summaryrefslogtreecommitdiffstats
path: root/contrib/ntp/ntpd/refclock_wwv.c
diff options
context:
space:
mode:
authorroberto <roberto@FreeBSD.org>2000-01-28 14:55:50 +0000
committerroberto <roberto@FreeBSD.org>2000-01-28 14:55:50 +0000
commitb5b40f9e420899251189775800d9f74092925299 (patch)
tree98efdf1b74d6ecb7828bb502a0350116eeb2fd3c /contrib/ntp/ntpd/refclock_wwv.c
parentef64b99e8412f2273dd2e8b3291c2f78ffc4667f (diff)
downloadFreeBSD-src-b5b40f9e420899251189775800d9f74092925299.zip
FreeBSD-src-b5b40f9e420899251189775800d9f74092925299.tar.gz
Virgin import of ntpd 4.0.99b
Diffstat (limited to 'contrib/ntp/ntpd/refclock_wwv.c')
-rw-r--r--contrib/ntp/ntpd/refclock_wwv.c2754
1 files changed, 2754 insertions, 0 deletions
diff --git a/contrib/ntp/ntpd/refclock_wwv.c b/contrib/ntp/ntpd/refclock_wwv.c
new file mode 100644
index 0000000..52e76e6
--- /dev/null
+++ b/contrib/ntp/ntpd/refclock_wwv.c
@@ -0,0 +1,2754 @@
+/*
+ * refclock_wwv - clock driver for NIST WWV/H time/frequency station
+ */
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#if defined(REFCLOCK) && defined(CLOCK_WWV)
+
+#include <stdio.h>
+#include <ctype.h>
+#include <sys/time.h>
+#include <math.h>
+#ifdef HAVE_SYS_IOCTL_H
+#include <sys/ioctl.h>
+#endif /* HAVE_SYS_IOCTL_H */
+
+#include "ntpd.h"
+#include "ntp_io.h"
+#include "ntp_refclock.h"
+#include "ntp_calendar.h"
+#include "ntp_stdlib.h"
+#include "audio.h"
+
+#define ICOM 1 /* undefine to suppress ICOM code */
+
+#ifdef ICOM
+#include "icom.h"
+#endif /* ICOM */
+
+/*
+ * Audio WWV/H demodulator/decoder
+ *
+ * This driver synchronizes the computer time using data encoded in
+ * radio transmissions from NIST time/frequency stations WWV in Boulder,
+ * CO, and WWVH in Kauai, HI. Transmikssions are made continuously on
+ * 2.5, 5, 10, 15 and 20 MHz in AM mode. An ordinary shortwave receiver
+ * can be tuned manually to one of these frequencies or, in the case of
+ * ICOM receivers, the receiver can be tuned automatically using this
+ * program as propagation conditions change throughout the day and
+ * night.
+ *
+ * The driver receives, demodulates and decodes the radio signals when
+ * connected to the audio codec of a Sun workstation running SunOS or
+ * Solaris, and with a little help, other workstations with similar
+ * codecs or sound cards. In this implementation, only one audio driver
+ * and codec can be supported on a single machine.
+ *
+ * The demodulation and decoding algorithms used in this driver are
+ * based on those developed for the TAPR DSP93 development board and the
+ * TI 320C25 digital signal processor described in: Mills, D.L. A
+ * precision radio clock for WWV transmissions. Electrical Engineering
+ * Report 97-8-1, University of Delaware, August 1997, 25 pp. Available
+ * from www.eecis.udel.edu/~mills/reports.htm. The algorithms described
+ * in this report have been modified somewhat to improve performance
+ * under weak signal conditions and to provide an automatic station
+ * identification feature.
+ *
+ * The ICOM code is normally compiled in the driver. It isn't used,
+ * unless the mode keyword on the server configuration command specifies
+ * a nonzero ICOM ID select code. The C-IV trace is turned on if the
+ * debug level is greater than one.
+ */
+/*
+ * Interface definitions
+ */
+#define PRECISION (-10) /* precision assumed (about 1 ms) */
+#define REFID "NONE" /* reference ID */
+#define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */
+#define SECOND 8000 /* second epoch (sample rate) (Hz) */
+#define MINUTE (SECOND * 60) /* minute epoch */
+#define OFFSET 128 /* companded sample offset */
+#define SIZE 256 /* decompanding table size */
+#define MAXSIG 6000. /* maximum signal level reference */
+#define MAXSNR 30. /* max SNR reference */
+#define DGAIN 20. /* data channel gain reference */
+#define SGAIN 10. /* sync channel gain reference */
+#define MAXFREQ (125e-6 * SECOND) /* freq tolerance (.0125%) */
+#define PI 3.1415926535 /* the real thing */
+#define DATSIZ (170 * MS) /* data matched filter size */
+#define SYNSIZ (800 * MS) /* minute sync matched filter size */
+#define UTCYEAR 72 /* the first UTC year */
+#define MAXERR 30 /* max data bit errors in minute */
+#define NCHAN 5 /* number of channels */
+
+/*
+ * Macroni
+ */
+#define MOD(x, y) ((x) < 0 ? -(-(x) % (y)) : (x) % (y))
+
+/*
+ * General purpose status bits (status)
+ *
+ * Notes: SELV and/or SELH are set when the minute sync pulse from
+ * either or both WWV and/or WWVH stations has been heard. MSYNC is set
+ * when the minute sync pulse has been acquired and never reset. SSYNC
+ * is set when the second sync pulse has been acquired and cleared by
+ * watchdog or signal loss. DSYNC is set when the minutes unit digit has
+ * reached the threshold and INSYNC is set when if all nine digits have
+ * reached the threshold and never cleared.
+ *
+ * DGATE is set if a data bit is invalid, BGATE is set if a BCD digit
+ * bit is invalid. SFLAG is set when during seconds 59, 0 and 1 while
+ * probing for alternate frequencies. LEPSEC is set when the SECWAR of
+ * the timecode is set on the last second of 30 June or 31 December. At
+ * the end of this minute both the receiver and transmitter insert
+ * second 60 in the minute and the minute sync slips a second.
+ */
+#define MSYNC 0x0001 /* minute epoch sync */
+#define SSYNC 0x0002 /* second epoch sync */
+#define DSYNC 0x0004 /* minute units sync */
+#define INSYNC 0x0008 /* clock synchronized */
+#define DGATE 0x0010 /* data bit error */
+#define BGATE 0x0020 /* BCD digit bit error */
+#define SFLAG 0x1000 /* probe flag */
+#define LEPSEC 0x2000 /* leap second in progress */
+
+/*
+ * Station scoreboard bits (select)
+ *
+ * These are used to establish the signal quality for each of the five
+ * frequencies and two stations.
+ */
+#define JITRNG 0x0001 /* jitter above threshold */
+#define SYNCNG 0x0002 /* sync below threshold or SNR */
+#define DATANG 0x0004 /* data below threshold or SNR */
+#define SELV 0x0100 /* WWV station select */
+#define SELH 0x0200 /* WWVH station select */
+
+/*
+ * Alarm status bits (alarm)
+ *
+ * These bits indicate various alarm conditions, which are decoded to
+ * form the quality character included in the timecode. There are four
+ * four-bit nibble fields in the word, each corresponding to a specific
+ * alarm condition. At the end of each second, the word is shifted left
+ * one position and the least significant bit of each nibble cleared.
+ * This bit can be set during the next minute if the associated alarm
+ * condition is raised. This provides a way to remember alarm conditions
+ * up to four minutes.
+ *
+ * If not tracking both minute sync and second sync, the SYNERR alarm is
+ * raised. The data error counter is incremented for each invalid data
+ * bit. If too many data bit errors are encountered in one minute, the
+ * MODERR alarm is raised. The DECERR alarm is raised if a maximum
+ * likelihood digit fails to compare with the current clock digit. If
+ * the probability of any miscellaneous bit or any digit falls below the
+ * threshold, the SYMERR alarm is raised.
+ */
+#define DECERR 0 /* BCD digit compare error */
+#define SYMERR 4 /* low bit or digit probability */
+#define MODERR 8 /* too many data bit errors */
+#define SYNERR 12 /* not synchronized to station */
+
+/*
+ * Watchdog timeouts (watch)
+ *
+ * If these timeouts expire, the status bits are mashed to zero and the
+ * driver starts from scratch. Suitably more refined procedures may be
+ * developed in future. All these are in minutes.
+ */
+#define ACQSN 5 /* acquisition timeout */
+#define HSPEC 15 /* second sync timeout */
+#define DIGIT 30 /* minute unit digit timeout */
+#define PANIC (4 * 1440) /* panic timeout */
+
+/*
+ * Thresholds. These establish the minimum signal level, minimum SNR and
+ * maximum jitter thresholds which establish the error and false alarm
+ * rates of the receiver. The values defined here may be on the
+ * adventurous side in the interest of the highest sensitivity.
+ */
+#define ATHR 2000 /* acquisition amplitude threshold */
+#define ASNR 6.0 /* acquisition SNR threshold (dB) */
+#define AWND 50 /* acquisition window threshold (ms) */
+#define AMIN 3 /* acquisition min compare count */
+#define AMAX 6 /* max compare count */
+#define QTHR 2000 /* QSY amplitude threshold */
+#define QSNR 20.0 /* QSY SNR threshold (dB) */
+#define STHR 500 /* second sync amplitude threshold */
+#define SCMP 10 /* second sync compare threshold */
+#define DTHR 1000 /* bit amplitude threshold */
+#define DSNR 10.0 /* bit SNR threshold (dB) */
+#define BTHR 1000 /* digit probability threshold */
+#define BSNR 3.0 /* digit likelihood threshold (dB) */
+#define BCMP 5 /* digit compare threshold (dB) */
+
+/*
+ * Tone frequency definitions.
+ */
+#define MS 8 /* samples per millisecond */
+#define IN100 1 /* 100 Hz 4.5-deg sin table */
+#define IN1000 10 /* 1000 Hz 4.5-deg sin table */
+#define IN1200 12 /* 1200 Hz 4.5-deg sin table */
+
+/*
+ * Acquisition and tracking time constants. Usually powers of 2.
+ */
+#define MINAVG 8 /* min time constant (s) */
+#define MAXAVG 7 /* max time constant (log2 s) */
+#define TCONST 16 /* minute time constant (s) */
+#define SYNCTC (1024 / (1 << MAXAVG)) /* FLL constant (s) */
+
+/*
+ * Miscellaneous status bits (misc)
+ *
+ * These bits correspond to designated bits in the WWV/H timecode. The
+ * bit probabilities are exponentially averaged over several minutes and
+ * processed by a integrator and threshold.
+ */
+#define DUT1 0x01 /* 56 DUT .1 */
+#define DUT2 0x02 /* 57 DUT .2 */
+#define DUT4 0x04 /* 58 DUT .4 */
+#define DUTS 0x08 /* 50 DUT sign */
+#define DST1 0x10 /* 55 DST1 DST in progress */
+#define DST2 0x20 /* 2 DST2 DST change warning */
+#define SECWAR 0x40 /* 3 leap second warning */
+
+/*
+ * The total system delay with the DSP93 program is at 22.5 ms,
+ * including the propagation delay from Ft. Collins, CO, to Newark, DE
+ * (8.9 ms), the communications receiver delay and the delay of the
+ * DSP93 program itself. The DSP93 program delay is due mainly to the
+ * 400-Hz FIR bandpass filter (5 ms) and second sync matched filter (5
+ * ms), leaving about 3.6 ms for the receiver delay and strays.
+ *
+ * The total system delay with this program is estimated at 27.1 ms by
+ * comparison with another PPS-synchronized NTP server over a 10-Mb/s
+ * Ethernet. The propagation and receiver delays are the same as with
+ * the DSP93 program. The program delay is due only to the 600-Hz
+ * IIR bandpass filter (1.1 ms), since other delays have been removed.
+ * Assuming 4.7 ms for the receiver, program and strays, this leaves
+ * 13.5 ms for the audio codec and operating system latencies for a
+ * total of 18.2 ms. as the systematic delay. The additional propagation
+ * delay specific to each receiver location can be programmed in the
+ * fudge time1 and time2 values for WWV and WWVH, respectively.
+ */
+#define PDELAY (.0036 + .0011 + .0135) /* net system delay (s) */
+
+/*
+ * Table of sine values at 4.5-degree increments. This is used by the
+ * synchronous matched filter demodulators. The integral of sine-squared
+ * over one complete cycle is PI, so the table is normallized by 1 / PI.
+ */
+double sintab[] = {
+ 0.000000e+00, 2.497431e-02, 4.979464e-02, 7.430797e-02, /* 0-3 */
+ 9.836316e-02, 1.218119e-01, 1.445097e-01, 1.663165e-01, /* 4-7 */
+ 1.870979e-01, 2.067257e-01, 2.250791e-01, 2.420447e-01, /* 8-11 */
+ 2.575181e-01, 2.714038e-01, 2.836162e-01, 2.940800e-01, /* 12-15 */
+ 3.027307e-01, 3.095150e-01, 3.143910e-01, 3.173286e-01, /* 16-19 */
+ 3.183099e-01, 3.173286e-01, 3.143910e-01, 3.095150e-01, /* 20-23 */
+ 3.027307e-01, 2.940800e-01, 2.836162e-01, 2.714038e-01, /* 24-27 */
+ 2.575181e-01, 2.420447e-01, 2.250791e-01, 2.067257e-01, /* 28-31 */
+ 1.870979e-01, 1.663165e-01, 1.445097e-01, 1.218119e-01, /* 32-35 */
+ 9.836316e-02, 7.430797e-02, 4.979464e-02, 2.497431e-02, /* 36-39 */
+-0.000000e+00, -2.497431e-02, -4.979464e-02, -7.430797e-02, /* 40-43 */
+-9.836316e-02, -1.218119e-01, -1.445097e-01, -1.663165e-01, /* 44-47 */
+-1.870979e-01, -2.067257e-01, -2.250791e-01, -2.420447e-01, /* 48-51 */
+-2.575181e-01, -2.714038e-01, -2.836162e-01, -2.940800e-01, /* 52-55 */
+-3.027307e-01, -3.095150e-01, -3.143910e-01, -3.173286e-01, /* 56-59 */
+-3.183099e-01, -3.173286e-01, -3.143910e-01, -3.095150e-01, /* 60-63 */
+-3.027307e-01, -2.940800e-01, -2.836162e-01, -2.714038e-01, /* 64-67 */
+-2.575181e-01, -2.420447e-01, -2.250791e-01, -2.067257e-01, /* 68-71 */
+-1.870979e-01, -1.663165e-01, -1.445097e-01, -1.218119e-01, /* 72-75 */
+-9.836316e-02, -7.430797e-02, -4.979464e-02, -2.497431e-02, /* 76-79 */
+ 0.000000e+00}; /* 80 */
+
+/*
+ * Decoder operations at the end of each second are driven by a state
+ * machine. The transition matrix consists of a dispatch table indexed
+ * by second number. Each entry in the table contains a case switch
+ * number and argument.
+ */
+struct progx {
+ int sw; /* case switch number */
+ int arg; /* argument */
+};
+
+/*
+ * Case switch numbers
+ */
+#define IDLE 0 /* no operation */
+#define COEF 1 /* BCD bit conditioned on DSYNC */
+#define COEF1 2 /* BCD bit */
+#define COEF2 3 /* BCD bit ignored */
+#define DECIM9 4 /* BCD digit 0-9 */
+#define DECIM6 5 /* BCD digit 0-6 */
+#define DECIM3 6 /* BCD digit 0-3 */
+#define DECIM2 7 /* BCD digit 0-2 */
+#define MSCBIT 8 /* miscellaneous bit */
+#define MSC20 9 /* miscellaneous bit */
+#define MSC21 10 /* QSY probe channel */
+#define MIN1 11 /* minute */
+#define MIN2 12 /* leap second */
+#define SYNC2 13 /* QSY data channel */
+#define SYNC3 14 /* QSY data channel */
+
+/*
+ * Offsets in decoding matrix
+ */
+#define MN 0 /* minute digits (2) */
+#define HR 2 /* hour digits (2) */
+#define DA 4 /* day digits (3) */
+#define YR 7 /* year digits (2) */
+
+struct progx progx[] = {
+ {SYNC2, 0}, /* 0 latch sync max */
+ {SYNC3, 0}, /* 1 QSY data channel */
+ {MSCBIT, DST2}, /* 2 dst2 */
+ {MSCBIT, SECWAR}, /* 3 lw */
+ {COEF, 0}, /* 4 1 year units */
+ {COEF, 1}, /* 5 2 */
+ {COEF, 2}, /* 6 4 */
+ {COEF, 3}, /* 7 8 */
+ {DECIM9, YR}, /* 8 */
+ {IDLE, 0}, /* 9 p1 */
+ {COEF1, 0}, /* 10 1 minute units */
+ {COEF1, 1}, /* 11 2 */
+ {COEF1, 2}, /* 12 4 */
+ {COEF1, 3}, /* 13 8 */
+ {DECIM9, MN}, /* 14 */
+ {COEF, 0}, /* 15 10 minute tens */
+ {COEF, 1}, /* 16 20 */
+ {COEF, 2}, /* 17 40 */
+ {COEF2, 3}, /* 18 80 (not used) */
+ {DECIM6, MN + 1}, /* 19 p2 */
+ {COEF, 0}, /* 20 1 hour units */
+ {COEF, 1}, /* 21 2 */
+ {COEF, 2}, /* 22 4 */
+ {COEF, 3}, /* 23 8 */
+ {DECIM9, HR}, /* 24 */
+ {COEF, 0}, /* 25 10 hour tens */
+ {COEF, 1}, /* 26 20 */
+ {COEF2, 2}, /* 27 40 (not used) */
+ {COEF2, 3}, /* 28 80 (not used) */
+ {DECIM2, HR + 1}, /* 29 p3 */
+ {COEF, 0}, /* 30 1 day units */
+ {COEF, 1}, /* 31 2 */
+ {COEF, 2}, /* 32 4 */
+ {COEF, 3}, /* 33 8 */
+ {DECIM9, DA}, /* 34 */
+ {COEF, 0}, /* 35 10 day tens */
+ {COEF, 1}, /* 36 20 */
+ {COEF, 2}, /* 37 40 */
+ {COEF, 3}, /* 38 80 */
+ {DECIM9, DA + 1}, /* 39 p4 */
+ {COEF, 0}, /* 40 100 day hundreds */
+ {COEF, 1}, /* 41 200 */
+ {COEF2, 2}, /* 42 400 (not used) */
+ {COEF2, 3}, /* 43 800 (not used) */
+ {DECIM3, DA + 2}, /* 44 */
+ {IDLE, 0}, /* 45 */
+ {IDLE, 0}, /* 46 */
+ {IDLE, 0}, /* 47 */
+ {IDLE, 0}, /* 48 */
+ {IDLE, 0}, /* 49 p5 */
+ {MSCBIT, DUTS}, /* 50 dut+- */
+ {COEF, 0}, /* 51 10 year tens */
+ {COEF, 1}, /* 52 20 */
+ {COEF, 2}, /* 53 40 */
+ {COEF, 3}, /* 54 80 */
+ {MSC20, DST1}, /* 55 dst1 */
+ {MSCBIT, DUT1}, /* 56 0.1 dut */
+ {MSCBIT, DUT2}, /* 57 0.2 */
+ {MSC21, DUT4}, /* 58 0.4 QSY probe channel */
+ {MIN1, 0}, /* 59 p6 latch sync min */
+ {MIN2, 0} /* 60 leap second */
+};
+
+/*
+ * BCD coefficients for maximum likelihood digit decode
+ */
+#define P15 1. /* max positive number */
+#define N15 -1. /* max negative number */
+
+/*
+ * Digits 0-9
+ */
+#define P9 (P15 / 4) /* mark (+1) */
+#define N9 (N15 / 4) /* space (-1) */
+
+double bcd9[][4] = {
+ {N9, N9, N9, N9}, /* 0 */
+ {P9, N9, N9, N9}, /* 1 */
+ {N9, P9, N9, N9}, /* 2 */
+ {P9, P9, N9, N9}, /* 3 */
+ {N9, N9, P9, N9}, /* 4 */
+ {P9, N9, P9, N9}, /* 5 */
+ {N9, P9, P9, N9}, /* 6 */
+ {P9, P9, P9, N9}, /* 7 */
+ {N9, N9, N9, P9}, /* 8 */
+ {P9, N9, N9, P9}, /* 9 */
+ {0, 0, 0, 0} /* backstop */
+};
+
+/*
+ * Digits 0-6 (minute tens)
+ */
+#define P6 (P15 / 3) /* mark (+1) */
+#define N6 (N15 / 3) /* space (-1) */
+
+double bcd6[][4] = {
+ {N6, N6, N6, 0}, /* 0 */
+ {P6, N6, N6, 0}, /* 1 */
+ {N6, P6, N6, 0}, /* 2 */
+ {P6, P6, N6, 0}, /* 3 */
+ {N6, N6, P6, 0}, /* 4 */
+ {P6, N6, P6, 0}, /* 5 */
+ {N6, P6, P6, 0}, /* 6 */
+ {0, 0, 0, 0} /* backstop */
+};
+
+/*
+ * Digits 0-3 (day hundreds)
+ */
+#define P3 (P15 / 2) /* mark (+1) */
+#define N3 (N15 / 2) /* space (-1) */
+
+double bcd3[][4] = {
+ {N3, N3, 0, 0}, /* 0 */
+ {P3, N3, 0, 0}, /* 1 */
+ {N3, P3, 0, 0}, /* 2 */
+ {P3, P3, 0, 0}, /* 3 */
+ {0, 0, 0, 0} /* backstop */
+};
+
+/*
+ * Digits 0-2 (hour tens)
+ */
+#define P2 (P15 / 2) /* mark (+1) */
+#define N2 (N15 / 2) /* space (-1) */
+
+double bcd2[][4] = {
+ {N2, N2, 0, 0}, /* 0 */
+ {P2, N2, 0, 0}, /* 1 */
+ {N2, P2, 0, 0}, /* 2 */
+ {0, 0, 0, 0} /* backstop */
+};
+
+/*
+ * DST decode (DST2 DST1) for prettyprint
+ */
+char dstcod[] = {
+ 'S', /* 00 standard time */
+ 'I', /* 01 daylight warning */
+ 'O', /* 10 standard warning */
+ 'D' /* 11 daylight time */
+};
+
+/*
+ * The decoding matrix consists of nine row vectors, one for each digit
+ * of the timecode. The digits are stored from least to most significant
+ * order. The maximum likelihood timecode is formed from the digits
+ * corresponding to the maximum likelihood values reading in the
+ * opposite order: yy ddd hh:mm.
+ */
+struct decvec {
+ int radix; /* radix (3, 4, 6, 10) */
+ int digit; /* current clock digit */
+ int mldigit; /* maximum likelihood digit */
+ int phase; /* maximum likelihood digit phase */
+ int count; /* match count */
+ double digprb; /* max digit probability */
+ double digsnr; /* likelihood function (dB) */
+ double like[10]; /* likelihood integrator 0-9 */
+};
+
+/*
+ * The station structure is used to acquire the minute pulse from WWV
+ * and/or WWVH. These stations are distinguished by the frequency used
+ * for the second and minute sync pulses, 1000 Hz for WWV and 1200 Hz
+ * for WWVH. Other than frequency, the format is the same.
+ */
+struct sync {
+ double amp; /* sync amplitude (I, Q square) */
+ double synamp; /* sync envelope at 800 ms */
+ double synmax; /* sync envelope at 0 s */
+ double synmin; /* avg sync envelope at 59 s, 1 s */
+ double synsnr; /* sync signal SNR */
+ double noise; /* max amplitude off pulse */
+ double sigmax; /* max amplitude on pulse */
+ double lastmax; /* last max amplitude on pulse */
+ long pos; /* position at maximum amplitude */
+ long lastpos; /* last position at maximum amplitude */
+ long jitter; /* shake, wiggle and waggle */
+ long mepoch; /* minute synch epoch */
+ int count; /* compare counter */
+ char refid[5]; /* reference identifier */
+ char ident[4]; /* station identifier */
+ int select; /* select bits */
+};
+
+/*
+ * The channel structure is used to mitigate between channels. At this
+ * point we have already decided which station to use.
+ */
+struct chan {
+ int gain; /* audio gain */
+ int errcnt; /* data bit error counter */
+ double noiamp; /* I-channel average noise amplitude */
+ struct sync wwv; /* wwv station */
+ struct sync wwvh; /* wwvh station */
+};
+
+/*
+ * WWV unit control structure
+ */
+struct wwvunit {
+ l_fp timestamp; /* audio sample timestamp */
+ l_fp tick; /* audio sample increment */
+ double comp[SIZE]; /* decompanding table */
+ double phase, freq; /* logical clock phase and frequency */
+ double monitor; /* audio monitor point */
+ int fd_icom; /* ICOM file descriptor */
+ int errflg; /* error flags */
+ int bufcnt; /* samples in buffer */
+ int bufptr; /* buffer index pointer */
+ int port; /* codec port */
+ int gain; /* codec gain */
+ int clipcnt; /* sample clipped count */
+ int seccnt; /* second countdown */
+ int minset; /* minutes since last clock set */
+ int watch; /* watchcat */
+ int swatch; /* second sync watchcat */
+
+ /*
+ * Variables used to establish basic system timing
+ */
+ int avgint; /* log2 master time constant (s) */
+ int epoch; /* second epoch ramp */
+ int repoch; /* receiver sync epoch */
+ int yepoch; /* transmitter sync epoch */
+ double epomax; /* second sync amplitude */
+ double irig; /* data I channel amplitude */
+ double qrig; /* data Q channel amplitude */
+ int datapt; /* 100 Hz ramp */
+ double datpha; /* 100 Hz VFO control */
+ int rphase; /* receiver sample counter */
+ int rsec; /* receiver seconds counter */
+ long mphase; /* minute sample counter */
+ long nepoch; /* minute epoch index */
+
+ /*
+ * Variables used to mitigate which channel to use
+ */
+ struct chan mitig[NCHAN]; /* channel data */
+ struct sync *sptr; /* station pointer */
+ int dchan; /* data channel */
+ int schan; /* probe channel */
+ int achan; /* active channel */
+
+ /*
+ * Variables used by the clock state machine
+ */
+ struct decvec decvec[9]; /* decoding matrix */
+ int cdelay; /* WWV propagation delay (samples) */
+ int hdelay; /* WVVH propagation delay (samples) */
+ int pdelay; /* propagation delay (samples) */
+ int tphase; /* transmitter sample counter */
+ int tsec; /* transmitter seconds counter */
+ int digcnt; /* count of digits synchronized */
+
+ /*
+ * Variables used to estimate signal levels and bit/digit
+ * probabilities
+ */
+ double sigamp; /* I-channel peak signal amplitude */
+ double noiamp; /* I-channel average noise amplitude */
+ double datsnr; /* data SNR (dB) */
+
+ /*
+ * Variables used to establish status and alarm conditions
+ */
+ int status; /* status bits */
+ int alarm; /* alarm flashers */
+ int misc; /* miscellaneous timecode bits */
+ int errcnt; /* data bit error counter */
+};
+
+/*
+ * Function prototypes
+ */
+static int wwv_start P((int, struct peer *));
+static void wwv_shutdown P((int, struct peer *));
+static void wwv_receive P((struct recvbuf *));
+static void wwv_poll P((int, struct peer *));
+
+/*
+ * More function prototypes
+ */
+static void wwv_epoch P((struct peer *));
+static void wwv_rf P((struct peer *, double));
+static void wwv_endpoc P((struct peer *, double, int));
+static void wwv_rsec P((struct peer *, double));
+static void wwv_qrz P((struct peer *, struct sync *,
+ double));
+static void wwv_corr4 P((struct peer *, struct decvec *,
+ double [], double [][4]));
+static void wwv_gain P((struct peer *));
+static void wwv_tsec P((struct wwvunit *));
+static double wwv_data P((struct wwvunit *, double));
+static int timecode P((struct wwvunit *, char *));
+static double wwv_snr P((double, double));
+static int carry P((struct decvec *));
+static void wwv_newchan P((struct peer *));
+static int wwv_qsy P((struct peer *, int));
+static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
+
+/*
+ * Transfer vector
+ */
+struct refclock refclock_wwv = {
+ wwv_start, /* start up driver */
+ wwv_shutdown, /* shut down driver */
+ wwv_poll, /* transmit poll message */
+ noentry, /* not used (old wwv_control) */
+ noentry, /* initialize driver (not used) */
+ noentry, /* not used (old wwv_buginfo) */
+ NOFLAGS /* not used */
+};
+
+
+/*
+ * wwv_start - open the devices and initialize data for processing
+ */
+static int
+wwv_start(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct chan *cp;
+#ifdef ICOM
+ int temp;
+#endif /* ICOM */
+
+ /*
+ * Local variables
+ */
+ int fd; /* file descriptor */
+ int i; /* index */
+ double step; /* codec adjustment */
+
+ /*
+ * Open audio device
+ */
+ fd = audio_init();
+ if (fd < 0)
+ return (0);
+#ifdef DEBUG
+ if (debug)
+ audio_show();
+#endif
+
+ /*
+ * Allocate and initialize unit structure
+ */
+ if (!(up = (struct wwvunit *)
+ emalloc(sizeof(struct wwvunit)))) {
+ (void) close(fd);
+ return (0);
+ }
+ memset((char *)up, 0, sizeof(struct wwvunit));
+ pp = peer->procptr;
+ pp->unitptr = (caddr_t)up;
+ pp->io.clock_recv = wwv_receive;
+ pp->io.srcclock = (caddr_t)peer;
+ pp->io.datalen = 0;
+ pp->io.fd = fd;
+ if (!io_addclock(&pp->io)) {
+ (void)close(fd);
+ free(up);
+ return (0);
+ }
+
+ /*
+ * Initialize miscellaneous variables
+ */
+ peer->precision = PRECISION;
+ pp->clockdesc = DESCRIPTION;
+ memcpy((char *)&pp->refid, REFID, 4);
+ DTOLFP(1. / SECOND, &up->tick);
+
+ /*
+ * The companded samples are encoded sign-magnitude. The table
+ * contains all the 256 values in the interest of speed.
+ */
+ up->comp[0] = up->comp[OFFSET] = 0.;
+ up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
+ up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
+ step = 2.;
+ for (i = 3; i < OFFSET; i++) {
+ up->comp[i] = up->comp[i - 1] + step;
+ up->comp[OFFSET + i] = -up->comp[i];
+ if (i % 16 == 0)
+ step *= 2.;
+ }
+
+ /*
+ * Initialize the decoding matrix with the radix for each digit
+ * position.
+ */
+ up->decvec[MN].radix = 10; /* minutes */
+ up->decvec[MN + 1].radix = 6;
+ up->decvec[HR].radix = 10; /* hours */
+ up->decvec[HR + 1].radix = 3;
+ up->decvec[DA].radix = 10; /* days */
+ up->decvec[DA + 1].radix = 10;
+ up->decvec[DA + 2].radix = 4;
+ up->decvec[YR].radix = 10; /* years */
+ up->decvec[YR + 1].radix = 10;
+
+ /*
+ * Initialize the station processes for audio gain, select bit,
+ * station/frequency identifier and reference identifier.
+ */
+ up->gain = 127;
+ for (i = 0; i < NCHAN; i++) {
+ cp = &up->mitig[i];
+ cp->gain = up->gain;
+ cp->wwv.select = SELV;
+ strcpy(cp->wwv.refid, "WWV ");
+ sprintf(cp->wwv.ident,"C%.0f", floor(qsy[i]));
+ cp->wwvh.select = SELH;
+ strcpy(cp->wwvh.refid, "WWVH");
+ sprintf(cp->wwvh.ident, "H%.0f", floor(qsy[i]));
+ }
+
+ /*
+ * Initialize autotune if available. Start out at 15 MHz. Note
+ * that the ICOM select code must be less than 128, so the high
+ * order bit can be used to select the line speed.
+ */
+#ifdef ICOM
+ temp = 0;
+#ifdef DEBUG
+ if (debug > 1)
+ temp = P_TRACE;
+#endif
+ if (peer->ttl != 0) {
+ if (peer->ttl & 0x80)
+ up->fd_icom = icom_init("/dev/icom", B1200,
+ temp);
+ else
+ up->fd_icom = icom_init("/dev/icom", B9600,
+ temp);
+ }
+ if (up->fd_icom > 0) {
+ up->schan = 3;
+ if ((temp = wwv_qsy(peer, up->schan)) < 0) {
+ NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
+ msyslog(LOG_ERR,
+ "ICOM bus error; autotune disabled");
+ up->errflg = CEVNT_FAULT;
+ close(up->fd_icom);
+ up->fd_icom = 0;
+ }
+ }
+#endif /* ICOM */
+ return (1);
+}
+
+
+/*
+ * wwv_shutdown - shut down the clock
+ */
+static void
+wwv_shutdown(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+ io_closeclock(&pp->io);
+ if (up->fd_icom > 0)
+ close(up->fd_icom);
+ free(up);
+}
+
+
+/*
+ * wwv_receive - receive data from the audio device
+ *
+ * This routine reads input samples and adjusts the logical clock to
+ * track the A/D sample clock by dropping or duplicating codec samples.
+ * It also controls the A/D signal level with an AGC loop to mimimize
+ * quantization noise and avoid overload.
+ */
+static void
+wwv_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+ struct peer *peer;
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ /*
+ * Local variables
+ */
+ double sample; /* codec sample */
+ u_char *dpt; /* buffer pointer */
+ l_fp ltemp;
+ int isneg;
+ double dtemp;
+ int i, j;
+
+ peer = (struct peer *)rbufp->recv_srcclock;
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+
+ /*
+ * Main loop - read until there ain't no more. Note codec
+ * samples are bit-inverted.
+ */
+ up->timestamp = rbufp->recv_time;
+ up->bufcnt = rbufp->recv_length;
+ DTOLFP((double)up->bufcnt / SECOND, &ltemp);
+ L_SUB(&up->timestamp, &ltemp);
+ dpt = rbufp->recv_buffer;
+ for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
+ sample = up->comp[~*dpt & 0xff];
+
+ /*
+ * Clip noise spikes greater than MAXSIG. If no clips,
+ * increase the gain a tad; if the clips are too high,
+ * decrease a tad.
+ */
+ if (sample > MAXSIG) {
+ sample = MAXSIG;
+ up->clipcnt++;
+ } else if (sample < -MAXSIG) {
+ sample = -MAXSIG;
+ up->clipcnt++;
+ }
+
+ /*
+ * Variable frequency oscillator. A phase change of one
+ * unit produces a change of 360 degrees; a frequency
+ * change of one unit produces a change of 1 Hz.
+ */
+ up->phase += up->freq / SECOND;
+ if (up->phase >= .5) {
+ up->phase -= 1.;
+ } else if (up->phase < - .5) {
+ up->phase += 1.;
+ wwv_rf(peer, sample);
+ wwv_rf(peer, sample);
+ } else {
+ wwv_rf(peer, sample);
+ }
+ L_ADD(&up->timestamp, &up->tick);
+
+ /*
+ * Once each second adjust the codec port and gain.
+ * While at it, initialize the propagation delay for
+ * both WWV and WWVH. Don't forget to correct for the
+ * receiver phase delay, mostly due to the 600-Hz
+ * IIR bandpass filter used for the sync signals.
+ */
+ up->cdelay = (int)(SECOND * (pp->fudgetime1 + PDELAY));
+ up->hdelay = (int)(SECOND * (pp->fudgetime2 + PDELAY));
+ up->seccnt = (up->seccnt + 1) % SECOND;
+ if (up->seccnt == 0) {
+ if (pp->sloppyclockflag & CLK_FLAG2)
+ up->port = 2;
+ else
+ up->port = 1;
+ }
+
+ /*
+ * During development, it is handy to have an audio
+ * monitor that can be switched to various signals. This
+ * code converts the linear signal left in up->monitor
+ * to codec format.
+ */
+ isneg = 0;
+ dtemp = up->monitor;
+ if (sample < 0) {
+ isneg = 1;
+ dtemp -= dtemp;
+ }
+ i = 0;
+ j = OFFSET >> 1;
+ while (j != 0) {
+ if (dtemp > up->comp[i])
+ i += j;
+ else if (dtemp < up->comp[i])
+ i -= j;
+ else
+ break;
+ j >>= 1;
+ }
+ if (isneg)
+ *dpt = ~(i + OFFSET);
+ else
+ *dpt = ~i;
+ dpt++;
+ }
+
+ /*
+ * Squawk to the monitor speaker if enabled.
+ */
+ if (pp->sloppyclockflag & CLK_FLAG3)
+ if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
+ (u_int)up->bufcnt) < 0)
+ perror("wwv:");
+}
+
+
+/*
+ * wwv_poll - called by the transmit procedure
+ *
+ * This routine keeps track of status. If nothing is heard for two
+ * successive poll intervals, a timeout event is declared and any
+ * orphaned timecode updates are sent to foster care. Once the clock is
+ * set, it always appears reachable, unless reset by watchdog timeout.
+ */
+static void
+wwv_poll(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+ if (pp->coderecv == pp->codeproc)
+ up->errflg = CEVNT_TIMEOUT;
+ else
+ pp->polls++;
+ if (up->status & INSYNC)
+ peer->reach |= 1;
+ if (up->errflg)
+ refclock_report(peer, up->errflg);
+ up->errflg = 0;
+}
+
+
+/*
+ * wwv_rf - process signals and demodulate to baseband
+ *
+ * This routine grooms and filters decompanded raw audio samples. The
+ * output signals include the 100-Hz baseband data signal in quadrature
+ * form, plus the epoch index of the second sync signal and the second
+ * index of the minute sync signal.
+ *
+ * There are three 1-s ramps used by this program, all spanning the
+ * range 0-7999 logical samples for exactly one second, as determined by
+ * the logical clock. The first drives the second epoch and runs
+ * continuously. The second determines the receiver phase and the third
+ * the transmitter phase within the second. The receiver second begins
+ * upon arrival of the 5-ms second sync pulse which begins the second;
+ * while the transmitter second begins before it by the specified
+ * propagation delay.
+ *
+ * There are three 1-m ramps spanning the range 0-59 seconds. The first
+ * drives the minute epoch in samples and runs continuously. The second
+ * determines the receiver second and the third the transmitter second.
+ * The receiver second begins upon arrival of the 800-ms sync pulse sent
+ * during the first second of the minute; while the transmitter second
+ * begins before it by the specified propagation delay.
+ *
+ * The output signals include the epoch maximum and phase and second
+ * maximum and index. The epoch phase provides the master reference for
+ * all signal and timing functions, while the second index identifies
+ * the first second of the minute. The epoch and second maxima are used
+ * to calculate SNR for gating functions.
+ *
+ * Demodulation operations are based on three synthesized quadrature
+ * sinusoids: 100 Hz for the data subcarrier, 1000 Hz for the WWV sync
+ * signals and 1200 Hz for the WWVH sync signal. These drive synchronous
+ * matched filters for the data subcarrier (170 ms at 100 Hz), WWV
+ * minute sync signal (800 ms at 1000 Hz) and WWVH minute sync signal
+ * (800 ms at 1200 Hz). Two additional matched filters are switched in
+ * as required for the WWV seconds sync signal (5 ms at 1000 Hz) and
+ * WWVH seconds sync signal (5 ms at 1200 Hz).
+ */
+static void
+wwv_rf(
+ struct peer *peer, /* peerstructure pointer */
+ double isig /* input signal */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ static double lpf[5]; /* 150-Hz lpf delay line */
+ double data; /* lpf output */
+ static double bpf[9]; /* 1000/1200-Hz bpf delay line */
+ double syncx; /* bpf output */
+ static double mf[41]; /* 1000/1200-Hz mf delay line */
+ double mfsync; /* mf output */
+
+ static int iptr; /* data channel pointer */
+ static double ibuf[DATSIZ]; /* data I channel delay line */
+ static double qbuf[DATSIZ]; /* data Q channel delay line */
+
+ static int jptr; /* sync channel pointer */
+ static double cibuf[SYNSIZ]; /* wwv I channel delay line */
+ static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
+ static double ciamp; /* wwv I channel amplitude */
+ static double cqamp; /* wwv Q channel amplitude */
+ static int csinptr; /* wwv channel phase */
+ static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
+ static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
+ static double hiamp; /* wwvh I channel amplitude */
+ static double hqamp; /* wwvh Q channel amplitude */
+ static int hsinptr; /* wwvh channels phase */
+
+ static double epobuf[SECOND]; /* epoch sync comb filter */
+ static double epomax; /* epoch sync amplitude buffer */
+ static int epopos; /* epoch sync position buffer */
+
+ static int iniflg; /* initialization flag */
+ struct sync *sp;
+ double dtemp;
+ long ltemp;
+ int i;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+ if (!iniflg) {
+ iniflg = 1;
+ memset((char *)lpf, 0, sizeof(lpf));
+ memset((char *)bpf, 0, sizeof(bpf));
+ memset((char *)mf, 0, sizeof(mf));
+ memset((char *)ibuf, 0, sizeof(ibuf));
+ memset((char *)qbuf, 0, sizeof(qbuf));
+ memset((char *)cibuf, 0, sizeof(cibuf));
+ memset((char *)cqbuf, 0, sizeof(cqbuf));
+ memset((char *)hibuf, 0, sizeof(hibuf));
+ memset((char *)hqbuf, 0, sizeof(hqbuf));
+ memset((char *)epobuf, 0, sizeof(epobuf));
+ }
+ up->monitor = isig; /* change for debug */
+
+ /*
+ * Baseband data demodulation. The 100-Hz subcarrier is
+ * extracted using a 150-Hz IIR lowpass filter. This attenuates
+ * the 1000/1200-Hz sync signals, as well as the 440-Hz and
+ * 600-Hz tones and most of the noise and voice modulation
+ * components.
+ *
+ * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
+ * passband ripple, -50 dB stopband ripple.
+ */
+ data = (lpf[4] = lpf[3]) * 8.360961e-01;
+ data += (lpf[3] = lpf[2]) * -3.481740e+00;
+ data += (lpf[2] = lpf[1]) * 5.452988e+00;
+ data += (lpf[1] = lpf[0]) * -3.807229e+00;
+ lpf[0] = isig - data;
+ data = lpf[0] * 3.281435e-03
+ + lpf[1] * -1.149947e-02
+ + lpf[2] * 1.654858e-02
+ + lpf[3] * -1.149947e-02
+ + lpf[4] * 3.281435e-03;
+
+ /*
+ * The I and Q quadrature data signals are produced by
+ * multiplying the filtered signal by 100-Hz sine and cosine
+ * signals, respectively. The data signals are demodulated by
+ * 170-ms synchronous matched filters to produce the amplitude
+ * and phase signals used by the decoder. Note the correction
+ * due to the propagation delay is necessary for seamless
+ * handover between WWV and WWVH.
+ */
+ i = up->datapt - up->pdelay % 80;
+ if (i < 0)
+ i += 80;
+ up->datapt = (up->datapt + IN100) % 80;
+ dtemp = sintab[i] * data / DATSIZ * DGAIN;
+ up->irig -= ibuf[iptr];
+ ibuf[iptr] = dtemp;
+ up->irig += dtemp;
+ i = (i + 20) % 80;
+ dtemp = sintab[i] * data / DATSIZ * DGAIN;
+ up->qrig -= qbuf[iptr];
+ qbuf[iptr] = dtemp;
+ up->qrig += dtemp;
+ iptr = (iptr + 1) % DATSIZ;
+
+ /*
+ * Baseband sync demodulation. The 1000/1200 sync signals are
+ * extracted using a 600-Hz IIR bandpass filter. This removes
+ * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
+ * tones and most of the noise and voice modulation components.
+ *
+ * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
+ * passband ripple, -50 dB stopband ripple.
+ */
+ syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
+ syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
+ syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
+ syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
+ syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
+ syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
+ syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
+ syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
+ bpf[0] = isig - syncx;
+ syncx = bpf[0] * 8.203628e-03
+ + bpf[1] * -2.375732e-02
+ + bpf[2] * 3.353214e-02
+ + bpf[3] * -4.080258e-02
+ + bpf[4] * 4.605479e-02
+ + bpf[5] * -4.080258e-02
+ + bpf[6] * 3.353214e-02
+ + bpf[7] * -2.375732e-02
+ + bpf[8] * 8.203628e-03;
+
+ /*
+ * The I and Q quadrature minute sync signals are produced by
+ * multiplying the filtered signal by 1000-Hz (WWV) and 1200-Hz
+ * (WWVH) sine and cosine signals, respectively. The resulting
+ * signals are demodulated by 800-ms synchronous matched filters
+ * to synchronize the second and minute and to detect which one
+ * (or both) the WWV or WWVH signal is present.
+ */
+ up->mphase = (up->mphase + 1) % MINUTE;
+
+ i = csinptr;
+ csinptr = (csinptr + IN1000) % 80;
+ dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
+ ciamp = ciamp - cibuf[jptr] + dtemp;
+ cibuf[jptr] = dtemp;
+ i = (i + 20) % 80;
+ dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
+ cqamp = cqamp - cqbuf[jptr] + dtemp;
+ cqbuf[jptr] = dtemp;
+ dtemp = ciamp * ciamp + cqamp * cqamp;
+ wwv_qrz(peer, &up->mitig[up->schan].wwv, dtemp);
+
+ i = hsinptr;
+ hsinptr = (hsinptr + IN1200) % 80;
+ dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
+ hiamp = hiamp - hibuf[jptr] + dtemp;
+ hibuf[jptr] = dtemp;
+ i = (i + 20) % 80;
+ dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
+ hqamp = hqamp - hqbuf[jptr] + dtemp;
+ hqbuf[jptr] = dtemp;
+ dtemp = hiamp * hiamp + hqamp * hqamp;
+ wwv_qrz(peer, &up->mitig[up->schan].wwvh, dtemp);
+
+ jptr = (jptr + 1) % SYNSIZ;
+
+ if (up->mphase == 0) {
+
+ /*
+ * This section is called once per minute at the minute
+ * epoch independently of the transmitter or receiver
+ * minute. If the leap bit is set, set the minute epoch
+ * back one second so the station processes don't miss a
+ * beat. Then, increment the watchdog counter and test
+ * for two sets of conditions depending on whether
+ * minute sync has been acquired or not.
+ */
+ up->watch++;
+ if (up->rsec == 60) {
+ up->mphase -= SECOND;
+ if (up->mphase < 0)
+ up->mphase += MINUTE;
+ } else if (!(up->status & MSYNC)) {
+
+ /*
+ * If minute sync has not been acquired, the
+ * program listens for minute sync pulses from
+ * both WWV and WWVH. The station with the
+ * greater compare count is selected, with ties
+ * broken by WWV, but only if the count is at
+ * least three. Once a station has been
+ * acquired, it is initialized and begins
+ * tracking the signal.
+ */
+ if (up->mitig[up->achan].wwv.count >=
+ up->mitig[up->achan].wwvh.count)
+ sp = &up->mitig[up->achan].wwv;
+ else
+ sp = &up->mitig[up->achan].wwvh;
+ if (sp->count >= AMIN) {
+ up->watch = up->swatch = 0;
+ up->status |= MSYNC;
+ ltemp = sp->mepoch - SYNSIZ;
+ if (ltemp < 0)
+ ltemp += MINUTE;
+ up->rsec = (MINUTE - ltemp) / SECOND;
+ if (!(up->status & SSYNC)) {
+ up->repoch = ltemp % SECOND;
+ up->yepoch = up->repoch -
+ up->pdelay;
+ if (up->yepoch < 0)
+ up->yepoch += SECOND;
+ }
+ wwv_newchan(peer);
+ } else if (sp->count == 0 || up->watch >= ACQSN)
+ {
+ up->watch = sp->count = 0;
+ up->schan = (up->schan + 1) % NCHAN;
+ wwv_qsy(peer, up->schan);
+ }
+ } else {
+
+ /*
+ * If minute sync has been acquired, the program
+ * watches for timeout. The timeout is reset
+ * when the clock is set or verified. If a
+ * timeout occurs and the minute units digit has
+ * not synchronized, reset the program and start
+ * over.
+ */
+ if (up->watch > DIGIT && !(up->status & DSYNC))
+ up->watch = up->status = 0;
+
+ /*
+ * If the second sync times out, dim the sync
+ * lamp and raise an alarm.
+ */
+ up->swatch++;
+ if (up->swatch > HSPEC)
+ up->status &= ~SSYNC;
+ if (!(up->status & SSYNC))
+ up->alarm |= 1 << SYNERR;
+ }
+ }
+
+ /*
+ * The second sync pulse is extracted using 5-ms FIR matched
+ * filters at 1000 Hz for WWV or 1200 Hz for WWVH. This pulse is
+ * used for the most precise synchronization, since if provides
+ * a resolution of one sample (125 us).
+ */
+ if (up->status & SELV) {
+ up->pdelay = up->cdelay;
+
+ /*
+ * WWV FIR matched filter, five cycles of 1000-Hz
+ * sinewave.
+ */
+ mf[40] = mf[39];
+ mfsync = (mf[39] = mf[38]) * 4.224514e-02;
+ mfsync += (mf[38] = mf[37]) * 5.974365e-02;
+ mfsync += (mf[37] = mf[36]) * 4.224514e-02;
+ mf[36] = mf[35];
+ mfsync += (mf[35] = mf[34]) * -4.224514e-02;
+ mfsync += (mf[34] = mf[33]) * -5.974365e-02;
+ mfsync += (mf[33] = mf[32]) * -4.224514e-02;
+ mf[32] = mf[31];
+ mfsync += (mf[31] = mf[30]) * 4.224514e-02;
+ mfsync += (mf[30] = mf[29]) * 5.974365e-02;
+ mfsync += (mf[29] = mf[28]) * 4.224514e-02;
+ mf[28] = mf[27];
+ mfsync += (mf[27] = mf[26]) * -4.224514e-02;
+ mfsync += (mf[26] = mf[25]) * -5.974365e-02;
+ mfsync += (mf[25] = mf[24]) * -4.224514e-02;
+ mf[24] = mf[23];
+ mfsync += (mf[23] = mf[22]) * 4.224514e-02;
+ mfsync += (mf[22] = mf[21]) * 5.974365e-02;
+ mfsync += (mf[21] = mf[20]) * 4.224514e-02;
+ mf[20] = mf[19];
+ mfsync += (mf[19] = mf[18]) * -4.224514e-02;
+ mfsync += (mf[18] = mf[17]) * -5.974365e-02;
+ mfsync += (mf[17] = mf[16]) * -4.224514e-02;
+ mf[16] = mf[15];
+ mfsync += (mf[15] = mf[14]) * 4.224514e-02;
+ mfsync += (mf[14] = mf[13]) * 5.974365e-02;
+ mfsync += (mf[13] = mf[12]) * 4.224514e-02;
+ mf[12] = mf[11];
+ mfsync += (mf[11] = mf[10]) * -4.224514e-02;
+ mfsync += (mf[10] = mf[9]) * -5.974365e-02;
+ mfsync += (mf[9] = mf[8]) * -4.224514e-02;
+ mf[8] = mf[7];
+ mfsync += (mf[7] = mf[6]) * 4.224514e-02;
+ mfsync += (mf[6] = mf[5]) * 5.974365e-02;
+ mfsync += (mf[5] = mf[4]) * 4.224514e-02;
+ mf[4] = mf[3];
+ mfsync += (mf[3] = mf[2]) * -4.224514e-02;
+ mfsync += (mf[2] = mf[1]) * -5.974365e-02;
+ mfsync += (mf[1] = mf[0]) * -4.224514e-02;
+ mf[0] = syncx;
+ } else if (up->status & SELH) {
+ up->pdelay = up->hdelay;
+
+ /*
+ * WWVH FIR matched filter, six cycles of 1200-Hz
+ * sinewave.
+ */
+ mf[40] = mf[39];
+ mfsync = (mf[39] = mf[38]) * 4.833363e-02;
+ mfsync += (mf[38] = mf[37]) * 5.681959e-02;
+ mfsync += (mf[37] = mf[36]) * 1.846180e-02;
+ mfsync += (mf[36] = mf[35]) * -3.511644e-02;
+ mfsync += (mf[35] = mf[34]) * -5.974365e-02;
+ mfsync += (mf[34] = mf[33]) * -3.511644e-02;
+ mfsync += (mf[33] = mf[32]) * 1.846180e-02;
+ mfsync += (mf[32] = mf[31]) * 5.681959e-02;
+ mfsync += (mf[31] = mf[30]) * 4.833363e-02;
+ mf[30] = mf[29];
+ mfsync += (mf[29] = mf[28]) * -4.833363e-02;
+ mfsync += (mf[28] = mf[27]) * -5.681959e-02;
+ mfsync += (mf[27] = mf[26]) * -1.846180e-02;
+ mfsync += (mf[26] = mf[25]) * 3.511644e-02;
+ mfsync += (mf[25] = mf[24]) * 5.974365e-02;
+ mfsync += (mf[24] = mf[23]) * 3.511644e-02;
+ mfsync += (mf[23] = mf[22]) * -1.846180e-02;
+ mfsync += (mf[22] = mf[21]) * -5.681959e-02;
+ mfsync += (mf[21] = mf[20]) * -4.833363e-02;
+ mf[20] = mf[19];
+ mfsync += (mf[19] = mf[18]) * 4.833363e-02;
+ mfsync += (mf[18] = mf[17]) * 5.681959e-02;
+ mfsync += (mf[17] = mf[16]) * 1.846180e-02;
+ mfsync += (mf[16] = mf[15]) * -3.511644e-02;
+ mfsync += (mf[15] = mf[14]) * -5.974365e-02;
+ mfsync += (mf[14] = mf[13]) * -3.511644e-02;
+ mfsync += (mf[13] = mf[12]) * 1.846180e-02;
+ mfsync += (mf[12] = mf[11]) * 5.681959e-02;
+ mfsync += (mf[11] = mf[10]) * 4.833363e-02;
+ mf[10] = mf[9];
+ mfsync += (mf[9] = mf[8]) * -4.833363e-02;
+ mfsync += (mf[8] = mf[7]) * -5.681959e-02;
+ mfsync += (mf[7] = mf[6]) * -1.846180e-02;
+ mfsync += (mf[6] = mf[5]) * 3.511644e-02;
+ mfsync += (mf[5] = mf[4]) * 5.974365e-02;
+ mfsync += (mf[4] = mf[3]) * 3.511644e-02;
+ mfsync += (mf[3] = mf[2]) * -1.846180e-02;
+ mfsync += (mf[2] = mf[1]) * -5.681959e-02;
+ mfsync += (mf[1] = mf[0]) * -4.833363e-02;
+ mf[0] = syncx;
+ } else {
+ mfsync = 0;
+ }
+
+ /*
+ * Extract the seconds sync pulse using a 1-s comb filter at
+ * baseband. Correct for the FIR matched filter delay, which is
+ * 5 ms for both the WWV and WWVH filters. Blank the signal when
+ * probing.
+ */
+ up->epoch = (up->epoch + 1) % SECOND;
+ if (up->epoch == 0) {
+ wwv_endpoc(peer, epomax, epopos);
+ up->epomax = epomax;
+ epomax = 0;
+ if (!(up->status & MSYNC))
+ wwv_gain(peer);
+ }
+ dtemp = (epobuf[up->epoch] += (mfsync - epobuf[up->epoch]) /
+ (MINAVG << up->avgint));
+ if (dtemp > epomax) {
+ epomax = dtemp;
+ epopos = up->epoch - up->pdelay - 5 * MS;
+ if (epopos < 0)
+ epopos += SECOND;
+ }
+ if (up->status & MSYNC)
+ wwv_epoch(peer);
+}
+
+
+/*
+ * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
+ *
+ * This routine implements a virtual station process used to acquire
+ * minute sync and to mitigate among the ten frequency and station
+ * combinations. During minute sync acquisition, the process probes each
+ * frequency in turn for the minute pulse from either station, which
+ * involves searching through the entire epoch minute of samples. After
+ * minute sync acquisition, the process searches only during the probe
+ * window, which occupies seconds 59, 0 and 1, to construct a metric
+ * used to determine which frequency and station provides the best
+ * signal.
+ *
+ * The pulse discriminator requires that (a) the peak on-pulse sample
+ * amplitude must be above 2000, (b) the SNR relative to the peak
+ * off-pulse sample amplitude must be reduced 6 dB or more below the
+ * peak and (c) the maximum difference between the current and previous
+ * epoch indices must be less than 50 ms. A compare counter keeps track
+ * of the number of successive intervals which satisfy these criteria.
+ *
+ * Students of radar receiver technology will discover this algorithm
+ * amounts to a range gate discriminator. In practice, the performance
+ * of this gadget is amazing. Once setting teeth in a station, it hangs
+ * on until the minute beep can barely be heard and long after the
+ * second tick and comb filter have given up.
+ */
+static void
+wwv_qrz(
+ struct peer *peer, /* peerstructure pointer */
+ struct sync *sp, /* sync channel structure */
+ double syncx /* bandpass filtered sync signal */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ char tbuf[80]; /* monitor buffer */
+ double snr; /* on-pulse/off-pulse ratio (dB) */
+ long epoch;
+ int isgood;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+
+ /*
+ * Find the sample with peak energy, which defines the minute
+ * epoch. If minute sync has been acquired, search only the
+ * probe window; otherwise, search the entire minute. If a
+ * maximum has been found with good amplitude, search only the
+ * second before and after that position for the next maximum
+ * and the rest of the window for the noise.
+ */
+ if (!(up->status & MSYNC) || up->status & SFLAG) {
+ sp->amp = syncx;
+ if (up->status & MSYNC)
+ epoch = up->nepoch;
+ else if (sp->count > 1)
+ epoch = sp->mepoch;
+ else
+ epoch = sp->lastpos;
+ if (syncx > sp->sigmax) {
+ sp->sigmax = syncx;
+ sp->pos = up->mphase;
+ }
+ if (abs(MOD(up->mphase - epoch, MINUTE)) > SYNSIZ &&
+ syncx > sp->noise) {
+ sp->noise = syncx;
+ }
+ }
+ if (up->mphase == 0) {
+
+ /*
+ * At the end of the minute, determine the epoch of the
+ * sync pulse, as well as the SNR and difference between
+ * the current and previous epoch (jitter).
+ */
+ sp->jitter = MOD(sp->pos - sp->lastpos, MINUTE);
+ sp->select &= ~JITRNG;
+ if (abs(sp->jitter) > AWND * MS)
+ sp->select |= JITRNG;
+ sp->sigmax = sqrt(sp->sigmax);
+ sp->noise = sqrt(sp->noise);
+ if (up->status & MSYNC) {
+
+ /*
+ * If in minute sync, just count the runs up and
+ * down.
+ */
+ if (sp->select & (DATANG | SYNCNG | JITRNG)) {
+ if (sp->count > 0)
+ sp->count--;
+ } else {
+ if (sp->count < AMAX)
+ sp->count++;
+ }
+ } else {
+
+ /*
+ * If not yet in minute sync, we have to do a
+ * little dance to find a valid minute sync
+ * pulse, emphasis valid.
+ */
+ snr = wwv_snr(sp->sigmax, sp->noise);
+ isgood = sp->sigmax > ATHR && snr > ASNR &&
+ !(sp->select & JITRNG);
+ switch (sp->count) {
+
+ /*
+ * In state 0 the station was not heard during
+ * the previous probe. Look for the biggest blip
+ * greater than the amplitude threshold in the
+ * minute and assume that the minute sync pulse.
+ * If found, bump to state 1.
+ */
+ case 0:
+ if (sp->sigmax >= ATHR)
+ sp->count++;
+ break;
+
+ /*
+ * In state 1 a candidate blip has been found
+ * and the next minute has been searched for
+ * another blip. If none are found greater than
+ * the threshold, or if the biggest blip outside
+ * the candidate pulse is less than 6 dB below
+ * the biggest blip, drop back to state 0 and
+ * hunt some more. Otherwise, a legitimate
+ * minute pulse may have been found, so bump to
+ * state 2.
+ */
+ case 1:
+ if (sp->sigmax < ATHR) {
+ sp->count--;
+ break;
+ } else if (!isgood) {
+ break;
+ }
+ /* fall through */
+
+ /*
+ * In states 2 and above, continue to groom
+ * samples as before and drop back to the
+ * previous state if the groom fails. If it
+ * succeeds, bump to the next state until
+ * reaching the clamp, if ever.
+ */
+ default:
+ if (!isgood) {
+ sp->count--;
+ break;
+ }
+ sp->mepoch = sp->pos;
+ if (sp->count < AMAX)
+ sp->count++;
+ break;
+ }
+ sprintf(tbuf,
+ "wwv8 %d %3d %-3s %d %5.0f %5.1f %7ld %7ld %7ld",
+ up->port, up->gain, sp->ident, sp->count,
+ sp->sigmax, snr, sp->pos, sp->jitter,
+ MOD(sp->pos - up->nepoch - SYNSIZ, MINUTE));
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif
+ }
+ sp->lastmax = sp->sigmax;
+ sp->lastpos = sp->pos;
+ sp->sigmax = sp->noise = 0;
+ }
+}
+
+
+/*
+ * wwv_endpoc - process receiver epoch
+ *
+ * This routine is called at the end of the receiver epoch. It
+ * determines the epoch position within the second and disciplines the
+ * sample clock using a frequency-lock loop (FLL).
+ *
+ * Seconds sync is determined in the RF input routine as the maximum
+ * over all 8000 samples in the second comb filter. To assure accurate
+ * and reliable time and frequency discipline, this routine performs a
+ * great deal of heavy-handed data filtering and grooming.
+ */
+static void
+wwv_endpoc(
+ struct peer *peer, /* peer structure pointer */
+ double epomax, /* epoch max */
+ int epopos /* epoch max position */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ static int epoch_mf[3]; /* epoch median filter */
+ static int tepoch; /* median filter epoch */
+ static int tspan; /* median filter span */
+ static int xepoch; /* last second epoch */
+ static int zepoch; /* last averaging interval epoch */
+ static int syncnt; /* second epoch run length counter */
+ static int jitcnt; /* jitter holdoff counter */
+ static int avgcnt; /* averaging interval counter */
+ static int avginc; /* averaging ratchet */
+
+ static int iniflg; /* initialization flag */
+ char tbuf[80]; /* monitor buffer */
+ double dtemp;
+ int tmp2, tmp3;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+ if (!iniflg) {
+ iniflg = 1;
+ memset((char *)epoch_mf, 0, sizeof(epoch_mf));
+ }
+
+ /*
+ * A three-stage median filter is used to help denoise the
+ * seconds sync pulse. The median sample becomes the candidate
+ * epoch; the difference between the other two samples becomes
+ * the span, which is used currently only for debugging.
+ */
+ epoch_mf[2] = epoch_mf[1];
+ epoch_mf[1] = epoch_mf[0];
+ epoch_mf[0] = epopos;
+ if (epoch_mf[0] > epoch_mf[1]) {
+ if (epoch_mf[1] > epoch_mf[2]) {
+ tepoch = epoch_mf[1]; /* 0 1 2 */
+ tspan = epoch_mf[0] - epoch_mf[2];
+ } else if (epoch_mf[2] > epoch_mf[0]) {
+ tepoch = epoch_mf[0]; /* 2 0 1 */
+ tspan = epoch_mf[2] - epoch_mf[1];
+ } else {
+ tepoch = epoch_mf[2]; /* 0 2 1 */
+ tspan = epoch_mf[0] - epoch_mf[1];
+ }
+ } else {
+ if (epoch_mf[1] < epoch_mf[2]) {
+ tepoch = epoch_mf[1]; /* 2 1 0 */
+ tspan = epoch_mf[2] - epoch_mf[0];
+ } else if (epoch_mf[2] < epoch_mf[0]) {
+ tepoch = epoch_mf[0]; /* 1 0 2 */
+ tspan = epoch_mf[1] - epoch_mf[2];
+ } else {
+ tepoch = epoch_mf[2]; /* 1 2 0 */
+ tspan = epoch_mf[1] - epoch_mf[0];
+ }
+ }
+
+ /*
+ * If the epoch candidate is within 1 ms of the last one, the
+ * new candidate replaces the last one and the jitter counter is
+ * reset; otherwise, the candidate is ignored and the jitter
+ * counter is incremented. If the jitter counter exceeds the
+ * frequency averaging interval, the new candidate replaces the
+ * old one anyway. The compare counter is incremented if the new
+ * candidate is identical to the last one; otherwise, it is
+ * forced to zero. If the compare counter increments to 10, the
+ * epoch is reset and the receiver second epoch is set.
+ *
+ * Careful attention to detail here. If the signal amplitude
+ * falls below the threshold or if no stations are heard, we
+ * certainly cannot be in sync.
+ */
+ tmp2 = MOD(tepoch - xepoch, SECOND);
+ if (up->epomax < STHR || !(up->status & (SELV | SELH))) {
+ up->status &= ~SSYNC;
+ jitcnt = syncnt = avgcnt = 0;
+ } else if (abs(tmp2) <= MS || jitcnt >= (MINAVG << up->avgint))
+ {
+ jitcnt = 0;
+ if (tmp2 != 0) {
+ xepoch = tepoch;
+ syncnt = 0;
+ } else {
+ if (syncnt < SCMP) {
+ syncnt++;
+ } else {
+ up->status |= SSYNC;
+ up->swatch = 0;
+ up->repoch = tepoch;
+ up->yepoch = up->repoch;
+ if (up->yepoch < 0)
+ up->yepoch += SECOND;
+ }
+ }
+ avgcnt++;
+ } else {
+ jitcnt++;
+ syncnt = avgcnt = 0;
+ }
+ if (!(up->status & SSYNC) && 0) {
+ sprintf(tbuf,
+ "wwv1 %2d %04x %5.0f %2d %5.0f %5d %5d %5d %2d %4d",
+ up->rsec, up->status, up->epomax, avgcnt, epomax,
+ tepoch, tspan, tmp2, syncnt, jitcnt);
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+
+ /*
+ * The sample clock frequency is disciplined using a first-order
+ * feedback loop with time constant consistent with the Allan
+ * intercept of typical computer clocks. The loop update is
+ * calculated each averaging interval from the epoch change in
+ * 125-us units and interval length in seconds. The interval is
+ * doubled after four intervals where epoch change is not more
+ * than one sample.
+ *
+ * The averaging interval affects other receiver functions,
+ * including the the 1000/1200-Hz comb filter and sample clock
+ * loop. It also affects the 100-Hz subcarrier loop and the bit
+ * and digit comparison counter thresholds.
+ */
+ tmp3 = MOD(tepoch - zepoch, SECOND);
+ if (avgcnt >= (MINAVG << up->avgint)) {
+ if (abs(tmp3) < MS) {
+ dtemp = (double)tmp3 / avgcnt;
+ up->freq += dtemp / SYNCTC;
+ if (up->freq > MAXFREQ)
+ up->freq = MAXFREQ;
+ else if (up->freq < -MAXFREQ)
+ up->freq = -MAXFREQ;
+ if (abs(tmp3) <= 1 && up->avgint < MAXAVG) {
+ if (avginc < 4) {
+ avginc++;
+ } else {
+ avginc = 0;
+ up->avgint++;
+ }
+ }
+ if (up->avgint < MAXAVG) {
+ sprintf(tbuf,
+ "wwv2 %2d %04x %5.0f %5d %5d %2d %2d %6.1f %6.1f",
+ up->rsec, up->status, up->epomax,
+ MINAVG << up->avgint, avgcnt,
+ avginc, tmp3, dtemp / SECOND * 1e6,
+ up->freq / SECOND * 1e6);
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(
+ &peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+ }
+ zepoch = tepoch;
+ avgcnt = 0;
+ }
+}
+
+
+/*
+ * wwv_epoch - main loop
+ *
+ * This routine establishes receiver and transmitter epoch
+ * synchronization and determines the data subcarrier pulse length.
+ * Receiver synchronization is determined by the minute sync pulse
+ * detected in the wwv_rf() routine and the second sync pulse detected
+ * in the wwv_epoch() routine. This establishes when to sample the data
+ * subcarrier in-phase signal for the maximum level and noise level and
+ * when to determine the pulse length. The transmitter second leads the
+ * receiver second by the propagation delay, receiver delay and filter
+ * delay of this program. It establishes the clock time and implements
+ * the sometimes idiosyncratic conventional clock time and civil
+ * calendar.
+ *
+ * Most communications radios use a highpass filter in the audio stages,
+ * which can do nasty things to the subcarrier phase relative to the
+ * sync pulses. Therefore, the data subcarrier reference phase is
+ * disciplined using the hardlimited quadrature-phase signal sampled at
+ * the same time as the in-phase signal. The phase tracking loop uses
+ * phase adjustments of plus-minus one sample (125 us).
+ */
+static void
+wwv_epoch(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ static double dpulse; /* data pulse length */
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct chan *cp;
+ struct sync *sp;
+ l_fp offset; /* NTP format offset */
+ double dtemp;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+
+ /*
+ * Sample the minute sync pulse amplitude at epoch 800 for both
+ * the WWV and WWVH stations. This will be used later for
+ * channel mitigation.
+ */
+ cp = &up->mitig[up->achan];
+ if (up->rphase == 800 * MS) {
+ sp = &cp->wwv;
+ sp->synamp = sqrt(sp->amp);
+ sp = &cp->wwvh;
+ sp->synamp = sqrt(sp->amp);
+ }
+
+ if (up->rsec == 0) {
+ up->sigamp = up->datsnr = 0;
+ } else {
+
+ /*
+ * Estimate the noise level by integrating the I-channel
+ * energy at epoch 30 ms.
+ */
+ if (up->rphase == 30 * MS) {
+ if (!(up->status & SFLAG))
+ up->noiamp += (up->irig - up->noiamp) /
+ (MINAVG << up->avgint);
+ else
+ cp->noiamp += (sqrt(up->irig *
+ up->irig + up->qrig * up->qrig) -
+ cp->noiamp) / 8;
+
+ /*
+ * Strobe the peak I-channel data signal at epoch 200
+ * ms. Compute the SNR and adjust the 100-Hz reference
+ * oscillator phase using the Q-channel data signal at
+ * that epoch. Save the envelope amplitude for the probe
+ * channel.
+ */
+ } else if (up->rphase == 200 * MS) {
+ if (!(up->status & SFLAG)) {
+ up->sigamp = up->irig;
+ if (up->sigamp < 0)
+ up->sigamp = 0;
+ up->datsnr = wwv_snr(up->sigamp,
+ up->noiamp);
+ up->datpha = up->qrig / (MINAVG <<
+ up->avgint);
+ if (up->datpha >= 0) {
+ up->datapt++;
+ if (up->datapt >= 80)
+ up->datapt -= 80;
+ } else {
+ up->datapt--;
+ if (up->datapt < 0)
+ up->datapt += 80;
+ }
+ } else {
+ up->sigamp = sqrt(up->irig * up->irig +
+ up->qrig * up->qrig);
+ up->datsnr = wwv_snr(up->sigamp,
+ cp->noiamp);
+ }
+
+ /*
+ * The slice level is set half way between the peak
+ * signal and noise levels. Strobe the negative zero
+ * crossing after epoch 200 ms and record the epoch at
+ * that time. This defines the length of the data pulse,
+ * which will later be converted into scaled bit
+ * probabilities.
+ */
+ } else if (up->rphase > 200 * MS) {
+ dtemp = (up->sigamp + up->noiamp) / 2;
+ if (up->irig < dtemp && dpulse == 0)
+ dpulse = up->rphase;
+ }
+ }
+
+ /*
+ * At the end of the transmitter second, crank the clock state
+ * machine. Note we have to be careful to set the transmitter
+ * epoch at the same time as the receiver epoch to be sure the
+ * right propagation delay is used. We don't bother the heavy
+ * machinery unless the clock is set.
+ */
+ up->tphase++;
+ if (up->epoch == up->yepoch) {
+ wwv_tsec(up);
+ up->tphase = 0;
+
+ /*
+ * Determine the current offset from the time of century
+ * and the sample timestamp, but only if the SYNERR
+ * alarm has not been raised in the present or previous
+ * minute.
+ */
+ if (!(up->status & SFLAG) && up->status & INSYNC &&
+ (up->alarm & (3 << SYNERR)) == 0) {
+ pp->second = up->tsec;
+ pp->minute = up->decvec[MN].digit +
+ up->decvec[MN + 1].digit * 10;
+ pp->hour = up->decvec[HR].digit +
+ up->decvec[HR + 1].digit * 10;
+ pp->day = up->decvec[DA].digit + up->decvec[DA +
+ 1].digit * 10 + up->decvec[DA + 2].digit *
+ 100;
+ pp->year = up->decvec[YR].digit +
+ up->decvec[YR + 1].digit * 10;
+ if (pp->year < UTCYEAR)
+ pp->year += 2000;
+ else
+ pp->year += 1900;
+
+ /*
+ * We have to simulate refclock_process() here,
+ * since the fudgetime gets added much earlier
+ * than this.
+ */
+ pp->lastrec = up->timestamp;
+ L_CLR(&offset);
+ if (!clocktime(pp->day, pp->hour, pp->minute,
+ pp->second, GMT, pp->lastrec.l_ui,
+ &pp->yearstart, &offset.l_ui))
+ up->errflg = CEVNT_BADTIME;
+ else
+ refclock_process_offset(pp, offset,
+ pp->lastrec, 0.);
+ }
+ }
+
+ /*
+ * At the end of the receiver second, process the data bit and
+ * update the decoding matrix probabilities.
+ */
+ up->rphase++;
+ if (up->epoch == up->repoch) {
+ wwv_rsec(peer, dpulse);
+ wwv_gain(peer);
+ up->rphase = dpulse = 0;
+ }
+}
+
+
+/*
+ * wwv_rsec - process receiver second
+ *
+ * This routine is called at the end of each receiver second to
+ * implement the per-second state machine. The machine assembles BCD
+ * digit bits, decodes miscellaneous bits and dances the leap seconds.
+ *
+ * Normally, the minute has 60 seconds numbered 0-59. If the leap
+ * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
+ * for leap years) or 31 December (day 365 or 366 for leap years) is
+ * augmented by one second numbered 60. This is accomplished by
+ * extending the minute interval by one second and teaching the state
+ * machine to ignore it. BTW, stations WWV/WWVH cowardly kill the
+ * transmitter carrier for a few seconds around the leap to avoid icky
+ * details of transmission format during the leap.
+ */
+static void
+wwv_rsec(
+ struct peer *peer, /* peer structure pointer */
+ double dpulse
+ )
+{
+ static int iniflg; /* initialization flag */
+ static double bcddld[4]; /* BCD data bits */
+ static double bitvec[61]; /* bit integrator for misc bits */
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct chan *cp;
+ struct sync *sp, *rp;
+ double bit; /* bit likelihood */
+ char tbuf[80]; /* monitor buffer */
+ int sw, arg, nsec;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+ if (!iniflg) {
+ iniflg = 1;
+ memset((char *)bitvec, 0, sizeof(bitvec));
+ }
+
+ /*
+ * The bit represents the probability of a hit on zero (negative
+ * values), a hit on one (positive values) or a miss (zero
+ * value). The likelihood vector is the exponential average of
+ * these probabilities. Only the bits of this vector
+ * corresponding to the miscellaneous bits of the timecode are
+ * used, but it's easier to do them all. After that, crank the
+ * seconds state machine.
+ */
+ nsec = up->rsec + 1;
+ bit = wwv_data(up, dpulse);
+ bitvec[up->rsec] += (bit - bitvec[up->rsec]) / TCONST;
+ sw = progx[up->rsec].sw;
+ arg = progx[up->rsec].arg;
+ switch (sw) {
+
+ /*
+ * Ignore this second.
+ */
+ case IDLE: /* 9, 45-49 */
+ break;
+
+ /*
+ * Probe channel stuff
+ *
+ * The WWV/H format contains data pulses in second 59 (position
+ * identifier) and second 1 (not used), and the minute sync
+ * pulse in second 0. At the end of second 58, we QSYed to the
+ * probe channel, which rotates over all WWV/H frequencies. At
+ * the end of second 59, we latched the sync noise and tested
+ * for data bit error. At the end of second 0, we now latch the
+ * sync peak.
+ */
+ case SYNC2: /* 0 */
+ cp = &up->mitig[up->achan];
+ sp = &cp->wwv;
+ sp->synmax = sp->synamp;
+ sp = &cp->wwvh;
+ sp->synmax = sp->synamp;
+ break;
+
+ /*
+ * At the end of second 1, latch and average the sync noise and
+ * test for data bit error. Set SYNCNG if the sync pulse
+ * amplitude and SNR are not above thresholds. Set DATANG if
+ * data error occured on both second 59 and second 1. Finally,
+ * QSY back to the data channel.
+ */
+ case SYNC3: /* 1 */
+ cp = &up->mitig[up->achan];
+ if (up->sigamp < DTHR || up->datsnr < DSNR)
+ cp->errcnt++;
+
+ sp = &cp->wwv;
+ sp->synmin = (sp->synmin + sp->synamp) / 2;
+ sp->synsnr = wwv_snr(sp->synmax, sp->synmin);
+ sp->select &= ~(DATANG | SYNCNG);
+ if (sp->synmax < QTHR || sp->synsnr < QSNR)
+ sp->select |= SYNCNG;
+ if (cp->errcnt > 1)
+ sp->select |= DATANG;
+
+ rp = &cp->wwvh;
+ rp->synmin = (rp->synmin + rp->synamp) / 2;
+ rp->synsnr = wwv_snr(rp->synmax, rp->synmin);
+ rp->select &= ~(DATANG | SYNCNG);
+ if (rp->synmax < QTHR || rp->synsnr < QSNR)
+ rp->select |= SYNCNG;
+ if (cp->errcnt > 1)
+ rp->select |= DATANG;
+
+ cp->errcnt = 0;
+ sprintf(tbuf,
+ "wwv5 %d %3d %-3s %04x %d %.0f/%.1f/%ld %s %04x %d %.0f/%.1f/%ld",
+ up->port, up->gain, sp->ident, sp->select,
+ sp->count, sp->synmax, sp->synsnr, sp->jitter,
+ rp->ident, rp->select, rp->count, rp->synmax,
+ rp->synsnr, rp->jitter);
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ up->status &= ~SFLAG;
+ wwv_newchan(peer);
+ break;
+
+ /*
+ * Save the bit probability in the BCD data vector at the index
+ * given by the argument. Note that all bits of the vector have
+ * to be above the data gate threshold for the digit to be
+ * considered valid. Bits not used in the digit are forced to
+ * zero and not checked for errors.
+ */
+ case COEF1: /* 10-13 */
+ if (up->status & DGATE)
+ up->status |= BGATE;
+ bcddld[arg] = bit;
+ break;
+
+ case COEF2: /* 18, 27-28, 42-43 */
+ bcddld[arg] = 0;
+ break;
+
+ case COEF: /* 4-7, 15-17, 20-23, 25-26,
+ 30-33, 35-38, 40-41, 51-54 */
+ if (up->status & DGATE || !(up->status & DSYNC))
+ up->status |= BGATE;
+ bcddld[arg] = bit;
+ break;
+
+ /*
+ * Correlate coefficient vector with each valid digit vector and
+ * save in decoding matrix. We step through the decoding matrix
+ * digits correlating each with the coefficients and saving the
+ * greatest and the next lower for later SNR calculation.
+ */
+ case DECIM2: /* 29 */
+ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
+ break;
+
+ case DECIM3: /* 44 */
+ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
+ break;
+
+ case DECIM6: /* 19 */
+ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
+ break;
+
+ case DECIM9: /* 8, 14, 24, 34, 39 */
+ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
+ break;
+
+ /*
+ * Miscellaneous bits. If above the positive threshold, declare
+ * 1; if below the negative threshold, declare 0; otherwise
+ * raise the SYMERR alarm. At the end of second 58, QSY to the
+ * probe channel.
+ */
+ case MSC20: /* 55 */
+ wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
+ /* fall through */
+
+ case MSCBIT: /* 2, 3, 50, 56-57 */
+ if (bitvec[up->rsec] > BTHR)
+ up->misc |= arg;
+ else if (bitvec[up->rsec] < -BTHR)
+ up->misc &= ~arg;
+ else
+ up->alarm |= 1 << SYMERR;
+ break;
+
+ case MSC21: /* 58 */
+ if (bitvec[up->rsec] > BTHR)
+ up->misc |= arg;
+ else if (bitvec[up->rsec] < -BTHR)
+ up->misc &= ~arg;
+ else
+ up->alarm |= 1 << SYMERR;
+ up->schan = (up->schan + 1) % NCHAN;
+ wwv_qsy(peer, up->schan);
+ up->status |= SFLAG;
+ break;
+
+ /*
+ * The endgames
+ *
+ * Second 59 contains the first data pulse of the probe
+ * sequence. Check it for validity and establish the noise floor
+ * for the minute sync SNR.
+ */
+ case MIN1: /* 59 */
+ cp = &up->mitig[up->achan];
+ if (up->sigamp < DTHR || up->datsnr < DSNR)
+ cp->errcnt++;
+ sp = &cp->wwv;
+ sp->synmin = sp->synamp;
+ sp = &cp->wwvh;
+ sp->synmin = sp->synamp;
+
+ /*
+ * If SECWARN is set on the last minute of 30 June or 31
+ * December, LEPSEC bit is set. At the end of the minute
+ * in which LEPSEC is set the transmitter and receiver
+ * insert an extra second (60) in the timescale and the
+ * minute sync skips a second. We only get to test this
+ * wrinkle at intervals of about 18 months, the actual
+ * mileage may vary.
+ */
+ if (up->tsec == 60) {
+ up->status &= ~LEPSEC;
+ break;
+ }
+ /* fall through */
+
+ /*
+ * If all nine clock digits are valid and the SYNERR alarm is
+ * not raised in the current or previous second, the clock is
+ * set or validated. If at least one digit is set, which by
+ * design must be the minute units digit, the clock state
+ * machine begins to count the minutes.
+ */
+ case MIN2: /* 59/60 */
+ up->minset = ((current_time - peer->update) + 30) / 60;
+ if (up->digcnt > 0)
+ up->status |= DSYNC;
+ if (up->digcnt >= 9 && (up->alarm & (3 << SYNERR)) == 0)
+ {
+ up->status |= INSYNC;
+ up->watch = 0;
+ }
+ pp->lencode = timecode(up, pp->a_lastcode);
+ if (up->misc & SECWAR)
+ pp->leap = LEAP_ADDSECOND;
+ else
+ pp->leap = LEAP_NOWARNING;
+ refclock_receive(peer);
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug)
+ printf("wwv: timecode %d %s\n", pp->lencode,
+ pp->a_lastcode);
+#endif /* DEBUG */
+
+ /*
+ * The ultimate watchdog is the interval since the
+ * reference clock interface code last received an
+ * update from this driver. If the interval is greater
+ * than a couple of days, manual intervention is
+ * probably required, so the program resets and tries to
+ * resynchronized from scratch.
+ */
+ if (up->minset > PANIC)
+ up->status = 0;
+ up->alarm = (up->alarm & ~0x8888) << 1;
+ up->nepoch = (up->mphase + SYNSIZ) % MINUTE;
+ up->errcnt = up->digcnt = nsec = 0;
+ break;
+ }
+ if (!(up->status & DSYNC)) {
+ sprintf(tbuf,
+ "wwv3 %2d %04x %5.0f %5.0f %5.0f %5.1f %5.0f %5.0f",
+ up->rsec, up->status, up->epomax, up->sigamp,
+ up->datpha, up->datsnr, bit, bitvec[up->rsec]);
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+ up->rsec = up->tsec = nsec;
+ return;
+}
+
+
+/*
+ * wwv_data - calculate bit probability
+ *
+ * This routine is called at the end of the receiver second to calculate
+ * the probabilities that the previous second contained a zero (P0), one
+ * (P1) or position indicator (P2) pulse. If not in sync or if the data
+ * bit is bad, a bit error is declared and the probabilities are forced
+ * to zero. Otherwise, the data gate is enabled and the probabilities
+ * are calculated. Note that the data matched filter contributes half
+ * the pulse width, or 85 ms..
+ */
+static double
+wwv_data(
+ struct wwvunit *up, /* driver unit pointer */
+ double pulse /* pulse length (sample units) */
+ )
+{
+ double p0, p1, p2; /* probabilities */
+ double dpulse; /* pulse length in ms */
+
+ p0 = p1 = p2 = 0;
+ dpulse = pulse - DATSIZ / 2;
+
+ /*
+ * If the data amplitude or SNR are below threshold or if the
+ * pulse length is less than 170 ms, declare an erasure.
+ */
+ if (up->sigamp < DTHR || up->datsnr < DSNR || dpulse < DATSIZ) {
+ up->status |= DGATE;
+ up->errcnt++;
+ if (up->errcnt > MAXERR)
+ up->alarm |= 1 << MODERR;
+ return (0);
+ }
+
+ /*
+ * The probability of P0 is one below 200 ms falling to zero at
+ * 500 ms. The probability of P1 is zero below 200 ms rising to
+ * one at 500 ms and falling to zero at 800 ms. The probability
+ * of P2 is zero below 500 ms, rising to one above 800 ms.
+ */
+ up->status &= ~DGATE;
+ if (dpulse < (200 * MS)) {
+ p0 = 1;
+ } else if (dpulse < 500 * MS) {
+ dpulse -= 200 * MS;
+ p1 = dpulse / (300 * MS);
+ p0 = 1 - p1;
+ } else if (dpulse < 800 * MS) {
+ dpulse -= 500 * MS;
+ p2 = dpulse / (300 * MS);
+ p1 = 1 - p2;
+ } else {
+ p2 = 1;
+ }
+
+ /*
+ * The ouput is a metric that ranges from -1 (P0), to +1 (P1)
+ * scaled for convenience. An output of zero represents an
+ * erasure, either because of a data error or pulse length
+ * greater than 500 ms. At the moment, we don't use P2.
+ */
+ return ((p1 - p0) * MAXSIG);
+}
+
+
+/*
+ * wwv_corr4 - determine maximum likelihood digit
+ *
+ * This routine correlates the received digit vector with the BCD
+ * coefficient vectors corresponding to all valid digits at the given
+ * position in the decoding matrix. The maximum value corresponds to the
+ * maximum likelihood digit, while the ratio of this value to the next
+ * lower value determines the likelihood function. Note that, if the
+ * digit is invalid, the likelihood vector is averaged toward a miss.
+ */
+static void
+wwv_corr4(
+ struct peer *peer, /* peer unit pointer */
+ struct decvec *vp, /* decoding table pointer */
+ double data[], /* received data vector */
+ double tab[][4] /* correlation vector array */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ double topmax, nxtmax; /* metrics */
+ double acc; /* accumulator */
+ char tbuf[80]; /* monitor buffer */
+ int mldigit; /* max likelihood digit */
+ int diff; /* decoding difference */
+ int i, j;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+
+ /*
+ * Correlate digit vector with each BCD coefficient vector. If
+ * any BCD digit bit is bad, consider all bits a miss.
+ */
+ mldigit = 0;
+ topmax = nxtmax = -MAXSIG;
+ for (i = 0; tab[i][0] != 0; i++) {
+ acc = 0;
+ for (j = 0; j < 4; j++) {
+ if (!(up->status & BGATE))
+ acc += data[j] * tab[i][j];
+ }
+ acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
+ if (acc > topmax) {
+ nxtmax = topmax;
+ topmax = acc;
+ mldigit = i;
+ } else if (acc > nxtmax) {
+ nxtmax = acc;
+ }
+ }
+ vp->mldigit = mldigit;
+ vp->digprb = topmax;
+ vp->digsnr = wwv_snr(topmax, nxtmax);
+
+ /*
+ * The maximum likelihood digit is compared with the current
+ * clock digit. The difference represents the decoding phase
+ * error. If the digit probability and likelihood are good and
+ * the difference stays the same for a number of comparisons,
+ * the clock digit is reset to the maximum likelihood digit.
+ */
+ diff = mldigit - vp->digit;
+ if (diff < 0)
+ diff += vp->radix;
+ if (diff != vp->phase) {
+ vp->phase = diff;
+ vp->count = 0;
+ }
+ if (vp->digprb < BTHR || vp->digsnr < BSNR) {
+ vp->count = 0;
+ up->alarm |= 1 << SYMERR;
+ } else if (vp->count < BCMP) {
+ if (!(up->status & INSYNC)) {
+ vp->phase = 0;
+ vp->digit = mldigit;
+ }
+ vp->count++;
+ } else {
+ vp->phase = 0;
+ vp->digit = mldigit;
+ up->digcnt++;
+ }
+ if (vp->digit != mldigit)
+ up->alarm |= 1 << DECERR;
+ if (!(up->status & INSYNC)) {
+ sprintf(tbuf,
+ "wwv4 %2d %04x %5.0f %2d %d %d %d %d %5.0f %5.1f",
+ up->rsec, up->status, up->epomax, vp->radix,
+ vp->digit, vp->mldigit, vp->phase, vp->count,
+ vp->digprb, vp->digsnr);
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+ up->status &= ~BGATE;
+}
+
+
+/*
+ * wwv_tsec - transmitter second processing
+ *
+ * This routine is called at the end of the transmitter second. It
+ * implements a state machine that advances the logical clock subject to
+ * the funny rules that govern the conventional clock and calendar. Note
+ * that carries from the least significant (minutes) digit are inhibited
+ * until that digit is synchronized.
+ */
+static void
+wwv_tsec(
+ struct wwvunit *up /* driver structure pointer */
+ )
+{
+ int minute, day, isleap;
+ int temp;
+
+ up->tsec++;
+ if (up->tsec < 60 || up->status & LEPSEC)
+ return;
+ up->tsec = 0;
+
+ /*
+ * Advance minute unit of the day. If the minute unit is not
+ * synchronized, go no further.
+ */
+ temp = carry(&up->decvec[MN]); /* minute units */
+ if (!(up->status & DSYNC))
+ return;
+
+ /*
+ * Propagate carries through the day.
+ */
+ if (temp == 0) /* carry minutes */
+ temp = carry(&up->decvec[MN + 1]);
+ if (temp == 0) /* carry hours */
+ temp = carry(&up->decvec[HR]);
+ if (temp == 0)
+ temp = carry(&up->decvec[HR + 1]);
+
+ /*
+ * Decode the current minute and day. Set the leap second enable
+ * bit on the last minute of 30 June and 31 December.
+ */
+ minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
+ 10 + up->decvec[HR].digit * 60 + up->decvec[HR +
+ 1].digit * 600;
+ day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
+ up->decvec[DA + 2].digit * 100;
+ isleap = (up->decvec[YR].digit & 0x3) == 0;
+ if (minute == 1439 && (day == (isleap ? 182 : 183) || day ==
+ (isleap ? 365 : 366)) && up->misc & SECWAR)
+ up->status |= LEPSEC;
+
+ /*
+ * Roll the day if this the first minute and propagate carries
+ * through the year.
+ */
+ if (minute != 1440)
+ return;
+ minute = 0;
+ while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
+ while (carry(&up->decvec[HR + 1]) != 0);
+ day++;
+ temp = carry(&up->decvec[DA]); /* carry days */
+ if (temp == 0)
+ temp = carry(&up->decvec[DA + 1]);
+ if (temp == 0)
+ temp = carry(&up->decvec[DA + 2]);
+
+ /*
+ * Roll the year if this the first day and propagate carries
+ * through the century.
+ */
+ if (day != (isleap ? 365 : 366))
+ return;
+ day = 1;
+ while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
+ while (carry(&up->decvec[DA + 1]) != 0);
+ while (carry(&up->decvec[DA + 2]) != 0);
+ temp = carry(&up->decvec[YR]); /* carry years */
+ if (temp)
+ carry(&up->decvec[YR + 1]);
+}
+
+
+/*
+ * carry - process digit
+ *
+ * This routine rotates a likelihood vector one position and increments
+ * the clock digit modulo the radix. It returns the new clock digit -
+ * zero if a carry occured. Once synchronized, the clock digit will
+ * match the maximum likelihood digit corresponding to that position.
+ */
+static int
+carry(
+ struct decvec *dp /* decoding table pointer */
+ )
+{
+ int temp;
+ int j;
+
+ dp->digit++; /* advance clock digit */
+ if (dp->digit == dp->radix) { /* modulo radix */
+ dp->digit = 0;
+ }
+ temp = dp->like[dp->radix - 1]; /* rotate likelihood vector */
+ for (j = dp->radix - 1; j > 0; j--)
+ dp->like[j] = dp->like[j - 1];
+ dp->like[0] = temp;
+ return (dp->digit);
+}
+
+
+/*
+ * wwv_snr - compute SNR or likelihood function
+ */
+static double
+wwv_snr(
+ double signal, /* signal */
+ double noise /* noise */
+ )
+{
+ double rval;
+
+ /*
+ * This is a little tricky. Due to the way things are measured,
+ * either or both the signal or noise amplitude can be negative
+ * or zero. The intent is that, if the signal is negative or
+ * zero, the SNR must always be zero. This can happen with the
+ * subcarrier SNR before the phase has been aligned. On the
+ * other hand, in the likelihood function the "noise" is the
+ * next maximum down from the peak and this could be negative.
+ * However, in this case the SNR is truly stupendous, so we
+ * simply cap at MAXSNR dB.
+ */
+ if (signal <= 0) {
+ rval = 0;
+ } else if (noise <= 0) {
+ rval = MAXSNR;
+ } else {
+ rval = 20 * log10(signal / noise);
+ if (rval > MAXSNR)
+ rval = MAXSNR;
+ }
+ return (rval);
+}
+
+/*
+ * wwv_newchan - change to new data channel
+ *
+ * Assuming the radio can be tuned by this program, it actually appears
+ * as a 10-channel receiver, one channel for each of WWV and WWVH on
+ * each of five frequencies. While the radio is tuned to the working
+ * data channel (frequency and station) for most of the minute, during
+ * seconds 59, 0 and 1 the radio is tuned to a probe channel, in order
+ * to pick up minute sync and data pulses. The search for WWV and WWVH
+ * stations operates simultaneously, with WWV on 1000 Hz and WWVH on
+ * 1200 Hz. The probe channel rotates for each minute over the five
+ * frequencies. At the end of each rotation, this routine mitigates over
+ * all channels and chooses the best frequency and station.
+ */
+static void
+wwv_newchan(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct chan *cp;
+ struct sync *sp, *rp;
+ int rank;
+ int i, j;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+
+ /*
+ * Reset the matched filter selector and station pointer to
+ * avoid fooling around should we lose this game.
+ */
+ up->sptr = 0;
+ up->status &= ~(SELV | SELH);
+
+ /*
+ * Search all five station pairs looking for the station with
+ * the maximum compare counter. Ties go to the highest frequency
+ * and then to WWV.
+ */
+ j = 0;
+ sp = (struct sync *)0;
+ rank = 0;
+ for (i = 0; i < NCHAN; i++) {
+ cp = &up->mitig[i];
+ rp = &cp->wwvh;
+ if (rp->count >= rank) {
+ sp = rp;
+ rank = rp->count;
+ j = i;
+ }
+ rp = &cp->wwv;
+ if (rp->count >= rank) {
+ sp = rp;
+ rank = rp->count;
+ j = i;
+ }
+ }
+
+ /*
+ * If we find a station, continue to track it. If not, X marks
+ * the spot and we wait for better ions.
+ */
+ if (rank > 0) {
+ up->dchan = j;
+ up->sptr = sp;
+ up->status |= sp->select & (SELV | SELH);
+ memcpy((char *)&pp->refid, sp->refid, 4);
+ memcpy((char *)&peer->refid, sp->refid, 4);
+ wwv_qsy(peer, up->dchan);
+ }
+}
+
+
+/*
+ * wwv_qsy - Tune ICOM receiver
+ *
+ * This routine saves the AGC for the current channel, switches to a new
+ * channel and restores the AGC for that channel. If a tunable receiver
+ * is not available, just fake it.
+ */
+static int
+wwv_qsy(
+ struct peer *peer, /* peer structure pointer */
+ int chan /* channel */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ int rval = 0;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+ up->mitig[up->achan].gain = up->gain;
+#ifdef ICOM
+ if (up->fd_icom > 0)
+ rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
+ qsy[chan]);
+#endif /* ICOM */
+ up->achan = chan;
+ up->gain = up->mitig[up->achan].gain;
+ return (rval);
+}
+
+
+/*
+ * timecode - assemble timecode string and length
+ *
+ * Prettytime format - similar to Spectracom
+ *
+ * sq yy ddd hh:mm:ss.fff ld dut lset agc stn comp errs freq avgt
+ *
+ * s sync indicator ('?' or ' ')
+ * q quality character (hex 0-F)
+ * yyyy year of century
+ * ddd day of year
+ * hh hour of day
+ * mm minute of hour
+ * ss minute of hour
+ * fff millisecond of second
+ * l leap second warning ' ' or 'L'
+ * d DST state 'S', 'D', 'I', or 'O'
+ * dut DUT sign and magnitude in deciseconds
+ * lset minutes since last clock update
+ * agc audio gain (0-255)
+ * iden station identifier (station and frequency)
+ * comp minute sync compare counter
+ * errs bit errors in last minute * freq frequency offset (PPM) * avgt averaging time (s) */
+static int
+timecode(
+ struct wwvunit *up, /* driver structure pointer */
+ char *ptr /* target string */
+ )
+{
+ struct sync *sp;
+ int year, day, hour, minute, second, frac, dut;
+ char synchar, qual, leapchar, dst;
+ char cptr[50];
+
+
+ /*
+ * Common fixed-format fields
+ */
+ synchar = (up->status & INSYNC) ? ' ' : '?';
+ qual = 0;
+ if (up->alarm & (3 << DECERR))
+ qual |= 0x1;
+ if (up->alarm & (3 << SYMERR))
+ qual |= 0x2;
+ if (up->alarm & (3 << MODERR))
+ qual |= 0x4;
+ if (up->alarm & (3 << SYNERR))
+ qual |= 0x8;
+ year = up->decvec[7].digit + up->decvec[7].digit * 10;
+ if (year < UTCYEAR)
+ year += 2000;
+ else
+ year += 1900;
+ day = up->decvec[4].digit + up->decvec[5].digit * 10 +
+ up->decvec[6].digit * 100;
+ hour = up->decvec[2].digit + up->decvec[3].digit * 10;
+ minute = up->decvec[0].digit + up->decvec[1].digit * 10;
+ second = up->tsec;
+ frac = (up->tphase * 1000) / SECOND;
+ leapchar = (up->misc & SECWAR) ? 'L' : ' ';
+ dst = dstcod[(up->misc >> 4) & 0x3];
+ dut = up->misc & 0x7;
+ if (!(up->misc & DUTS))
+ dut = -dut;
+ sprintf(ptr, "%c%1X", synchar, qual);
+ sprintf(cptr, " %4d %03d %02d:%02d:%02d.%.03d %c%c %+d",
+ year, day, hour, minute, second, frac, leapchar, dst, dut);
+ strcat(ptr, cptr);
+
+ /*
+ * Specific variable-format fields
+ */
+ sp = up->sptr;
+ if (sp != 0)
+ sprintf(cptr, " %d %d %s %d %d %.1f %d", up->minset,
+ up->mitig[up->dchan].gain, sp->ident, sp->count,
+ up->errcnt, up->freq / SECOND * 1e6, MINAVG <<
+ up->avgint);
+ else
+ sprintf(cptr, " %d %d X 0 %d %.1f %d", up->minset,
+ up->mitig[up->dchan].gain, up->errcnt, up->freq /
+ SECOND * 1e6, MINAVG << up->avgint);
+ strcat(ptr, cptr);
+ return (strlen(ptr));
+}
+
+
+/*
+ * wwv_gain - adjust codec gain
+ *
+ * This routine is called once each second. If the signal envelope
+ * amplitude is too low, the codec gain is bumped up by four units; if
+ * too high, it is bumped down. The decoder is relatively insensitive to
+ * amplitude, so this crudity works just fine. The input port is set and
+ * the error flag is cleared, mostly to be ornery.
+ */
+static void
+wwv_gain(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ pp = peer->procptr;
+ up = (struct wwvunit *)pp->unitptr;
+
+ /*
+ * Apparently, the codec uses only the high order bits of the
+ * gain control field. Thus, it may take awhile for changes to
+ * wiggle the hardware bits.
+ */
+ if (up->clipcnt == 0) {
+ up->gain += 4;
+ if (up->gain > 255)
+ up->gain = 255;
+ } else if (up->clipcnt > SECOND / 100) {
+ up->gain -= 4;
+ if (up->gain < 0)
+ up->gain = 0;
+ }
+ audio_gain(up->gain, up->port);
+ up->clipcnt = 0;
+}
+
+
+#else
+int refclock_wwv_bs;
+#endif /* REFCLOCK */
OpenPOWER on IntegriCloud