.</p>
+<pre>
+declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+<h5>Overview:</h5>
+<p>
+ This intrinsic adds <tt>delta</tt> to the value stored in memory at
+ <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
+</p>
+<h5>Arguments:</h5>
+<p>
+
+ The intrinsic takes two arguments, the first a pointer to an integer value
+ and the second an integer value. The result is also an integer value. These
+ integer types can have any bit width, but they must all have the same bit
+ width. The targets may only lower integer representations they support.
+</p>
+<h5>Semantics:</h5>
+<p>
+ This intrinsic does a series of operations atomically. It first loads the
+ value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
+ to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
+</p>
+
+<h5>Examples:</h5>
+<pre>
+%ptr = malloc i32
+ store i32 4, %ptr
+%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
+ <i>; yields {i32}:result1 = 4</i>
+%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
+ <i>; yields {i32}:result2 = 8</i>
+%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
+ <i>; yields {i32}:result3 = 10</i>
+%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
+
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<p>
+ This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
+ any integer bit width and for different address spaces. Not all targets
+ support all bit widths however.</p>
+<pre>
+declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+<h5>Overview:</h5>
+<p>
+ This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
+ <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
+</p>
+<h5>Arguments:</h5>
+<p>
+
+ The intrinsic takes two arguments, the first a pointer to an integer value
+ and the second an integer value. The result is also an integer value. These
+ integer types can have any bit width, but they must all have the same bit
+ width. The targets may only lower integer representations they support.
+</p>
+<h5>Semantics:</h5>
+<p>
+ This intrinsic does a series of operations atomically. It first loads the
+ value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
+ result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
+</p>
+
+<h5>Examples:</h5>
+<pre>
+%ptr = malloc i32
+ store i32 8, %ptr
+%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
+ <i>; yields {i32}:result1 = 8</i>
+%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
+ <i>; yields {i32}:result2 = 4</i>
+%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
+ <i>; yields {i32}:result3 = 2</i>
+%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
+ <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
+ <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
+ <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
+
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<p>
+ These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
+ <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
+ <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
+ address spaces. Not all targets support all bit widths however.</p>
+<pre>
+declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+
+<pre>
+declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+
+<pre>
+declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+
+<pre>
+declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+<h5>Overview:</h5>
+<p>
+ These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
+ the value stored in memory at <tt>ptr</tt>. It yields the original value
+ at <tt>ptr</tt>.
+</p>
+<h5>Arguments:</h5>
+<p>
+
+ These intrinsics take two arguments, the first a pointer to an integer value
+ and the second an integer value. The result is also an integer value. These
+ integer types can have any bit width, but they must all have the same bit
+ width. The targets may only lower integer representations they support.
+</p>
+<h5>Semantics:</h5>
+<p>
+ These intrinsics does a series of operations atomically. They first load the
+ value stored at <tt>ptr</tt>. They then do the bitwise operation
+ <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
+ value stored at <tt>ptr</tt>.
+</p>
+
+<h5>Examples:</h5>
+<pre>
+%ptr = malloc i32
+ store i32 0x0F0F, %ptr
+%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
+ <i>; yields {i32}:result0 = 0x0F0F</i>
+%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
+ <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
+%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
+ <i>; yields {i32}:result2 = 0xF0</i>
+%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
+ <i>; yields {i32}:result3 = FF</i>
+%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
+</pre>
+</div>
+
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
+ <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
+ <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
+ <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
+
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<p>
+ These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
+ <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
+ <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
+ address spaces. Not all targets
+ support all bit widths however.</p>
+<pre>
+declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+
+<pre>
+declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+
+<pre>
+declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+
+<pre>
+declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
+declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
+declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
+declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
+
+</pre>
+<h5>Overview:</h5>
+<p>
+ These intrinsics takes the signed or unsigned minimum or maximum of
+ <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
+ original value at <tt>ptr</tt>.
+</p>
+<h5>Arguments:</h5>
+<p>
+
+ These intrinsics take two arguments, the first a pointer to an integer value
+ and the second an integer value. The result is also an integer value. These
+ integer types can have any bit width, but they must all have the same bit
+ width. The targets may only lower integer representations they support.
+</p>
+<h5>Semantics:</h5>
+<p>
+ These intrinsics does a series of operations atomically. They first load the
+ value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
+ <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
+ the original value stored at <tt>ptr</tt>.
+</p>
+
+<h5>Examples:</h5>
+<pre>
+%ptr = malloc i32
+ store i32 7, %ptr
+%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
+ <i>; yields {i32}:result0 = 7</i>
+%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
+ <i>; yields {i32}:result1 = -2</i>
+%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
+ <i>; yields {i32}:result2 = 8</i>
+%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
+ <i>; yields {i32}:result3 = 8</i>
+%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
+</pre>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="int_general">General Intrinsics</a>
+</div>
+
+<div class="doc_text">
+<p> This class of intrinsics is designed to be generic and has
+no specific purpose. </p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.var.annotation</tt>' intrinsic
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The first argument is a pointer to a value, the second is a pointer to a
+global string, the third is a pointer to a global string which is the source
+file name, and the last argument is the line number.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This intrinsic allows annotation of local variables with arbitrary strings.
+This can be useful for special purpose optimizations that want to look for these
+annotations. These have no other defined use, they are ignored by code
+generation and optimization.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
+any integer bit width.
+</p>
+<pre>
+ declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
+ declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
+ declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
+ declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
+ declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.annotation</tt>' intrinsic.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The first argument is an integer value (result of some expression),
+the second is a pointer to a global string, the third is a pointer to a global
+string which is the source file name, and the last argument is the line number.
+It returns the value of the first argument.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This intrinsic allows annotations to be put on arbitrary expressions
+with arbitrary strings. This can be useful for special purpose optimizations
+that want to look for these annotations. These have no other defined use, they
+are ignored by code generation and optimization.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<pre>
+ declare void @llvm.trap()
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.trap</tt>' intrinsic
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+None
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This intrinsics is lowered to the target dependent trap instruction. If the
+target does not have a trap instruction, this intrinsic will be lowered to the
+call of the abort() function.
+</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
+</div>
+<div class="doc_text">
+<h5>Syntax:</h5>
+<pre>
+declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
+
+</pre>
+<h5>Overview:</h5>
+<p>
+ The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
+ it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
+ it is placed on the stack before local variables.
+</p>
+<h5>Arguments:</h5>
+<p>
+ The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
+ first argument is the value loaded from the stack guard
+ <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
+ has enough space to hold the value of the guard.
+</p>
+<h5>Semantics:</h5>
+<p>
+ This intrinsic causes the prologue/epilogue inserter to force the position of
+ the <tt>AllocaInst</tt> stack slot to be before local variables on the
+ stack. This is to ensure that if a local variable on the stack is overwritten,
+ it will destroy the value of the guard. When the function exits, the guard on
+ the stack is checked against the original guard. If they're different, then
+ the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
+</p>
+</div>
+
+<!-- *********************************************************************** -->
+<hr>
+<address>
+ <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+ src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
+ <a href="http://validator.w3.org/check/referer"><img
+ src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
+
+ <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
+ <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
+ Last modified: $Date: 2009-05-30 18:08:30 +0200 (Sat, 30 May 2009) $
+</address>
+
+</body>
+</html>
OpenPOWER on IntegriCloud