summaryrefslogtreecommitdiffstats
path: root/contrib/ntp/ntpd/refclock_wwv.c
diff options
context:
space:
mode:
authorroberto <roberto@FreeBSD.org>2008-08-22 15:58:00 +0000
committerroberto <roberto@FreeBSD.org>2008-08-22 15:58:00 +0000
commitb85c7169a740b2edf0106ad59fdaa1b0160f823c (patch)
tree2b9fb7f64eacb322e95695e412c923e97ba33e88 /contrib/ntp/ntpd/refclock_wwv.c
parent1d197cfe9feac6bc29537d8e53c30b6435937b95 (diff)
parent7a6072eb585696f8856cd498c3fd194cf49f14c6 (diff)
downloadFreeBSD-src-b85c7169a740b2edf0106ad59fdaa1b0160f823c.zip
FreeBSD-src-b85c7169a740b2edf0106ad59fdaa1b0160f823c.tar.gz
Merge ntpd & friends 4.2.4p5 from vendor/ntp/dist into head. Next commit
will update usr.sbin/ntp to match this. MFC after: 2 weeks
Diffstat (limited to 'contrib/ntp/ntpd/refclock_wwv.c')
-rw-r--r--contrib/ntp/ntpd/refclock_wwv.c1874
1 files changed, 862 insertions, 1012 deletions
diff --git a/contrib/ntp/ntpd/refclock_wwv.c b/contrib/ntp/ntpd/refclock_wwv.c
index 11aae7f..b7e0d9a 100644
--- a/contrib/ntp/ntpd/refclock_wwv.c
+++ b/contrib/ntp/ntpd/refclock_wwv.c
@@ -33,11 +33,11 @@
* This driver synchronizes the computer time using data encoded in
* radio transmissions from NIST time/frequency stations WWV in Boulder,
* CO, and WWVH in Kauai, HI. Transmissions are made continuously on
- * 2.5, 5, 10, 15 and 20 MHz in AM mode. An ordinary shortwave receiver
- * can be tuned manually to one of these frequencies or, in the case of
- * ICOM receivers, the receiver can be tuned automatically using this
- * program as propagation conditions change throughout the day and
- * night.
+ * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
+ * ordinary AM shortwave receiver can be tuned manually to one of these
+ * frequencies or, in the case of ICOM receivers, the receiver can be
+ * tuned automatically using this program as propagation conditions
+ * change throughout the weasons, both day and night.
*
* The driver receives, demodulates and decodes the radio signals when
* connected to the audio codec of a workstation running Solaris, SunOS
@@ -50,7 +50,7 @@
* TI 320C25 digital signal processor described in: Mills, D.L. A
* precision radio clock for WWV transmissions. Electrical Engineering
* Report 97-8-1, University of Delaware, August 1997, 25 pp., available
- * from www.eecis.udel.edu/~mills/reports.htm. The algorithms described
+ * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
* in this report have been modified somewhat to improve performance
* under weak signal conditions and to provide an automatic station
* identification feature.
@@ -59,9 +59,18 @@
* unless the mode keyword on the server configuration command specifies
* a nonzero ICOM ID select code. The C-IV trace is turned on if the
* debug level is greater than one.
+ *
+ * Fudge factors
+ *
+ * Fudge flag4 causes the dubugging output described above to be
+ * recorded in the clockstats file. Fudge flag2 selects the audio input
+ * port, where 0 is the mike port (default) and 1 is the line-in port.
+ * It does not seem useful to select the compact disc player port. Fudge
+ * flag3 enables audio monitoring of the input signal. For this purpose,
+ * the monitor gain is set to a default value.
*/
/*
- * Interface definitions
+ * General definitions. These ordinarily do not need to be changed.
*/
#define DEVICE_AUDIO "/dev/audio" /* audio device name */
#define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */
@@ -71,52 +80,60 @@
#define MINUTE (SECOND * 60) /* minute epoch */
#define OFFSET 128 /* companded sample offset */
#define SIZE 256 /* decompanding table size */
-#define MAXSIG 6000. /* max signal level reference */
+#define MAXAMP 6000. /* max signal level reference */
#define MAXCLP 100 /* max clips above reference per s */
-#define MAXSNR 30. /* max SNR reference */
-#define DGAIN 20. /* data channel gain reference */
-#define SGAIN 10. /* sync channel gain reference */
-#define MAXFREQ 1. /* max frequency tolerance (125 PPM) */
-#define PI 3.1415926535 /* the real thing */
-#define DATSIZ (170 * MS) /* data matched filter size */
-#define SYNSIZ (800 * MS) /* minute sync matched filter size */
-#define MAXERR 30 /* max data bit errors in minute */
+#define MAXSNR 40. /* max SNR reference */
+#define MAXFREQ 1.5 /* max frequency tolerance (187 PPM) */
+#define DATCYC 170 /* data filter cycles */
+#define DATSIZ (DATCYC * MS) /* data filter size */
+#define SYNCYC 800 /* minute filter cycles */
+#define SYNSIZ (SYNCYC * MS) /* minute filter size */
+#define TCKCYC 5 /* tick filter cycles */
+#define TCKSIZ (TCKCYC * MS) /* tick filter size */
#define NCHAN 5 /* number of radio channels */
#define AUDIO_PHI 5e-6 /* dispersion growth factor */
-#ifdef IRIG_SUCKS
-#define WIGGLE 11 /* wiggle filter length */
-#endif /* IRIG_SUCKS */
+
+/*
+ * Tunable parameters. The DGAIN parameter can be changed to fit the
+ * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
+ * is transmitted at about 20 percent percent modulation; the matched
+ * filter boosts it by a factor of 17 and the receiver response does
+ * what it does. The compromise value works for ICOM radios. If the
+ * radio is not tunable, the DCHAN parameter can be changed to fit the
+ * expected best propagation frequency: higher if further from the
+ * transmitter, lower if nearer. The compromise value works for the US
+ * right coast. The FREQ_OFFSET parameter can be used as a frequency
+ * vernier to correct codec requency if greater than MAXFREQ.
+ */
+#define DCHAN 3 /* default radio channel (15 Mhz) */
+#define DGAIN 5. /* subcarrier gain */
+#define FREQ_OFFSET 0. /* codec frequency correction (PPM) */
/*
* General purpose status bits (status)
*
- * SELV and/or SELH are set when WWV or WWVH has been heard and cleared
+ * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
* on signal loss. SSYNC is set when the second sync pulse has been
* acquired and cleared by signal loss. MSYNC is set when the minute
- * sync pulse has been acquired. DSYNC is set when a digit reaches the
- * threshold and INSYNC is set when all nine digits have reached the
- * threshold. The MSYNC, DSYNC and INSYNC bits are cleared only by
- * timeout, upon which the driver starts over from scratch.
+ * sync pulse has been acquired. DSYNC is set when the units digit has
+ * has reached the threshold and INSYNC is set when all nine digits have
+ * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
+ * only by timeout, upon which the driver starts over from scratch.
*
- * DGATE is set if a data bit is invalid and BGATE is set if a BCD digit
- * bit is invalid. SFLAG is set when during seconds 59, 0 and 1 while
- * probing alternate frequencies. LEPDAY is set when SECWAR of the
- * timecode is set on 30 June or 31 December. LEPSEC is set during the
- * last minute of the day when LEPDAY is set. At the end of this minute
- * the driver inserts second 60 in the seconds state machine and the
- * minute sync slips a second. The SLOSS and SJITR bits are for monitor
- * only.
+ * DGATE is lit if the data bit amplitude or SNR is below thresholds and
+ * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
+ * LEPSEC is set during the last minute of the leap day. At the end of
+ * this minute the driver inserts second 60 in the seconds state machine
+ * and the minute sync slips a second.
*/
#define MSYNC 0x0001 /* minute epoch sync */
#define SSYNC 0x0002 /* second epoch sync */
#define DSYNC 0x0004 /* minute units sync */
#define INSYNC 0x0008 /* clock synchronized */
#define FGATE 0x0010 /* frequency gate */
-#define DGATE 0x0020 /* data bit error */
-#define BGATE 0x0040 /* BCD digit bit error */
-#define SFLAG 0x1000 /* probe flag */
-#define LEPDAY 0x2000 /* leap second day */
-#define LEPSEC 0x4000 /* leap second minute */
+#define DGATE 0x0020 /* data pulse amplitude error */
+#define BGATE 0x0040 /* data pulse width error */
+#define LEPSEC 0x1000 /* leap minute */
/*
* Station scoreboard bits
@@ -124,9 +141,6 @@
* These are used to establish the signal quality for each of the five
* frequencies and two stations.
*/
-#define SYNCNG 0x0001 /* sync or SNR below threshold */
-#define DATANG 0x0002 /* data or SNR below threshold */
-#define ERRRNG 0x0004 /* data error */
#define SELV 0x0100 /* WWV station select */
#define SELH 0x0200 /* WWVH station select */
@@ -134,18 +148,12 @@
* Alarm status bits (alarm)
*
* These bits indicate various alarm conditions, which are decoded to
- * form the quality character included in the timecode. If not tracking
- * second sync, the SYNERR alarm is raised. The data error counter is
- * incremented for each invalid data bit. If too many data bit errors
- * are encountered in one minute, the MODERR alarm is raised. The DECERR
- * alarm is raised if a maximum likelihood digit fails to compare with
- * the current clock digit. If the probability of any miscellaneous bit
- * or any digit falls below the threshold, the SYMERR alarm is raised.
+ * form the quality character included in the timecode.
*/
-#define DECERR 1 /* BCD digit compare error */
-#define SYMERR 2 /* low bit or digit probability */
-#define MODERR 4 /* too many data bit errors */
-#define SYNERR 8 /* not synchronized to station */
+#define CMPERR 1 /* digit or misc bit compare error */
+#define LOWERR 2 /* low bit or digit amplitude or SNR */
+#define NINERR 4 /* less than nine digits in minute */
+#define SYNERR 8 /* not tracking second sync */
/*
* Watchcat timeouts (watch)
@@ -154,9 +162,9 @@
* driver starts from scratch. Suitably more refined procedures may be
* developed in future. All these are in minutes.
*/
-#define ACQSN 5 /* station acquisition timeout */
-#define DIGIT 30 /* minute unit digit timeout */
-#define HOLD 30 /* reachable timeout */
+#define ACQSN 6 /* station acquisition timeout */
+#define DATA 15 /* unit minutes timeout */
+#define SYNCH 40 /* station sync timeout */
#define PANIC (2 * 1440) /* panic timeout */
/*
@@ -165,25 +173,24 @@
* rates of the driver. The values defined here may be on the
* adventurous side in the interest of the highest sensitivity.
*/
-#define MTHR 13. /* acquisition signal gate (percent) */
-#define TTHR 50. /* tracking signal gate (percent) */
-#define ATHR 2000. /* acquisition amplitude threshold */
-#define ASNR 6. /* acquisition SNR threshold (dB) */
-#define AWND 20. /* acquisition jitter threshold (ms) */
-#define AMIN 3 /* min bit count */
-#define AMAX 6 /* max bit count */
-#define QTHR 2000 /* QSY sync threshold */
-#define QSNR 20. /* QSY sync SNR threshold (dB) */
-#define XTHR 1000. /* QSY data threshold */
-#define XSNR 10. /* QSY data SNR threshold (dB) */
-#define STHR 500 /* second sync amplitude threshold */
-#define SSNR 10. /* second sync SNR threshold */
+#define MTHR 13. /* minute sync gate (percent) */
+#define TTHR 50. /* minute sync threshold (percent) */
+#define AWND 20 /* minute sync jitter threshold (ms) */
+#define ATHR 2500. /* QRZ minute sync threshold */
+#define ASNR 20. /* QRZ minute sync SNR threshold (dB) */
+#define QTHR 2500. /* QSY minute sync threshold */
+#define QSNR 20. /* QSY minute sync SNR threshold (dB) */
+#define STHR 2500. /* second sync threshold */
+#define SSNR 15. /* second sync SNR threshold (dB) */
#define SCMP 10 /* second sync compare threshold */
-#define DTHR 1000 /* bit amplitude threshold */
+#define DTHR 1000. /* bit threshold */
#define DSNR 10. /* bit SNR threshold (dB) */
-#define BTHR 1000 /* digit amplitude threshold */
+#define AMIN 3 /* min bit count */
+#define AMAX 6 /* max bit count */
+#define BTHR 1000. /* digit threshold */
#define BSNR 3. /* digit likelihood threshold (dB) */
-#define BCMP 5 /* digit compare threshold */
+#define BCMP 3 /* digit compare threshold */
+#define MAXERR 40 /* maximum error alarm */
/*
* Tone frequency definitions. The increments are for 4.5-deg sine
@@ -195,10 +202,11 @@
#define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */
/*
- * Acquisition and tracking time constants. Usually powers of 2.
+ * Acquisition and tracking time constants
*/
-#define MINAVG 8 /* min time constant */
-#define MAXAVG 1024 /* max time constant */
+#define MINAVG 8 /* min averaging time */
+#define MAXAVG 1024 /* max averaging time */
+#define FCONST 3 /* frequency time constant */
#define TCONST 16 /* data bit/digit time constant */
/*
@@ -229,30 +237,29 @@
/*
* Table of sine values at 4.5-degree increments. This is used by the
- * synchronous matched filter demodulators. The integral of sine-squared
- * over one complete cycle is PI, so the table is normallized by 1 / PI.
+ * synchronous matched filter demodulators.
*/
double sintab[] = {
- 0.000000e+00, 2.497431e-02, 4.979464e-02, 7.430797e-02, /* 0-3 */
- 9.836316e-02, 1.218119e-01, 1.445097e-01, 1.663165e-01, /* 4-7 */
- 1.870979e-01, 2.067257e-01, 2.250791e-01, 2.420447e-01, /* 8-11 */
- 2.575181e-01, 2.714038e-01, 2.836162e-01, 2.940800e-01, /* 12-15 */
- 3.027307e-01, 3.095150e-01, 3.143910e-01, 3.173286e-01, /* 16-19 */
- 3.183099e-01, 3.173286e-01, 3.143910e-01, 3.095150e-01, /* 20-23 */
- 3.027307e-01, 2.940800e-01, 2.836162e-01, 2.714038e-01, /* 24-27 */
- 2.575181e-01, 2.420447e-01, 2.250791e-01, 2.067257e-01, /* 28-31 */
- 1.870979e-01, 1.663165e-01, 1.445097e-01, 1.218119e-01, /* 32-35 */
- 9.836316e-02, 7.430797e-02, 4.979464e-02, 2.497431e-02, /* 36-39 */
--0.000000e+00, -2.497431e-02, -4.979464e-02, -7.430797e-02, /* 40-43 */
--9.836316e-02, -1.218119e-01, -1.445097e-01, -1.663165e-01, /* 44-47 */
--1.870979e-01, -2.067257e-01, -2.250791e-01, -2.420447e-01, /* 48-51 */
--2.575181e-01, -2.714038e-01, -2.836162e-01, -2.940800e-01, /* 52-55 */
--3.027307e-01, -3.095150e-01, -3.143910e-01, -3.173286e-01, /* 56-59 */
--3.183099e-01, -3.173286e-01, -3.143910e-01, -3.095150e-01, /* 60-63 */
--3.027307e-01, -2.940800e-01, -2.836162e-01, -2.714038e-01, /* 64-67 */
--2.575181e-01, -2.420447e-01, -2.250791e-01, -2.067257e-01, /* 68-71 */
--1.870979e-01, -1.663165e-01, -1.445097e-01, -1.218119e-01, /* 72-75 */
--9.836316e-02, -7.430797e-02, -4.979464e-02, -2.497431e-02, /* 76-79 */
+ 0.000000e+00, 7.845910e-02, 1.564345e-01, 2.334454e-01, /* 0-3 */
+ 3.090170e-01, 3.826834e-01, 4.539905e-01, 5.224986e-01, /* 4-7 */
+ 5.877853e-01, 6.494480e-01, 7.071068e-01, 7.604060e-01, /* 8-11 */
+ 8.090170e-01, 8.526402e-01, 8.910065e-01, 9.238795e-01, /* 12-15 */
+ 9.510565e-01, 9.723699e-01, 9.876883e-01, 9.969173e-01, /* 16-19 */
+ 1.000000e+00, 9.969173e-01, 9.876883e-01, 9.723699e-01, /* 20-23 */
+ 9.510565e-01, 9.238795e-01, 8.910065e-01, 8.526402e-01, /* 24-27 */
+ 8.090170e-01, 7.604060e-01, 7.071068e-01, 6.494480e-01, /* 28-31 */
+ 5.877853e-01, 5.224986e-01, 4.539905e-01, 3.826834e-01, /* 32-35 */
+ 3.090170e-01, 2.334454e-01, 1.564345e-01, 7.845910e-02, /* 36-39 */
+-0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
+-3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
+-5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
+-8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
+-9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
+-1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
+-9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
+-8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
+-5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
+-3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
0.000000e+00}; /* 80 */
/*
@@ -271,18 +278,19 @@ struct progx {
*/
#define IDLE 0 /* no operation */
#define COEF 1 /* BCD bit */
-#define COEF2 2 /* BCD bit ignored */
-#define DECIM9 3 /* BCD digit 0-9 */
-#define DECIM6 4 /* BCD digit 0-6 */
-#define DECIM3 5 /* BCD digit 0-3 */
-#define DECIM2 6 /* BCD digit 0-2 */
-#define MSCBIT 7 /* miscellaneous bit */
-#define MSC20 8 /* miscellaneous bit */
-#define MSC21 9 /* QSY probe channel */
-#define MIN1 10 /* minute */
-#define MIN2 11 /* leap second */
-#define SYNC2 12 /* QSY data channel */
-#define SYNC3 13 /* QSY data channel */
+#define COEF1 2 /* BCD bit for minute unit */
+#define COEF2 3 /* BCD bit not used */
+#define DECIM9 4 /* BCD digit 0-9 */
+#define DECIM6 5 /* BCD digit 0-6 */
+#define DECIM3 6 /* BCD digit 0-3 */
+#define DECIM2 7 /* BCD digit 0-2 */
+#define MSCBIT 8 /* miscellaneous bit */
+#define MSC20 9 /* miscellaneous bit */
+#define MSC21 10 /* QSY probe channel */
+#define MIN1 11 /* latch time */
+#define MIN2 12 /* leap second */
+#define SYNC2 13 /* latch minute sync pulse */
+#define SYNC3 14 /* latch data pulse */
/*
* Offsets in decoding matrix
@@ -293,8 +301,8 @@ struct progx {
#define YR 7 /* year digits (2) */
struct progx progx[] = {
- {SYNC2, 0}, /* 0 latch sync max */
- {SYNC3, 0}, /* 1 QSY data channel */
+ {SYNC2, 0}, /* 0 latch minute sync pulse */
+ {SYNC3, 0}, /* 1 latch data pulse */
{MSCBIT, DST2}, /* 2 dst2 */
{MSCBIT, SECWAR}, /* 3 lw */
{COEF, 0}, /* 4 1 year units */
@@ -303,10 +311,10 @@ struct progx progx[] = {
{COEF, 3}, /* 7 8 */
{DECIM9, YR}, /* 8 */
{IDLE, 0}, /* 9 p1 */
- {COEF, 0}, /* 10 1 minute units */
- {COEF, 1}, /* 11 2 */
- {COEF, 2}, /* 12 4 */
- {COEF, 3}, /* 13 8 */
+ {COEF1, 0}, /* 10 1 minute units */
+ {COEF1, 1}, /* 11 2 */
+ {COEF1, 2}, /* 12 4 */
+ {COEF1, 3}, /* 13 8 */
{DECIM9, MN}, /* 14 */
{COEF, 0}, /* 15 10 minute tens */
{COEF, 1}, /* 16 20 */
@@ -352,7 +360,7 @@ struct progx progx[] = {
{MSCBIT, DUT1}, /* 56 0.1 dut */
{MSCBIT, DUT2}, /* 57 0.2 */
{MSC21, DUT4}, /* 58 0.4 QSY probe channel */
- {MIN1, 0}, /* 59 p6 latch sync min */
+ {MIN1, 0}, /* 59 p6 latch time */
{MIN2, 0} /* 60 leap second */
};
@@ -447,7 +455,6 @@ struct decvec {
int radix; /* radix (3, 4, 6, 10) */
int digit; /* current clock digit */
int mldigit; /* maximum likelihood digit */
- int phase; /* maximum likelihood digit phase */
int count; /* match count */
double digprb; /* max digit probability */
double digsnr; /* likelihood function (dB) */
@@ -455,51 +462,50 @@ struct decvec {
};
/*
- * The station structure is used to acquire the minute pulse from WWV
- * and/or WWVH. These stations are distinguished by the frequency used
- * for the second and minute sync pulses, 1000 Hz for WWV and 1200 Hz
- * for WWVH. Other than frequency, the format is the same.
+ * The station structure (sp) is used to acquire the minute pulse from
+ * WWV and/or WWVH. These stations are distinguished by the frequency
+ * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
+ * Hz for WWVH. Other than frequency, the format is the same.
*/
struct sync {
double epoch; /* accumulated epoch differences */
- double maxamp; /* sync max envelope (square) */
- double noiamp; /* sync noise envelope (square) */
+ double maxeng; /* sync max energy */
+ double noieng; /* sync noise energy */
long pos; /* max amplitude position */
long lastpos; /* last max position */
long mepoch; /* minute synch epoch */
- double amp; /* sync amplitude (I, Q squares) */
- double synamp; /* sync max envelope at 800 ms */
- double synmax; /* sync envelope at 0 s */
- double synmin; /* sync envelope at 59, 1 s */
+ double amp; /* sync signal */
+ double syneng; /* sync signal max */
+ double synmax; /* sync signal max latched at 0 s */
double synsnr; /* sync signal SNR */
+ double metric; /* signal quality metric */
+ int reach; /* reachability register */
int count; /* bit counter */
- char refid[5]; /* reference identifier */
int select; /* select bits */
- int reach; /* reachability register */
+ char refid[5]; /* reference identifier */
};
/*
- * The channel structure is used to mitigate between channels.
+ * The channel structure (cp) is used to mitigate between channels.
*/
struct chan {
int gain; /* audio gain */
- double sigamp; /* data max envelope (square) */
- double noiamp; /* data noise envelope (square) */
- double datsnr; /* data signal SNR */
struct sync wwv; /* wwv station */
struct sync wwvh; /* wwvh station */
};
/*
- * WWV unit control structure
+ * WWV unit control structure (up)
*/
struct wwvunit {
l_fp timestamp; /* audio sample timestamp */
l_fp tick; /* audio sample increment */
double phase, freq; /* logical clock phase and frequency */
double monitor; /* audio monitor point */
+#ifdef ICOM
int fd_icom; /* ICOM file descriptor */
+#endif /* ICOM */
int errflg; /* error flags */
int watch; /* watchcat */
@@ -511,18 +517,11 @@ struct wwvunit {
int gain; /* codec gain */
int mongain; /* codec monitor gain */
int clipcnt; /* sample clipped count */
-#ifdef IRIG_SUCKS
- l_fp wigwag; /* wiggle accumulator */
- int wp; /* wiggle filter pointer */
- l_fp wiggle[WIGGLE]; /* wiggle filter */
- l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/
-#endif /* IRIG_SUCKS */
/*
* Variables used to establish basic system timing
*/
int avgint; /* master time constant */
- int tepoch; /* sync epoch median */
int yepoch; /* sync epoch */
int repoch; /* buffered sync epoch */
double epomax; /* second sync amplitude */
@@ -554,10 +553,8 @@ struct wwvunit {
* Variables used to estimate signal levels and bit/digit
* probabilities
*/
- double sigsig; /* data max signal */
- double sigamp; /* data max envelope (square) */
- double noiamp; /* data noise envelope (square) */
- double datsnr; /* data SNR (dB) */
+ double datsig; /* data signal max */
+ double datsnr; /* data signal SNR (dB) */
/*
* Variables used to establish status and alarm conditions
@@ -566,7 +563,6 @@ struct wwvunit {
int alarm; /* alarm flashers */
int misc; /* miscellaneous timecode bits */
int errcnt; /* data bit error counter */
- int errbit; /* data bit errors in minute */
};
/*
@@ -584,19 +580,18 @@ static void wwv_epoch P((struct peer *));
static void wwv_rf P((struct peer *, double));
static void wwv_endpoc P((struct peer *, int));
static void wwv_rsec P((struct peer *, double));
-static void wwv_qrz P((struct peer *, struct sync *,
- double, int));
+static void wwv_qrz P((struct peer *, struct sync *, int));
static void wwv_corr4 P((struct peer *, struct decvec *,
double [], double [][4]));
static void wwv_gain P((struct peer *));
-static void wwv_tsec P((struct wwvunit *));
-static double wwv_data P((struct wwvunit *, double));
+static void wwv_tsec P((struct peer *));
static int timecode P((struct wwvunit *, char *));
static double wwv_snr P((double, double));
static int carry P((struct decvec *));
-static void wwv_newchan P((struct peer *));
+static int wwv_newchan P((struct peer *));
static void wwv_newgame P((struct peer *));
static double wwv_metric P((struct sync *));
+static void wwv_clock P((struct peer *));
#ifdef ICOM
static int wwv_qsy P((struct peer *, int));
#endif /* ICOM */
@@ -648,7 +643,7 @@ wwv_start(
#ifdef DEBUG
if (debug)
audio_show();
-#endif
+#endif /* DEBUG */
/*
* Allocate and initialize unit structure
@@ -681,8 +676,8 @@ wwv_start(
* contains all the 256 values in the interest of speed.
*/
up->comp[0] = up->comp[OFFSET] = 0.;
- up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
- up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
+ up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
+ up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
step = 2.;
for (i = 3; i < OFFSET; i++) {
up->comp[i] = up->comp[i - 1] + step;
@@ -705,20 +700,18 @@ wwv_start(
up->decvec[DA + 2].radix = 4;
up->decvec[YR].radix = 10; /* years */
up->decvec[YR + 1].radix = 10;
- wwv_newgame(peer);
- up->schan = up->achan = 3;
+#ifdef ICOM
/*
- * Initialize autotune if available. Start out at 15 MHz. Note
- * that the ICOM select code must be less than 128, so the high
- * order bit can be used to select the line speed.
+ * Initialize autotune if available. Note that the ICOM select
+ * code must be less than 128, so the high order bit can be used
+ * to select the line speed 0 (9600 bps) or 1 (1200 bps).
*/
-#ifdef ICOM
temp = 0;
#ifdef DEBUG
if (debug > 1)
temp = P_TRACE;
-#endif
+#endif /* DEBUG */
if (peer->ttl != 0) {
if (peer->ttl & 0x80)
up->fd_icom = icom_init("/dev/icom", B1200,
@@ -726,9 +719,15 @@ wwv_start(
else
up->fd_icom = icom_init("/dev/icom", B9600,
temp);
+ if (up->fd_icom < 0) {
+ NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
+ msyslog(LOG_NOTICE,
+ "icom: %m");
+ up->errflg = CEVNT_FAULT;
+ }
}
if (up->fd_icom > 0) {
- if ((temp = wwv_qsy(peer, up->schan)) != 0) {
+ if (wwv_qsy(peer, DCHAN) != 0) {
NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
msyslog(LOG_NOTICE,
"icom: radio not found");
@@ -742,6 +741,11 @@ wwv_start(
}
}
#endif /* ICOM */
+
+ /*
+ * Let the games begin.
+ */
+ wwv_newgame(peer);
return (1);
}
@@ -760,9 +764,14 @@ wwv_shutdown(
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
+ if (up == NULL)
+ return;
+
io_closeclock(&pp->io);
+#ifdef ICOM
if (up->fd_icom > 0)
close(up->fd_icom);
+#endif /* ICOM */
free(up);
}
@@ -808,15 +817,15 @@ wwv_receive(
sample = up->comp[~*dpt++ & 0xff];
/*
- * Clip noise spikes greater than MAXSIG. If no clips,
- * increase the gain a tad; if the clips are too high,
- * decrease a tad.
+ * Clip noise spikes greater than MAXAMP (6000) and
+ * record the number of clips to be used later by the
+ * AGC.
*/
- if (sample > MAXSIG) {
- sample = MAXSIG;
+ if (sample > MAXAMP) {
+ sample = MAXAMP;
up->clipcnt++;
- } else if (sample < -MAXSIG) {
- sample = -MAXSIG;
+ } else if (sample < -MAXAMP) {
+ sample = -MAXAMP;
up->clipcnt++;
}
@@ -829,6 +838,7 @@ wwv_receive(
* 125 PPM.
*/
up->phase += up->freq / SECOND;
+ up->phase += FREQ_OFFSET / 1e6;
if (up->phase >= .5) {
up->phase -= 1.;
} else if (up->phase < -.5) {
@@ -861,8 +871,7 @@ wwv_receive(
* This routine keeps track of status. If no offset samples have been
* processed during a poll interval, a timeout event is declared. If
* errors have have occurred during the interval, they are reported as
- * well. Once the clock is set, it always appears reachable, unless
- * reset by watchdog timeout.
+ * well.
*/
static void
wwv_poll(
@@ -888,9 +897,9 @@ wwv_poll(
* wwv_rf - process signals and demodulate to baseband
*
* This routine grooms and filters decompanded raw audio samples. The
- * output signals include the 100-Hz baseband data signal in quadrature
- * form, plus the epoch index of the second sync signal and the second
- * index of the minute sync signal.
+ * output signal is the 100-Hz filtered baseband data signal in
+ * quadrature phase. The routine also determines the minute synch epoch,
+ * as well as certain signal maxima, minima and related values.
*
* There are two 1-s ramps used by this program. Both count the 8000
* logical clock samples spanning exactly one second. The epoch ramp
@@ -911,8 +920,8 @@ wwv_poll(
* matched filters for the data signal (170 ms at 100 Hz), WWV minute
* sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
* at 1200 Hz). Two additional matched filters are switched in
- * as required for the WWV second sync signal (5 ms at 1000 Hz) and
- * WWVH second sync signal (5 ms at 1200 Hz).
+ * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
+ * WWVH second sync signal (6 cycles at 1200 Hz).
*/
static void
wwv_rf(
@@ -922,7 +931,7 @@ wwv_rf(
{
struct refclockproc *pp;
struct wwvunit *up;
- struct sync *sp;
+ struct sync *sp, *rp;
static double lpf[5]; /* 150-Hz lpf delay line */
double data; /* lpf output */
@@ -936,24 +945,37 @@ wwv_rf(
static double qbuf[DATSIZ]; /* data Q channel delay line */
static int jptr; /* sync channel pointer */
+ static int kptr; /* tick channel pointer */
+
+ static int csinptr; /* wwv channel phase */
static double cibuf[SYNSIZ]; /* wwv I channel delay line */
static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
static double ciamp; /* wwv I channel amplitude */
static double cqamp; /* wwv Q channel amplitude */
- static int csinptr; /* wwv channel phase */
+
+ static double csibuf[TCKSIZ]; /* wwv I tick delay line */
+ static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
+ static double csiamp; /* wwv I tick amplitude */
+ static double csqamp; /* wwv Q tick amplitude */
+
+ static int hsinptr; /* wwvh channel phase */
static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
static double hiamp; /* wwvh I channel amplitude */
static double hqamp; /* wwvh Q channel amplitude */
- static int hsinptr; /* wwvh channels phase */
- static double epobuf[SECOND]; /* epoch sync comb filter */
- static double epomax; /* epoch sync amplitude buffer */
- static int epopos; /* epoch sync position buffer */
+ static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
+ static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
+ static double hsiamp; /* wwvh I tick amplitude */
+ static double hsqamp; /* wwvh Q tick amplitude */
+
+ static double epobuf[SECOND]; /* second sync comb filter */
+ static double epomax, nxtmax; /* second sync amplitude buffer */
+ static int epopos; /* epoch second sync position buffer */
static int iniflg; /* initialization flag */
- int epoch; /* comb filter index */
int pdelay; /* propagation delay (samples) */
+ int epoch; /* comb filter index */
double dtemp;
int i;
@@ -969,8 +991,12 @@ wwv_rf(
memset((char *)qbuf, 0, sizeof(qbuf));
memset((char *)cibuf, 0, sizeof(cibuf));
memset((char *)cqbuf, 0, sizeof(cqbuf));
+ memset((char *)csibuf, 0, sizeof(csibuf));
+ memset((char *)csqbuf, 0, sizeof(csqbuf));
memset((char *)hibuf, 0, sizeof(hibuf));
memset((char *)hqbuf, 0, sizeof(hqbuf));
+ memset((char *)hsibuf, 0, sizeof(hsibuf));
+ memset((char *)hsqbuf, 0, sizeof(hsqbuf));
memset((char *)epobuf, 0, sizeof(epobuf));
}
@@ -981,6 +1007,10 @@ wwv_rf(
* 600-Hz tones and most of the noise and voice modulation
* components.
*
+ * The subcarrier is transmitted 10 dB down from the carrier.
+ * The DGAIN parameter can be adjusted for this and to
+ * compensate for the radio audio response at 100 Hz.
+ *
* Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
* passband ripple, -50 dB stopband ripple.
*/
@@ -988,7 +1018,7 @@ wwv_rf(
data += (lpf[3] = lpf[2]) * -3.481740e+00;
data += (lpf[2] = lpf[1]) * 5.452988e+00;
data += (lpf[1] = lpf[0]) * -3.807229e+00;
- lpf[0] = isig - data;
+ lpf[0] = isig * DGAIN - data;
data = lpf[0] * 3.281435e-03
+ lpf[1] * -1.149947e-02
+ lpf[2] * 1.654858e-02
@@ -996,20 +1026,24 @@ wwv_rf(
+ lpf[4] * 3.281435e-03;
/*
- * The I and Q quadrature data signals are produced by
+ * The 100-Hz data signal is demodulated using a pair of
+ * quadrature multipliers, matched filters and a phase lock
+ * loop. The I and Q quadrature data signals are produced by
* multiplying the filtered signal by 100-Hz sine and cosine
- * signals, respectively. The data signals are demodulated by
- * 170-ms synchronous matched filters to produce the amplitude
- * and phase signals used by the decoder.
+ * signals, respectively. The signals are processed by 170-ms
+ * synchronous matched filters to produce the amplitude and
+ * phase signals used by the demodulator. The signals are scaled
+ * to produce unit energy at the maximum value.
*/
i = up->datapt;
up->datapt = (up->datapt + IN100) % 80;
- dtemp = sintab[i] * data / DATSIZ * DGAIN;
+ dtemp = sintab[i] * data / (MS / 2. * DATCYC);
up->irig -= ibuf[iptr];
ibuf[iptr] = dtemp;
up->irig += dtemp;
+
i = (i + 20) % 80;
- dtemp = sintab[i] * data / DATSIZ * DGAIN;
+ dtemp = sintab[i] * data / (MS / 2. * DATCYC);
up->qrig -= qbuf[iptr];
qbuf[iptr] = dtemp;
up->qrig += dtemp;
@@ -1044,12 +1078,19 @@ wwv_rf(
+ bpf[8] * 8.203628e-03;
/*
- * The I and Q quadrature minute sync signals are produced by
- * multiplying the filtered signal by 1000-Hz (WWV) and 1200-Hz
- * (WWVH) sine and cosine signals, respectively. The resulting
- * signals are demodulated by 800-ms synchronous matched filters
- * to synchronize the second and minute and to detect which one
- * (or both) the WWV or WWVH signal is present.
+ * The 1000/1200 sync signals are demodulated using a pair of
+ * quadrature multipliers and matched filters. However,
+ * synchronous demodulation at these frequencies is impractical,
+ * so only the signal amplitude is used. The I and Q quadrature
+ * sync signals are produced by multiplying the filtered signal
+ * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
+ * respectively. The WWV and WWVH signals are processed by 800-
+ * ms synchronous matched filters and combined to produce the
+ * minute sync signal and detect which one (or both) the WWV or
+ * WWVH signal is present. The WWV and WWVH signals are also
+ * processed by 5-ms synchronous matched filters and combined to
+ * produce the second sync signal. The signals are scaled to
+ * produce unit energy at the maximum value.
*
* Note the master timing ramps, which run continuously. The
* minute counter (mphase) counts the samples in the minute,
@@ -1058,37 +1099,64 @@ wwv_rf(
*/
up->mphase = (up->mphase + 1) % MINUTE;
epoch = up->mphase % SECOND;
+
+ /*
+ * WWV
+ */
i = csinptr;
csinptr = (csinptr + IN1000) % 80;
- dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
- ciamp = ciamp - cibuf[jptr] + dtemp;
+
+ dtemp = sintab[i] * syncx / (MS / 2.);
+ ciamp -= cibuf[jptr];
cibuf[jptr] = dtemp;
+ ciamp += dtemp;
+ csiamp -= csibuf[kptr];
+ csibuf[kptr] = dtemp;
+ csiamp += dtemp;
+
i = (i + 20) % 80;
- dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
- cqamp = cqamp - cqbuf[jptr] + dtemp;
+ dtemp = sintab[i] * syncx / (MS / 2.);
+ cqamp -= cqbuf[jptr];
cqbuf[jptr] = dtemp;
- sp = &up->mitig[up->schan].wwv;
- dtemp = ciamp * ciamp + cqamp * cqamp;
- sp->amp = dtemp;
+ cqamp += dtemp;
+ csqamp -= csqbuf[kptr];
+ csqbuf[kptr] = dtemp;
+ csqamp += dtemp;
+
+ sp = &up->mitig[up->achan].wwv;
+ sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
if (!(up->status & MSYNC))
- wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime1 *
- SECOND));
+ wwv_qrz(peer, sp, (int)(pp->fudgetime1 * SECOND));
+
+ /*
+ * WWVH
+ */
i = hsinptr;
hsinptr = (hsinptr + IN1200) % 80;
- dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
- hiamp = hiamp - hibuf[jptr] + dtemp;
+
+ dtemp = sintab[i] * syncx / (MS / 2.);
+ hiamp -= hibuf[jptr];
hibuf[jptr] = dtemp;
+ hiamp += dtemp;
+ hsiamp -= hsibuf[kptr];
+ hsibuf[kptr] = dtemp;
+ hsiamp += dtemp;
+
i = (i + 20) % 80;
- dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
- hqamp = hqamp - hqbuf[jptr] + dtemp;
+ dtemp = sintab[i] * syncx / (MS / 2.);
+ hqamp -= hqbuf[jptr];
hqbuf[jptr] = dtemp;
- sp = &up->mitig[up->schan].wwvh;
- dtemp = hiamp * hiamp + hqamp * hqamp;
- sp->amp = dtemp;
+ hqamp += dtemp;
+ hsqamp -= hsqbuf[kptr];
+ hsqbuf[kptr] = dtemp;
+ hsqamp += dtemp;
+
+ rp = &up->mitig[up->achan].wwvh;
+ rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
if (!(up->status & MSYNC))
- wwv_qrz(peer, sp, dtemp, (int)(pp->fudgetime2 *
- SECOND));
+ wwv_qrz(peer, rp, (int)(pp->fudgetime2 * SECOND));
jptr = (jptr + 1) % SYNSIZ;
+ kptr = (kptr + 1) % TCKSIZ;
/*
* The following section is called once per minute. It does
@@ -1100,22 +1168,16 @@ wwv_rf(
/*
* If minute sync has not been acquired before
- * timeout, or if no signal is heard, the
- * program cycles to the next frequency and
- * tries again.
+ * ACQSN timeout (6 min), or if no signal is
+ * heard, the program cycles to the next
+ * frequency and tries again.
*/
- wwv_newchan(peer);
- if (!(up->status & (SELV | SELH)) || up->watch >
- ACQSN) {
- wwv_newgame(peer);
+ if (!wwv_newchan(peer))
+ up->watch = 0;
#ifdef ICOM
- if (up->fd_icom > 0) {
- up->schan = (up->schan + 1) %
- NCHAN;
- wwv_qsy(peer, up->schan);
- }
+ if (up->fd_icom > 0)
+ wwv_qsy(peer, up->dchan);
#endif /* ICOM */
- }
} else {
/*
@@ -1138,15 +1200,20 @@ wwv_rf(
* the remaining seconds until the next minute epoch, while the
* sync epoch is zero. Watch out for the first second; if
* already synchronized to the second, the buffered sync epoch
- * must be set.
+ * must be set.
+ *
+ * Note the guard interval is 200 ms; if for some reason the
+ * clock drifts more than that, it might wind up in the wrong
+ * second. If the maximum frequency error is not more than about
+ * 1 PPM, the clock can go as much as two days while still in
+ * the same second.
*/
if (up->status & MSYNC) {
wwv_epoch(peer);
- } else if ((sp = up->sptr) != NULL) {
- struct chan *cp;
-
- if (sp->count >= AMIN && epoch == sp->mepoch % SECOND) {
- up->rsec = 60 - sp->mepoch / SECOND;
+ } else if (up->sptr != NULL) {
+ sp = up->sptr;
+ if (sp->metric >= TTHR && epoch == sp->mepoch % SECOND) {
+ up->rsec = (60 - sp->mepoch / SECOND) % 60;
up->rphase = 0;
up->status |= MSYNC;
up->watch = 0;
@@ -1154,11 +1221,7 @@ wwv_rf(
up->repoch = up->yepoch = epoch;
else
up->repoch = up->yepoch;
- for (i = 0; i < NCHAN; i++) {
- cp = &up->mitig[i];
- cp->wwv.count = cp->wwv.reach = 0;
- cp->wwvh.count = cp->wwvh.reach = 0;
- }
+
}
}
@@ -1171,103 +1234,15 @@ wwv_rf(
*/
if (up->status & SELV) {
pdelay = (int)(pp->fudgetime1 * SECOND);
-
- /*
- * WWV FIR matched filter, five cycles of 1000-Hz
- * sinewave.
- */
- mf[40] = mf[39];
- mfsync = (mf[39] = mf[38]) * 4.224514e-02;
- mfsync += (mf[38] = mf[37]) * 5.974365e-02;
- mfsync += (mf[37] = mf[36]) * 4.224514e-02;
- mf[36] = mf[35];
- mfsync += (mf[35] = mf[34]) * -4.224514e-02;
- mfsync += (mf[34] = mf[33]) * -5.974365e-02;
- mfsync += (mf[33] = mf[32]) * -4.224514e-02;
- mf[32] = mf[31];
- mfsync += (mf[31] = mf[30]) * 4.224514e-02;
- mfsync += (mf[30] = mf[29]) * 5.974365e-02;
- mfsync += (mf[29] = mf[28]) * 4.224514e-02;
- mf[28] = mf[27];
- mfsync += (mf[27] = mf[26]) * -4.224514e-02;
- mfsync += (mf[26] = mf[25]) * -5.974365e-02;
- mfsync += (mf[25] = mf[24]) * -4.224514e-02;
- mf[24] = mf[23];
- mfsync += (mf[23] = mf[22]) * 4.224514e-02;
- mfsync += (mf[22] = mf[21]) * 5.974365e-02;
- mfsync += (mf[21] = mf[20]) * 4.224514e-02;
- mf[20] = mf[19];
- mfsync += (mf[19] = mf[18]) * -4.224514e-02;
- mfsync += (mf[18] = mf[17]) * -5.974365e-02;
- mfsync += (mf[17] = mf[16]) * -4.224514e-02;
- mf[16] = mf[15];
- mfsync += (mf[15] = mf[14]) * 4.224514e-02;
- mfsync += (mf[14] = mf[13]) * 5.974365e-02;
- mfsync += (mf[13] = mf[12]) * 4.224514e-02;
- mf[12] = mf[11];
- mfsync += (mf[11] = mf[10]) * -4.224514e-02;
- mfsync += (mf[10] = mf[9]) * -5.974365e-02;
- mfsync += (mf[9] = mf[8]) * -4.224514e-02;
- mf[8] = mf[7];
- mfsync += (mf[7] = mf[6]) * 4.224514e-02;
- mfsync += (mf[6] = mf[5]) * 5.974365e-02;
- mfsync += (mf[5] = mf[4]) * 4.224514e-02;
- mf[4] = mf[3];
- mfsync += (mf[3] = mf[2]) * -4.224514e-02;
- mfsync += (mf[2] = mf[1]) * -5.974365e-02;
- mfsync += (mf[1] = mf[0]) * -4.224514e-02;
- mf[0] = syncx;
+ mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
+ TCKCYC;
} else if (up->status & SELH) {
pdelay = (int)(pp->fudgetime2 * SECOND);
-
- /*
- * WWVH FIR matched filter, six cycles of 1200-Hz
- * sinewave.
- */
- mf[40] = mf[39];
- mfsync = (mf[39] = mf[38]) * 4.833363e-02;
- mfsync += (mf[38] = mf[37]) * 5.681959e-02;
- mfsync += (mf[37] = mf[36]) * 1.846180e-02;
- mfsync += (mf[36] = mf[35]) * -3.511644e-02;
- mfsync += (mf[35] = mf[34]) * -5.974365e-02;
- mfsync += (mf[34] = mf[33]) * -3.511644e-02;
- mfsync += (mf[33] = mf[32]) * 1.846180e-02;
- mfsync += (mf[32] = mf[31]) * 5.681959e-02;
- mfsync += (mf[31] = mf[30]) * 4.833363e-02;
- mf[30] = mf[29];
- mfsync += (mf[29] = mf[28]) * -4.833363e-02;
- mfsync += (mf[28] = mf[27]) * -5.681959e-02;
- mfsync += (mf[27] = mf[26]) * -1.846180e-02;
- mfsync += (mf[26] = mf[25]) * 3.511644e-02;
- mfsync += (mf[25] = mf[24]) * 5.974365e-02;
- mfsync += (mf[24] = mf[23]) * 3.511644e-02;
- mfsync += (mf[23] = mf[22]) * -1.846180e-02;
- mfsync += (mf[22] = mf[21]) * -5.681959e-02;
- mfsync += (mf[21] = mf[20]) * -4.833363e-02;
- mf[20] = mf[19];
- mfsync += (mf[19] = mf[18]) * 4.833363e-02;
- mfsync += (mf[18] = mf[17]) * 5.681959e-02;
- mfsync += (mf[17] = mf[16]) * 1.846180e-02;
- mfsync += (mf[16] = mf[15]) * -3.511644e-02;
- mfsync += (mf[15] = mf[14]) * -5.974365e-02;
- mfsync += (mf[14] = mf[13]) * -3.511644e-02;
- mfsync += (mf[13] = mf[12]) * 1.846180e-02;
- mfsync += (mf[12] = mf[11]) * 5.681959e-02;
- mfsync += (mf[11] = mf[10]) * 4.833363e-02;
- mf[10] = mf[9];
- mfsync += (mf[9] = mf[8]) * -4.833363e-02;
- mfsync += (mf[8] = mf[7]) * -5.681959e-02;
- mfsync += (mf[7] = mf[6]) * -1.846180e-02;
- mfsync += (mf[6] = mf[5]) * 3.511644e-02;
- mfsync += (mf[5] = mf[4]) * 5.974365e-02;
- mfsync += (mf[4] = mf[3]) * 3.511644e-02;
- mfsync += (mf[3] = mf[2]) * -1.846180e-02;
- mfsync += (mf[2] = mf[1]) * -5.681959e-02;
- mfsync += (mf[1] = mf[0]) * -4.833363e-02;
- mf[0] = syncx;
+ mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
+ TCKCYC;
} else {
- mfsync = 0;
pdelay = 0;
+ mfsync = 0;
}
/*
@@ -1276,29 +1251,27 @@ wwv_rf(
* ms for both the WWV and WWVH filters, and also for the
* propagation delay. Once each second look for second sync. If
* not in minute sync, fiddle the codec gain. Note the SNR is
- * computed from the maximum sample and the two samples 6 ms
- * before and 6 ms after it, so if we slip more than a cycle the
- * SNR should plummet.
+ * computed from the maximum sample and the envelope of the
+ * sample 6 ms before it, so if we slip more than a cycle the
+ * SNR should plummet. The signal is scaled to produce unit
+ * energy at the maximum value.
*/
dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
up->avgint);
if (dtemp > epomax) {
+ int j;
+
epomax = dtemp;
epopos = epoch;
+ j = epoch - 6 * MS;
+ if (j < 0)
+ j += SECOND;
+ nxtmax = fabs(epobuf[j]);
}
if (epoch == 0) {
- int k, j;
-
up->epomax = epomax;
- k = epopos - 6 * MS;
- if (k < 0)
- k += SECOND;
- j = epopos + 6 * MS;
- if (j >= SECOND)
- i -= SECOND;
- up->eposnr = wwv_snr(epomax, max(abs(epobuf[k]),
- abs(epobuf[j])));
- epopos -= pdelay + 5 * MS;
+ up->eposnr = wwv_snr(epomax, nxtmax);
+ epopos -= pdelay + TCKCYC * MS;
if (epopos < 0)
epopos += SECOND;
wwv_endpoc(peer, epopos);
@@ -1317,146 +1290,92 @@ wwv_rf(
* This routine implements a virtual station process used to acquire
* minute sync and to mitigate among the ten frequency and station
* combinations. During minute sync acquisition the process probes each
- * frequency in turn for the minute pulse from either station, which
- * involves searching through the entire minute of samples. After
- * finding a candidate, the process searches only the seconds before and
- * after the candidate for the signal and all other seconds for the
- * noise.
+ * frequency and station in turn for the minute pulse, which
+ * involves searching through the entire 480,000-sample minute. The
+ * process finds the maximum signal and RMS noise plus signal. Then, the
+ * actual noise is determined by subtracting the energy of the matched
+ * filter.
*
* Students of radar receiver technology will discover this algorithm
- * amounts to a range gate discriminator. The discriminator requires
- * that the peak minute pulse amplitude be at least 2000 and the SNR be
- * at least 6 dB. In addition after finding a candidate, The peak second
- * pulse amplitude must be at least 2000, the SNR at least 6 dB and the
+ * amounts to a range-gate discriminator. A valid pulse must have peak
+ * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
* difference between the current and previous epoch must be less than
- * 7.5 ms, which corresponds to a frequency error of 125 PPM.. A compare
- * counter keeps track of the number of successive intervals which
- * satisfy these criteria.
- *
- * Note that, while the minute pulse is found by by the discriminator,
- * the actual value is determined from the second epoch. The assumption
- * is that the discriminator peak occurs about 800 ms into the second,
- * so the timing is retarted to the previous second epoch.
+ * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
+ * into the second, so the timing is retarded to the previous second
+ * epoch.
*/
static void
wwv_qrz(
struct peer *peer, /* peer structure pointer */
struct sync *sp, /* sync channel structure */
- double syncx, /* bandpass filtered sync signal */
int pdelay /* propagation delay (samples) */
)
{
struct refclockproc *pp;
struct wwvunit *up;
- char tbuf[80]; /* monitor buffer */
- double snr; /* on-pulse/off-pulse ratio (dB) */
- long epoch, fpoch;
- int isgood;
+ char tbuf[80]; /* monitor buffer */
+ long epoch;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
- * Find the sample with peak energy, which defines the minute
- * epoch. If a sample has been found with good amplitude,
- * accumulate the noise squares for all except the second before
- * and after that position.
+ * Find the sample with peak amplitude, which defines the minute
+ * epoch. Accumulate all samples to determine the total noise
+ * energy.
*/
- isgood = up->epomax > STHR && up->eposnr > SSNR;
- if (isgood) {
- fpoch = up->mphase % SECOND - up->tepoch;
- if (fpoch < 0)
- fpoch += SECOND;
- } else {
- fpoch = pdelay + SYNSIZ;
- }
- epoch = up->mphase - fpoch;
+ epoch = up->mphase - pdelay - SYNSIZ;
if (epoch < 0)
epoch += MINUTE;
- if (syncx > sp->maxamp) {
- sp->maxamp = syncx;
+ if (sp->amp > sp->maxeng) {
+ sp->maxeng = sp->amp;
sp->pos = epoch;
}
- if (abs((epoch - sp->lastpos) % MINUTE) > SECOND)
- sp->noiamp += syncx;
+ sp->noieng += sp->amp;
/*
- * At the end of the minute, determine the epoch of the
- * sync pulse, as well as the SNR and difference between
- * the current and previous epoch, which represents the
- * intrinsic frequency error plus jitter.
+ * At the end of the minute, determine the epoch of the minute
+ * sync pulse, as well as the difference between the current and
+ * previous epoches due to the intrinsic frequency error plus
+ * jitter. When calculating the SNR, subtract the pulse energy
+ * from the total noise energy and then normalize.
*/
if (up->mphase == 0) {
- sp->synmax = sqrt(sp->maxamp);
- sp->synmin = sqrt(sp->noiamp / (MINUTE - 2 * SECOND));
+ sp->synmax = sp->maxeng;
+ sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
+ sp->synmax) / MINUTE);
+ if (sp->count == 0)
+ sp->lastpos = sp->pos;
epoch = (sp->pos - sp->lastpos) % MINUTE;
-
- /*
- * If not yet in minute sync, we have to do a little
- * dance to find a valid minute sync pulse, emphasis
- * valid.
- */
- snr = wwv_snr(sp->synmax, sp->synmin);
- isgood = isgood && sp->synmax > ATHR && snr > ASNR;
- switch (sp->count) {
-
- /*
- * In state 0 the station was not heard during the
- * previous probe. Look for the biggest blip greater
- * than the amplitude threshold in the minute and assume
- * that the minute sync pulse. We're fishing here, since
- * the range gate has not yet been determined. If found,
- * bump to state 1.
- */
- case 0:
- if (sp->synmax >= ATHR)
+ sp->reach <<= 1;
+ if (sp->reach & (1 << AMAX))
+ sp->count--;
+ if (sp->synmax > ATHR && sp->synsnr > ASNR) {
+ if (abs(epoch) < AWND * MS) {
+ sp->reach |= 1;
sp->count++;
- break;
-
- /*
- * In state 1 a candidate blip has been found and the
- * next minute has been searched for another blip. If
- * none are found acceptable, drop back to state 0 and
- * hunt some more. Otherwise, a legitimate minute pulse
- * may have been found, so bump to state 2.
- */
- case 1:
- if (!isgood) {
- sp->count = 0;
- break;
+ sp->mepoch = sp->lastpos = sp->pos;
+ } else if (sp->count == 1) {
+ sp->lastpos = sp->pos;
}
- sp->count++;
- break;
-
- /*
- * In states 2 and above, continue to groom samples as
- * before and drop back to state 0 if the groom fails.
- * If it succeeds, set the epoch and bump to the next
- * state until reaching the threshold, if ever.
- */
- default:
- if (!isgood || abs(epoch) > AWND * MS) {
- sp->count = 0;
- break;
- }
- sp->mepoch = sp->pos;
- sp->count++;
- break;
}
+ if (up->watch > ACQSN)
+ sp->metric = 0;
+ else
+ sp->metric = wwv_metric(sp);
if (pp->sloppyclockflag & CLK_FLAG4) {
sprintf(tbuf,
- "wwv8 %d %3d %s %d %5.0f %5.1f %5ld %5d %ld",
- up->port, up->gain, sp->refid, sp->count,
- sp->synmax, snr, sp->pos, up->tepoch,
- epoch);
+ "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %4ld %4ld",
+ up->status, up->gain, sp->refid,
+ sp->reach & 0xffff, sp->metric, sp->synmax,
+ sp->synsnr, sp->pos % SECOND, epoch);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
-#endif
+#endif /* DEBUG */
}
- sp->lastpos = sp->pos;
- sp->maxamp = sp->noiamp = 0;
+ sp->maxeng = sp->noieng = 0;
}
}
@@ -1465,19 +1384,13 @@ wwv_qrz(
* wwv_endpoc - identify and acquire second sync pulse
*
* This routine is called at the end of the second sync interval. It
- * determines the second sync epoch position within the interval and
+ * determines the second sync epoch position within the second and
* disciplines the sample clock using a frequency-lock loop (FLL).
*
* Second sync is determined in the RF input routine as the maximum
* over all 8000 samples in the second comb filter. To assure accurate
* and reliable time and frequency discipline, this routine performs a
* great deal of heavy-handed heuristic data filtering and grooming.
- *
- * Note that, since the minute sync pulse is very wide (800 ms), precise
- * minute sync epoch acquisition requires at least a rough estimate of
- * the second sync pulse (5 ms). This becomes more important in choppy
- * conditions at the lower frequencies at night, since sferics and
- * cochannel crude can badly distort the minute pulse.
*/
static void
wwv_endpoc(
@@ -1488,11 +1401,15 @@ wwv_endpoc(
struct refclockproc *pp;
struct wwvunit *up;
static int epoch_mf[3]; /* epoch median filter */
+ static int tepoch; /* current second epoch */
static int xepoch; /* last second epoch */
- static int zepoch; /* last averaging interval epoch */
+ static int zepoch; /* last run epoch */
+ static int zcount; /* last run end time */
+ static int scount; /* seconds counter */
static int syncnt; /* run length counter */
static int maxrun; /* longest run length */
- static int mepoch; /* longest run epoch */
+ static int mepoch; /* longest run end epoch */
+ static int mcount; /* longest run end time */
static int avgcnt; /* averaging interval counter */
static int avginc; /* averaging ratchet */
static int iniflg; /* initialization flag */
@@ -1508,6 +1425,21 @@ wwv_endpoc(
}
/*
+ * If the signal amplitude or SNR fall below thresholds, dim the
+ * second sync lamp and wait for hotter ions. If no stations are
+ * heard, we are either in a probe cycle or the ions are really
+ * cold.
+ */
+ scount++;
+ if (up->epomax < STHR || up->eposnr < SSNR) {
+ up->status &= ~(SSYNC | FGATE);
+ avgcnt = syncnt = maxrun = 0;
+ return;
+ }
+ if (!(up->status & (SELV | SELH)))
+ return;
+
+ /*
* A three-stage median filter is used to help denoise the
* second sync pulse. The median sample becomes the candidate
* epoch.
@@ -1517,131 +1449,118 @@ wwv_endpoc(
epoch_mf[0] = epopos;
if (epoch_mf[0] > epoch_mf[1]) {
if (epoch_mf[1] > epoch_mf[2])
- up->tepoch = epoch_mf[1]; /* 0 1 2 */
+ tepoch = epoch_mf[1]; /* 0 1 2 */
else if (epoch_mf[2] > epoch_mf[0])
- up->tepoch = epoch_mf[0]; /* 2 0 1 */
+ tepoch = epoch_mf[0]; /* 2 0 1 */
else
- up->tepoch = epoch_mf[2]; /* 0 2 1 */
+ tepoch = epoch_mf[2]; /* 0 2 1 */
} else {
if (epoch_mf[1] < epoch_mf[2])
- up->tepoch = epoch_mf[1]; /* 2 1 0 */
+ tepoch = epoch_mf[1]; /* 2 1 0 */
else if (epoch_mf[2] < epoch_mf[0])
- up->tepoch = epoch_mf[0]; /* 1 0 2 */
+ tepoch = epoch_mf[0]; /* 1 0 2 */
else
- up->tepoch = epoch_mf[2]; /* 1 2 0 */
+ tepoch = epoch_mf[2]; /* 1 2 0 */
}
- /*
- * If the signal amplitude or SNR fall below thresholds or if no
- * stations are heard, dim the second sync lamp and start over.
- */
- if (!(up->status & (SELV | SELH)) || up->epomax < STHR ||
- up->eposnr < SSNR) {
- up->status &= ~(SSYNC | FGATE);
- avgcnt = syncnt = maxrun = 0;
- return;
- }
- avgcnt++;
/*
* If the epoch candidate is the same as the last one, increment
- * the compare counter. If not, save the length and epoch of the
- * current run for use later and reset the counter.
- */
- tmp2 = (up->tepoch - xepoch) % SECOND;
+ * the run counter. If not, save the length, epoch and end
+ * time of the current run for use later and reset the counter.
+ * The epoch is considered valid if the run is at least SCMP
+ * (10) s, the minute is synchronized and the interval since the
+ * last epoch is not greater than the averaging interval. Thus,
+ * after a long absence, the program will wait a full averaging
+ * interval while the comb filter charges up and noise
+ * dissapates..
+ */
+ tmp2 = (tepoch - xepoch) % SECOND;
if (tmp2 == 0) {
syncnt++;
- } else {
- if (maxrun > 0 && mepoch == xepoch) {
- maxrun += syncnt;
- } else if (syncnt > maxrun) {
- maxrun = syncnt;
- mepoch = xepoch;
+ if (syncnt > SCMP && up->status & MSYNC && (up->status &
+ FGATE || scount - zcount <= up->avgint)) {
+ up->status |= SSYNC;
+ up->yepoch = tepoch;
}
+ } else if (syncnt >= maxrun) {
+ maxrun = syncnt;
+ mcount = scount;
+ mepoch = xepoch;
syncnt = 0;
}
- if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & (SSYNC |
- MSYNC))) {
+ if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & MSYNC))
+ {
sprintf(tbuf,
- "wwv1 %04x %5.0f %5.1f %5d %5d %4d %4d",
- up->status, up->epomax, up->eposnr, up->tepoch,
- tmp2, avgcnt, syncnt);
+ "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
+ up->status, up->gain, tepoch, up->epomax,
+ up->eposnr, tmp2, avgcnt, syncnt,
+ maxrun);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
-
- /*
- * The sample clock frequency is disciplined using a first order
- * feedback loop with time constant consistent with the Allan
- * intercept of typical computer clocks.
- *
- * The frequency update is calculated from the epoch change in
- * 125-us units divided by the averaging interval in seconds.
- * The averaging interval affects other receiver functions,
- * including the the 1000/1200-Hz comb filter and codec clock
- * loop. It also affects the 100-Hz subcarrier loop and the bit
- * and digit comparison counter thresholds.
- */
+ avgcnt++;
if (avgcnt < up->avgint) {
- xepoch = up->tepoch;
+ xepoch = tepoch;
return;
}
/*
- * During the averaging interval the longest run of identical
- * epoches is determined. If the longest run is at least 10
- * seconds, the SSYNC bit is lit and the value becomes the
- * reference epoch for the next interval. If not, the second
- * synd lamp is dark and flashers set.
- */
- if (maxrun > 0 && mepoch == xepoch) {
- maxrun += syncnt;
- } else if (syncnt > maxrun) {
+ * The sample clock frequency is disciplined using a first-order
+ * feedback loop with time constant consistent with the Allan
+ * intercept of typical computer clocks. During each averaging
+ * interval the candidate epoch at the end of the longest run is
+ * determined. If the longest run is zero, all epoches in the
+ * interval are different, so the candidate epoch is the current
+ * epoch. The frequency update is computed from the candidate
+ * epoch difference (125-us units) and time difference (seconds)
+ * between updates.
+ */
+ if (syncnt >= maxrun) {
maxrun = syncnt;
+ mcount = scount;
mepoch = xepoch;
}
- xepoch = up->tepoch;
- if (maxrun > SCMP) {
- up->status |= SSYNC;
- up->yepoch = mepoch;
- } else {
- up->status &= ~SSYNC;
+ xepoch = tepoch;
+ if (maxrun == 0) {
+ mepoch = tepoch;
+ mcount = scount;
}
/*
- * If the epoch change over the averaging interval is less than
- * 1 ms, the frequency is adjusted, but clamped at +-125 PPM. If
- * greater than 1 ms, the counter is decremented. If the epoch
- * change is less than 0.5 ms, the counter is incremented. If
- * the counter increments to +3, the averaging interval is
- * doubled and the counter set to zero; if it increments to -3,
- * the interval is halved and the counter set to zero.
+ * The master clock runs at the codec sample frequency of 8000
+ * Hz, so the intrinsic time resolution is 125 us. The frequency
+ * resolution ranges from 18 PPM at the minimum averaging
+ * interval of 8 s to 0.12 PPM at the maximum interval of 1024
+ * s. An offset update is determined at the end of the longest
+ * run in each averaging interval. The frequency adjustment is
+ * computed from the difference between offset updates and the
+ * interval between them.
*
- * Here be spooks. From careful observations, the epoch
- * sometimes makes a long run of identical samples, then takes a
- * lurch due apparently to lost interrupts or spooks. If this
- * happens, the epoch change times the maximum run length will
- * be greater than the averaging interval, so the lurch should
- * be believed but the frequency left alone. Really intricate
- * here.
- */
- if (maxrun == 0)
- mepoch = up->tepoch;
+ * The maximum frequency adjustment ranges from 187 PPM at the
+ * minimum interval to 1.5 PPM at the maximum. If the adjustment
+ * exceeds the maximum, the update is discarded and the
+ * hysteresis counter is decremented. Otherwise, the frequency
+ * is incremented by the adjustment, but clamped to the maximum
+ * 187.5 PPM. If the update is less than half the maximum, the
+ * hysteresis counter is incremented. If the counter increments
+ * to +3, the averaging interval is doubled and the counter set
+ * to zero; if it decrements to -3, the interval is halved and
+ * the counter set to zero.
+ */
dtemp = (mepoch - zepoch) % SECOND;
if (up->status & FGATE) {
if (abs(dtemp) < MAXFREQ * MINAVG) {
- if (maxrun * abs(mepoch - zepoch) <
- avgcnt) {
- up->freq += dtemp / avgcnt;
- if (up->freq > MAXFREQ)
- up->freq = MAXFREQ;
- else if (up->freq < -MAXFREQ)
- up->freq = -MAXFREQ;
- }
- if (abs(dtemp) < MAXFREQ * MINAVG / 2) {
+ up->freq += (dtemp / 2.) / ((mcount - zcount) *
+ FCONST);
+ if (up->freq > MAXFREQ)
+ up->freq = MAXFREQ;
+ else if (up->freq < -MAXFREQ)
+ up->freq = -MAXFREQ;
+ if (abs(dtemp) < MAXFREQ * MINAVG / 2.) {
if (avginc < 3) {
avginc++;
} else {
@@ -1664,17 +1583,23 @@ wwv_endpoc(
}
if (pp->sloppyclockflag & CLK_FLAG4) {
sprintf(tbuf,
- "wwv2 %04x %4.0f %4d %4d %2d %4d %4.0f %6.1f",
- up->status, up->epomax, mepoch, maxrun, avginc,
- avgcnt, dtemp, up->freq * 1e6 / SECOND);
+ "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
+ up->status, up->epomax, up->eposnr, mepoch,
+ up->avgint, maxrun, mcount - zcount, dtemp,
+ up->freq * 1e6 / SECOND);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
+
+ /*
+ * This is a valid update; set up for the next interval.
+ */
up->status |= FGATE;
zepoch = mepoch;
+ zcount = mcount;
avgcnt = syncnt = maxrun = 0;
}
@@ -1682,21 +1607,21 @@ wwv_endpoc(
/*
* wwv_epoch - epoch scanner
*
- * This routine scans the receiver second epoch to determine the signal
- * amplitudes and pulse timings. Receiver synchronization is determined
- * by the minute sync pulse detected in the wwv_rf() routine and the
- * second sync pulse detected in the wwv_epoch() routine. A pulse width
- * discriminator extracts data signals from the 100-Hz subcarrier. The
- * transmitted signals are delayed by the propagation delay, receiver
- * delay and filter delay of this program. Delay corrections are
- * introduced separately for WWV and WWVH.
+ * This routine extracts data signals from the 100-Hz subcarrier. It
+ * scans the receiver second epoch to determine the signal amplitudes
+ * and pulse timings. Receiver synchronization is determined by the
+ * minute sync pulse detected in the wwv_rf() routine and the second
+ * sync pulse detected in the wwv_epoch() routine. The transmitted
+ * signals are delayed by the propagation delay, receiver delay and
+ * filter delay of this program. Delay corrections are introduced
+ * separately for WWV and WWVH.
*
* Most communications radios use a highpass filter in the audio stages,
* which can do nasty things to the subcarrier phase relative to the
* sync pulses. Therefore, the data subcarrier reference phase is
* disciplined using the hardlimited quadrature-phase signal sampled at
* the same time as the in-phase signal. The phase tracking loop uses
- * phase adjustments of plus-minus one sample (125 us).
+ * phase adjustments of plus-minus one sample (125 us).
*/
static void
wwv_epoch(
@@ -1706,53 +1631,48 @@ wwv_epoch(
struct refclockproc *pp;
struct wwvunit *up;
struct chan *cp;
- static double dpulse; /* data pulse length */
- double dtemp;
+ static double sigmin, sigzer, sigone, engmax, engmin;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
- * Sample the minute sync pulse envelopes at epoch 800 for both
- * the WWV and WWVH stations. This will be used later for
- * channel and station mitigation. Note that the seconds epoch
- * is set here well before the end of the second to make sure we
- * never seet the epoch backwards.
+ * Find the maximum minute sync pulse energy for both the
+ * WWV and WWVH stations. This will be used later for channel
+ * and station mitigation. Also set the seconds epoch at 800 ms
+ * well before the end of the second to make sure we never set
+ * the epoch backwards.
*/
- if (up->rphase == 800 * MS) {
+ cp = &up->mitig[up->achan];
+ if (cp->wwv.amp > cp->wwv.syneng)
+ cp->wwv.syneng = cp->wwv.amp;
+ if (cp->wwvh.amp > cp->wwvh.syneng)
+ cp->wwvh.syneng = cp->wwvh.amp;
+ if (up->rphase == 800 * MS)
up->repoch = up->yepoch;
- cp = &up->mitig[up->achan];
- cp->wwv.synamp = cp->wwv.amp;
- cp->wwvh.synamp = cp->wwvh.amp;
- }
/*
- * Sample the data subcarrier at epoch 15 ms, giving a guard
- * time of +-15 ms from the beginning of the second until the
- * pulse rises at 30 ms. The I-channel amplitude is used to
- * calculate the slice level. The envelope amplitude is used
- * during the probe seconds to determine the SNR. There is a
+ * Use the signal amplitude at epoch 15 ms as the noise floor.
+ * This gives a guard time of +-15 ms from the beginning of the
+ * second until the second pulse rises at 30 ms. There is a
* compromise here; we want to delay the sample as long as
* possible to give the radio time to change frequency and the
* AGC to stabilize, but as early as possible if the second
* epoch is not exact.
*/
- if (up->rphase == 15 * MS) {
- up->noiamp = up->irig * up->irig + up->qrig * up->qrig;
+ if (up->rphase == 15 * MS)
+ sigmin = sigzer = sigone = up->irig;
/*
- * Sample the data subcarrier at epoch 215 ms, giving a guard
- * time of +-15 ms from the earliest the pulse peak can be
- * reached to the earliest it can begin to fall. For the data
- * channel latch the I-channel amplitude for all except the
- * probe seconds and adjust the 100-Hz reference oscillator
- * phase using the Q-channel amplitude at this epoch. For the
- * probe channel latch the envelope amplitude.
+ * Latch the data signal at 200 ms. Keep this around until the
+ * end of the second. Use the signal energy as the peak to
+ * compute the SNR. Use the Q sample to adjust the 100-Hz
+ * reference oscillator phase.
*/
- } else if (up->rphase == 215 * MS) {
- up->sigsig = up->irig;
- if (up->sigsig < 0)
- up->sigsig = 0;
+ if (up->rphase == 200 * MS) {
+ sigzer = up->irig;
+ engmax = sqrt(up->irig * up->irig + up->qrig *
+ up->qrig);
up->datpha = up->qrig / up->avgint;
if (up->datpha >= 0) {
up->datapt++;
@@ -1763,20 +1683,15 @@ wwv_epoch(
if (up->datapt < 0)
up->datapt += 80;
}
- up->sigamp = up->irig * up->irig + up->qrig * up->qrig;
+ }
+
/*
- * The slice level is set half way between the peak signal and
- * noise levels. Sample the negative zero crossing after epoch
- * 200 ms and record the epoch at that time. This defines the
- * length of the data pulse, which will later be converted into
- * scaled bit probabilities.
+ * Latch the data signal at 500 ms. Keep this around until the
+ * end of the second.
*/
- } else if (up->rphase > 200 * MS) {
- dtemp = (up->sigsig + sqrt(up->noiamp)) / 2;
- if (up->irig < dtemp && dpulse == 0)
- dpulse = up->rphase;
- }
+ else if (up->rphase == 500 * MS)
+ sigone = up->irig;
/*
* At the end of the second crank the clock state machine and
@@ -1785,17 +1700,43 @@ wwv_epoch(
* seconds synch is diddling the epoch. Then, determine the true
* offset and update the median filter in the driver interface.
*
- * Sample the data subcarrier envelope at the end of the second
- * to determine the SNR for the pulse. This gives a guard time
- * of +-30 ms from the decay of the longest pulse to the rise of
- * the next pulse.
+ * Use the energy at the end of the second as the noise to
+ * compute the SNR for the data pulse. This gives a better
+ * measurement than the beginning of the second, especially when
+ * returning from the probe channel. This gives a guard time of
+ * 30 ms from the decay of the longest pulse to the rise of the
+ * next pulse.
*/
up->rphase++;
if (up->mphase % SECOND == up->repoch) {
- up->datsnr = wwv_snr(up->sigsig, sqrt(up->noiamp));
- wwv_rsec(peer, dpulse);
+ up->status &= ~(DGATE | BGATE);
+ engmin = sqrt(up->irig * up->irig + up->qrig *
+ up->qrig);
+ up->datsig = engmax;
+ up->datsnr = wwv_snr(engmax, engmin);
+
+ /*
+ * If the amplitude or SNR is below threshold, average a
+ * 0 in the the integrators; otherwise, average the
+ * bipolar signal. This is done to avoid noise polution.
+ */
+ if (engmax < DTHR || up->datsnr < DSNR) {
+ up->status |= DGATE;
+ wwv_rsec(peer, 0);
+ } else {
+ sigzer -= sigone;
+ sigone -= sigmin;
+ wwv_rsec(peer, sigone - sigzer);
+ }
+ if (up->status & (DGATE | BGATE))
+ up->errcnt++;
+ if (up->errcnt > MAXERR)
+ up->alarm |= LOWERR;
wwv_gain(peer);
- up->rphase = dpulse = 0;
+ cp = &up->mitig[up->achan];
+ cp->wwv.syneng = 0;
+ cp->wwvh.syneng = 0;
+ up->rphase = 0;
}
}
@@ -1817,7 +1758,7 @@ wwv_epoch(
static void
wwv_rsec(
struct peer *peer, /* peer structure pointer */
- double dpulse
+ double bit
)
{
static int iniflg; /* initialization flag */
@@ -1827,14 +1768,8 @@ wwv_rsec(
struct wwvunit *up;
struct chan *cp;
struct sync *sp, *rp;
- l_fp offset; /* offset in NTP seconds */
- double bit; /* bit likelihood */
- char tbuf[80]; /* monitor buffer */
- int sw, arg, nsec;
-#ifdef IRIG_SUCKS
- int i;
- l_fp ltemp;
-#endif /* IRIG_SUCKS */
+ char tbuf[80]; /* monitor buffer */
+ int sw, arg, nsec;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
@@ -1852,11 +1787,16 @@ wwv_rsec(
* used, but it's easier to do them all. After that, crank the
* seconds state machine.
*/
- nsec = up->rsec + 1;
- bit = wwv_data(up, dpulse);
- bitvec[up->rsec] += (bit - bitvec[up->rsec]) / TCONST;
- sw = progx[up->rsec].sw;
- arg = progx[up->rsec].arg;
+ nsec = up->rsec;
+ up->rsec++;
+ bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
+ sw = progx[nsec].sw;
+ arg = progx[nsec].arg;
+
+ /*
+ * The minute state machine. Fly off to a particular section as
+ * directed by the transition matrix and second number.
+ */
switch (sw) {
/*
@@ -1869,123 +1809,132 @@ wwv_rsec(
* Probe channel stuff
*
* The WWV/H format contains data pulses in second 59 (position
- * identifier), second 1 (not used) and the minute sync pulse in
- * second 0. At the end of second 58, QSY to the probe channel,
- * which rotates over all WWV/H frequencies. At the end of
- * second 1 QSY back to the data channel.
+ * identifier) and second 1, but not in second 0. The minute
+ * sync pulse is contained in second 0. At the end of second 58
+ * QSY to the probe channel, which rotates in turn over all
+ * WWV/H frequencies. At the end of second 0 measure the minute
+ * sync pulse. At the end of second 1 measure the data pulse and
+ * QSY back to the data channel. Note that the actions commented
+ * here happen at the end of the second numbered as shown.
*
- * At the end of second 0 save the minute sync pulse peak value
- * previously latched at 800 ms.
+ * At the end of second 0 save the minute sync amplitude latched
+ * at 800 ms as the signal later used to calculate the SNR.
*/
case SYNC2: /* 0 */
cp = &up->mitig[up->achan];
- cp->wwv.synmax = sqrt(cp->wwv.synamp);
- cp->wwvh.synmax = sqrt(cp->wwvh.synamp);
+ cp->wwv.synmax = cp->wwv.syneng;
+ cp->wwvh.synmax = cp->wwvh.syneng;
break;
/*
- * At the end of second 1 determine the minute sync pulse
- * amplitude and SNR and set SYNCNG if these values are below
- * thresholds. Determine the data pulse amplitude and SNR and
- * set DATANG if these values are below thresholds. Set ERRRNG
- * if data pulses in second 59 and second 1 are decoded in
- * error. Shift a 1 into the reachability register if SYNCNG and
- * DATANG are both lit; otherwise shift a 0. Ignore ERRRNG for
- * the present. The number of 1 bits in the last six intervals
- * represents the channel metric used by the mitigation routine.
+ * At the end of second 1 use the minute sync amplitude latched
+ * at 800 ms as the noise to calculate the SNR. If the minute
+ * sync pulse and SNR are above thresholds and the data pulse
+ * amplitude and SNR are above thresolds, shift a 1 into the
+ * station reachability register; otherwise, shift a 0. The
+ * number of 1 bits in the last six intervals is a component of
+ * the channel metric computed by the wwv_metric() routine.
* Finally, QSY back to the data channel.
*/
case SYNC3: /* 1 */
cp = &up->mitig[up->achan];
- cp->sigamp = sqrt(up->sigamp);
- cp->noiamp = sqrt(up->noiamp);
- cp->datsnr = wwv_snr(cp->sigamp, cp->noiamp);
/*
* WWV station
*/
sp = &cp->wwv;
- sp->synmin = sqrt((sp->synmin + sp->synamp) / 2.);
- sp->synsnr = wwv_snr(sp->synmax, sp->synmin);
- sp->select &= ~(SYNCNG | DATANG | ERRRNG);
- if (sp->synmax < QTHR || sp->synsnr < QSNR)
- sp->select |= SYNCNG;
- if (cp->sigamp < XTHR || cp->datsnr < XSNR)
- sp->select |= DATANG;
- if (up->errcnt > 2)
- sp->select |= ERRRNG;
+ sp->synsnr = wwv_snr(sp->synmax, sp->amp);
sp->reach <<= 1;
if (sp->reach & (1 << AMAX))
sp->count--;
- if (!(sp->select & (SYNCNG | DATANG))) {
+ if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
+ !(up->status & (DGATE | BGATE))) {
sp->reach |= 1;
sp->count++;
}
+ sp->metric = wwv_metric(sp);
/*
* WWVH station
*/
rp = &cp->wwvh;
- rp->synmin = sqrt((rp->synmin + rp->synamp) / 2.);
- rp->synsnr = wwv_snr(rp->synmax, rp->synmin);
- rp->select &= ~(SYNCNG | DATANG | ERRRNG);
- if (rp->synmax < QTHR || rp->synsnr < QSNR)
- rp->select |= SYNCNG;
- if (cp->sigamp < XTHR || cp->datsnr < XSNR)
- rp->select |= DATANG;
- if (up->errcnt > 2)
- rp->select |= ERRRNG;
+ rp->synsnr = wwv_snr(rp->synmax, rp->amp);
rp->reach <<= 1;
if (rp->reach & (1 << AMAX))
rp->count--;
- if (!(rp->select & (SYNCNG | DATANG | ERRRNG))) {
+ if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
+ !(up->status & (DGATE | BGATE))) {
rp->reach |= 1;
rp->count++;
}
-
- /*
- * Set up for next minute.
- */
+ rp->metric = wwv_metric(rp);
if (pp->sloppyclockflag & CLK_FLAG4) {
sprintf(tbuf,
- "wwv5 %2d %04x %3d %4d %d %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
- up->port, up->status, up->gain, up->yepoch,
- up->errcnt, cp->sigamp, cp->datsnr,
+ "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
+ up->status, up->gain, up->yepoch,
+ up->epomax, up->eposnr, up->datsig,
+ up->datsnr,
sp->refid, sp->reach & 0xffff,
- wwv_metric(sp), sp->synmax, sp->synsnr,
+ sp->metric, sp->synmax, sp->synsnr,
rp->refid, rp->reach & 0xffff,
- wwv_metric(rp), rp->synmax, rp->synsnr);
+ rp->metric, rp->synmax, rp->synsnr);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
+ up->errcnt = up->digcnt = up->alarm = 0;
+
+ /*
+ * We now begin the minute scan. If not yet synchronized
+ * to a station, restart if the units digit has not been
+ * found within the DATA timeout (15 m) or if not
+ * synchronized within the SYNCH timeout (40 m). After
+ * synchronizing to a station, restart if no stations
+ * are found within the PANIC timeout (2 days).
+ */
+ if (up->status & INSYNC) {
+ if (up->watch > PANIC) {
+ wwv_newgame(peer);
+ return;
+ }
+ } else {
+ if (!(up->status & DSYNC)) {
+ if (up->watch > DATA) {
+ wwv_newgame(peer);
+ return;
+ }
+ }
+ if (up->watch > SYNCH) {
+ wwv_newgame(peer);
+ return;
+ }
+ }
+ wwv_newchan(peer);
#ifdef ICOM
if (up->fd_icom > 0)
wwv_qsy(peer, up->dchan);
#endif /* ICOM */
- up->status &= ~SFLAG;
- up->errcnt = 0;
- up->alarm = 0;
- wwv_newchan(peer);
break;
/*
* Save the bit probability in the BCD data vector at the index
- * given by the argument. Note that all bits of the vector have
- * to be above the data gate threshold for the digit to be
- * considered valid. Bits not used in the digit are forced to
- * zero and not checked for errors.
- */
- case COEF: /* 4-7, 10-13, 15-17, 20-23,
- 25-26, 30-33, 35-38, 40-41,
- 51-54 */
- if (up->status & DGATE)
- up->status |= BGATE;
+ * given by the argument. Bits not used in the digit are forced
+ * to zero.
+ */
+ case COEF1: /* 4-7 */
bcddld[arg] = bit;
break;
+ case COEF: /* 10-13, 15-17, 20-23, 25-26,
+ 30-33, 35-38, 40-41, 51-54 */
+ if (up->status & DSYNC)
+ bcddld[arg] = bit;
+ else
+ bcddld[arg] = 0;
+ break;
+
case COEF2: /* 18, 27-28, 42-43 */
bcddld[arg] = 0;
break;
@@ -2015,174 +1964,129 @@ wwv_rsec(
/*
* Miscellaneous bits. If above the positive threshold, declare
* 1; if below the negative threshold, declare 0; otherwise
- * raise the SYMERR alarm. At the end of second 58, QSY to the
- * probe channel. The design is intended to preserve the bits
- * over periods of signal loss.
+ * raise the BGATE bit. The design is intended to avoid
+ * integrating noise under low SNR conditions.
*/
case MSC20: /* 55 */
wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
/* fall through */
case MSCBIT: /* 2-3, 50, 56-57 */
- if (bitvec[up->rsec] > BTHR)
+ if (bitvec[nsec] > BTHR) {
+ if (!(up->misc & arg))
+ up->alarm |= CMPERR;
up->misc |= arg;
- else if (bitvec[up->rsec] < -BTHR)
+ } else if (bitvec[nsec] < -BTHR) {
+ if (up->misc & arg)
+ up->alarm |= CMPERR;
up->misc &= ~arg;
- else
- up->alarm |= SYMERR;
+ } else {
+ up->status |= BGATE;
+ }
break;
/*
- * Save the data channel gain, then QSY to the probe channel.
+ * Save the data channel gain, then QSY to the probe channel and
+ * dim the seconds comb filters. The newchan() routine will
+ * light them back up.
*/
case MSC21: /* 58 */
- if (bitvec[up->rsec] > BTHR)
+ if (bitvec[nsec] > BTHR) {
+ if (!(up->misc & arg))
+ up->alarm |= CMPERR;
up->misc |= arg;
- else if (bitvec[up->rsec] < -BTHR)
+ } else if (bitvec[nsec] < -BTHR) {
+ if (up->misc & arg)
+ up->alarm |= CMPERR;
up->misc &= ~arg;
- else
- up->alarm |= SYMERR;
- up->mitig[up->dchan].gain = up->gain;
+ } else {
+ up->status |= BGATE;
+ }
+ up->status &= ~(SELV | SELH);
#ifdef ICOM
if (up->fd_icom > 0) {
up->schan = (up->schan + 1) % NCHAN;
wwv_qsy(peer, up->schan);
+ } else {
+ up->mitig[up->achan].gain = up->gain;
}
+#else
+ up->mitig[up->achan].gain = up->gain;
#endif /* ICOM */
- up->status |= SFLAG | SELV | SELH;
- up->errbit = up->errcnt;
- up->errcnt = 0;
break;
/*
* The endgames
*
* During second 59 the receiver and codec AGC are settling
- * down, so the data pulse is unusable. At the end of this
- * second, latch the minute sync pulse noise floor. Then do the
- * minute processing and update the system clock. If a leap
- * second sail on to the next second (60); otherwise, set up for
- * the next minute.
+ * down, so the data pulse is unusable as quality metric. If
+ * LEPSEC is set on the last minute of 30 June or 31 December,
+ * the transmitter and receiver insert an extra second (60) in
+ * the timescale and the minute sync repeats the second. Once
+ * leaps occurred at intervals of about 18 months, but the last
+ * leap before the most recent leap in 1995 was in 1998.
*/
case MIN1: /* 59 */
- cp = &up->mitig[up->achan];
- cp->wwv.synmin = cp->wwv.synamp;
- cp->wwvh.synmin = cp->wwvh.synamp;
+ if (up->status & LEPSEC)
+ break;
- /*
- * Dance the leap if necessary and the kernel has the
- * right stuff. Then, wind up the clock and initialize
- * for the following minute. If the leap dance, note the
- * kernel is armed one second before the actual leap is
- * scheduled.
- */
- if (up->status & SSYNC && up->digcnt >= 9)
- up->status |= INSYNC;
- if (up->status & LEPDAY) {
- pp->leap = LEAP_ADDSECOND;
- } else {
- pp->leap = LEAP_NOWARNING;
- wwv_tsec(up);
- nsec = up->digcnt = 0;
- }
- pp->lencode = timecode(up, pp->a_lastcode);
- record_clock_stats(&peer->srcadr, pp->a_lastcode);
-#ifdef DEBUG
- if (debug)
- printf("wwv: timecode %d %s\n", pp->lencode,
- pp->a_lastcode);
-#endif /* DEBUG */
- if (up->status & INSYNC && up->watch < HOLD)
- refclock_receive(peer);
- break;
+ /* fall through */
- /*
- * If LEPDAY is set on the last minute of 30 June or 31
- * December, the LEPSEC bit is set. At the end of the minute in
- * which LEPSEC is set the transmitter and receiver insert an
- * extra second (60) in the timescale and the minute sync skips
- * a second. We only get to test this wrinkle at intervals of
- * about 18 months; the actual mileage may vary.
- */
case MIN2: /* 60 */
- wwv_tsec(up);
- nsec = up->digcnt = 0;
+ up->status &= ~LEPSEC;
+ wwv_tsec(peer);
+ up->rsec = 0;
+ wwv_clock(peer);
break;
}
-
- /*
- * If digit sync has not been acquired before timeout or if no
- * station has been heard, game over and restart from scratch.
- */
- if (!(up->status & DSYNC) && (!(up->status & (SELV | SELH)) ||
- up->watch > DIGIT)) {
- wwv_newgame(peer);
- return;
- }
-
- /*
- * If no timestamps have been struck before timeout, game over
- * and restart from scratch.
- */
- if (up->watch > PANIC) {
- wwv_newgame(peer);
- return;
+ if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
+ DSYNC)) {
+ sprintf(tbuf,
+ "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
+ nsec, up->status, up->gain, up->yepoch, up->epomax,
+ up->eposnr, up->datsig, up->datsnr, bit);
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
}
pp->disp += AUDIO_PHI;
- up->rsec = nsec;
+}
-#ifdef IRIG_SUCKS
- /*
- * You really don't wanna know what comes down here. Leave it to
- * say Solaris 2.8 broke the nice clean audio stream, apparently
- * affected by a 5-ms sawtooth jitter. Sundown on Solaris. This
- * leaves a little twilight.
- *
- * The scheme involves differentiation, forward learning and
- * integration. The sawtooth has a period of 11 seconds. The
- * timestamp differences are integrated and subtracted from the
- * signal.
- */
- ltemp = pp->lastrec;
- L_SUB(&ltemp, &pp->lastref);
- if (ltemp.l_f < 0)
- ltemp.l_i = -1;
- else
- ltemp.l_i = 0;
- pp->lastref = pp->lastrec;
- if (!L_ISNEG(&ltemp))
- L_CLR(&up->wigwag);
- else
- L_ADD(&up->wigwag, &ltemp);
- L_SUB(&pp->lastrec, &up->wigwag);
- up->wiggle[up->wp] = ltemp;
-
- /*
- * Bottom fisher. To understand this, you have to know about
- * velocity microphones and AM transmitters. No further
- * explanation is offered, as this is truly a black art.
- */
- up->wigbot[up->wp] = pp->lastrec;
- for (i = 0; i < WIGGLE; i++) {
- if (i != up->wp)
- up->wigbot[i].l_ui++;
- L_SUB(&pp->lastrec, &up->wigbot[i]);
- if (L_ISNEG(&pp->lastrec))
- L_ADD(&pp->lastrec, &up->wigbot[i]);
- else
- pp->lastrec = up->wigbot[i];
- }
- up->wp++;
- up->wp %= WIGGLE;
-#endif /* IRIG_SUCKS */
+/*
+ * The radio clock is set if the alarm bits are all zero. After that,
+ * the time is considered valid if the second sync bit is lit. It should
+ * not be a surprise, especially if the radio is not tunable, that
+ * sometimes no stations are above the noise and the integrators
+ * discharge below the thresholds. We assume that, after a day of signal
+ * loss, the minute sync epoch will be in the same second. This requires
+ * the codec frequency be accurate within 6 PPM. Practical experience
+ * shows the frequency typically within 0.1 PPM, so after a day of
+ * signal loss, the time should be within 8.6 ms..
+ */
+static void
+wwv_clock(
+ struct peer *peer /* peer unit pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ l_fp offset; /* offset in NTP seconds */
- /*
- * If victory has been declared and seconds sync is lit, strike
- * a timestamp. It should not be a surprise, especially if the
- * radio is not tunable, that sometimes no stations are above
- * the noise and the reference ID set to NONE.
- */
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+ if (!(up->status & SSYNC))
+ up->alarm |= SYNERR;
+ if (up->digcnt < 9)
+ up->alarm |= NINERR;
+ if (!(up->alarm))
+ up->status |= INSYNC;
if (up->status & INSYNC && up->status & SSYNC) {
+ if (up->misc & SECWAR)
+ pp->leap = LEAP_ADDSECOND;
+ else
+ pp->leap = LEAP_NOWARNING;
pp->second = up->rsec;
pp->minute = up->decvec[MN].digit + up->decvec[MN +
1].digit * 10;
@@ -2201,95 +2105,19 @@ wwv_rsec(
} else {
up->watch = 0;
pp->disp = 0;
+ pp->lastref = up->timestamp;
refclock_process_offset(pp, offset,
up->timestamp, PDELAY);
+ refclock_receive(peer);
}
}
- if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
- DSYNC)) {
- sprintf(tbuf,
- "wwv3 %2d %04x %5.0f %5.1f %5.0f %5.1f %5.0f",
- up->rsec, up->status, up->epomax, up->eposnr,
- up->sigsig, up->datsnr, bit);
- record_clock_stats(&peer->srcadr, tbuf);
+ pp->lencode = timecode(up, pp->a_lastcode);
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
#ifdef DEBUG
- if (debug)
- printf("%s\n", tbuf);
+ if (debug)
+ printf("wwv: timecode %d %s\n", pp->lencode,
+ pp->a_lastcode);
#endif /* DEBUG */
- }
-}
-
-
-/*
- * wwv_data - calculate bit probability
- *
- * This routine is called at the end of the receiver second to calculate
- * the probabilities that the previous second contained a zero (P0), one
- * (P1) or position indicator (P2) pulse. If not in sync or if the data
- * bit is bad, a bit error is declared and the probabilities are forced
- * to zero. Otherwise, the data gate is enabled and the probabilities
- * are calculated. Note that the data matched filter contributes half
- * the pulse width, or 85 ms.
- *
- * It's important to observe that there are three conditions to
- * determine: average to +1 (hit), average to -1 (miss) or average to
- * zero (erasure). The erasure condition results from insufficient
- * signal (noise) and has no bias toward either a hit or miss.
- */
-static double
-wwv_data(
- struct wwvunit *up, /* driver unit pointer */
- double pulse /* pulse length (sample units) */
- )
-{
- double p0, p1, p2; /* probabilities */
- double dpulse; /* pulse length in ms */
-
- p0 = p1 = p2 = 0;
- dpulse = pulse - DATSIZ / 2;
-
- /*
- * If no station is being tracked, if either the data amplitude
- * or SNR are below threshold or if the pulse length is less
- * than 170 ms, declare an erasure.
- */
- if (!(up->status & (SELV | SELH)) || up->sigsig < DTHR ||
- up->datsnr < DSNR || dpulse < DATSIZ) {
- up->status |= DGATE;
- up->errcnt++;
- if (up->errcnt > MAXERR)
- up->alarm |= MODERR;
- return (0);
- }
-
- /*
- * The probability of P0 is one below 200 ms falling to zero at
- * 500 ms. The probability of P1 is zero below 200 ms rising to
- * one at 500 ms and falling to zero at 800 ms. The probability
- * of P2 is zero below 500 ms, rising to one above 800 ms.
- */
- up->status &= ~DGATE;
- if (dpulse < (200 * MS)) {
- p0 = 1;
- } else if (dpulse < 500 * MS) {
- dpulse -= 200 * MS;
- p1 = dpulse / (300 * MS);
- p0 = 1 - p1;
- } else if (dpulse < 800 * MS) {
- dpulse -= 500 * MS;
- p2 = dpulse / (300 * MS);
- p1 = 1 - p2;
- } else {
- p2 = 1;
- }
-
- /*
- * The ouput is a metric that ranges from -1 (P0), to +1 (P1)
- * scaled for convenience. An output of zero represents an
- * erasure, either because of a data error or pulse length
- * greater than 500 ms. At the moment, we don't use P2.
- */
- return ((p1 - p0) * MAXSIG);
}
@@ -2307,35 +2135,34 @@ static void
wwv_corr4(
struct peer *peer, /* peer unit pointer */
struct decvec *vp, /* decoding table pointer */
- double data[], /* received data vector */
- double tab[][4] /* correlation vector array */
+ double data[], /* received data vector */
+ double tab[][4] /* correlation vector array */
)
{
struct refclockproc *pp;
struct wwvunit *up;
-
- double topmax, nxtmax; /* metrics */
- double acc; /* accumulator */
- char tbuf[80]; /* monitor buffer */
- int mldigit; /* max likelihood digit */
- int diff; /* decoding difference */
- int i, j;
+ double topmax, nxtmax; /* metrics */
+ double acc; /* accumulator */
+ char tbuf[80]; /* monitor buffer */
+ int mldigit; /* max likelihood digit */
+ int i, j;
pp = peer->procptr;
up = (struct wwvunit *)pp->unitptr;
/*
* Correlate digit vector with each BCD coefficient vector. If
- * any BCD digit bit is bad, consider all bits a miss.
- */
+ * any BCD digit bit is bad, consider all bits a miss. Until the
+ * minute units digit has been resolved, don't to anything else.
+ * Note the SNR is calculated as the ratio of the largest
+ * likelihood value to the next largest likelihood value.
+ */
mldigit = 0;
- topmax = nxtmax = -MAXSIG;
+ topmax = nxtmax = -MAXAMP;
for (i = 0; tab[i][0] != 0; i++) {
acc = 0;
- for (j = 0; j < 4; j++) {
- if (!(up->status & BGATE))
- acc += data[j] * tab[i][j];
- }
+ for (j = 0; j < 4; j++)
+ acc += data[j] * tab[i][j];
acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
if (acc > topmax) {
nxtmax = topmax;
@@ -2345,69 +2172,57 @@ wwv_corr4(
nxtmax = acc;
}
}
- vp->mldigit = mldigit;
vp->digprb = topmax;
vp->digsnr = wwv_snr(topmax, nxtmax);
/*
- * The maximum likelihood digit is compared with the current
- * clock digit. The difference represents the decoding phase
- * error. If the clock is not yet synchronized, the phase error
- * is corrected even of the digit probability and likelihood are
- * below thresholds. This avoids lengthy averaging times should
- * a carry mistake occur. However, the digit is not declared
- * synchronized until these values are above thresholds and the
- * last five decoded values are identical. If the clock is
- * synchronized, the phase error is not corrected unless the
- * last five digits are all above thresholds and identical. This
- * avoids mistakes when the signal is coming out of the noise
- * and the SNR is very marginal.
- */
- diff = mldigit - vp->digit;
- if (diff < 0)
- diff += vp->radix;
- if (diff != vp->phase) {
- vp->count = 0;
- vp->phase = diff;
- }
- if (vp->digsnr < BSNR) {
- vp->count = 0;
- up->alarm |= SYMERR;
- } else if (vp->digprb < BTHR) {
+ * The current maximum likelihood digit is compared to the last
+ * maximum likelihood digit. If different, the compare counter
+ * and maximum likelihood digit are reset. When the compare
+ * counter reaches the BCMP threshold (3), the digit is assumed
+ * correct. When the compare counter of all nine digits have
+ * reached threshold, the clock is assumed correct.
+ *
+ * Note that the clock display digit is set before the compare
+ * counter has reached threshold; however, the clock display is
+ * not considered correct until all nine clock digits have
+ * reached threshold. This is intended as eye candy, but avoids
+ * mistakes when the signal is low and the SNR is very marginal.
+ * once correctly set, the maximum likelihood digit is ignored
+ * on the assumption the clock will always be correct unless for
+ * some reason it drifts to a different second.
+ */
+ vp->mldigit = mldigit;
+ if (vp->digprb < BTHR || vp->digsnr < BSNR) {
vp->count = 0;
- up->alarm |= SYMERR;
- if (!(up->status & INSYNC)) {
- vp->phase = 0;
- vp->digit = mldigit;
- }
- } else if (vp->count < BCMP) {
- vp->count++;
+ up->status |= BGATE;
+ } else {
up->status |= DSYNC;
- if (!(up->status & INSYNC)) {
- vp->phase = 0;
- vp->digit = mldigit;
+ if (vp->digit != mldigit) {
+ vp->count = 0;
+ up->alarm |= CMPERR;
+ if (!(up->status & INSYNC))
+ vp->digit = mldigit;
+ } else {
+ if (vp->count < BCMP)
+ vp->count++;
+ else
+ up->digcnt++;
}
- } else {
- vp->phase = 0;
- vp->digit = mldigit;
- up->digcnt++;
}
- if (vp->digit != mldigit)
- up->alarm |= DECERR;
if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
INSYNC)) {
sprintf(tbuf,
- "wwv4 %2d %04x %5.0f %2d %d %d %d %d %5.0f %5.1f",
- up->rsec, up->status, up->epomax, vp->radix,
- vp->digit, vp->mldigit, vp->phase, vp->count,
- vp->digprb, vp->digsnr);
+ "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
+ up->rsec - 1, up->status, up->gain, up->yepoch,
+ up->epomax, vp->radix, vp->digit, vp->mldigit,
+ vp->count, vp->digprb, vp->digsnr);
record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
if (debug)
printf("%s\n", tbuf);
#endif /* DEBUG */
}
- up->status &= ~BGATE;
}
@@ -2420,16 +2235,24 @@ wwv_corr4(
*/
static void
wwv_tsec(
- struct wwvunit *up /* driver structure pointer */
+ struct peer *peer /* driver structure pointer */
)
{
+ struct refclockproc *pp;
+ struct wwvunit *up;
int minute, day, isleap;
int temp;
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+
/*
- * Advance minute unit of the day.
+ * Advance minute unit of the day. Don't propagate carries until
+ * the unit minute digit has been found.
*/
temp = carry(&up->decvec[MN]); /* minute units */
+ if (!(up->status & DSYNC))
+ return;
/*
* Propagate carries through the day.
@@ -2444,25 +2267,24 @@ wwv_tsec(
/*
* Decode the current minute and day. Set leap day if the
* timecode leap bit is set on 30 June or 31 December. Set leap
- * minute if the last minute on leap day. This code fails in
- * 2400 AD.
+ * minute if the last minute on leap day, but only if the clock
+ * is syncrhronized. This code fails in 2400 AD.
*/
minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
10 + up->decvec[HR].digit * 60 + up->decvec[HR +
1].digit * 600;
day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
up->decvec[DA + 2].digit * 100;
- isleap = (up->decvec[YR].digit & 0x3) == 0;
- if (up->misc & SECWAR && (day == (isleap ? 182 : 183) || day ==
- (isleap ? 365 : 366)) && up->status & INSYNC && up->status &
- SSYNC)
- up->status |= LEPDAY;
- else
- up->status &= ~LEPDAY;
- if (up->status & LEPDAY && minute == 1439)
- up->status |= LEPSEC;
- else
- up->status &= ~LEPSEC;
+
+ /*
+ * Set the leap bit on the last minute of the leap day.
+ */
+ isleap = up->decvec[YR].digit & 0x3;
+ if (up->misc & SECWAR && up->status & INSYNC) {
+ if ((day == (isleap ? 182 : 183) || day == (isleap ?
+ 365 : 366)) && minute == 1439)
+ up->status |= LEPSEC;
+ }
/*
* Roll the day if this the first minute and propagate carries
@@ -2470,6 +2292,7 @@ wwv_tsec(
*/
if (minute != 1440)
return;
+
minute = 0;
while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
while (carry(&up->decvec[HR + 1]) != 0);
@@ -2486,12 +2309,13 @@ wwv_tsec(
*/
if (day != (isleap ? 365 : 366))
return;
+
day = 1;
while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
while (carry(&up->decvec[DA + 1]) != 0);
while (carry(&up->decvec[DA + 2]) != 0);
temp = carry(&up->decvec[YR]); /* carry years */
- if (temp)
+ if (temp == 0)
carry(&up->decvec[YR + 1]);
}
@@ -2512,11 +2336,10 @@ carry(
int temp;
int j;
- dp->digit++; /* advance clock digit */
- if (dp->digit == dp->radix) { /* modulo radix */
+ dp->digit++;
+ if (dp->digit == dp->radix)
dp->digit = 0;
- }
- temp = dp->like[dp->radix - 1]; /* rotate likelihood vector */
+ temp = dp->like[dp->radix - 1];
for (j = dp->radix - 1; j > 0; j--)
dp->like[j] = dp->like[j - 1];
dp->like[0] = temp;
@@ -2544,14 +2367,14 @@ wwv_snr(
* other hand, in the likelihood function the "noise" is the
* next maximum down from the peak and this could be negative.
* However, in this case the SNR is truly stupendous, so we
- * simply cap at MAXSNR dB.
+ * simply cap at MAXSNR dB (40).
*/
if (signal <= 0) {
rval = 0;
} else if (noise <= 0) {
rval = MAXSNR;
} else {
- rval = 20 * log10(signal / noise);
+ rval = 20. * log10(signal / noise);
if (rval > MAXSNR)
rval = MAXSNR;
}
@@ -2564,7 +2387,7 @@ wwv_snr(
*
* The radio actually appears to have ten channels, one channel for each
* of five frequencies and each of two stations (WWV and WWVH), although
- * if not tunable only the 15 MHz channels appear live. While the radio
+ * if not tunable only the DCHAN channel appears live. While the radio
* is tuned to the working data channel frequency and station for most
* of the minute, during seconds 59, 0 and 1 the radio is tuned to a
* probe frequency in order to search for minute sync pulse and data
@@ -2583,13 +2406,12 @@ wwv_snr(
* pulse amplitude and then to the highest frequency.
*
* The routine performs an important squelch function to keep dirty data
- * from polluting the integrators. During acquisition and until the
- * clock is synchronized, the signal metric must be at least MTR (13);
- * after that the metrict must be at least TTHR (50). If either of these
- * is not true, the station select bits are cleared so the second sync
- * is disabled and the data bit integrators averaged to a miss.
+ * from polluting the integrators. In order to consider a station valid,
+ * the metric must be at least MTHR (13); otherwise, the station select
+ * bits are cleared so the second sync is disabled and the data bit
+ * integrators averaged to a miss.
*/
-static void
+static int
wwv_newchan(
struct peer *peer /* peer structure pointer */
)
@@ -2605,44 +2427,66 @@ wwv_newchan(
/*
* Search all five station pairs looking for the channel with
- * maximum metric. If no station is found above thresholds, the
- * reference ID is set to NONE and we wait for hotter ions.
+ * maximum metric. If no station is found above thresholds, tune
+ * to WWV on 15 MHz, set the reference ID to NONE and wait for
+ * hotter ions.
*/
- j = 0;
sp = NULL;
+ j = 0;
rank = 0;
for (i = 0; i < NCHAN; i++) {
rp = &up->mitig[i].wwvh;
- dtemp = wwv_metric(rp);
+ dtemp = rp->metric;
if (dtemp >= rank) {
rank = dtemp;
sp = rp;
j = i;
}
rp = &up->mitig[i].wwv;
- dtemp = wwv_metric(rp);
+ dtemp = rp->metric;
if (dtemp >= rank) {
rank = dtemp;
sp = rp;
j = i;
}
}
+
+ /*
+ * If the strongest signal is less than the MTHR threshold (13),
+ * we are beneath the waves, so squelch the second sync. If the
+ * strongest signal is greater than the threshold, tune to that
+ * frequency and transmitter QTH.
+ */
+ if (rank < MTHR) {
+ up->dchan = (up->dchan + 1) % NCHAN;
+ up->status &= ~(SELV | SELH);
+ return (FALSE);
+ }
up->dchan = j;
+ up->status |= SELV | SELH;
up->sptr = sp;
- up->status &= ~(SELV | SELH);
- memcpy(&pp->refid, "NONE", 4);
- if ((!(up->status & INSYNC) && rank >= MTHR) || ((up->status &
- INSYNC) && rank >= TTHR)) {
- up->status |= sp->select & (SELV | SELH);
- memcpy(&pp->refid, sp->refid, 4);
- }
- if (peer->stratum <= 1)
- memcpy(&peer->refid, &pp->refid, 4);
+ memcpy(&pp->refid, sp->refid, 4);
+ peer->refid = pp->refid;
+ return (TRUE);
}
/*
- * www_newgame - reset and start over
+ * wwv_newgame - reset and start over
+ *
+ * There are four conditions resulting in a new game:
+ *
+ * 1 During initial acquisition (MSYNC dark) going 6 minutes (ACQSN)
+ * without reliably finding the minute pulse (MSYNC lit).
+ *
+ * 2 After finding the minute pulse (MSYNC lit), going 15 minutes
+ * (DATA) without finding the unit seconds digit.
+ *
+ * 3 After finding good data (DATA lit), going more than 40 minutes
+ * (SYNCH) without finding station sync (INSYNC lit).
+ *
+ * 4 After finding station sync (INSYNC lit), going more than 2 days
+ * (PANIC) without finding any station.
*/
static void
wwv_newgame(
@@ -2665,12 +2509,12 @@ wwv_newgame(
up->watch = up->status = up->alarm = 0;
up->avgint = MINAVG;
up->freq = 0;
- up->sptr = NULL;
up->gain = MAXGAIN / 2;
/*
* Initialize the station processes for audio gain, select bit,
- * station/frequency identifier and reference identifier.
+ * station/frequency identifier and reference identifier. Start
+ * probing at the next channel after the data channel.
*/
memset(up->mitig, 0, sizeof(up->mitig));
for (i = 0; i < NCHAN; i++) {
@@ -2681,15 +2525,21 @@ wwv_newgame(
cp->wwvh.select = SELH;
sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i]));
}
+ up->dchan = (DCHAN + NCHAN - 1) % NCHAN;;
wwv_newchan(peer);
+ up->achan = up->schan = up->dchan;
+#ifdef ICOM
+ if (up->fd_icom > 0)
+ wwv_qsy(peer, up->dchan);
+#endif /* ICOM */
}
/*
* wwv_metric - compute station metric
*
* The most significant bits represent the number of ones in the
- * reachability register. The least significant bits represent the
- * minute sync pulse amplitude. The combined value is scaled 0-100.
+ * station reachability register. The least significant bits represent
+ * the minute sync pulse amplitude. The combined value is scaled 0-100.
*/
double
wwv_metric(
@@ -2698,12 +2548,12 @@ wwv_metric(
{
double dtemp;
- dtemp = sp->count * MAXSIG;
- if (sp->synmax < MAXSIG)
+ dtemp = sp->count * MAXAMP;
+ if (sp->synmax < MAXAMP)
dtemp += sp->synmax;
else
- dtemp += MAXSIG - 1;
- dtemp /= (AMAX + 1) * MAXSIG;
+ dtemp += MAXAMP - 1;
+ dtemp /= (AMAX + 1) * MAXAMP;
return (dtemp * 100.);
}
@@ -2803,8 +2653,8 @@ timecode(
*/
sp = up->sptr;
sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch,
- up->mitig[up->dchan].gain, sp->refid, wwv_metric(sp),
- up->errbit, up->freq / SECOND * 1e6, up->avgint);
+ up->mitig[up->dchan].gain, sp->refid, sp->metric,
+ up->errcnt, up->freq / SECOND * 1e6, up->avgint);
strcat(ptr, cptr);
return (strlen(ptr));
}
@@ -2813,12 +2663,12 @@ timecode(
/*
* wwv_gain - adjust codec gain
*
- * This routine is called at the end of each second. It counts the
- * number of signal clips above the MAXSIG threshold during the previous
- * second. If there are no clips, the gain is bumped up; if too many
- * clips, it is bumped down. The decoder is relatively insensitive to
- * amplitude, so this crudity works just fine. The input port is set and
- * the error flag is cleared, mostly to be ornery.
+ * This routine is called at the end of each second. During the second
+ * the number of signal clips above the MAXAMP threshold (6000). If
+ * there are no clips, the gain is bumped up; if there are more than
+ * MAXCLP clips (100), it is bumped down. The decoder is relatively
+ * insensitive to amplitude, so this crudity works just peachy. The
+ * input port is set and the error flag is cleared, mostly to be ornery.
*/
static void
wwv_gain(
OpenPOWER on IntegriCloud